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ABSTRACT 

In an Era where environmental issues are a growing concern, microorganisms that have remarkable 

features, such as extracellular electron transfer (EET) ability, present major opportunities in diverse 

biotechnological fields. Geobacter bacteria have shown an extraordinary respiratory flexibility, with its 

dissimilatory metal reduction ability and EET to electrode surfaces, and numerous c-type cytochromes 

were pointed as key players. However, the understanding of the mechanisms involved and hence, the 

advances in practical applications, are still in its early days and it is crucial to move further and unveil 

not only the components involved, but also their roles and partners in electron transfer.  

The dodecaheme GSU1996, composed of four similar triheme domains (A–D), was proposed to 

work as a natural nanowire, owing to its linear structure and large number of hemes. In this work, the 

in vitro functional characterization of the GSU1996 was attempted, in a modular characterization based 

strategy. Here, the triheme domains C and D assisted in the characterization of the C-terminal end of 

GSU1996, the hexaheme fragment CD. The first step encompassed the assignment of the heme groups 

signals in the nuclear magnetic resonance spectra of the triheme domains and of the hexaheme 

fragment, which is the protein with the highest number of hemes assigned to date. The second step 

comprised the determination of the microscopic thermodynamic parameters of fragment CD. This 

provided mechanistic information on the dominant microstates and included the determination of the 

reduction potentials of the hemes, redox interactions between hemes and ionizable centers and among 

neighboring hemes. The third and final step consisted in the determination of the microscopic kinetic 

parameters of fragment CD. This unveiled details about the reactivity of the heme groups and included 

the calculation of the reference rate constants for each heme in the reduction/oxidation process. All 

combined, the data revealed that a heme located at the end of the C-terminal edge of GSU1996 shows 

the necessary skills to accept electrons from redox partners. 

In vitro interaction studies performed between GSU1996 and the periplasmic cytochrome PpcA and 

its homologues (PpcC–E), revealed that it is possible that GSU1996 and PpcA may be redox partners 

in G. sulfurreducens, as they form a transient redox complex that involves the C-terminal fragment of 

GSU1996. 

Work has also been started to disclose other electron transfer components of G. sulfurreducens, 

namely, the outer membrane tetraheme cytochrome OmcE; the hexaheme OmcS and the nanowire 

cytochrome GSU2210. New constructs and expression systems were tested, based in the pBAD vector, 

albeit none of the attempts have been successful.  

Although in vitro studies provide information and allow the evaluation of the functional properties of 

these proteins, in vivo studies are essential to assess the actual roles and interacting partners in the 

cells. Therefore, a novel approach was also tested towards the in vivo labeling of c-type cytochromes, 

based in the attachment of a tetracysteine tag that is fluorescent upon binding with commercially 

available biarsenical dyes. However, no expression of the model tagged protein was accomplished.  

 

Keywords: Geobacter sulfurreducens; GSU1996 nanowire c-type cytochrome; Electron transfer; 

Nuclear Magnetic Resonance 
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RESUMO 

Numa Era em que as questões ambientais são uma preocupação crescente, os microrganismos 

com características distintivas, como a capacidade de realizar transferência electrónica extracelular 

(TEE), representam oportunidades de avanço em diversos campos biotecnológicos. As bactérias do 

género Geobacter apresentam uma flexibilidade respiratória extraordinária, devido à capacidade de 

redução dissimilativa de metais e de TEE para superfícies de eléctrodos, na qual foram implicados 

vários citocromos c como elementos-chave. Contudo, a compreensão dos mecanismos envolvidos e, 

logo, as aplicações práticas, ainda se encontram numa fase embrionária. Assim, é essencial 

incrementar a informação disponível de modo a revelar os componentes envolvidos, bem como as 

suas funções e parceiros nos mecanismos de transferência electrónica.  

Ao citocromo dodeca-hémico GSU1996, constituído por quatro domínios tri-hémicos semelhantes 

(A–D), foi associada a função de nanofio natural de hemos, devido à sua estrutura linear e ao elevado 

número de grupos hemo. Neste trabalho, foi realizada a tentativa de caracterizar o GSU1996 com base 

numa estratégia de caracterização modular. Os domínio tri-hémicos C e D guiaram a caracterização 

da região C-terminal do GSU1996, o fragmento hexa-hémico CD. O primeiro passo consistiu na 

atribuição dos sinais nos espectros obtidos por Ressonância Magnética Nuclear aos grupos hemo dos 

domínios e de seguida, do fragmento. O fragmento CD é, até à data, a proteína com o maior número 

de grupos hemo cujos sinais foram atribuídos. Num segundo passo, determinaram-se os parâmetros 

termodinâmicos microscópicos do fragmento, que providenciaram informação mecanicista acerca dos 

microestados dominantes e que incluiu o cálculo dos potenciais de redução de cada grupo hemo, das 

interacções redox-Bohr e entre grupos hemo. O passo final compreendeu a determinação dos 

parâmetros cinéticos microscópicos do fragmento e revelou detalhes sobre a reactividade dos grupos 

hemo, incluindo o cálculo das constantes de velocidade para cada grupo hemo no processo de 

redução/oxidação. Globalmente, os dados mostram que um grupo hemo na região C-terminal do 

GSU1996 tem as propriedades necessárias para aceitar electrões de parceiros redox. 

Estudos de interacção in vitro entre o GSU1996 e o citocromo periplasmático PpcA e seus 

homólogos (PpcC–E), revelaram que entre o PpcA e o GSU1996 se forma um complexo transiente 

que envolve a região C-terminal deste, podendo ser parceiros redox em G. sulfurreducens. 

Iniciou-se também o estudo de outros componentes das cadeias de transferência electrónica de G. 

sulfurreducens, nomeadamente dos citocromos OmcE (membrana externa), OmcS (que compõe os 

pili) e GSU2210 (nanofio). Testaram-se plasmídeos e sistemas de expressão baseados no vetor pBAD, 

embora nenhuma das tentativas tenha sido bem sucedida.  

Embora os estudos in vitro permitam a avaliação das propriedades funcionais, é crucial estabelecer 

in vivo quais as actuais funções e parceiros das proteínas nas células. Assim, testou-se uma nova 

abordagem para marcação de citocromos c in vivo, baseada na expressão da proteína com um motivo 

de tetracisteínas na região C-terminal. Esta fluoresce após ligação a reagentes comerciais, como 

FlAsH-EDT2 ou ReAsH-EDT2. No entanto, não foi conseguida expressão com o citocromo modelo. 

 

Palavras-chave: Geobacter sulfurreducens; Citocromos c tipo nanofio; Transferência electrónica; 

Ressonância Magnética Nuclear
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ON THE QUEST FOR SUSTAINABILITY: ENVIRONMENTAL BIOTECHNOLOGY 
 

Biotechnology primarily emerged as the incorporation of the processes performed by natural 

biological systems to achieve desired purposes (1). More recently, a new approach has emerged in the 

form of Environmental Biotechnology, which combines the application of diverse branches of science, 

such as animal and plant sciences, chemical engineering, genetics, molecular biology, microbiology 

and biochemistry to answer environmental issues and requirements, in fields such as agriculture, 

resource preservation, environmental conservation, waste management and pollution prevention and 

bioremediation (2,3). Consequently, Environmental Biotechnology arises as a propelling force for a 

sustainable growth, crucial for mankind welfare and prosperity over future generations (3). 

Biogeochemistry encompasses the study of the complex processes that underlie the flow and 

distribution of chemical elements throughout living organisms and their environments (4). In this context, 

biogeochemical cycles cover the qualitative and quantitative comprehension of the migration and 

conversion of substances within natural and man-made environments, as the case of prime elements 

such as carbon, nitrogen or phosphorous (4). These are frequently mediated by microorganisms, for 

instance, Archaea and Bacteria (5). Indeed, complex microbial communities that populate soils, waters 

and sediments play major roles in the transformation and recycling of organic and inorganic compounds 

in order to sustain the biosphere (5). However, there is still a large void in the understanding of the 

fundamental mechanisms that trigger these microbially mediated reactions, either from relatively well 

studied processes such as photosynthesis or respiration, or from more unusual ones, as the 

extracellular electron transfer (EET) mechanisms that allow for the dissimilatory metal reduction (DMR) 

and direct interspecies electron transfer (DIET) processes (5). 

The convergence of Biogeochemistry and Environmental Biotechnology is inevitable and only 

multidisciplinary data will open routes to the successful understanding of biosphere mechanisms and 

its practical implementation towards meeting human needs and keeping environmental homeostasis 

(5). Therefore, in order to carry out biotechnological enterprises based in the effective large 

multipowering microbial communities with environmental and industrial scale sustainability, it is 

imperative to provide such level of primary details. This will contribute to the conception of new 

applications and improve the already existing ones, that are still limited to laboratory and small-scale 

technologies (5). 

 

BIOELECTROCHEMICAL SYSTEMS 
 

Research in microbial systems have demonstrated the real-world utility of electron transfer 

mechanisms evolved by microorganisms to interact with the environments (6). As an example, Fe(II)-

oxidizing microorganisms are already employed at an industrial scale in the biomining of ores, as in the 

extraction of gold, copper, nickel, and zinc (7,8).  

Microbial EET directed towards the oxidation of Fe(II) or reduction of minerals such as Fe(III), 

Se(IV)/Se(VI) or Pd(II) (9–12) are promising in the production of Fe(III), Fe(II), Se(0) and Pd(0) biogenic 

nanomaterials that can be employed in industry as catalysts and semiconductors, in the bioremediation 



CHAPTER 1 – Introduction 

3 

 

of soil and water contaminants and even in medical fields such as in cancer treatment procedures 

(10,11,13).  

Electrodes are also suitable for microorganisms both as electron donors (cathodes) and electron 

acceptors (anodes) (14,15). Bioelectrochemical systems (BESs) may occur as microbial fuel cells 

(MFCs, Figure 1.1), where electrons are harvested from microorganisms to produce electricity, or as 

microbial electrolysis cells (MECs, Figure 1.2), in which power is used to feed microorganisms to 

promote electricity-driven synthesis (15).  

In MFCs, chemical energy enclosed in organic matter present in wastewaters can be converted to 

electricity (16). In this case, Fe(III)- and Mn(IV)-reducing microorganisms such as Shewanella and 

Geobacter spp. carry out the oxidation of organic compounds and perform EET to the surface of an 

electrode with the concomitant electricity generation (14,17). So far, these systems meet the energy 

demands for low-power devices (18), although advances are on the way towards scaling up 

apparatuses (19–21). In mixed cultures setups that include methanogens, methane biofuel may as well 

be obtained (22,23).  

Exoelectrogen microorganisms are able to directly or indirectly transfer electrons onto the surfaces 

of electrodes in MFCs, by means of c-type cytochromes or pili or by electron shuttles, e.g., flavins or 

pyocyanin, respectively (24). They can form electroactive biofilms and produce an exopolysaccharide 

matrix and cyclopropane fatty acids that allow the surface charge modification and creates anchor 

points for c-type cytochromes (24). In the case of Shewanella oneidensis, flavin-cytochrome complexes 

are used to promote electron transfer to electrodes, while Geobacter sulfurreducens relies on pili and 

c-type cytochromes for this purpose (24). 

Figure 1.1 – Illustration of a soil MFC. Adapted from Wikimedia Commons/MFCGuy2010, available in 
https://en.wikipedia.org/wiki/File:SoilMFC.png. 

https://en.wikipedia.org/wiki/File:SoilMFC.png
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When electrons are provided to G. sulfurreducens, this bacterium is able to apply it in the reduction 

of protons to H2 (25) and this microorganism can be explored as self-renewable and low-cost catalyst 

in hydrogen production (26). 

In mixed microbial communities from natural and/or laboratory sources, Geobacter and akin species 

are usually the top colonizers found in electrodes, particularly in anaerobic growth conditions (26). 

Indeed, the larger current densities in microbial fuel cells were observed with Geobacter spp. (26). 

Geobacter spp. are also of interest in the field of bioelectronics, as electroactive biomaterials are 

innocuous and can be produced from rather economical raw materials and also by the indirect 

application of such abilities in the design of new and more efficient biomimetic systems (27). In this 

sense, increase of the current output and added-values production may be achieved by strain selection 

or engineering (28,29) or by improvements in microbial fuel cells, such as anode surface alteration with 

nanoparticles or by novel designs (19,24). Therefore, one of the constraints in scaling-up is the current 

knowledge on microbial electron transfer chains. 

In light of recent findings, microbial electrosynthesis processes have also been probed (15). In 

microbial electrosynthesis processes, microorganisms are used as biocatalysts, where oxidizing or 

reducing power is used to drive biochemical reactions, such as in the oxidative production of ethanol 

from glycerol (30) or the reductive conversion of CO2 to acetate or from fumarate to succinate 

(15,31,32).  

Figure 1.2 – Schematic representation of a MEC. 
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Illustrations of the microbial reduction abilities displayed by various microorganisms are outlined 

next, together with a brief state of the art around the microbial electron transfer mechanisms underlying 

it and some examples of their practical applications. 

 

Dissimilatory metal reduction 

Diverse Archaea and Bacteria are able to use metals and other compounds as electron acceptors 

in anaerobic respiration without performing uptake and/or incorporation directly into cell components 

(33). This is called DMR, where microorganisms conserve energy from the oxidation of aromatic 

molecules, organic acids, alcohols and/or H2 and couple it to the reduction of metals in the course of 

non-assimilatory metabolic activities (33–35). DMR plays major roles in the biogeochemical cycles of a 

wide range of organic and inorganic compounds in different environments, from ground to underground 

soils and waters. It also establishes the foundations towards the development of new and improved 

pioneering biotechnological applications in fields such as bioremediation or bioenergy production 

(34,36). 

The full molecular mechanisms that underlie the respiratory reduction of metals are still to unveil, 

and it is expected that the availability of more complete genome sequences from DMR organisms 

together with genomic and proteomic advances may shed light into these processes (36). 

 

Metals – Iron and Manganese 

Iron tends to coordinate with organic and inorganic ligands to originate a large number of different 

minerals that have key roles in environmental chemistry owing to their high reactivity (37). In 

physiological conditions, iron is usually found in the oxidized ferric – Fe(III) – and in the reduced ferrous 

– Fe(II) – redox states and may be in high or low spin states according to its ligands. Its chemistry may 

also vary with the pH and with the temperature, among other factors (37,38).  

The natural abundance of iron on planet Earth and its versatile properties may have elected this 

element as the ideal candidate for the incorporation in biomolecules from early periods and along life’s 

evolutionary stages (39). Indeed, iron acts as a cofactor in many proteins as mono- or binuclear species 

or incorporated in heme groups or iron-sulfur clusters as a biocatalyst or electron transporter (38). Under 

specific local environment, its geometry, spin state and redox potential (extending from −300 to +700 

mV) can be modelled within particular ranges headed for its biological purposes (38). These roles are 

played in numerous primary processes such as gene regulation and DNA synthesis, respiration, 

photosynthesis, oxygen transport and methanogenesis (38). 

Globally, the dissimilatory Fe(III) reduction presents a higher influence in the environmental ecology 

than other metals reduction (34) as it performs major roles in processes as the decomposition of organic 

matter and contaminating aromatic compounds; in the formation of magnetite – Fe3O4 (Fe2+O.Fe3+
2O3) 

– in aquatic sediments and its increase around hydrocarbon seeps; in the generation of siderite – 

Fe2+CO3 – and vivianite – Fe2+Fe2+
2(PO4)2·8H2O –; in the accumulation of high amounts of iron in deep 

aquifers and steel corrosion; in the release of phosphate and trace minerals to water sources, and in 

the regulation of methane generation in shallow waters (34,40). 
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In sedimentary environments, amino acids and sugars are metabolized by diverse microorganisms 

with the release of the standard prime products of fermentation – acids and alcohols and molecular 

hydrogen (41,42). Fermentation products, such as acetate, formate and H2, can then be used by Fe(III)-

reducing microorganisms as Geobacter, Shewanella and Desulfuromonas species to conserve the 

necessary energy to support growth with the Fe(III) reduction to Fe(II) (43–45). Although Fe(III)-

reducing microorganisms environmental distribution is not yet well known, many reports revealed that 

Geobacteraceae family constitutes a main piece of these subsurface communities (33,46). Geobacter 

metallireducens GS-15 is able to couple the oxidative degradation of aromatic hydrocarbon pollutants, 

as the cases of phenol, toluene and benzene, to the reduction of Fe(III) (47). The oxidation of acetate 

by G. sulfurreducens PCA can also be coupled to the reductive dechlorination of trichloroethene by 

Desulfitobacterium and Dehalococcoides spp. by means of electrically conductive minerals, such as 

magnetite (48). 

Under anaerobic conditions, S. oneidensis MR-1 reduces Fe(III) to Fe(II) and in aerobic conditions 

it is able to produce hydrogen peroxide (H2O2) (49). Interestingly, in the Fenton reaction Fe(II) reacts 

with H2O2 to reoxidize iron and produce hydroxyl ions (OH−) and radicals (HO•). These radicals can 

oxidize several organic toxic compounds, as 1,4-dioxane, which is used as a stabilizer for chlorinated 

industrial solvents and also produced as a by-product of plastic manufacturing industries (49). Hence, 

a bioremediation strategy that couples lactate oxidation to 1,4-dioxane oxidative degradation can be 

successfully carried by switching between S. oneidensis MR-1 aerobic and anaerobic growth (49). 

The majority of the microorganisms that act in Fe(III) reduction processes are also skilled to sustain 

growth via Mn(IV) to Mn(II) reduction (50) and this occurs either by direct reduction mechanisms 

departing from similar electron donors or as an indirect side-reaction performed by Fe(II) that originates 

from Fe(III) reduction mechanisms (34,45,51). Nonetheless, Mn(IV) is more prone to be reduced by 

nonenzymatic mechanisms than Fe(III) (40). As in the Fe(III) case, Mn(IV) reduction can be important 

at the levels of the decomposition of organic matter and contaminating aromatic compounds, in the 

generation of manganese minerals and in the release of trace metals from manganese oxides (40). 

Although Fe(III) and Mn(IV) reduction mechanisms are of major environmental significance, these 

processes may likewise have a negative effect in the biogeochemistry if toxic levels of Fe(II) and Mn(II) 

and other bound trace minerals are released (33). 

 

Metals radionuclides – Uranium, Neptunium, Plutonium and Technetium 

While nuclear technology moves further, it leaves a superfluous trail of radionuclides in the 

environments that largely exceeds natural radioactivity sources and overwhelms its removal 

mechanisms. 

Reduction of the soluble U(VI) (uranyl ion; UO2
2+) to its precipitated form U(IV) (uraninite; UO2) 

represents an important step in the biogeochemical cycle of uranium and in the decontamination of 

natural environments (52–54). Generally, in natural water environments, U(VI) is found as uranyl-

carbonate complexes (55), that are also the usual dissolved forms of anthropogenic origin (56). G. 

metallireducens and S. oneidensis MR-1 have been shown to be able to use such complexes as 
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external electron acceptors to conserve energy for anaerobic growth with the extracellular precipitation 

of uraninite (34,57–59) (Figure 1.3). 

Although Desulfovibrio desulfuricans, Desulfovibrio vulgaris and Clostridium spp. are able to reduce 

uranium, they cannot conserve energy for growth from this process. In vitro studies showed that in D. 

vulgaris this can be performed by the tetraheme cytochrome c3 with electrons donated by its 

physiological partner hydrogenase. In vivo studies with a D. desulfuricans cytochrome c3 mutant 

corroborated its involvement in U(VI) reduction, and also pointed for the existence of alternative routes 

for this reduction to occur (60).  

The removal of the soluble U(VI) with the aid of microorganisms presents benefits over other means 

of decontamination, such as the recovery of this metal in an extremely pure and concentrated form with 

high yields; its precipitation from carbonated complexes; the potential for in situ bioremediation of 

contaminated areas and the possibility of simultaneously decontaminate organic and U(VI) compounds 

by coupling the oxidation of the former with the reduction of the latter (34,61).  

The extremely soluble Np(V) (NpO2
+) can also be reduced to the soluble form Np(IV) by S. 

oneidensis MR-1, that can then be transformed into an insoluble phosphate biocomplex by Citrobacter 

sp. aimed at its easier removal (62). It is possible that Pu(IV) may be amenable for reduction by Fe(III) 

reducing organisms such as Geobacter spp., but Pu(III) may also be susceptible of spontaneous 

reoxidation (63). 

 

 

Figure 1.3 – An in situ uranium bioremediation strategy with resource to Geobacter spp.. Adapted from US 

Department of Energy, Genomics:GTL Roadmap (p. 219). 
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The soluble and mobile Tc(VII) (pertechnetate, TcO4
−) can be bioreduced to its insoluble form Tc(IV) 

by microorganisms belonging to Geobacter spp. or Escherichia coli (64,65). In the last case, electrons 

from formate or H2 flow to Tc(VII) in a reaction catalyzed by hydrogenase 3 from a formate 

hydrogenlyase complex (64). In the sulfate reducing bacterium D. desulfuricans, a formate 

dehydrogenase coupled to a hydrogenase via a cytochrome can also use formate to precipitate Tc(IV) 

in the periplasm (36). In Desulfovibrio fructosovorans, the periplasmic Ni-Fe hydrogenase was likewise 

shown by genetic studies to play a role in Tc(VII) reduction (66). 

 

Other metals – Silver, Mercury, Cobalt, Chromium, Copper, Gold, Vanadium, Molybdenum, and 

Palladium 

The reduction of Ag(I) has been associated to the resistance ability to the metal in several 

microorganisms (67). In some cases, it was reported the reduction of Ag(I) to Ag(0) after its biosorption 

to the surface of the cells (e.g. Lactobacillus sp.) (68). Another metal resistance example is that of 

mercury, usually encoded in a mer resistance operon that enables the transport of Hg(II) to the interior 

of the cells by the MerT transporter protein, where it is reduced by the intracellular mercuric reductase 

MerA to the comparatively non-hazardous and volatile elemental mercury (69). In G. metallireducens, 

c-type cytochromes that reduce Hg(II) were described (43) and in Thiobacillus ferrooxidans a 

mechanism that depends on Fe(II) and may involve cytochrome c oxidase was also reported (70), 

although no evidence supports cellular growth. Practical uses can easily be pointed in the 

bioremediation of mercury contaminated environments and in the conception of Hg(II) biosensors (35).  

Radioactive cobalt-60 is a challenging contaminant as its strong association with ethylene diamine 

tetraacetic acid (EDTA) makes it highly mobile. Fe(III)-reducing microorganisms, such as G. 

sulfurreducens, have the ability to reduce Co(III) to Co(II) that does not complex so easily with EDTA 

and can be immobilized in situ as it remains absorbed to the contaminated soils (33,71).  

Although chromium is necessary in trace amounts for organisms to perform metabolic processes, 

as in lipid metabolism for instance, Cr(VI) contamination is a growing problem as chromium became 

widely employed in industry (72). The highly toxic and mobile Cr(VI) can be reduced to the less toxic 

and soluble form Cr(III) by several microorganisms, such as S. oneidensis MR-1 and E. coli, with higher 

activity in anaerobic conditions (72). In co-cultures of Pseudomonas putida DMP-1 and E. coli ATCC 

33456, the simultaneous decomposition of aromatic compounds by the former was coupled to the 

reduction of Cr(VI) by the latter (73). In Pseudomonas ambigua G-1 and P. putida DMP-1, NAD(P)H-

dependent reductases have been associated to aerobic reduction of chromium (74,75). Both in 

Pseudomonas and Shewanella it was observed that the reduction of Cr(VI) appears to start by one-

electron transfer from the reductase, with the formation of the intermediate Cr(V) (75,76). Cytochromes 

have also been enrolled in Cr(VI) reduction, as is the case of cytochrome c3 from D. vulgaris (77), 

cytochrome c from Enterobacter cloacae (78) and cytochromes b and d from E. coli (79).  

Several Fe(III)-reducing Bacteria, such as Thermotoga maritima, Shewanella algae and Geovibrio 

ferrireducens, and Archaea, as the cases of Pyrobaculum islandicum and Pyrococcus furiosus, inhabit 

sediments that harbor gold deposits and are able to reduce soluble Au(III) to its insoluble Au(0) form 

(80). While in G. ferrireducens Au(0) precipitates in the periplasm, in the majority of the species this 
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occurs on the surface of the cells (80). The necessity of hydrogen as electron donor pointed in the 

direction that a hydrogenase could play a role in Au(III) reduction, as observed in metals for other cases 

(36,64). In G. metallireducens it was hypothesized that c-type cytochromes were responsible for this 

electron transfer (43). 

It is possible that the reduction of V(V), an ability that appears to be generalized among soil bacteria 

and fungi (81), leads to its environmental sedimentation in anaerobic conditions and can be explored 

to bioremediate ore-processing wastes (82). It was found that G. metallireducens is able to conserve 

energy for growth from the oxidation of acetate coupled to the reduction of V(V) to V(IV) (82). Work with 

Pseudomonas vanadiumreductans and Pseudomonas isachenkovii showed that with diverse electron 

donors such as H2, sugars and amino acids, anaerobic cells were able to promote the reduction of V(V) 

to V(IV) (blue colored) and probably to V(III) (black colored precipitate) (83). 

The biogeochemical cycle of molybdenum may be affected by Mo(VI) microbial reduction, e.g., by 

means of the ore leaching that occurs under acidic reduction environment (34) and by the variation in 

the concentration of insoluble molybdenum in active reduction rocks sites and anoxic marine sediments 

under nearly neutral reduction conditions (84,85). T. ferrooxidans and the thermophilic acidophiles 

Sulfolobus acidocaldarius and Sulfolobus brierleyi were reported to be able to couple elemental sulfur 

oxidation to Mo(VI) reduction (86,87). 

The microbial reduction of the soluble Pd(II) to its insoluble form Pd(0) is commercially relevant, as 

it allows the recovery of palladium from industrial catalysts and the development of bioinorganic 

nanocatalysts (33). Early studies with D. desulfuricans enrolled a periplasmic hydrogenase in the 

reduction of Pd(II) (88). Studies on the delivery of reducing power to an immobilized biocatalyst in 

bioreactors have also been performed with biofilms of D. desulfuricans in a Pd-Ag membrane that 

provided atomic hydrogen to the cells (89). Pd(0) biorecovered in this clean and affordable process was 

shown to be a more effective catalyst that its chemical counterpart, with no secondary wastes produced 

(89).  

 

Metalloids – Arsenic, Selenium and Tellurium 

In oxidized environments, arsenic occurs as the arsenate anion As(V) that is tightly bound to 

sediments, but in anaerobic conditions it is reduced to the more toxic and mobile As(III) (90). It was 

suggested that in West Bengal sediments Geobacter spp. may perform leading roles in microbially 

mediated arsenic release from metal hydroxides that occurs after Fe(III) reduction (91). In fact, these 

microorganisms are capable to thrive in such toxic environments due to the existence of genes that 

code for an arsenic detoxification system (ars operon) (92). In several species, genes necessary for 

arsenic respiration (arr operon) and arsenic methylation (arsM) were also identified (92). 

Some of the microorganisms known to be able to grow by dissimilatory reduction of As(V) are the 

strict anaerobe Chrysiogenes arsenatis (93) and the Gram-negatives microaerophilic sulfur-reducing 

bacteria Sulfurospirillum arsenophilum and Sulfurospirillum barnesii (94). In C. arsenatis this type of 

respiration is supported by a periplasmic arsenate reductase composed by Mo, Fe, S and Zn cofactors 

(95).  
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In nature, the metalloid selenium is essentially present as Se(VI) (selenate, SeO4
2−), as Se(IV) 

(selenite, SeO3
2−), Se(0) (elemental form) and Se(−II) (selenide) (96). Bioremediation of waters 

contaminated by toxic Se(VI) and Se(IV) to its elemental form can be achieved by organisms such as 

Thauera selenatis, that is able to conserve energy from growth with selenium. This organism was shown 

to bear a periplasmic complex reductase that contains molybdenum, iron and acid-labile sulfur (97).  

The resistance mechanisms to the toxic oxyanion tellurite (TeO3
2−), that acts as an antibiotic, have 

been studied and basal levels of resistance in E. coli include its reduction by the activity of a membrane 

bound nitrate reductase (98). 

 

AN OVERVIEW INTO EXTRACELLULAR ELECTRON TRANSFER MECHANISMS 
 

Microorganisms have evolved different strategies to perform the transfer of electrons from the 

microbial intracellular redox transporters to the external electron acceptors and vice-versa. This process 

is denoted as microbial EET. In order to perform EET, microorganisms need to overcome the 

constraints imposed by the cytoplasmic membrane, the first barrier to external hazards and the main 

electron transfer center in energy generation. They also need to overwhelm other existing external 

structural components, as the outer membrane or peptidoglycan that do not allow the entrance of the 

majority of organic and inorganic compounds and are electrically nonconductive (6,99,100).  

Several microorganisms are able to use soluble metal compounds and minerals as electron donors, 

as in the case of Fe(II) oxidizing bacteria, that is coupled to the reduction of terminal acceptors such as 

oxygen in the case of aerobes, or nitrate in case of anaerobes as Dechloromonas spp.. Electrons that 

arise from Fe(II) oxidation on the cell surface are carried across the periplasm to the cytoplasmic 

membrane in order to assist in the reduction of NAD+ and in the generation of a proton motive force for 

ATP synthesis (101). 

Microorganisms also use carbon sources as electron donors, which are oxidized in the cytoplasm 

and give rise to reduced NADH or FADH2. In the cytoplasmic membrane, electron carriers are oxidized 

and protons are transported across the membrane with the concomitant generation of a proton motive 

force that is applied for the synthesis of ATP. Electrons piled in the periplasm are transferred 

extracellularly across the cell surface (outer membrane in Gram-negative bacteria and cell wall in Gram-

positive bacteria) (101). Some bacteria are able to contact directly with the external electron acceptors 

through multiheme c-type cytochromes (MHCs) in the outer membrane or pili to perform electron 

transfer (102). Others transfer electrons at a distance, by means of the release of chelators that trap 

electron acceptors and bring them into the cell for reduction purposes (103) or by the use of extracellular 

electron shuttles that transfer electrons from the cell towards the extracellular electron acceptors (104). 

The case of the metal reducing G. sulfurreducens will be outlined in the next section, together with 

known details about the microorganism electron transfer chains. 
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BRIDGING THE GAPS: GEOBACTER SPP. CONTRIBUTION 
 

Geobacter species have been studied as model organisms in electron transfer mechanisms, 

specially G. sulfurreducens (71), as they are relatively amenable for laboratory purposes, from culture 

handling to genetic manipulation and physiological analyses (105–109). 

Geobacter spp. are Gram-negative δ-proteobacteria shaped rods, whose trademark feature is their 

proficiency towards the complete oxidation of acetate – a crucial intermediary in the anaerobic 

degradation of organic matter – coupled to the reduction of extracellular Fe(III) soluble and insoluble 

forms, in a way that provides energy conservation for cellular growth (110). Acetate is oxidized via 

tricarboxylic acid cycle and the genomes of diverse Geobacter spp. present highly conserved genes for 

its metabolism (105).  

They form the predominant microbial communities in diverse anaerobic natural environments where 

iron reduction processes play a key role, as water sediments, flooded rice fields and underground 

habitats where they are protagonists in its biogeochemistry (40,43,71). Probably, the foundations for 

this prevalence rely on Geobacter spp. distinctive mechanisms concerning Fe(III) and Mn(IV) reduction 

(111), during which they straightforwardly locate and directly interact with the metal oxides (112,113). 

Other advantages may arise from their capability to oxidize to completion various organic compounds 

with diverse electron acceptors (26,114) towards rapidly populate anaerobic environments (115). Their 

low maintenance energy requirements (116) and even their ability to momentarily sustain metabolic 

activities in starvation conditions (117,118) may also contribute to this preponderance. Interestingly, 

Geobacter spp. are also able to fix nitrogen (119) and they can thrive in oxidative stress conditions, as 

they are equipped with a number of mechanisms that allow for their survival in such adverse 

environments (120). 

In addition to the several electron donors/acceptors supported by Geobacter spp. (Table 1.1), they 

can also exchange electrons with other syntrophic species. Indeed, association between G. 

sulfurreducens and G. metallireducens and between Geobacter spp. and methanogens were reported 

(22,23,121,122).  

A remarkable characteristic of Geobacter spp. is the high number and diversity of c-type 

cytochromes encoded in its genomes. In fact, it was reported, from a comparison of six different 

Geobacter genomes, an average of 79 c-type cytochromes per genome, many of them with multiple 

hemes (105).  

They are consistently kept in high abundance along the different species but, although essential for 

EET, these cytochromes show low level of conservation which may indicate different routes for electron 

transfer across the cells. Indeed, only nine protein families were found to be conserved. One of these 

contains the triheme c7 cytochrome PpcA and it was found that it bears more than one homologue in 

several of the genomes studied and another four of these families may code simultaneously for a 

quinone:ferricytochrome c oxidoreductase (105). 

Beyond the EET role, an additional hypothesis was suggested for the occurrence of such a large 

abundance of c-type cytochromes bearing multiple hemes, which is their involvement in the 

supercapacitance skills of Geobacter spp. (105,117,118). 



CHAPTER 1 – Introduction 

12 

 

Table 1.1 – Examples of electron donors and acceptors of diverse Geobacter spp. Adapted from Lovley et 
al., 2011 (26). 

Geobacter spp. Electron donors Electron acceptors 

G. argillaceus (123) 

A
c
e
ta

te
 

butanol, butyrate, ethanol, glycerol, 
lactate, pyruvate, valerate 

Fe(III)-citrate, 
Fe(III)-nitrilotriacetic acid, Fe(III)-
pyrophosphate, 
poorly crystalline iron oxides, nitrate, Mn(IV), 
S(0), U(VI) 

G. bemidjiensis 
(124) 

benzoate, butanol, butyrate, 
ethanol, fumarate, H2, isobutyrate, 
lactate, malate, propionate, 
pyruvate, succinate, valerate 

Fe(III)-citrate, 
Fe(III)-nitrilotriacetic acid, Fe(III)-
pyrophosphate, 
poorly crystalline iron oxides, AQDS, 
fumarate, malate, Mn(IV) 

G. bremensis (125) 

benzoate, butanol, butyrate, 
ethanol, formate, fumarate, H2, 
lactate, malate, propanol, 
propionate, pyruvate, succinate  

poorly crystalline iron oxides, fumarate, 
malate, Mn(IV), S(0) 

G. chapellei (126) 
ethanol, formate, lactate Fe(III)-nitrilotriacetic acid, poorly crystalline 

iron oxides, AQDS, Mn(IV) 

G. daltonii (127) 
benzoate, butyrate, formate, 
toluene  

Fe(III)-citrate, poorly crystalline iron oxides, 
fumarate, malate, S(0), U(VI) 

G. grbiciae (126) 
butyrate, ethanol, formate, 
propionate, pyruvate 

Fe(III)-citrate, poorly crystalline iron oxides, 
AQDS 

G. hydrogenophilus 
(126) 

benzoate, butyrate, ethanol, 
formate, H2, propionate, pyruvate, 
succinate 

Fe(III)-citrate, poorly crystalline iron oxides, 
fumarate, AQDS 

G. lovleyi (128) 

benzene, benzoate, butyrate, 
citrate, ethanol, formate, glucose, 
lactate, methanol, propionate, 
succinate, toluene, yeast extract 

Fe(III)-citrate, poorly crystalline iron oxides, 
fumarate, malate, nitrate, 
tetrachloroethylene, trichloroethylene, 
Mn(IV), S(0), U(VI) 

G. metallireducens 

(43) 

benzaldehyde, benzene, benzoate, 
benzylalcohol, butyrate, butanol, p-
cresol, ethanol, p-
hydroxybenzaldehyde, p-

hydroxybenzylalcohol, isobutyrate, 
isovalerate, phenol, propanol, 
propionate, pyruvate, toluene, 
valerate  

Fe(III)-citrate, poorly crystalline iron oxides, 
humics, nitrate, AQDS, Mn(IV), Tc(VII), 
U(VI)  

G. pelophilus (125) 
ethanol, formate, fumarate, H2, 
malate, propanol, propionate, 
pyruvate, succinate 

poorly crystalline iron oxides, fumarate, 
malate, Mn(IV), S(0) 

G. pickeringii (123) 

butanol, butyrate, ethanol, glycerol, 
lactate, methanol, pyruvate, 
succinate, valerate  

Fe(III)-citrate, 
Fe(III)-nitrilotriacetic acid, Fe(III)-
pyrophosphate, 
poorly crystalline iron oxides, fumarate, 
malate, Mn(IV), S(0), U(VI) 

G. psychrophilus 

(124) 

butanol, ethanol, formate, lactate, 
malate, pyruvate, succinate 

Fe(III)-citrate, 
Fe(III)-nitrilotriacetic acid, Fe(III)-
pyrophosphate, 
poorly crystalline iron oxides, fumarate, 
malate, electrodes, AQDS, Mn(IV) 

G. sulfurreducens 

(71) 

H2 Fe(III)-citrate, Fe(III)-pyrophosphate, 
poorly crystalline iron oxides, fumarate, 
malate, AQDS, Tc(VII), Co(III), U(VI), S(0), 
O2 

G. thiogenes 

(129,130) 
acetoin, H2 Fe(III)-nitrilotriacetic acid, fumarate, malate, 

nitrate, trichloroacetic acid, S(0) 

G. toluenoxydans 
(131) 

benzaldehyde, benzoate, 
benzylalcohol, butyrate, m-cresol, 
p-cresol, formate, phenol, 

propionate, pyruvate, toluene 

Fe(III)-citrate, poorly crystalline iron oxides, 
fumarate 

G. uraniireducens 

(132) 

ethanol, lactate, pyruvate Fe(III)-nitrilotriacetic acid, Fe(III)- 
pyrophosphate, 
poorly crystalline iron oxides, smectite, 
fumarate, malate, AQDS, Mn(IV), U(VI) 
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Indeed, it was reported that hemes in cytochromes of G. sulfurreducens are able to stockpile about 

107 electrons per cell and in the lack of extracellular electron acceptors they may act as temporary 

storage units for electrons arising from energy metabolism (111,117). Thus, respiration can proceed 

towards conserving energy as inner membrane electron carriers are able to readily transfer electrons 

to the oxidized cytochromes in the periplasm that will further discharge as soon as electron acceptors 

become available (26). 

 

The metal-reducing G. sulfurreducens 

G. sulfurreducens was initially recovered from the surface of sediments of a hydrocarbon- 

contaminated ditch in Norman, Oklahoma (United States) (71). It is a chemoorganotroph, non-

fermenting and non-forming spores rod shaped bacterium, with dimensions of approx. 2 to 3 µm in 

length by 0.5 µm wide (Figure 1.4). G. sulfurreducens is able to use the same metal electron acceptors 

than other Geobacter species and is also capable to grow in the presence of fumarate as an alternate 

electron acceptor (Table 1.1) (71). Its optimum temperature of growth is around 35°C and it is able to 

tolerate sodium chloride concentrations in the medium that can go up to half the sea water concentration 

(10 g/L) (66). While it was originally classified as a strict anaerobe, later studies revealed that it can 

thrive when exposed to atmospheric oxygen, and it is even able to grow in conditions of up to 10% O2 

(120). The ability to tolerate oxygen and use it as final electron acceptor may be an explanation for the 

presence of G. sulfurreducens in oxidative environments at the subsurface, as well as for its 

predominance as Fe(III)-reducing microorganism in these same environments when the oxygen levels 

decrease (133). 

It was found for the first time with G. sulfurreducens PCA the ability of Geobacter spp. to use 

hydrogen and elemental sulfur, respectively as electron donor and acceptor (71). Although G. 

metallireducens has been the earliest of Geobacter spp. to be discovered (43), G. sulfurreducens was 

the first with its genome unveiled (134) and a genetic system fully developed (106). For these reasons, 

and also because it is directly related to other Geobacter species and is highly suitable for large scale 

growth meeting laboratory purposes, G. sulfurreducens has been widely studied as a prototype 

organism for Geobacter family. 

 

Figure 1.4 – Bacterium G. sulfurreducens with its pilin-like filaments. These pilin take part in the extracellular 
electron transfer to insoluble electron acceptors, as the case of natural iron minerals and electrodes. Credits to 
Derek R. Lovley, Gemma Reguera and Kevin D. McCarthy. 
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DIVING INTO THE CYTOCHROMES 
 

The high and diverse number of cytochromes in Geobacter spp., most of them bearing multiple 

redox centers, constitute an added-value in the electron transfer processes as they assist in electron 

transport across long distances and extend the redox-active range through interactions with neighboring 

redox centers (heme-heme interactions) and ultimately, contribute to the increase of the reduction 

power of the cells (117,135). As other Geobacter spp., G. sulfurreducens contains a high number of c-

type cytochromes and its genome has revealed the existence of 111 coding genes connected to multiple 

and diverse roles, 73 of which encode MHCs (134). 

Cytochromes are conjugated proteins that have hemes as prosthetic groups. The heme group 

consists of a protoporphyrin IX that contains iron and can be in the ferrous (Fe2+) or ferric (Fe3+) 

oxidation states (136). The iron can exist in low-spin or high-spin conformations, respectively with paired 

and unpaired electrons. In the low-spin conformation, the heme has two strong-field axial ligands, 

whereas in high-spin conformation only one axial coordination is established, and the other is kept 

available for linkage with molecules such as NO, CO, O2 and cyanide (137). 

Electron transfer can be carried in cytochromes with hemes a, b and/or c in which iron usually 

appears hexacoordinated (138) (Figure 1.5). These hemes show typical absorption features of visible 

light from which they can be easily differentiated. Indeed, in its reduced state (Fe2+), three absorption 

bands are distinguishable in the visible range named γ (Soret), α and β (139). 

 

Figure 1.5 – The different types of electron transfer heme structures. Numbering follows the Fischer system. 
Adapted from Kranz et al., 2009 (158). 
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Generally, a-type cytochromes present a maximum for the α-band between 580–590 nm, b-type 

cytochromes between 556–558 nm and c-type cytochromes show a maximum in the range of 549–551 

nm (140). 

Hemes a and b are firmly bound to the polypeptide chains in the protein, although they do not present 

covalent linkages. Heme a is a derivative of heme b, which usually has in the porphyrin position C2 a 

hydroxyethylfarnesyl group instead of a vinyl side group and in position C8 a formyl group instead of a 

methyl side group (141). In the case of heme a, the iron has two axial histidine ligands and an elongated 

isoprenoid tail is connected to the porphyrin (139). In heme b, iron has two histidines or one histidine 

and one methionine axial ligands, and the heme position and conformation in the molecule is controlled 

by hydrogen bonds and hydrophobic interactions with neighboring amino acid residues (138). 

Only heme c is covalently attached to the polypeptide chain, by the vinyl groups of the protoporphyrin 

IX that are connected by thioether bonds to the sulfhydryl groups of two cysteine residues of a CXnCH 

motif, where X represents variable amino acid residues and a histidine is one of the axial ligands (142). 

One of the most common motifs is the CX2CH motif, although other motifs have been identified, as the 

CX3CH, the CX4CH and the CX15CH motifs (142–144).  

According to sequence homology, c-type cytochromes can be grouped in four general classes 

(138,145,146): 

 Class I – The heme groups have a histidine and a methionine as axial ligands and the 

attachment site to the heme is near the N-terminus. It is the most numerous family of c-type 

cytochromes and includes the mitochondrial cytochrome c and the cytochrome c550 of 

Paracoccus denitrificans (147); 

 Class II – It includes the monoheme cytochromes with the attachment to the heme group near 

the C-terminal of the protein, such as the cytochrome c’ of Azotobacter vinelandii (148) and the 

cytochrome c556 of Agrobacterium tumefaciens (149). 

 Class III – This class comprises MHCs with axial coordination bis-histidine that is responsible 

for the low reduction potentials displayed by these proteins. The most well studied are the 

cytochromes c3 from iron-sulfur reducing bacteria (150,151). They have around 120 amino acid 

residues and contain four heme groups, consecutively numbered as I, II, III and IV according 

to the order of appearance of the cysteine residues to which they are attached in the sequence. 

Despite the low sequence identity in this class, the positioning and orientation of the hemes is 

well conserved in the three-dimensional structures (151). Also in this class are the triheme c7 

cytochromes from the dissimilatory metal reducing bacteria (152–154), which are structurally 

very similar to the c3 cytochromes but have no heme II nor the sequence of amino acid residues 

that connects it to the structure. Due to its homology and for comparison purposes 

simplification, the hemes are numbered as I, III and IV according to the nomenclature of the 

cytochromes c3 (155). 

 Class IV – In this class are typically included MHCs with both axial coordination bis-histidine 

and histidine-methionine, as the photosynthetic reaction center of Rhodopseudomonas viridis 

(156). 
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The hemes are covalently attached to the heme binding motifs in post-translational catalyzed 

processes mediated by other proteins. In Bacteria, Systems I and II are responsible for the heme 

attachment process in the periplasm (Figure 1.6).  

System I occurs in α- and γ-proteobacteria and in some β- and δ-proteobacteria (157,158). In E. coli 

this system comprises the cluster of proteins CcmABCDEFGH and is expressed solely under anaerobic 

growth conditions (159). System II is present in Gram-positive bacteria, cyanobacteria, ε-

proteobacteria, most β-proteobacteria and some δ-proteobacteria and comprises three or four 

membrane-bound proteins that compose the cytochrome c synthase (CcsA or ResC and CcsB or ResB) 

and generate the reduced heme attachment motif (CcdA and CcsX or ResA) (158,160).  

Co-expression in E. coli of Systems I or II (161,162) together with a target cytochrome c has been a 

methodology extensively used towards the successful expression of recombinant proteins in aerobic 

conditions, even in the cases of MHCs (143). 

As described above, the apo-protein needs to be translocated to the periplasm, where the hemes 

are assembled (158,163). This process relies upon a short signal peptide sequence, which has a N-

terminus positively charged, a hydrophobic region (H-region) and a neutral C-terminus for recognition 

by the periplasmic signal peptidases (164,165). The recognition of the N-terminal and translocation of 

the apo-protein in Gram-positive and Gram-negative bacteria is performed by the Sec pathway. It 

catalyzes the transmembrane translocation of proteins in their unfolded conformation, although with a 

peptidase cleavage site quite different – seven to nine and three to seven residues from the C-terminal 

end of the H-region, respectively for Gram-positive and Gram-negative bacteria (166,167).  

 

The extracellular electron transfer pathway of G. sulfurreducens 

In G. sulfurreducens PCA and DL-1 it has been proposed that a porin-cytochrome pathway is 

responsible for the extracellular electron transfer process (168) (Figure 1.7).  

Figure 1.6 – Illustration of the key constituents of Systems I and II. The former is based in E. coli and the latter 
in Bacillus subtilis. Adapted from Mavridou et al., 2013 (319). 
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Two different constitutive inner membrane pathways were already identified for the transport of 

electrons from the inner membrane quinone pool to the external environmental acceptors: the CbcL 

and the ImcH-dependent pathways (from GSU0274 and GSU3259 inner membrane cytochromes c, 

respectively) (169–172). The constitutive pathway CbcL is a low potential pathway necessary for growth 

with electron acceptors and electrodes at or below potentials of −0.10 V (versus standard hydrogen 

electrode (SHE)), while the ImcH is a high potential pathway crucial at redox potentials above this value.  

Data points out that the CbcL-dependent pathway allows respiration in the vicinity of thermodynamic 

equilibrium conditions and that ImcH allows the harvesting of additional energy when it is available 

(171,172). These inner membrane cytochromes carry electrons from the quinone pool to inner 

membrane cytochromes, like the inner membrane associated diheme cytochrome MacA (GSU0466).  

However, although MacA has been pointed as an electron carrier by some studies, other work 

indicates that the inhibition of Fe(III) reduction observed when macA is deleted is a consequence of the 

negative impact on the expression of the outer-membrane c-type cytochrome OmcB (GSU2737), that 

has an important role in Fe(III) reduction (173,174), instead of its direct participation in EET as electron 

carrier (175). The same result was observed by deletion of the outer-membrane c-type cytochrome, 

Figure 1.7 – Porin-cytochrome pathway of G. sulfurreducens. Molecular structures of known cytochromes 
were performed with the UCSF Chimera package (320) from PDB files 4AAL (MacA), 2LDO (PpcA), 3BXU (PpcB), 
3H33 (PpcC), 3H4N (PpcD), 3H34 (PpcE), 5MCS (OmcF) and 3OV0 (GSU1996) (321). Inner-membrane 
cytochromes are represented by CbcL and ImcH; outer-membrane cytochromes by OmcE, OmcS and OmcZ and 
outer-membrane porin-cytochrome complexes by OmaB/C, OmbB/C to OmcB/C, with the respective number of 
heme groups associated. Adapted from Santos et al., 2015 (135). 
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OmcF (GSU2432) (109). In this sense, it is conceivable that these proteins may be involved in the 

control of the expression of OmcB. The lack of MacA/OmcF may cause an electron flow disruption or 

result in improper assembly of protein complexes and indirectly affect omcB transcription (175). Indeed, 

MacA has electrochemical properties identical to other bacterial diheme cytochrome c peroxidases and 

it is capable of electrochemically mediate electron transfer to the periplasmic triheme c7 cytochrome 

PpcA (GSU0612) through a labile interaction (176). It was also proposed that they may interact under 

environmental oxidative stress to prevent oxidative hazards due to hydrogen peroxide generation as a 

consequence of one-electron reduction in Fe(III) oxyhydroxide (177,178).  

PpcA occurs in high abundance in the periplasm and it has been shown to be involved in the 

mechanism that couples acetate oxidation with soluble Fe(III) reduction (153). In this sense, multiheme 

periplasmic cytochromes, such as PpcA and its homologues PpcB-E (GSU0364, GSU0365, GSU1024 

and GSU1760, respectively) ensure electron transfer between the cytoplasm and the outer membrane 

electron transfer components (134). Even though this family of cytochromes has been associated to 

Fe(III) reduction pathways, their precise roles and physiologic partners are still to unveil.  

In the model proposed by Santos and co-workers, PpcA putatively interacts with another 

cytochrome, the nanowire like cytochrome GSU1996, which is also supposed to be found in the 

periplasm and was mostly found in growth conditions where soluble Fe(III) citrate was used as an 

electron acceptor instead of insoluble forms of Fe(III) oxide (135,179).  

In the outer membrane, the periplasmic octaheme cytochromes OmaB (GSU2738) and OmaC 

(GSU2732) associate with the porin-like outer membrane proteins OmbB (GSU2739) and OmbC 

(GSU2733) and with the outer membrane dodecaheme cytochromes OmcB and OmcC (GSU2731) to 

generate two porin-cytochrome trans-outer membrane protein complexes responsible to transfer the 

electrons for the reduction of extracellular electron acceptors (168,173,180,181). 

Other outer membrane cytochrome, OmcE (GSU0618), has also been enrolled in the EET as 

genomic data showed that it is involved in the reduction pathways of Fe(III) and Mn(IV) oxides and U(VI) 

(177,182–184).  

The outer-surface, c-type cytochrome OmcZ (GSU2076) that is found loosely bound to the outer-

surface matrix, is crucial in current production in G. sulfurreducens. Under current-producing 

environments, OmcZ is positioned at the anode surface and it has been proposed to act as an 

electrochemical gateway to assist in the electron transfer from G. sulfurreducens biofilms to the anode 

surface (185,186). 

Geobacter spp., as G. sulfurreducens PCA and G. metallireducens GS-15, express nanowires – pili 

anchored to the cell envelope – that were recently reported as filaments composed of micrometer-long 

polymerization of the hexaheme cytochrome OmcS. These nanowires are enrolled in the electron 

transfer among cells as well as with electrodes, Fe(III) oxides and oxyhydroxides and in the reduction 

of manganese oxides (121,184,187,188). In G. metallireducens GS-15, nanowires were suggested to 

carry electrons directly to Archaea methanogens (23). It was proposed that the filament structure, with 

the hemes tightly packed across its micrometer length, is responsible for electron transfer in the 

nanowires (188). 
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Information gathered with the redox characterization of the cytochromes implicated in extracellular 

electron transfer mechanisms points to an overlap between the redox-active potential windows. Overall, 

these cytochromes and porin proteins probably ensure the electron transport from the quinone/quinol 

pool located in the cytoplasmic membrane across the periplasm and outer membrane of G. 

sulfurreducens and the presence of different protein homologues point for the occurrence of several 

electron transfer routes that may be active and even occur at the same time according to the 

environmental surroundings (57,135,168,172,181,189,190) (Figure 1.7). 

 

Nanowire like c-type cytochromes of G. sulfurreducens  

Examples of nanowire like c-type cytochromes, first described for G. sulfurreducens, are encoded 

by ORFs 00991, 03300 and 03649. These are named GSU0592, GSU1996 and GSU2210, respectively 

(134) and counterparts of each of these cytochromes were also found in other Geobacter spp. (105). 

Surprisingly, such odd cytochromes are polymers and their structural units are domains that resemble 

those of c7-type cytochromes, as PpcA and its homologues (191). GSU0592 and GSU1996 comprise 

four c7-like domains and GSU2210 contains nine of these units. All the polymers consist of homologous 

repetitions that range from 73 to 82 amino acid residues (192).  

It was found that GSU0592, named CbcC, is encoded by the same predicted operon for the c-type 

cytochromes CbcA (GSU0594) and CbcD (GSU0591), the b-type cytochrome CbcB (GSU0593) and 

the membrane protein CbcE (GSU0590). It was suggested that the five proteins may function together 

as a menaquinol:ferricytochrome c oxidoreductase (Cbc5 complex) in the extracellular electron transfer 

to insoluble electron acceptors, such as Fe(III) and Mn(IV) oxides and gene deletion studies 

demonstrated that CbcC plays a crucial role in electron transfer to Fe(III) oxide (177). Simultaneously, 

Bansal et al. performed a global proteomic analysis of G. sulfurreducens under long term electron 

acceptor limitation cell growth conditions and detected an increase in the heme cellular content, clearly 

observable by the reddish cultures color. This was also indicative of a higher cytochrome amount, as 

confirmed by the proteomic analysis, with the cells in an extremely reduced state and GSU0592 (called 

OmcQ by Bansal and co-workers) was found to be increased by about three-times in starved cells, 

which involves this cytochrome in the mechanisms of survival under such adverse environmental 

conditions (193). 

Whole-genome microarray analysis showed that GSU2210 gene was upregulated under growth in 

the presence of Fe(III) and Mn(IV) oxides (177) and proteome characterization revealed greater quantity 

of this large cytochrome in cells grown in the presence of Fe(III) oxide (179). 

In a work performed by Ding and co-workers (179), where the proteome of G. sulfurreducens cells 

grown with Fe(III) oxide or Fe(III) citrate as electron acceptors was studied, GSU1996 was found to be 

more expressed in the presence of the soluble iron form (179). 

The crystal structure of GSU1996 revealed a one-dimensional array of 12 nm structure in a crescent 

like design, where the twelve hemes are organized along the polypeptide chain in a nanowire 

resembling scheme. The 42.3 kDa dodecaheme c-type cytochrome GSU1996 is formed by an array of 

four similar c7-like domains each with 78-82 amino acid residues with around 11 kDa in average, in a 

total of 318 amino acid residues (192) (Figure 1.8). 
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These domains display 40-56% sequence similarity among them and were named sequentially A, 

B, C and D. Given its structure, it has been proposed that GSU1996 may work as a natural nanowire 

for electron transfer (194,195) (Figure 1.9).  

The N-terminal part of the molecule is formed by the hexaheme fragment AB and appears to behave 

as one structural unit while the C-terminal, formed by the hexaheme fragment CD, displays a more 

independent behavior between each of the forming domains. Indeed, the interface between domains A 

and B revealed an unpredicted interaction that occurs between heme IV from domain A and heme I  

from domain B where the porphyrin rings show almost parallel stacking while domains C and D are 

linked by a small four amino acid residues flexible connector.  

The c7-like domains enclose more positively charged residues (lysine and arginine residues) than 

negatively charged ones (aspartate and glutamate residues), such as found in the c7 cytochromes. In 

GSU1996, domain A is the more positively charged and domain D the less positively charged and 

therefore, the net positive charge of the protein diminishes from the N- to the C-end (195). 

Proteomic studies revealed that GSU1996 may be associated to cytoplasmic or outer membranes 

(182) and it was proposed that the fragment AB may provide an electrostatic interaction site with the 

membranes (195). 

Within each of the triheme domains two hemes have bis-His axial coordination (hemes I and III) and 

one has His-Met axial coordination (heme IV). All three hemes exhibit low-spin behavior. The iron-iron 

distances for the adjacent hemes in the domains are within van der Waals range, from 11.2 to 12.1 Å, 

and allows effective electron exchange amid the hemes (195).  

1 20 23

Domain A . K E T K N V P F K L K N A A P V I F S H D I H L K K Y

83 101 104

Domain B . . S A R P V A Y R M K G A G E A V F S H E V H V P M L

161 181 184

Domain C M T P P K T V N F K M K G V A D A A F S H E F H L G M Y

241 259 262

Domain D L K P A . K L T Y K T S . V G E A Y F D H D I H L S M F

Heme I Heme III

31 34 35 49

Domain A N N N C R I C H I A L F D L R K . P K R Y T M L D M E K

112 115 116 129

Domain B E G K C R T C H S N . . R E I T G G R N V T M A Q M E K

190 193 194 209

Domain C . . K C N E C H T K L F A Y K A G A K R F T M A D M D K

268 271 272 287

Domain D . . K C A D C H T K V F K Y R K G S A P A T M A D M E K

Heme IV

58 61 62 76 79 80 82

Domain A G K S C G A C H T G M K A F S V A D D S Q C V R C H S G

138 141 142 156 159 160 160

Domain B G K S C G A C H N D K M A F T V A G . . N C G K C H K G

218 221 222 236 239 240 240

Domain C G K S C G A C H N G K D A F S S A S . . D C G K C H P G

296 299 300 314 317 318 318

Domain D G K S C G V C H N G K D A F S V A D . . D C V K C H N M

Heme I

Heme III Heme IV

Figure 1.8 – Sequence alignment of the four domains of GSU1996. Heme-binding residues are labeled for the 
respective hemes and non heme-binding conserved residues are highlighted in yellow. 
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In order to explore the properties of this large and complex multiheme cytochrome, a puzzle based 

strategy was earlier adopted, where the study of the individual domains and two-domain fragments of 

GSU1996 assist in the characterization of the full protein (192,194,196). While X-ray crystal data 

revealed that fragment AB corresponds quite well to its counterpart in the full length GSU1996, the 

same was not verified in the C-terminal of the molecule. Indeed, a substantial curvature is observed for 

domains C and D in GSU1996 while in the fragment CD both domains are connected in a linear 

arrangement, although this may be related to constraints due to crystal lattice interactions (195) (Figure 

1.10). 

Visible spectroscopy redox titration profiles obtained for GSU1996 and its N- and C-terminal 

fragments display an analogous macroscopic redox performance. Both fragments exhibit comparable 

macroscopic reduction potentials (Eapp) and in the case of the C-terminal, the Eapp values determined 

indicate that domain D is more readily oxidizable than domain C (195,197) (Table 1.2). 

Figure 1.9 – Crescent shaped structure of GSU1996. A) Typically, the domains comprise two antiparallel N-
terminal β-strands followed by loops sprinkled with helical fragments that contain the heme-binding residues. B) 
Hydrophobicity surface. The hydrophobic core of the domains contains the heme groups and a number of 
aromatic/hydrophobic side chains. The molecular structures of GSU1996 were produced with the UCSF Chimera 
package (320) from PDB file 3OV0 (321). The hemes are numbered according with the tetraheme cytochrome c3 
heme nomenclature and superscript letters represent their respective domains. 

A 

B 



CHAPTER 1 – Introduction 

22 

 

 

Albeit relevant, the Eapp is far from revealing the behavior of the redox centers within a multiheme 

protein as a number of intermediary microstates can occur simultaneously between the fully reduced 

and fully oxidized proteins. 

It is then further necessary to monitor the oxidation pattern of the individual hemes to ascertain its 

microscopic parameters, which comprise the heme reduction potentials, the pKa values of the redox-

Bohr centers, the heme-heme redox interactions and the redox-Bohr interactions. In the case of 

GSU1996, this was only achieved so far for domain C and its microscopic characterization exposed 

that the hemes are heavily modulated by structural traits and redox interactions, heme IV His-Met 

coordinated did not enclose the highest potential in the domain (197) (Table 1.3).  

 

Table 1.2 – Apparent mid-point reduction potentials (Eapp) versus standard hydrogen electrode (SHE) 
determined for full length GSU1996, its N- and C-terminal fragments and single domains C and D at 298 K 
and pH 7.9 (195,197). 

 Eapp (mV) 

GSU1996 −119 

Fragment AB −123 

Fragment CD −122 

Domain C −105 

Domain D −133 

 

Figure 1.10 – Overlay of the crystal structures of fragment AB (cyan) and fragment CD (yellow) with 
GSU1996 (gray). For better understanding, above it is shown the ribbons overlap and below the respective hemes 
overlap. The structure comparison was performed with the UCSF Chimera package (320). 
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Table 1.3 – Microscopic thermodynamic parameters for domain C. The oxidation energies of the hemes and 

the deprotonating energy for the fully reduced and protonated protein are presented in bold. The non-bold data 
refers to heme-heme and redox-Bohr interaction energies. The standard errors are shown in parenthesis (197). 

 Energies (meV) 

 Heme I Heme III Heme IV Protonatable center 

Heme I −106 (2) 44 (2) 7 (2) −4 (6) 
Heme III  −136 (2) 40 (2) −25 (6) 
Heme IV   −125 (2) −13 (7) 

Protonatable center    340 (11) 

 

 

Although physiologic purpose and interaction partners remain undisclosed, it has been proposed 

that such large multiheme cytochromes may act as capacitors to ensure survival of cells in periods of 

environmental stress (182,195).  

For that reason, it is imperative to understand the functional properties of these nanowire 

cytochromes, not only to move forward in the understanding of the electron transfer mechanisms of 

Geobacter spp. and akin microorganisms, but also as they may be reference guides towards the rational 

design of nanoconductor devices and, as earlier stated, in the improvement and design of new 

biotechnological applications based in these biosystems (194). 

 

OBJECTIVES 
 

This work had as main goals the determination of the cellular localization of the dodecaheme 

GSU1996 from G. sulfurreducens together with its functional properties and interacting partners.  

The functional characterization encompasses the microscopic thermodynamic and kinetic 

characterization and it is preceded by the heme signals assignment in nuclear magnetic resonance 

(NMR) spectra. In order to perform the functional characterization of the large size GSU1996, a modular 

characterization approach was followed. Here, the triheme domains were used as a guide to assist in 

the study of the hexaheme fragments of GSU1996. 

Putative redox partners of GSU1996 – namely PpcA and its homologues –, were probed in order to 

shed light upon the probable function and electron transfer mechanisms where this nanowire 

participates.  

Furthermore, a strategy towards the accurate cellular localization of c-type cytochromes was 

attempted, based in the expression of tetracysteine-tagged mutant proteins, fluorescent upon binding 

with biarsenical dyes.  

Another goal was to open way to the unveiling of other EET components. In this sense, heterologous 

expression systems were probed to promote the high yield expression of the outer membrane 

cytochrome OmcE, of the hexaheme cytochrome OmcS and of the nanowire cytochrome GSU2210. 
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CHAPTER 2  
A BRIEF SYNOPSIS OVER NUCLEAR MAGNETIC RESONANCE 

AND KINETICS APPLIED TO THE STUDY OF MULTIHEME C-
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INTRODUCTION 
 

Nuclear Magnetic Resonance (NMR) spectroscopy has been widely used in the study of numerous 

biomolecules, as it is able to provide insights towards structural data at an atomic resolution in its native 

or close to physiological conditions. It can be applied, for instance, to probe for structural, 

thermodynamic and kinetic features of protein interactions either with solution components under 

several conditions of pH, temperature, ionic strength and/or putative partners, proteins or other type of 

ligands. 

In multiheme c-type cytochromes (MHCs), electron transfer processes may occur along short 

distances between interacting proteins or amid proteins and other interacting partners (intermolecular 

electron transfer) or over long distances across a single protein (intramolecular electron transfer) 

(198,199). Therefore, in MHCs it is of utmost importance to understand not only the macroscopic 

aspects that are involved in the intermolecular interactions but also the microscopic parameters that 

explain how the electron flow occurs within a protein. 

NMR spectroscopy has proven to be an exquisite tool to enlighten the redox properties of MHCs, as 

it allows the discrimination of each individual redox center (200–202). The detailed study of the 

functional properties of the redox centers in MHCs starts with the assignment of the signals in the NMR 

spectra to the specific heme protons in the protein in either reduced and/or oxidized states. Next, the 

signals of the heme protons are monitored by NMR techniques in redox titration experiments in order 

to establish the order of oxidation/reduction of the respective hemes within the protein. This information 

combined with data acquired in redox titration experiments followed by UV-visible spectroscopy or by 

cyclic voltammetry techniques makes it possible to determine the microscopic thermodynamic 

parameters and disclose the possible electron transfer pathways within the MHC. 

Nonetheless, the comprehension of such intricate molecules cannot be complete without the in-

depth analysis of their electron transfer rates. Therefore, kinetic properties of such proteins need also 

to be determined so as to reveal the velocity of each electron transfer event and clarify the actual 

electron transfer steps that occur in the cytochrome. Given its complexity, kinetic models based on 

Marcus theory of electron transfer were already proposed (203) for the analysis of the kinetics of 

electron transfer of MHCs and their electron donors/acceptors. The assumptions considered in such 

approaches make it possible to differentiate the contribution of each heme to the global 

oxidation/reduction process. 

Below, a brief synopsis of the NMR principles and techniques used in this work is presented and the 

kinetic models applied to the study of electron transfer properties of MHCs are reviewed.  

                                           

NMR SPECTROSCOPY OVERVIEW 
 

In the presence of a strong magnetic field, nuclear spins with quantum number (I) other than zero 

are mostly found aligned according to the direction of the applied field. In the particular case of 𝐼 =
1

2
, 

the nuclei have two different orientations relative to the applied field, which correspond to two energy 

levels (Figure 2.1), given by Equation 2.1: 
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𝐸 = −
𝛾𝑚ℎ

2𝜋
𝐵0                                                                                                                                          Equation 2.1 

 

In this equation, 𝛾 represents the gyromagnetic ratio, that relates the nuclear spin magnetic 

moment 𝜇 with the nuclear spin quantum number 𝐼; 𝑚 represents the quantum magnetic number; ℎ is 

the Planck’s constant and 𝐵0 denotes the magnetic field applied. 

At equilibrium, the lowest energy level is aligned with the applied field and it is somewhat more 

populated. For this reason, there is a global magnetization in this direction. Transitions between the two 

energy levels can be stimulated by a radiofrequency impulse, where the nuclear spins in the lowest 

level are momentarily excited and afterwards return to their equilibrium state. The recovery of the initial 

magnetization is exponential and gives rise to the free induction decay magnetization (FID). 

NMR spectroscopy encompasses the analysis of the excitation and following relaxation process of 

the different spin groups until the equilibrium position is restored. The Fourier transformation is used to 

process FID and originates the NMR spectra. Signals are called resonances and its frequencies are 

designated by chemical deviations (δ). Chemical deviations are resonance frequencies expressed 

relative to the position of a given standard that, by definition, is located at 0 parts per million (ppm) and 

are independent of the spectrometer frequency (Equation 2.2). 

 

𝛿 =
𝑆𝑖𝑔𝑛𝑎𝑙 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦−𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝑆𝑝𝑒𝑐𝑡𝑟𝑜𝑚𝑒𝑡𝑒𝑟 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
× 106                                                                                       Equation 2.2 

 

A simple one-dimensional NMR (1D NMR) experiment of a protein consists in the excitation of all 

nuclei by a non-selective radiofrequency pulse of 90° and in the subsequent acquisition of all spin 

groups responses until the recovery of the initial magnetization along time t. 

 

Figure 2.1 – Energy levels upon an applied field. A nuclei with 𝐼 =
1

2
 may adopt two different orientations 

in the presence of a magnetic field, 𝐵0, with quantum magnetic numbers 𝑚 = +
1

2
 and 𝑚 = −

1

2
 that give rise 

to two energy levels. Transitions between these energy levels can occur with the application of an 

electromagnetic radiation of  frequency, in agreement with Planck’s condition. Adapted from Skoog et al., 1998 
(322). 
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In a protein with a high number of amino acid residues, the overlay of signals acquired after FID 

processing is unavoidable and this is one of the major problems intrinsic to 1D NMR experiments. 

Fortunately, multidimensional NMR techniques, such as two-dimensional NMR (2D NMR), have made 

it possible to overcome some of these issues. A 2D NMR experiment consists in a sequence of four 

states. The preparation state is akin 1D NMR and comprises the excitation of the biomolecules nuclei 

with a radiofrequency pulse. Next, in the evolution state, the system evolves along a time t1 until the 

mixing state, where magnetization transfer between spin groups occurs. The mixing state ends with the 

beginning of the detection state, where FID is acquired during time t2 and it is usually preceded by the 

application of another pulse. Every time that magnetization transfer occurs between groups with 

different precession frequency1, the NMR spectrum will show a connectivity between such frequencies. 

The analysis of different forms of magnetization transfer among spin groups is quite relevant, as it allows 

the gathering of distinct but complementary information and is briefly explained below. 

 

Transfer of magnetization through chemical bonds 

In 2D homonuclear correlation spectroscopy (2D COSY) and total correlation spectroscopy (2D 

TOCSY), the transfer of magnetization arises from chemical linkages between coupled protons (204). 

COSY experiments identify coupled spins up to three chemical bounds. Although similar to COSY, 

TOCSY shows not only directly coupled nuclei but also nuclei that are connected by a chain of couplings 

and, therefore, protons that belong to the same spin system. In 2D heteronuclear multiple quantum 

correlation spectroscopy (2D HMQC) and 2D heteronuclear single-quantum correlation (2D HSQC) it 

is possible to acquire a heteronuclear chemical shift correlation between protons and directly bonded 

X-heteronuclei, as 13C and 15N. HSQC and HMQC provide similar information but the first is only limited 

to directly bonded nuclei. 

 

Transfer of magnetization by chemical exchange and/or dipolar relaxation 

In 2D nuclear Overhauser spectroscopy (2D NOESY) and exchange spectroscopy (2D EXSY), the 

transfer of magnetization occurs through chemical exchange and/or dipolar relaxation between two 

nuclei that are in the vicinity of each other, regardless of the existence of chemical linkage among them 

(204). Both techniques are based in nuclear Overhauser effect (NOE), where nearby atoms (up to 5 Å) 

are under the effect of crossed relaxation. A proton NOE is defined as the fractional variation of the 

intensity of the signal when another resonant signal is saturated and it is influenced by the internuclear 

distance r (1H-1H) and times of correlation 𝜏𝑐 (Equation 2.3) (205). 

In Equation 2.3, f(𝜏𝑐) represents the correlation function that describes the modulation of the coupling 

dipole-dipole with a time of correlation 𝜏𝑐 for a NOE: 

 

𝑁𝑂𝐸 ∝
1

〈𝑟〉6 𝑓(𝜏𝑐)                                                                                                                       Equation 2.3 

 

                                                         
1 The precession frequency refers to the frequency that relates with the energy difference between the energies of 
two spin states. 
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For a given 1H-1H couple, the correlation time is determined by the random movement of the 

molecules in solution as a consequence of the collisions among them (Brownian movement). This 

depends of the size and shape of the proteins and also of the viscosity (η) of the solvent (Equation 2.4, 

where T represents the temperature and k is the Boltzmann constant).  

 

𝜏𝑐 =
4𝜋𝜂𝑟3

3𝑘𝑇
                                                                                                                            Equation 2.4 

 

Furthermore, it can be affected by intramolecular movements. Consequently, f(𝜏𝑐) may change 

considerably for different 1H-1H couples within the same protein (205). Additional ambiguities may arise 

due to the partial extinction of individual 1H-1H NOE’s as a result of competitive processes of relaxation 

of spin, such as spin diffusion, chemical or conformational exchange and interactions with other 

electronic or nuclear spins. Alternatively, as a consequence of the fast intramolecular mobility, a given 

NOE may also be the result of sampling within a certain range of distances between a pair of protons 

(206). 

NOESY techniques are based in the nuclear Overhauser crossed relaxation between nuclear spins 

over mixing times. Spectra crossed signals connect nuclear resonances that are in close spatial vicinity, 

unlike COSY technique, where signals reflect chemical linkages. When NOESY is applied in the 

detection of chemical and conformational exchanges, the technique is called EXSY. 

 

General features of NMR spectra of low spin c-type cytochromes 

Coordination compounds fall into two classes according to their spin state: high or low spin 

compounds. The electronic configuration is directly related with the amount of energy necessary to pair 

electrons within an orbital (low spin configuration, with a minimum of unpaired electrons) versus leaving 

electrons unpaired in different orbitals (high spin, with a maximum of unpaired electrons) (207). Iron 

coordination compounds may have up to five unpaired electrons, with only one electron in each of the 

3d orbitals in cases where iron is five-coordinated or, otherwise, they may have one unpaired electron, 

with the five d electrons in the three lowest orbitals in cases where iron is six-coordinated, regardless 

of its oxidation state (+2 or +3) (Figure 2.2) (207). In NMR spectra both high and low spin configurations 

can be easily discriminated as high spin c-type cytochromes show signals in a broader range than low 

spin c-type cytochromes, both in the reduced and in the oxidized state. Generally, high spin c-type 

cytochromes may present signals above 40 ppm and 15 ppm in the oxidized and reduced state, 

respectively, while low spin c-type cytochromes typically show signals below 40 ppm and 12 ppm. 

C-type cytochromes with axial coordination His-Met, as the case of heme IV in each of the GSU1996 

domains, are usually low spin proteins and can be detected in the oxidized state by UV-visible 

spectroscopy techniques, as they present a typical peak at around 695 nm (145). 

Low molecular weight cytochromes with iron in low spin configuration present 1H-NMR spectra quite 

different, although well resolved in both reduced (diamagnetic, 𝑆 = 0) and oxidized (paramagnetic, 𝑆 =

1

2
) states. 
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Despite its complexity, the presence of the heme groups and the particular state of spin of Fen+ ion 

allows the identification of several resonances in the NMR spectra, such as the ones from heme protons 

that provide structural data and allow the following of redox mechanisms and interaction sites and/or 

partners. The deviations that are caused by ring currents in the diamagnetic form and by the interactions 

with the unpaired electron in the paramagnetic form shift some of these resonances out of the crowded 

signal region and simplify its identification (208–210). The signals may be shifted to higher ppm values 

than expected (low field or high frequency deviations) or may be shifted to lower ppm values (high field 

or low frequency deviations) (Figure 2.3). 

Diamagnetic c-type cytochromes in the reduced form have resonances usually ranging from −5 to 

12 ppm, with most of the signals between 0 and 5 ppm (Figure 2.4, upper panel). Protons positioned at 

the heme group plane appear in typical spectrum regions as elucidated in Figure 3.6 from CHAPTER 

3. Indeed, meso protons are located between 8 and 10 ppm; methine protons from the thioether bridges 

range from 5 to 8 ppm; heme methyl groups are found between 2 and 5 ppm and methyl groups from 

thioether bridges from −1 to 3 ppm.  

 

Figure 2.2 – Iron spin states. In cases where orbitals are energetically close (Δsmall is smaller than the pairing 
energy), each electron occupies its own orbital (high spin configuration). On the other hand, when Δlarge is higher 
than the pairing energy, the electrons are found paired (low spin configuration). 

Figure 2.3 – Ring-current effect. Double-cone shaped and magnetic field lines of local ring-current field induced 
by a static, external magnetic field around the heme group, which behaves like a large aromatic ring. The positive 
signs point that NMR signals of protons located outside the cone in the protein structure are shifted downfield and 
the minus signs indicates signals shifted upfield. Adapted from Wüthrich, 2003 (205). 
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Although propionate groups do not present typical patterns due to their variable geometry relative to 

the heme plane, they frequently appear between 2 and 5 ppm. 

In contrast, c-type cytochromes in the oxidized form present scattered resonances in larger spectral 

windows and with more undefined regions for chemical deviations as a consequence of the several 

interactions between the unpaired electron of the heme group iron and the observed nuclei (Figure 2.4, 

lower panel) (211). As a consequence of this paramagnetic effect, the resonance assignment is harder 

with only a few exceptions, as the case of some heme group methyls that are typically shifted to low 

field or protons that belong to axial ligand spin systems shifted to high field. 

As the heme methyl substituents appear in distinct areas of the spectra in the oxidized and reduced 

states, in particular circumstances where the interconversion amid the same oxidation microstates 

(intramolecular exchange) is fast and the interconversion between different oxidation states 

(intermolecular exchange) is slow in the NMR time scale, separate resonances can be observed for the 

heme methyl groups at different stages of oxidation. Heme methyls are the most suitable substituents 

to follow in such studies, as their resonances are shifted to the less populated signal regions of the 

spectra across the reoxidation experiments and become easily recognizable, unlike other substituents 

(197). The chemical shift deviation of each methyl is proportional to the oxidation stage of its respective 

Figure 2.4 – 1D 1H-NMR spectra of domain C from GSU1996 in the reduced (upper panel) and oxidized 
(lower panel) forms at pH 8.0 and 289.15 K. In the reduced form, heme IV axial methionine side chain protons 
are signalled and in the oxidized form, the heme methyls most shifted to low field are highlighted. 
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heme group and consequently, the variation of the chemical shifts may be used to determine the 

patterns of oxidation of the heme groups in the protein (200,212,213). Nonetheless, 1D NMR techniques 

make it quite difficult to determine oxidation patterns and 2D NMR is currently employed to identify the 

heme oxidation patterns. 

 

Insights of NMR spectroscopy applied to the study of transient complexes 

In nature, interactions between proteins are designed with the purpose of providing just the required 

lifetime to fulfill the particular biomolecular role of a protein complex, rather than aiming towards the 

formation of high affinity complexes (214). In the case of electron transfer proteins, such as MHCs, a 

small lifetime is necessary to guarantee a fast turnover to withstand continuous electron flow and, 

therefore, interactions rely upon the formation of transient complexes (214–216).   

In order to promote the formation of a particular complex with suitable affinity in such small times, 

unique strategies such as electrostatic attraction and preorientation at the encounter event may be 

employed to enhance the association rate constant to the diffusion limit (214,217). Commonly, the 

formation of the protein complex involves the formation of an encounter complex prior to the reactive 

complex. The encounter complex resembles a cluster of orientations. When the proteins are brought 

close together, oppositely charged regions of the proteins are positioned under the electrostatic force 

to face each other (Figure 2.5) (214,217,218). 

Protein complexes of electron transfer proteins typically present weak affinity and short lifetimes and 

NMR spectroscopy techniques are especially fitted for its study (214,217).  

In chemical shift perturbation experiments, a protein is titrated with its putative partner and changes 

in the proteins are followed along the experiment. Upon formation of a complex, modifications occur in 

the chemical environment of nuclei at the interacting interface which results in variations of the chemical 

shifts of the free proteins (𝛿𝑓𝑟𝑒𝑒) relative to its bound forms (𝛿𝑏𝑜𝑢𝑛𝑑) (214,217).  

The lifetime of the complex is clearly reflected in the NMR spectra. Therefore, if slow exchange 

occurs, the lifetime is large when compared with the difference between the chemical shifts of the free 

and bound proteins (∆𝛿𝑚𝑎𝑥) and nuclei resonate only at two positions, respectively 𝛿𝑓𝑟𝑒𝑒 and 𝛿𝑏𝑜𝑢𝑛𝑑 

(Figure 2.6, left panel). 

 

Figure 2.5 – Illustration of transient complex formation. The encounter complex is a dynamic array of 

orientations, where negligible chemical shift perturbations are observed. On the contrary, in the fully bound complex 
the proteins adopt a particular orientation in the complex guided by charge interactions and considerable chemical 
shift perturbations can be detected. Adapted from Ubbink, 2012 (218). 
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As the partner protein increases along the titration experiment, the resonance intensity diminishes 

at 𝛿𝑓𝑟𝑒𝑒 and rises at 𝛿𝑏𝑜𝑢𝑛𝑑 in agreement with the bound fraction of the protein. In cases where moderate 

exchange occurs, these resonances may show line broadening. When fast exchange takes place, the 

lifetime is quite smaller than ∆𝛿𝑚𝑎𝑥 and a sole resonance is observed, which corresponds to the 

weighted average between 𝛿𝑓𝑟𝑒𝑒 and 𝛿𝑏𝑜𝑢𝑛𝑑 (Figure 2.6, right panel). 

The ratio change of the two proteins along the titration experiment is reflected in the proportional 

shift of the resonance from the 𝛿𝑓𝑟𝑒𝑒 to the 𝛿𝑏𝑜𝑢𝑛𝑑 position, as the change in the chemical shift (∆𝛿𝑏𝑖𝑛𝑑) 

approaches to ∆𝛿𝑚𝑎𝑥. 

The complex formation is also accompanied by an overall broadening of the resonances that is due 

to the larger rotational correlation time of the complex when compared to the free proteins. Similar to 

chemical shifts, the linewidths of the average resonances correspond to the weighted average of the 

linewidths between free and bound proteins (214,217). 

In the case of fast exchange, binding curves for complex formation may be derived from a function 

of the |∆𝛿𝑏𝑖𝑛𝑑| versus the molar ratio of the interacting proteins and the affinity and stoichiometry 

evaluated (214,217). 

  

KINETICS OF ELECTRON TRANSFER IN MULTIHEME C-TYPE CYTOCHROMES 
 

An electron transfer reaction between a given protein and its electron donor involves at least three 

steps: the complex formation; electron transfer within the complex and finally, its dissociation: 

 

Figure 2.6 – Schematic representation of slow (on the left) and fast exchange (on the right) in a 1D NMR 
spectrum. In slow exchange, two resonances are observed for the nucleus, one that corresponds to the free 

protein and the other to the bound protein with intensities that are proportional to the respective fraction of 
free/bound protein. Linewidths are influenced by the size and shape of the free protein and the complex. In the fast 
exchange, a single resonance is observed for the nucleus at a weighted average position between free and bound 
protein, with linewidths also averaged between both states. Adapted from Prudêncio and Ubbink, 2004 (214). 
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In a MHC the set of steps above and its six respective microscopic rate constants (𝑘) should be 

accounted for each individual center in the protein, which makes it an unrealistic task. 

 The kinetic analysis of electron transfer in MHCs applied in this work relies on the models developed 

by Catarino and Turner (203) and it is suitable for use in situations where intramolecular electron 

transfer occurs much more rapidly than intermolecular electron transfer and, where applicable, fast 

proton exchange is experienced in the experiments time-scale. This implies that a thermodynamic 

equilibrium must be achieved amid the microstates (hemes with the same number of oxidized hemes) 

in each redox stage and the kinetic models are, therefore, collisional models, applicable under steady-

state conditions where electron transfer is rate-limiting. 

Indeed, in such cases, the intricate kinetic array that comprises all feasible microscopic electron 

transfer steps in a MHC with N redox centers may be reduced to a sequence of N simple successive 

macroscopic electron transfer steps, where each step represents the electron transfer in a given center 

𝑖, with rate constants that carry information of the three steps mentioned above: 

 

The determination of each macroscopic rate constant – that is related to the weighted average of 

the respective step microscopic constants by one of two rational set of assumptions and Marcus theory 

of electron transfer – is based on the detailed thermodynamic characterization of the protein (203).  

In circumstances of moderate ionic strength, where electrostatic interactions and orientation effects 

are negligible, Marcus theory may then be applied to express the microscopic rate constants as a 

function of the driving force (Δ𝐺), the reorganization energy (𝜆) and factor 𝑍, which has dimensions of 

collision frequency and accounts for the effect of the medium, the distance between redox centers and 

the binding constant, according to Equation 2.5: 

 

𝑘 = 𝑍𝑒𝑥𝑝 [−
(∆𝐺+𝜆)2

4𝜆𝑅𝑇
]                                                                                     Equation 2.5 

 

In one of these sets of assumptions (model 1), redox centers are distinctive in what regards to 

binding affinity for electron donor and electron transfer parameters (different environment and solvent 

exposure) and it is realistic to consider different reorganization energies and also 𝑍 factors, although 

these are considered independent of the overall redox state and therefore, solely the driving force 

changes between steps for a given redox center.  

In the other set of assumptions (model 2), redox centers are considered to be equivalent (identical 

environment and solvent exposure) except in what concerns to their microscopic redox potential and 

thus, though reorganization energies and 𝑍 factors are the same within a given macroscopic redox step, 

these parameters depend on the overall redox state and may change between steps.  

Model 1 is more appropriate for proteins with redox centers under different environment conditions, 

even though it presents higher constraints as variations in macroscopic rate constants are limited to 

changes in the driving force of the centers. Model 2 states that the redox centers must have the same 
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reorganization energies and accessibility, which may not correspond to reality. It is probable that the 

merging of these simplification models may be a better representative of the real scenario and thus, 

comparison of the parameters acquired with both should be an insurance for consistency. 

Nevertheless, both models require just one variable per redox center as the use of Marcus theory 

greatly diminishes the number of unknowns, either by considering that factor 𝑍 and the reorganization 

energy are specific of each center but remain unchanged along the reduction process or that 𝑍 and 𝜆 

are the same for all centers within each electron transfer step (203). 
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CHAPTER 3  
ASSIGNMENT OF THE HEME SIGNALS OF THE INDIVIDUAL 

DOMAINS C AND D AND OF THE TWO DOMAIN FRAGMENT 

CD FROM GSU1996 
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Results presented for the reduced form of domains C and D and of fragment CD from GSU1996 were acquired in 
the course of the Master Thesis in Biochemistry and presented in Fernandes AP. Caracterização de um novo 
citocromo do tipo c que forma “nanofios” de hemos em Geobacter sulfurreducens. Faculdade de Ciências da 

Universidade de Lisboa; 2012. 
 
A manuscript with the results presented in this chapter is in preparation as: Fernandes AP, Turner DL, Salgueiro 
C. A biochemical LEGO® strategy to unveil the functional properties of “nanowire” cytochromes.
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ABSTRACT 
 

Multiheme c-type cytochromes are crucial for extracellular electron transfer in Geobacter and 

Shewanella bacteria. This property is currently explored to harvest electricity from aquatic sediments 

and waste organic matter into microbial fuel cells. To date, the detailed functional characterization of 

MHCs is restricted to proteins containing up to four hemes. The multiple combinations of electron 

distribution that can occur among the various hemes and the high molecular weight of larger MHCs had 

prevented their characterization. The dodecaheme cytochrome GSU1996 composed of four domains 

(A to D) mediates the electron transfer between periplasmic and outer membrane proteins in the 

bacterium G. sulfurreducens. In the present work, this heme-forming “nanowire” was used as a model 

to test a biochemical modular strategy aiming to contribute to the biophysical characterization of large 

MHCs. The assignment of the heme NMR signals, a crucial step to carry out the detailed thermodynamic 

characterization of MHCs was performed in domains C and D and then used as a guide in the 

assignment of the hexaheme fragment CD. This strategy allowed for the first time the assignment of 

the heme substituents in a MHC that contains more than four heme groups, and opens new possibilities 

for the functional characterization of large MHCs. 
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INTRODUCTION 
 

The general theoretical framework that allows the detailed study of the properties of the redox 

centers in multiheme proteins was previously described and was successfully applied to MHCs 

containing up to four heme groups (190,200,201,219). The first step of this methodology encompasses 

the assignment of twelve protons per heme group in 2D 1H-NOESY spectra, with the aid of 1H-COSY 

and 1H-TOCSY spectra. Next, redox titrations monitored by 2D 1H-EXSY are carried out at different pH 

values and the heme methyl signals of the heme groups are followed through each oxidation stage, 

from their position in the fully reduced to their final position in the fully oxidized state. In a MHC with N 

heme groups, the number of oxidation stages – each containing microstates with the same number of 

oxidized hemes – is N+1 and the total number of microstates is 2N (212,220). For instance, the triheme 

c7 cytochromes have a total of four oxidation stages: one for the fully oxidized and another for the fully 

reduced states and two others that correspond to the protein with one or two oxidized hemes (Figure 

3.1). As the c7 cytochromes may occur in their protonated or deprotonated form, the total number of 

microstates to consider is 2×23=16 (Figure 3.1). The NMR data combined with the data obtained from 

visible redox titrations is then used to determine the thermodynamic parameters of the individual redox 

centers. These include the heme reduction potentials, the pKa values of the redox-Bohr centers, heme-

heme redox interactions and redox-Bohr interactions (200). 

 

 

 

 

Figure 3.1 – Electronic distribution model for a triheme cytochrome with a proton equilibrium associated. 

The microstates are grouped according to the number of oxidized hemes (white circles) in four oxidation stages 
that are linked by three one-electron redox steps. Adapted from Morgado et al., 2012 (259). 
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However, with the increase of the molecular weight and number of hemes, the quality of the NMR 

spectra of MHCs decreases as a consequence of signal broadness. To illustrate this, 1D 1H-NMR 

obtained for a triheme cytochrome and for the dodecaheme cytochrome GSU1996 is compared in 

Figure 3.2.  

Within the framework of the methodology used to characterize MHCs in solution, for a dodecaheme 

protein it is first necessary to assign a total of 144 heme protons in the fully reduced protein in order to 

monitor the stepwise oxidation of each heme group along 12 oxidation stages that encompass a total 

of 8192 microstates. Therefore, such picture prevents the straightforward application of this 

methodology to characterize MHCs with large number of heme groups.  

Given the putative biological importance of the nanowire cytochromes, considerable efforts need to 

be undertaken in order to characterize them. In the case of GSU1996, the first step encompassed 

cloning, expression and purification of each triheme domain and hexaheme fragment, as these may 

theoretically be explored to establish a modular approach towards the thermodynamic characterization 

of the dodecaheme cytochrome at a microscopic level (192,194,196).  

Here, the triheme domains C and D together with fragment CD that compose the C-terminal of 

GSU1996 were used as a model to validate the proposed modular strategy at the level of the first step 

of the methodology described above, i.e., the assignment of the heme groups protons. 
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20 15 10 5 0 ppm

A 
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Figure 3.2 – 1D 1H-NMR spectra of A) c7 cytochrome PpcA and B) dodecaheme cytochrome GSU1996 in the 
oxidized state, at pH 8.0 and 298.15 K. As can be observed, the triheme cytochrome PpcA presents a well-defined 

spectrum, with heme methyl signals well defined while the GSU1996 spectrum shows broadening and large 
profusion of signals, which impairs the straightforward assignment of the heme substituents. 
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The NMR signals of each domain C and D were assigned and used as a guide in the assignment of 

the signals from the hexaheme fragment CD in a strategy that allowed for the first time to assign the 

heme substituents in a MHC with more than four heme groups. 

Unlike the C-terminal of GSU1996, the N-terminal part of the biomolecule appears to behave as a 

structural unit and the attempts to apply this modular approach was unsuccessfully to date. In fact, the 

individual domains A and B were considerably unstable under all experimental conditions tested, with 

either low expression yields and/or more than one form in solution that impaired purification and/or 

spectra analysis. 

                                             

MATERIALS AND METHODS 
 

Expression and protein purification 

The detailed protocol for the expression and purification of the hexaheme fragment AB will be 

described in CHAPTER 5, under the title Protein expression and purification present in the Materials 

and Methods section. The GSU1996 triheme domains A, C and D, as well as the hexaheme fragment 

CD, were expressed and purified as previously described (192,196,221). Briefly, the proteins were 

expressed in E. coli strain JCB7123 (222) harboring plasmid pEC86, which contains the c-type 

cytochromes maturation gene cluster ccmABCDEFGH (161). The periplasmic fractions were isolated 

by osmotic shock in the presence of lysozyme, and dialyzed against 20 mM Tris-HCl buffer pH 8.5 

(domain A), 10 mM Tris-HCl buffer pH 7.0 (domains C and D) or 20 mM sodium phosphate (NaPi) buffer 

pH 5.9 (fragment CD). Samples were separately loaded onto a cation-exchange column (Econo-Pac 

High S, Bio-Rad) and eluted with a linear gradient of NaCl. In each case, the fractions with the protein 

of interest were pooled, concentrated and loaded onto a HiLoad 16/600 Superdex 75 column (GE 

Healthcare), equilibrated with 20 mM NaPi buffer pH 8.0 with 100 mM NaCl salt added. The presence 

of the desired proteins was confirmed by 12% sodium dodecyl sulfate polyacrilamide gel electrophoresis 

(SDS-PAGE) stained with Coomassie blue. Both chromatographic steps were performed in an ÄKTA 

Prime Plus FPLC System (GE, Amersham).  

 

NMR Studies 

Samples preparation 

The buffer used in the last step of purification was exchanged for 80 mM NaPi buffer pH 8.0 (with 

NaCl added to a final ionic strength of 250 mM) in 99.9% 2H2O (CIL), through ultrafiltration procedures 

with Amicon Ultra Centrifugal Filter Units (Millipore). Protein concentrations were determined by UV-

visible spectroscopy with the specific absorption coefficient of the -band at 552 nm determined for the 

reduced triheme cytochrome PpcA (𝛥휀552 𝑛𝑚 = 32.5 mM−1 cm−1 per heme) (152) as described in 

Morgado and co-workers (197). Protein samples with approximately 1.5 mM were placed in 3 or 5 mm 

Wilmad NMR tubes and closed with NMR pressure caps. The protein samples were degassed with H2 

and reduced as necessary in the presence of catalytic amounts of Fe-hydrogenase isolated from 

Desulfovibrio vulgaris (Hildenborough).  
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NMR experiments 

The NMR spectra were acquired on a Bruker Avance 600 MHz spectrometer at 288.15 K or 298.15 

K. In order to assist the assignment of the heme substituent proton signals, 2D 1H-TOCSY and 2D 1H-

NOESY NMR spectra were recorded with standard pulse techniques. A series of 2D 1H-TOCSY and 

2D 1H-NOESY NMR spectra were acquired with mixing times covering the range of 40-60 ms and 50-

400 ms, respectively, for MHCs in both reduced and oxidized states. 2D 1H-13C-HMQC and 1H-13C-

HSQC NMR spectra were acquired with 2048 points ranging a spectral width of 37 kHz in the 1H 

dimension and 512 increments with TPPI to attain a spectral with of 78 kHz in the 13C dimension for the 

MHCs in the oxidized state. The spectra were calibrated with the water signal as internal reference. 

Tetramethylsilane constituted the reference for all resonances listed. All NMR spectra were processed 

using TopSpin™ NMR software from Bruker Biospin and analyzed with resource to the software Sparky 

3 (T. D. Goddard and D. G. Kneller, University of California, San Francisco). 

 

Calculation of ring-current shifts 

The ring-current shifts calculations followed the procedure described by Turner and co-workers (223) 

and were calculated with data from the crystal structure of fragment CD (195) by Prof. David Turner 

(Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa). The heme substituent 

chemical shifts were calculated through correction of the heme protons reference shifts (9.36 ppm for 

meso protons, 6.13 for thioether methines, 3.48 for methyls, and 2.12 for thioether methyls) as 

described by Pessanha and co-workers (224). 

  

RESULTS AND DISCUSSION 
 

The crucial step underlying the detailed thermodynamic characterization, and hence the functional 

mechanisms of MHCs, is the specific assignment of the heme substituents in the structure.  

The 1D 1H-NMR spectra of domains C, D and fragment CD are characteristic of low-spin c-type 

cytochromes in both reduced and oxidized states (Figure 3.3). The 1D 1H-NMR spectra of the proteins 

showed NMR signals covering the regions −4 to 11 ppm and −20 to 40 ppm in the reduced and oxidized 

states, respectively (Figure 3.3). Thus, from the NMR studies it can be concluded that domains C, D 

and fragment CD are diamagnetic when reduced (Fe(II), S = 0) and paramagnetic when oxidized 

(Fe(III), S =
1

2
). Indeed, the pattern and linewidths of the NMR signals are clearly distinct from those of 

high-spin cytochromes (209). In the latter, in the oxidized state, the 1D 1H-NMR spectra show extremely 

broad signals above 40 ppm. Similarly, for reduced high-spin cytochromes the 1D 1H-NMR spectra 

show wider spectral regions (typically from −15 up to 30 ppm). Such profiles are not observable for the 

triheme domains and fragment CD. By simple observation of the more shifted signals in the reduced 

and oxidized spectra of these proteins, it is clear that the NMR signals in the fragment follow closely the 

dispersion of the signals in the individual triheme domains (Figure 3.3). There is remarkable similarity 

for the signals of axial methionine 209 and 287 of hemes IV in domains C and D, respectively.     
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The typical pattern of heme axial methionine resonances includes a three-proton intensity peak at 

approximately −3 ppm and up to four resolved one-proton intensity peaks in the low-frequency region 

of the reduced spectrum (138,225). Due to the paramagnetic effect of the unpaired electrons these 

signals are even more shifted and broader in the oxidized NMR spectra (see spectral region −20 to −5 

ppm). However, the spectral resolution is high enough to show that the geometry of the axial ligands in 

the individual domains is conserved in the fragment CD (Figure 3.3). 

 

Figure 3.3 – 1D 1H-NMR spectra acquired for domains C and D (respectively gray and red, in the upper 
panel) and fragment CD (black, lower panel) in the reduced (A) and oxidized (B) state at pH 8.0 and 288.15 
K. The typical regions for meso and heme axial methionine side chain protons are indicated in the reduced spectra. 
In the oxidized spectra the typical regions for heme methyl signals are also indicated. 

Figure 3.4 – 1D 1H-NMR spectra acquired for domain A (red curve in the upper panel) and fragment AB 
(black curve in the lower panel) in the reduced (A) and oxidized state (B) at pH 8.0 and 298.15 K. The typical 

regions for meso and heme axial methionine side chain protons are indicated in the reduced spectra and the typical 
regions for heme methyl signals are indicated in the oxidized spectra. 
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A similar discussion may be carried in the case of the N-terminal of the molecule, with some repairs. 

Unlike in the C-terminal end, it was not possible to obtain the individual domain B, as its expression 

levels are very low and the purification process was not yet optimized (221). In the case of domain A 

and fragment AB, the 1D 1H-NMR spectra are also typical of low-spin c-type cytochromes in both 

reduced and oxidized states (Figure 3.4), with NMR signals that range from –4.5 to 10.5 ppm in the 

reduced state and –29 to 38 ppm in the oxidized state. NMR chemical shifts in the fragment AB are 

comparable to the ones in the individual domain A (Figure 3.4). The signal of axial methionine 49 of 

heme IV in domain A is close to the one observed in fragment AB and endorses that the axial geometry 

of the heme axial ligand is conserved in the fragment AB (Figure 3.4). As observed in the C-terminal, 

chemical shifts appear altered and broader in the oxidized NMR spectra (see spectral region −20 to −5 

ppm). On the other hand, a closer observation of the spectra indicated that domain A occurs in more 

than one conformation in solution, as the number of signals for triheme domain A appear to be exceeded 

relative to predicted (Figure 3.5). 

Figure 3.5 – 1D 1H-NMR spectra acquired for domain A (above) and 2D 1H-EXSY (below, (221)) in the 
oxidized state at pH 8.0 and 289.15 K. The shadowed region exemplifies heme methyl signals that may belong 
to two different conformations of domain A in solution. 
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Unfortunately, this precludes the signal assignment of domain A and, together with the absence of 

domain B, the assignment of fragment AB is impaired, as the profusion and broadness of signals are 

quite large to unequivocally allow the attribution of the signals. The assignment of the domains C and 

D and fragment CD in both states is described in more detail in the next section. 

 

Reduced state 

Assignment of the heme 1H signals in domain D 

The assignment of the heme protons of domain C in the reduced state was already described in 

detail in previous work (197) and it is not discussed here. Domain D will be used as an illustration 

towards the understanding of the assignment process in a MHC in the reduced state (221). 

The heme proton resonances in the reduced state of domain D were identified following the strategy 

previously described for multiheme ferrocytochromes (223). In the diamagnetic state the heme proton 

signals appear in quite typical regions, according to their type. These are 11–8 ppm for meso protons 

(5H, 10H, 15H and 20H) ; 8–5 ppm for thioether methine (31H and 81H); 5–2.5 ppm for heme methyls 

(21CH3, 71CH3, 121CH3 and 181CH3) and 3–(−1.0) ppm for thiother methyls (32CH3 and 82CH3) (Figure 

3.6 A, C) (201,223,224,226–232). Among these substituents, the only protons that show scalar coupling 

are the pairs thioether methine/thioether methyls (31H/32CH3 and 81H/82CH3), which were firstly 

identified in the 2D 1H-TOCSY NMR spectra (Figure 3.6 B). Next, the distinctive pattern of short-range 

intraheme connectivities between meso protons and neighboring substituents were identified in the 2D 

1H-NOESY NMR spectra acquired with short mixing-times (50–100 ms). As illustrated (see full lines in 

Figure 3.6 C), meso protons 20H are connected only to two heme methyls (21CH3 and 181CH3) and 

meso protons 15H show no connections to heme methyls or thioether substituents. Meso protons 5H 

and 10H are connected to heme methyls, thioether methines and also thioether methyls. Since they 

have the same pattern of NOE connectivities, the distinction between meso protons 5H and 10H can 

be achieved by inspection of the connectivities between the heme substituents 21CH3/32CH3 and 

71CH3/82CH3. As an example, the short-range intraheme NOE connectivities for heme III meso protons 

are indicated in Figure 3.6 A. 2D 1H-NOESY experiments performed with a mixing time in the range 

150–400 ms allowed the observation of the long-range intraheme connectivities and further confirmed 

the assignment of the signals. The heme proton signals of domains C and D in the diamagnetic state 

are listed in Table 3.1.  

 

Cross-assignment of the hemes to the structure of domain D 

We then moved to the assignment of the heme signals to its specific hemes. In order to achieve this, 

the 1H chemical shifts of domain D were compared to those calculated from the crystal structure of 

fragment CD (Figure 3.7 and Table 3.S1). From the six possible permutations for the three sets of heme 

protons with respect to the crystal structure, one was clearly preferred since all hemes concurrently 

showed the smallest root mean square deviation (rmsd). The rmsd of the 36 shifts was 0.10 ppm, with 

deviations of 0.02 (heme I), 0.04 (heme III) and 0.04 (heme IV). As in the case of domain C (197), the 

observed and predicted shifts correlate very well, even for the protons subjected to the larger ring 
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current effects, as it is the case of the protons 10HI, 20HIII, 21CH3
III, 121CH3

I, 82CH3
I and 82CH3

IV (cf. 

Figure 3.7 and Table 3.1).  

The assignment of domain D heme substituents was further tested by examination of the interheme 

NOE connectivities from the 2D 1H-NOESY spectra and their comparison with the distances obtained 

from the crystal structure of fragment CD. All NOE connectivities between protons up to 3 Å apart were 

observed in the 2D 1H-NOESY spectra, which confirms that both crystal and solution structures are 

similar. 

Figure 3.6 – Summary of the methodology used in the assignment of the reduced state of domain D heme 
substituents. (A) Expansion of the 2D 1H-NOESY NMR spectrum region that shows the intraheme NOE 

connectivities of meso protons. In order to not overcrowd the figure, only the short-range connectivities for heme 
III meso protons (identified according to panel C) are boxed; (B) Expansion of the 2D 1H-TOCSY NMR spectrum 
region that contains the thioether methine/thioether methyls scalar connectivities. The dashed lines connect these 
signals with the correspondent ones in the 2D 1H-NOESY NMR spectrum; (C) Diagram of heme c numbered 

according to the IUPAC-IUB nomenclature (136). The full lines show the heme protons involved in the short-range 
connectivities, which are easily detected in the 2D 1H-NOESY NMR spectra acquired with 50–100 ms mixing-time. 
Dashed lines indicate the long-range NOE connectivities also observed in the 2D 1H-NOESY NMR spectra 
acquired with higher mixing-time values. 
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Table 3.1 – Observed 1H chemical shifts (ppm) and ring current shifts (in parentheses) of the heme 
substituents of domains C, D and fragment CD in the diamagnetic state at pH 8.0 and 288.15 K (197,221). 

Heme substituent Protein  Heme I Heme III Heme IV 

5H 

Domain C  9.49 (−0.13) 9.94 (−0.58) 9.73 (−0.37) 

Domain D  9.44 (−0.08) 9.87 (−0.51) 9.64 (−0.28) 

Fragment CD 
C 9.47 (−0.11) 9.93 (−0.57) 9.65 (−0.29) 

D 9.47 (−0.11) 9.89 (−0.53) 9.65 (−0.29) 

10H 

Domain C  8.01 (1.35) 10.09 (−0.73) 9.64 (−0.28) 

Domain D  7.99 (1.37) 9.59 (−0.23) 9.56 (−0.20) 

Fragment CD 
C 8.00 (1.36) 10.08 (−0.72) 9.60 (−0.24) 

D 8.02 (1.34) 9.63 (−0.27) 9.58 (−0.22) 

15H 

Domain C  9.37 (−0.01) 9.96 (−0.60) 9.99 (−0.63) 

Domain D  9.34 (0.02) 9.80 (−0.44) 9.77 (−0.41) 

Fragment CD 
C 9.36 (0.00) 9.96 (−0.60) 9.96 (−0.60) 

D 9.32 (0.04) 9.81 (−0.45) 9.78 (−0.42) 

20H 

Domain C  9.23 (0.13) 10.51 (−1.15) 9.46 (−0.10) 

Domain D  9.48 (−0.12) 10.69 (−1.33) 9.31 (0.05) 

Fragment CD 
C 9.21 (0.15) 10.51 (−1.15) 9.36 (0.00) 

D 9.40 (−0.04) 10.70 (−1.34) 9.32 (0.04) 

21CH3 

Domain C  3.59 (−0.11) 4.74 (−1.26) 3.65 (−0.17) 

Domain D  3.69 (−0.21) 4.83 (−1.35) 3.55 (−0.07) 

Fragment CD 
C 3.56 (−0.08) 4.74 (−1.26) 3.61 (−0.13) 

D 3.75 (−0.27) 4.85 (−1.37) 3.55 (−0.07) 

71CH3 

Domain C  3.45 (0.03) 4.18 (−0.70) 3.64 (−0.16) 

Domain D  3.38 (0.10) 4.13 (−0.65) 3.59 (−0.11) 

Fragment CD 
C 3.43 (0.05) 4.17 (−0.69) 3.64 (−0.16) 

D 3.42 (0.06) 4.18 (−0.70) 3.60 (−0.12) 

121CH3 

Domain C  1.42 (2.06) 3.88 (−0.40) 2.91 (0.57) 

Domain D  1.20 (2.28) 3.84 (−0.36) 3.20 (0.28) 

Fragment CD 
C 1.40 (2.08) 3.87 (−0.39) 2.87 (0.61) 

D 1.22 (2.26) 3.85 (−0.37) 3.21 (0.27) 

181CH3 

Domain C  3.39 (0.09) 3.68 (−0.20) 3.51 (−0.03) 

Domain D  3.37 (0.11) 3.93 (−0.45) 3.49 (−0.01) 

Fragment CD 
C 3.38 (0.10) 3.68 (−0.20) 3.51 (−0.03) 

D 3.55 (−0.07) 3.94 (−0.46) 3.49 (−0.01) 

31H 

Domain C  6.03 (0.10) 6.26 (−0.13) 5.91 (0.22) 

Domain D  6.04 (0.09) 6.19 (−0.06) 5.91 (0.22) 

Fragment CD 
C 6.02 (0.11) 6.25 (−0.12) 5.72 (0.41) 

D 6.09 (0.04) 6.22 (−0.09) 5.92 (0.21) 

81H 

Domain C  5.75 (0.38) 6.55 (−0.42) 6.09 (0.04) 

Domain D  5.65 (0.48) 6.09 (0.04) 6.40 (−0.27) 

Fragment CD 
C 5.74 (0.39) 6.54 (−0.41) 6.09 (0.04) 

D 5.70 (0.43) 6.12 (0.01) 6.42 (−0.29) 

32CH3 

Domain C  2.37 (−0.25) 2.69 (−0.57) 2.16 (−0.04) 

Domain D  2.40 (−0.28) 2.51 (−0.39) 2.17 (−0.05) 

Fragment CD 
C 2.35 (−0.23) 2.66 (−0.54) 1.69 (0.43) 

D 2.46 (−0.34) 2.54 (−0.42) 2.18 (−0.06) 

82CH3 

Domain C  1.36 (0.76) 1.86 (0.26) −0.41 (2.53) 

Domain D  1.10 (1.02) 1.67 (0.45) −0.15 (2.27) 

Fragment CD 
C 1.36 (0.76) 1.85 (0.27) −0.44 (2.56) 

D 1.13 (0.99) 1.70 (0.42) −0.12 (2.24) 
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The crystal structures showed that domains C and D have several aromatic side chains in the 

vicinity of the heme groups (Figure 3.8). 

Figure 3.7 – Comparison between the observed and calculated chemical shifts for all the heme 
substituents of domains C and D. Hemes I, III, and IV are represented by squares, triangles and circles, 

respectively. The calculated values were obtained from the crystal structure of the fragment CD (PDB code 3OUE 
(195)). The solid line has a unit slope. The rmsd between the observed and calculated proton chemical shifts are 
0.02 (heme I), 0.05 (heme III) and 0.07 (heme IV) for domain C and 0.02 (heme I), 0.04 (heme III) and 0.04 (heme 
IV) for domain D (221). 

Figure 3.8 – Location of aromatic residues in the heme core of domains C and D. The residues are indicated 

in gray and hemes in red. Shadowed areas indicate the observed NOE connectivities in the 2D 1H-NMR spectra. 
Figures of the heme core of domains C and D were produced with the UCSF Chimera package (320) from PDB 
file 3OUE (195). 
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Among these, Phe183 (close to heme III), Tyr188 (near hemes I and III) and Phe228 (near hemes III 

and IV) were identified in domain C and Tyr248 (near hemes III and IV), Phe266 (near hemes I and III) 

and Phe306 (near hemes III and IV) in domain D. The aromatic signals of these residues were identified 

in the 2D 1H-TOCSY spectrum and used to further test the assignment of the heme substituents. 

The expected NOE connectivities between aromatic and heme substituent signals were observed 

in the 2D 1H-NOESY and thus confirm the assignment made (see shadowed areas in Figure 3.8). 

 

Assignment of the heme proton signals in fragment CD 

The fragment CD has twice the number of heme groups and molecular weight compared to the 

individual domains. Consequently, due to the slow correlation time of the fragment in solution, the NMR 

signals are broader and the intensity of the NOE connectivities are smaller when compared to those in 

the individual domains. The high number of heme signals together with the signal broadness hinders 

the straightforward application of the methodology described for the assignment of the heme 

substituents in the individual domains. However, as discussed, the signals of the fragment CD in the 1 

D 1H-NMR spectra correspond to the cumulative pattern of the heme signals of each individual domain 

(Figure 3.3). Thus, in the present work the assigned heme signals of the individual domains in the 2D 

1H-TOCSY and 2D 1H-NOESY spectra were used as a guide to their assignment in the fragment CD 

(Figure 3.9). The assignment of the heme signals in the fragment CD is indicated in the Table 3.1. As 

described above for domain D, the assignment was tested by comparison of the observed heme proton 

chemical shifts with those calculated using the crystal structure of fragment CD (Table 3.S1). Also for 

the fragment CD, the chemical shifts correlate very well, even for the protons that withstand large ring 

current shifts (Figure 3.10). The interheme NOE connectivities observable in the 2D 1H-NOESY spectra 

were examined and compared with the distances obtained from the crystal structure. All the expected 

NOE connectivities between the closest protons were observed in the 2D 1H-NOESY spectra and 

validate the strategy used in the present work to assign the heme signals in proteins with a large number 

of heme groups. 

 

Oxidized state 

Assignment of the heme proton signals in domains C and D 

As explained above, the dispersion of signals in the oxidized state is larger compared to the reduced 

state, which makes their assignment much more complex and difficult to achieve. Consequently, the 

strategy described for the assignment of the heme substituent signals in the reduced form, based on 

the exclusive analysis of 2D 1H-TOCSY and 2D 1H-NOESY NMR spectra is insufficient. However, when 

such type of experimental data are combined with data obtained from 2D 1H-13C-HSQC or 1H-13C-

HMQC spectra the assignment becomes more straightforward and some of the heme signals can be 

specifically attributed. In fact, these spectra may be used to assist the assignment of the heme 

substituent signals, since the dipolar shifts of the carbon nuclei attached to the pyrrole β-carbons are 

very small and, in contrast with the protons bonded to them, their Fermi contact shifts are directly 

proportional to the spin density on the pyrrole β-carbons (233,234).  
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Figure 3.9 – Overlay from part of the 2D 1H-NOESY spectra acquired for domain C (black), domain D (gray) 
and fragment CD (dark blue) in the reduced state at pH 8.0 and 288.15 K. As already observed in the 1D 1H-
NMR spectra, fragment CD spectrum reflects a cumulative pattern from the spectra acquired for both domains. 
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Thus, in the 13C dimension, typical regions for the signals of the heme substituents can be easily 

identified as illustrated with the 1H-13C-HSQC NMR spectrum obtained for domain D (Figure 3.11). 

Figure 3.10 – Comparison between the observed and calculated chemical shifts for all the heme 
substituents of fragment CD. Heme I, III, and IV are represented by squares, triangles and circles, respectively. 

The calculated values were obtained from the crystal structure of the fragment CD as described in the materials 
and methods section. The heme signals that correspond to domains C and D are represented by filled and open 
symbols, respectively. The solid line has a unit slope. The rmsd between the observed and calculated proton 
chemical shifts are 0.02 (heme I), 0.05 (heme III) and 0.07 (heme IV) for domain C and 0.02 (heme I), 0.04 (heme 
III) and 0.03 (heme IV) for domain D (221). 

Figure 3.11 – Expansion of the 2D 1H-13C-HSQC spectrum acquired for the oxidized domain D at pH 8.0 and 
298.15 K illustrates the typical regions for the signals of the heme substituents in an oxidized cytochrome. 
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The assignment of the heme protons of domains C and D in the oxidized state followed the spectra 

analysis described by Turner et al. (233) by combining the information gathered from 2D 1H-13C HSQC, 

2D 1H-TOCSY and 2D 1H-NOESY spectra and is summarized in Table 3.2 and Table 3.3.  

In the case of domain C, 2D 1H-EXSY data previously obtained (197) served as a guide in the 

identification of several of the heme methyl signals in the 2D 1H-13C HSQC spectra. The remaining 

heme methyl signals were identified first in the 1D 1H-NMR spectra by observation of the expected 

intensities for methyl groups (Figure 3.3 B) and then located in the 2D 1H-13C HSQC spectra, as they 

appear in typical regions and signals usually show large intensities (Figure 3.11). Unfortunately, no data 

from 2D 1H-EXSY spectra was recovered for domain D, as the slow intermolecular exchange regime 

on the NMR time scale was not achieved in neither experimental conditions attempted in earlier work 

(221). Therefore, heme methyl signals assignment in domain D was initially performed with resource 

solely to 1D 1H-NMR spectra (Figure 3.3 B) and further confirmed in 2D 1H-13C HSQC spectra (Figure 

3.11). 181CH3 heme methyl is in close vicinity of the heme methyl 21CH3 and this reflects a distinctive 

connectivities pattern from 121CH3 heme methyl in the spectra. 71CH3 heme methyl signals may be 

more defying to locate, as they may appear in more unusual regions and the connectivity patterns in 

2D NMR spectra are also difficult to identify with certainty.   

The assignment of the signals of the heme propionates is generally straightforward, as they appear 

paired in defined regions of the 2D 1H-13C HSQC spectra (Figure 3.11) and scalar coupling patterns are 

afterwards located in the 2D 1H-TOCSY NMR spectra.  

Following heme methyl and heme propionate signals identification, the characteristic pattern of 

short-range intraheme connectivities between heme methyl 121CH3 and 181CH3 and the respective 

heme propionate legs were located in the 2D 1H-NOESY spectra (see heme c diagram in Table 3.3).  

Table 3.2 – Observed 1H-13C chemical shifts (ppm) and ring current shifts (in parentheses) of the heme 
substituents of domains C, D and fragment CD in the paramagnetic state at pH 8.0 and 298 K. The 
resonances not assigned are labelled as n. a.. Yellow shadowing refers to heme methyl shifts that could not be 

specifically assigned to hemes I or IV. Gray shadowing refers to connectivities that may belong to heme methyls 
181CH3 or 21CH3 from hemes I or IV but could not also be specifically attributed. 

Heme substituent Protein  Heme I Heme III Heme IV 
   1H 13C 1H 13C 1H 13C 

21CH3 

Domain C  21.85 n. a. 17.36 −37.53 34.60 −61.46 

Domain D 
 22.99/ 

32.22/14.73 
−46.21/ 

−55.99/−20.28 
16.16 −36.33 

22.99/ 
32.22/14.73 

−46.21/ 
−55.99/−20.28 

Fragment CD 
C 21.81 n. a 17.06 −39.86 34.31 −63.96 

D 22.83/ 
32.04/14.72 

−47.58/ 
−58.37/−32.83 

15.98 −38.63 
22.83/ 

32.04/14.72 
−47.58/ 

−58.37/−32.83 

71CH3 

Domain C  n. a. n. a. n. a. n. a. n. a. n. a. 

Domain D  n. a. n. a. n. a. n. a. n. a. n. a. 

Fragment CD 
C n. a. n. a. n. a. n. a. n. a. n. a. 

D n. a. n. a. n. a. n. a. n. a. n. a. 

121CH3 

Domain C  22.14 n. a. 34.54 −59.01 35.43 −67.28 

Domain D  30.70 −58.08 15.37 −32.64 37.07 −71.23 

Fragment CD 
C 21.81 n. a 33.44 −63.26 35.79 −71.56 

D 30.44 −60.32 15.30 −35.21 36.77 −72.58 

181CH3 

Domain C  30.09 n. a. 12.62 −28.10 18.69 −35.63 

Domain D 
 28.70/ 

32.22/14.73 
−57.98/ 

−55.99/−20.28 
26.98 −67.10 

28.70/ 
32.22/14.73 

−57.98/ 
−55.99/−20.28 

Fragment CD 
C 29.65 −59.87 12.52 −31.05 16.37 −35.66 

D 27.74/ 
32.04/14.72 

−59.32/ 
−58.37/−32.83 

27.40 −69.85 
27.74/ 

32.04/14.72 
−59.32/ 

−58.37/−32.83 
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Table 3.3 – Observed 1H-13C chemical shifts (ppm) of the heme propionates of domains C, D and fragment 
CD in the paramagnetic state at pH 8.0 and 298.15 K. The resonances not assigned are labelled as n. a.. In 
Domain D entries, yellow shadowing refers to connectivities that belong to the same spin system, although it was 
not possible to assign them specifically to hemes I or IV. 

  Domain C Domain D 
  Heme I Heme III Heme IV Heme I Heme III Heme IV 

 
Heme 

propionate 
1H 13C 1H 13C 1H 13C 1H 13C 1H 13C 1H 13C 

1
8

1
C

H
3
 β1CH2 1.91 63.86 −2.40 65.63 2.32 72.24 n. a. n. a. n. a. n. a. n. a. n. a. 

β2CH2 2.33 63.86 −1.92 65.63 2.74 72.24 n. a. n. a. n. a. n. a. n. a. n. a. 

α1CH2 3.14 3.41 0.47 −2.08 −1.64 4.43 3.53 6.32 1.98 6.25 3.53 6.32 

α2CH2 3.49 3.41 0.76 −2.08 6.44 4.43 −0.10 6.32 0.64 6.25 −0.10 6.32 

1
2

1
C

H
3
 β1CH2 0.75 52.69 0.40 128.77 2.07 110.53 −0.25 111.57 −1.41 70.48 2.47 119.76 

β2CH2 1.23 52.69 2.59 128.77 3.13 110.53 0.34 111.57 −1.18 70.48 3.88 119.76 

α1CH2 2.56 n. a. 8.85 −31.38 6.86 −18.16 7.41 −26.49 2.74 −4.14 9.60 −22.18 

α2CH2 3.28 n. a. 16.78 −31.38 19.70 −18.16 12.08 −26.49 1.30 −4.14 17.76 −22.18 

  Fragment CD 
  Domain C Domain D 

  Heme I Heme III Heme IV Heme I Heme III Heme IV 

 
Heme 

propionate 
1H 13C 1H 13C 1H 13C 1H 13C 1H 13C 1H 13C 

1
8

1
C

H
3
 β1CH2 n. a. n. a. −2.41 65.57 n. a. n. a. n. a. n. a. n. a. n. a. n. a. n. a. 

β2CH2 n. a. n. a. −1.97 65.57 n. a. n. a. n. a. n. a. n. a. n. a. n. a. n. a. 

α1CH2 n. a. n. a. 0.39 −2.42 n. a. n. a. 2.67 8.32 n. a. n. a. 2.67 8.32 

α2CH2 n. a. n. a. 0.57 −2.42 n. a. n. a. −0.73 8.32 n. a. n. a. −0.73 8.32 

1
2

1
C

H
3
 β1CH2 n. a. n. a. 0.33 128.58 n. a. n. a. −0.17 111.86 −1.43 70.26 2.45 n. a. 

β2CH2 n. a. n. a. 2.53 128.58 n. a. n. a. 0.35 111.86 −1.19 70.26 3.87 n. a. 

α1CH2 n. a. n. a. 8.78 −31.02 n. a. n. a. 7.58 −26.63 2.65 −4.05 9.37 −22.73 

α2CH2 n. a. n. a. 16.58 −31.02 n. a. n. a. 11.99 −26.63 1.25 −4.05 18.01 −22.73 

 

 

The chemical shifts of the histidine axial ligands of the hemes were also attributed (Table 3.4). 

Initially, these were located in the 2D 1H-13C-HSQC or 1H-13C-HMQC spectra, as they appear in typical 

uncrowded regions of the spectra (Figure 3.11) and next, histidine scalar coupling patterns were 

identified in the 2D 1H-TOCSY NMR spectra. 

 

Cross-assignment of the hemes to the structures of domains C and D 

The specific assignment of the heme substituents of domains C and D to the structure was obtained 

by inspection of the observed interheme NOE connectivities in the 2D 1H-NOESY spectra and the 

distances taken from crystal structures of domain C and fragment CD, as described for the reduced 

state. In the paramagnetic state, predicted heme methyl signals (Table 3.S2) did not correlate well with 
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the signals observed in the spectra and that appear up to approximately 37 ppm. Several NOE 

connectivities between protons up to 3 Å apart were observed in the 2D 1H-NOESY spectra, which 

endorses the similarity between crystal and solution structures.  

 

Assignment of the heme proton signals in fragment CD 

The assignment of the chemical shifts in the oxidized form of fragment CD was accomplished as 

described before for the reduced form. Therefore, the assignment of the individual domains were used 

as guide to assist in the assignment of fragment CD. 

In general, chemical shifts correlate very well, even for the protons withstanding large ring current 

shifts. The major variations were observed for domain C, and heme methyl 181CH3
IV that is at the 

interface between domains C and D in the fragment CD showed the largest deviation (Table 3.2). 

Probably due their mobility in solution and rearrangement in the fragment CD, some of the domain C 

heme propionates had no correspondence in the fragment CD (Table 3.3). The interheme NOE 

connectivities observable in the 2D 1H-NOESY spectra were examined and compared with the 

distances obtained from the crystal structure. Several of the NOE connectivities between the closest 

protons were observed in the 2D 1H-NOESY spectra and corroborate the strategy used in the present 

work to assign the heme signals in MHCs with a large number of heme groups. 

Table 3.4 – Observed 1H-13C chemical shifts (ppm) of the histidine axial ligands of domains C, D and 
fragment CD in the paramagnetic state at pH 8.0 and 298.15 K. The resonances not assigned are labelled as 

n. a.. 

Histidine axial ligands 
 β1CH2 β2CH2 αCH 
 1H 13C 1H 13C 1H 13C 

Domain C 

 10.52 22.56 9.16 22.56 9.41 85.78 

 10.79 22.77 9.88 22.77 7.69 78.05 

 13.00 29.35 8.96 29.35 9.61 77.19 

 14.07 14.06 7.98 14.06 9.18 82.20 

 n. a. n. a. n. a. n. a. n. a. n. a. 

Domain D 

 10.79 21.00 9.36 21.00 7.51 86.27 

 11.60 23.56 9.78 23.56 9.90 86.16 

 12.04 29.24 8.76 29.24 9.74 76.81 

 12.13 17.08 10.82 17.08 9.46 86.65 

 14.00 16.68 7.86 16.68 9.48 78.65 

Fragment CD 

C 

10.51 22.48 9.15 22.48 9.42 85.83 

11.09 22.50 7.90 22.50 7.48 74.59 

13.06 29.21 8.91 29.21 9.62 77.30 

14.06 13.50 n. a. n. a. 9.22 81.93 

n. a. n. a. n. a. n. a. n. a. n. a. 

D 

10.78 20.87 9.37 20.87 7.50 86.43 

11.72 23.77 11.62 23.77 9.92 86.18 

12.14 29.20 8.77 29.20 9.78 76.90 

12.57 16.20 10.75 16.20 9.45 86.52 

14.17 16.01 7.86 16.01 9.41 79.52 
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CONCLUSION 
 

A large number of MHCs have been found in almost all major groups of Bacteria and Archaea (for 

a review see (235–238)). However, their complexity makes the characterization of these proteins very 

difficult from the structural and functional point of view. Several genetic and proteomic studies have 

proposed roles for some of them but their physiological functions and mode of action is still unclear. 

There is an inverse correlation between the number of heme groups of a MHC and the precise 

knowledge of their functional mechanisms. So far, detailed thermodynamic properties, and hence 

mechanistic information have only been obtained for MHCs that contain up to four heme groups 

(239,240). In order to shed light on the functional properties of large multiheme proteins new 

methodologies need to be developed. The linear and modular architecture displayed by the 

dodecaheme cytochrome GSU1996 was explored as a model in order to build a strategy for the detailed 

study of these proteins. This was the first time that such a methodology was used in the assignment of 

heme signals and it proved to be a promissory tool to gain functional insights on proteins with large 

molecular weight and number of hemes. 
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ASSIGNMENT SUPPLEMENTARY DATA 

Table 3.S1 – Predicted 1H chemical shifts (ppm) and ring current shifts (in parentheses) of the heme 
substituents of domains C and D in the reduced state. The chemical shifts and ring current shifts were 

calculated from the crystal structure of fragment CD (PDB file 3OUE) (221). 

Heme substituent Protein Heme I Heme III Heme IV 

5H 
Domain C 9.45 (−0.09) 10.01 (−0.65) 9.39 (−0.03) 

Domain D 9.47 (−0.11) 9.99 (−0.63) 9.36 (0.00) 

10H 
Domain C 8.29 (1.07) 9.90 (−0.54) 9.59 (−0.23) 

Domain D 8.44 (0.93) 9.71 (−0.35) 9.72 (−0.36) 

15H 
Domain C 9.52 (−0.16) 9.81 (−0.45) 9.54 (−0.18) 

Domain D 9.50 (−0.14) 9.67 (−0.31) 9.49 (−0.13) 

20H 
Domain C 9.38 (−0.02) 9.85 (−0.49) 9.10 (0.26) 

Domain D 9.42 (−0.06) 9.94 (−0.58) 9.28 (0.08) 

21CH3 
Domain C 3.44 (0.04) 4.34 (−0.86) 2.83 (0.66) 

Domain D 3.60 (−0.12) 4.55 (−1.07) 3.42 (0.06) 

71CH3 
Domain C 3.44 (0.04) 3.97 (−0.49) 3.32 (0.16) 

Domain D 3.37 (0.11) 3.93 (−0.45) 3.34 (0.14) 

121CH3 
Domain C 1.73 (1.75) 3.79 (−0.31) 2.81 (0.67) 

Domain D 1.47 (2.01) 3.84 (−0.36) 3.42 (0.06) 

181CH3 
Domain C 3.51 (−0.03) 3.61 (−0.13) 3.42 (0.06) 

Domain D 3.44 (0.04) 3.78 (−0.30) 3.49 (−0.01) 

31H 
Domain C 6.19 (−0.06) 6.72 (−0.59) 6.14 (−0.01) 

Domain D 6.23 (−0.10) 6.67 (−0.54) 6.10 (0.03) 

81H 
Domain C 6.03 (0.10) 6.26 (−0.13) 6.40 (−0.27) 

Domain D 5.97 (0.16) 6.05 (0.08) 6.56 (−0.43) 

32CH3 
Domain C 2.09 (0.03) 2.61 (−0.49) 2.03 (0.10) 

Domain D 2.17 (−0.05) 2.43 (−0.31) 2.08 (0.04) 

82CH3 
Domain C 1.45 (0.67) 1.45 (0.67) 0.10 (2.02) 

Domain D 0.95 (1.17) 1.62 (0.50) 0.53 (1.59) 

 

Table 3.S2 – Predicted 1H chemical shifts (ppm) of the heme methyl substituents of domains C and D in 
the oxidized state. The chemical shifts were calculated from the crystal structure of fragment CD (PDB file 3OUE). 

Heme methyl substituent Protein Heme I Heme III Heme IV 

21CH3 
Domain C 24.16 20.00 28.61 

Domain D 24.73 18.74 27.47 

71CH3 
Domain C 5.49 8.27 0.49 

Domain D 4.92 9.42 1.53 

121CH3 
Domain C 24.16 20.00 28.61 

Domain D 24.73 18.74 27.47 

181CH3 
Domain C 24.94 9.27 7.43 

Domain D 24.36 9.68 6.55 
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CHAPTER 4  
THERMODYNAMIC AND KINETIC CHARACTERIZATION OF THE 

INDIVIDUAL DOMAINS C AND D AND OF THE TWO DOMAIN 

FRAGMENT CD FROM GSU1996 
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ABSTRACT 
 

The extracellular electron transfer metabolism of G. sulfurreducens is sustained by several MHCs. 

One of these is the dodecaheme cytochrome GSU1996 that belongs to a new sub-class of c-type 

cytochromes. It was proposed that this protein works as an electrically conductive device in G. 

sulfurreducens, transferring electrons within the periplasm or to outer-membrane cytochromes. Here, a 

novel strategy was applied to characterize in detail the thermodynamic and kinetic properties of the 

hexaheme fragment CD of GSU1996. This characterization revealed the electron transfer process of 

GSU1996 for the first time and showed that a heme at the edge of the C-terminal of the protein is 

thermodynamic and kinetically competent to receive electrons from physiological redox partners. This 

information contributes towards understanding how this new sub-class of cytochromes functions as 

nanowires, and also increases the current knowledge of the extracellular electron transfer mechanisms 

in G. sulfurreducens. 
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INTRODUCTION 
 

The c-type cytochromes are among the most diverse classes of metal containing proteins, fulfilling 

various functions in numerous biological electron transfer processes (241). The heme groups are 

covalently linked to the polypeptide chain through thioether bonds set by the cysteine residues in the 

heme-binding motif Cys-X-X-Cys-His. In this motif, the histidine is usually one of the axial ligands to the 

heme iron and X can be any amino acid residue. Interestingly, the covalent attachment to the 

polypeptide chain allows c-type cytochromes to bind numerous hemes on a short stretch of protein, 

where the heme-protein ratio is high and only very little secondary structure can be observed. In DMRB, 

multiheme c-type cytochromes are implicated in several processes, such as electron transfer in 

respiratory processes (135,242), gene regulation (109) and as electron-storage sinks or capacitors 

(117,243). 

GSU1996 was proposed to work as a putative natural nanowire transferring electrons within the 

periplasmic space of G. sulfurreducens (195). It was also proposed that in the absence of electron 

acceptors, these proteins contribute to the enhancement of the cellular electron-storage capacity. In 

this process, they may receive electrons from the inner-membrane and contribute to prevent metabolic 

arrest (117). 

In order to understand the function of this cytochrome it is necessary to elucidate its electron transfer 

mechanism. This information is only possible with a detailed characterization of the thermodynamic and 

kinetic properties of the various redox centers (244). While the thermodynamic data allow identification 

of the possible electron transfer pathways, the kinetic properties elucidate the velocity of a particular 

electron transfer event and define the electron transfer steps that occur in the protein. Over the years, 

methodologies that discriminate the individual redox properties of multiple centers and their pairwise 

interactions were developed (244). These methods are of general application and independent of any 

structural organization of the proteins. 

Here, the thermodynamic and kinetic properties of the fragment CD of GSU1996 were determined 

and used to elucidate the electron transfer processes performed by the C-terminal half of the protein. 

This extends the experimental application of methods that define microscopic properties of multicenter 

redox proteins to a case of six redox centers. It was shown that the most exposed heme of domain D, 

at one edge of the protein, is the most thermodynamic and kinetically competent to receive electrons 

from the redox electron donor, and allows the protein to work as a nanowire device. This information is 

pioneer and contributes significantly to the understanding of the mechanisms of long range electron 

transfer in nanowire cytochromes. 

 

MATERIALS AND METHODS 
 

Protein purification 

The GSU1996 domains C and D, as well as the fragment CD, were expressed and purified as 

previously described (192,196) with minor changes. Briefly, the proteins were produced in E. coli strains 
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JCB7123 (domain C) (222) and JM109 (domain D and fragment CD) harboring plasmid pEC86, which 

contains the c-type cytochromes maturation gene cluster ccmABCDEFGH (161). 

The overexpressed proteins were purified as follows: the periplasmic fractions were isolated by 

osmotic shock in the presence of lysozyme (Sigma-Aldrich) and dialyzed against 10 mM Tris-HCl buffer 

pH 7.0 (domains C and D) or 20 mM NaPi buffer pH 5.9 (fragment CD). Subsequently, the samples 

were subjected to two chromatographic steps. In the first step, samples were separately loaded onto 

cation-exchange columns (Econo-Pac High S, Bio-Rad) and eluted with a linear gradient of NaCl. In 

the second step, the fractions containing the proteins of interest were pooled, concentrated and loaded 

onto a HiLoad 16/60 Superdex 75 column (GE Healthcare), equilibrated with 20 mM NaPi buffer pH 8.0 

containing 100 mM NaCl. Both chromatographic steps were performed in an ÄKTA Prime Plus FPLC 

System (GE, Amersham). The presence of the purified proteins was confirmed by 12% SDS-PAGE with 

both heme (245) and Coomassie blue staining. Protein concentrations were determined by UV-visible 

spectroscopy with the specific absorption coefficient of the α-band at 552 nm determined for the 

cytochrome c7 PpcA (𝛥휀552 𝑛𝑚 = 32.5 mM−1 cm−1 per heme) (197). 

 

NMR experiments 

The buffer of the purified proteins was exchanged for 80 mM NaPi buffer pH 8.0 with NaCl (final 

ionic strength of 250 mM) prepared in 99.9% 2H2O (CIL), through ultrafiltration procedures with Amicon 

Ultra Centrifugal Filter Units (Millipore). Protein samples with approximately 1.5 mM were placed in 3 

mm Wilmad NMR tubes. The 1D 1H-NMR spectra were acquired on a Bruker Avance 600 MHz 

spectrometer with a spectral width of 30 kHz at 289 K. 1H chemical shifts were calibrated using the 

water signal as internal reference. All NMR spectra were processed using TopSpin™ NMR Software 

from Bruker Biospin. 

 

Redox titrations followed by visible spectroscopy 

Redox titrations of domain D and fragment CD followed by UV-visible spectroscopy were performed 

at 289 K in anaerobic conditions as described previously in the literature (197). Protein solutions were 

prepared in 80 mM NaPi buffer (at pH 7 and 8) with NaCl (final ionic strength of 250 mM) inside an 

anaerobic glove box (MBraun), kept at below 2 ppm oxygen. The redox potential values of the proteins’ 

solution were measured with an Ag/AgCl combined electrode, calibrated at the beginning of each 

titration with saturated solutions of quinhydrone freshly prepared at pH 7 and 8 and the calibration was 

reassessed at the end of the respective titration. To ensure equilibrium between the electrode and the 

redox centers of the protein, a mixture of redox mediators was used: indigo tetrasulfonate (𝐸°′ = −30 

mV), indigo trisulfonate (𝐸°′ = −70 mV), indigo disulfonate (𝐸°′ = −110 mV), riboflavin (𝐸°′ = −208 

mV), anthraquinone 2-sulfonate (𝐸°′ = −225 mV), safranin (𝐸°′ = −280 mV), benzyl viologen (𝐸°′ =

−345 mV), neutral red (𝐸°′ = −325 mV), and methyl viologen (𝐸°′ = −440 mV). For redox titrations 

performed at pH 7, the mediator 2-hydroxy 1,4-naphthoquinone (𝐸°′ = −152 mV) was added to the 

redox mediators mixture, while for redox titrations performed at pH 8 the mediators methylene blue 

(𝐸°′ = +11 mV) and gallocyanine (𝐸°′ = +21 mV) were added to the redox mediators mixture. Different 
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concentration ratios of protein (approximately 10 μM) to mediators (between 1 and 2 μM) were tested 

to check for possible interactions between the protein and redox mediators. To check for hysteresis and 

reproducibility, the redox titrations were repeated at least twice in the oxidative and reductive directions 

for each pH with sodium dithionite and potassium ferricyanide as reducing and oxidizing agents, 

respectively. Each titration consisted in the addition of an aliquot of 1 to 2 µL of a sodium dithionite (25 

mM or, when approaching the equivalence point, 12.5 mM) or potassium ferricyanide (17.4 mM or, 

when approaching the equivalence point, 8.7 mM). Between additions, the protein solutions were 

allowed to rest and the respective potential was then measured and a visible spectrum acquired 

between 300 and 800 nm. The reduced fraction of the cytochromes was determined by calculation of 

the area of the α peak with the absorbance data obtained at 552 nm and the isosbestic points of the 

target proteins. This analysis allows the subtraction of the optical contribution from the redox mediators. 

 

Reduction kinetic experiments with sodium dithionite 

Kinetic data were obtained by measuring the light absorption changes at 552 nm with a stopped-

flow instrument (SHU-61VX2 from TgK Scientific) placed inside the anaerobic chamber. The 

temperature of the kinetic experiments was kept at 289 ± 1 K using an external circulating bath. 

The reduction experiments were performed by mixing the target proteins with sodium dithionite. The 

target proteins were prepared in degassed 80 mM NaPi buffer (pH 7 and 8) with NaCl (final ionic 

strength of 250 mM). In order to guarantee pseudo-first order conditions (see below), this strong 

reducing agent was used in large excess (246). Solid dithionite was added to degassed 5 mM NaPi 

buffer pH 8 with NaCl (final ionic strength of 250 mM). The concentration of the reducing agent was 

determined in each experiment using 휀314 𝑛𝑚 of 8000 M−1 cm−1 (247). Partially reduced protein was 

prepared by adding small amounts of concentrated solution of sodium dithionite to achieve the desired 

degree of reduction, before the beginning of the kinetic experiment. The reference value for the 

absorbance of the fully oxidized state of the protein was obtained at 552 nm in the beginning of the 

experiment by mixing the oxidized protein with degassed buffer, while the reference value for the fully 

reduced state of the protein was obtained from the final absorbance taken at effectively infinite time. 

Although the models by Catarino and Turner (203) and its resulting deductions are valid for 

reversible reactions, for calculations purposes solely, one-directional reactions are necessary and 

usually a strong electron donor is used, as the case of sodium dithionite. Albeit its complex equilibrium 

chemistry, when SO2
• radical is the reducing agent (248) the midpoint redox potential of the couple 

SO2/SO2
• (−0.3 V) is the relevant value for calculations and it has no dependence on dithionite 

concentration or pH above 2 (249). For the three proteins, the reducing agent was found to be the one 

electron donor bisulfite radical (SO2
•) (248). The pH of the samples was measured after each kinetic 

experiment and was taken as the pH of the kinetic experiment.  

 



CHAPTER 4 – Thermodynamic and Kinetic Characterization 

 

62 

 

Data analysis 

Thermodynamic analysis 

The model used in the analysis was adapted from the thermodynamic model previously developed 

(see Thermodynamic analysis in Thermodynamic and Kinetic Characterization Supplementary Data) 

(200,244). For a protein with six hemes and one protonatable center, such as for the fragment CD, 64 

microstates are necessary to describe in detail all possible redox transitions (Figure 4.1). 

The microscopic thermodynamic parameters of this protein include six reduction potentials, one for 

each heme, the pKa of the ionizable center, fifteen redox interaction energies between the heme 

groups, and six redox-Bohr interaction energies between the hemes and the ionizable center (244). The 

thermodynamic model considers that the redox interactions between each pair of hemes are only due 

to Coulombic effects, and that no conformation modification occurs with reduction or oxidation of the 

protein.  

 

 

 

Figure 4.1 – Schematic representation of the microstates of fragment CD from GSU1996, a protein with six 
hemes and one acid-base center. The protein is represented as large circles, with black and white dots 

representing the hemes in the reduced and oxidized state, respectively. White and gray protein represents the 
deprotonated and protonated microstates for the acid-base center associated with the hemes. The redox stages 
are numbered according to the number of oxidized hemes and organized in columns that group populations with 
the same oxidation state. Macroscopic electron transfer steps between stages are shown in the direction of 
reduction, and macroscopic rate constants are represented by K1–6. 
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In electrostatic interactions that do not occur in a vacuum environment, shielding of the interactions 

take place. These are influenced by the medium composition and, consequently, by its polarization 

extent. Therefore, the application of a dielectric constant higher than the one used in vacuum medium 

prevents the listing of all the factors implicated (250). Additional shielding may arise in ionic solutions, 

as a result of the heterogeneous charge distribution. This alters the interactions distance dependent 

decay that seems to reflect a stronger shielding effect with distance than predicted from the dielectric 

constant of the medium. Under such conditions, the interaction (𝑉𝑖) amid two particles with unitary 

charge may be determined by: 

 

𝑉𝑖 = 𝑘
1

𝜀𝑟
exp (

−𝑟

𝑟𝐷
)                                                                                                                                  Equation 4.1 

 

In this model, homogeneous polarizability of the medium is considered and Debye-Hückel shielding 

is applied to account for the for the effect of counterions (250,251). In Equation 4.1, 𝑘 =
𝑞𝑒

4𝜋𝜀0
, where 

𝑞𝑒 is the electron charge and 휀0 is the vacuum electric permittivity. The Debye length, 𝑟𝐷, depends on 

the charge density, temperature and ionic strength. The distance between the charged centers is 

represented by 𝑟. Fitting of experimental data is achieved by adjustment of the parameters 𝑟𝐷 and 휀. 

The redox interaction energies for domain D were calculated using the Debye-Hückel model of 

shielded electrostatic interactions (Equation 4.1), that considers an effective dielectric constant of 8.6, 

a Debye length of 7.7 Å (219,250), and the iron-iron distances measured in the 3D-structure of fragment 

CD (pdb: 3OUE).  

The microscopic thermodynamic parameters of domain C that include four reduction potentials, one 

for each individual heme, the redox interactions between pairs of hemes, the pKa of the ionizable center, 

and the redox-Bohr interaction energies (197) were used to predict the thermodynamic properties of 

domain D and fragment CD. Since domain D does not present redox-Bohr effect in the pH range studied 

(see Results and Discussion) no redox-Bohr interactions were considered. 

The simultaneous fit of four independent redox titrations obtained at pH 7 and 8 for domain D and 

for fragment CD to the thermodynamic model, using the microscopic thermodynamic properties 

published for domain C and the redox interaction energies calculated for domain D, enabled the 

determination of three reduction potentials, one for each heme in domain D. The thermodynamic model 

was implemented in Microsoft Excel® and the Generalized Reduced Gradient resolution method of the 

add-in program Solver was used for the fitting. This model considers that each heme contributes equally 

to the change of absorbance at 552 nm.  

The standard errors associated with the microscopic reduction potentials determined for the hemes 

of domain D were estimated from the covariance matrix using an experimental uncertainty of 3% of the 

total optical signal of the UV-visible redox titrations. 

 

Kinetic analysis 

Kinetic data obtained for the reduction of domains C and D, and of fragment CD with sodium 

dithionite at different pH values were normalized in order to have oxidized fractions versus time. The 

timescale was corrected to account for the dead time of the apparatus. To reduce electrical noise, a 
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minimum of two data sets were averaged for each experimental condition. The experimental data 

obtained for the reduction of each protein with sodium dithionite at various pH values were fitted 

simultaneously using the kinetic model described in the literature (203,244) adapted for six redox 

centers. The application of this model requires fast intramolecular electron transfer and slow 

intermolecular electron exchange. These conditions, usually given by the short distance between the 

hemes, ensure that a thermodynamic reequilibration occurs within the protein between each sequential 

electron transfer step. Furthermore, the fast equilibrium within microstates belonging to the same stage 

of oxidation (within each column in Figure 4.1) and the use of large excess of reducing agent simplifies 

the kinetic analysis (203). In this situation each electron transfer step is characterized by a macroscopic 

rate constant (K1–6 in Figure 4.1 for fragment CD) that is parsed into the contribution of all the 

microscopic rate constants of the transition that participate in that step (𝑘𝑖
𝑗
, where i is the center that is 

under reduction, and j the other center(s) already reduced). 

Each contribution is weighted according to the thermodynamic equilibrium populations of the starting 

states, which are known from the thermodynamic properties of the protein (203). 

In this model, Marcus theory for electron transfer (252) is used to separate the contribution of the 

driving force of the reaction from the reference rate constant (𝑘𝑖
0) that is intrinsic to each heme (203): 

 

𝑘𝑖
𝑗

= 𝑘𝑖
0𝑒𝑥𝑝 [

𝑒𝑖𝐹

2𝑅𝑇
(1 +

𝑒𝐷𝐹

𝜆
−

𝑒𝑖𝐹

2𝜆
)]                                                                                               Equation 4.2 

 

In Equation 4.2, 𝑒𝑖 is the reduction potential of the transition between a particular pair of microstates 

and 𝑒𝐷 is the reduction potential of the electron donor. The reference rate constants obtained with this 

model are intrinsic to each heme and enable the definition of the role of each heme in the overall 

reduction process of the protein (203). 

The fitting of the experimental data was achieved using the Nelder-Mead algorithm with the kinetic 

model implemented in MATLAB® (253,254). Fittings using different initial values for the reference rate 

constants were performed to find the best solution. An experimental uncertainty of 5% of the total 

amplitude of the optical signal of the kinetic trace was used to determine the standard errors associated 

with each reference rate constant. 

 

RESULTS AND DISCUSSION 
 

Typically, MHCs contain several hemes that are closely-packed to allow efficient electron transfer 

within the proteins (135,255). In the dodecaheme protein GSU1996 from G. sulfurreducens the hemes 

are arranged in a novel “nanowire” architecture, where the hemes are at close distance to each other 

and have substantial surface exposure (195). Consequently, multiple centers may donate or receive 

electrons from the redox partners. Thus, the identification of the redox centers that contribute 

significantly to the intermolecular electron transfer with the redox partners is a priority to understand the 

functional mechanism of GSU1996. This is however only possible with the characterization of the 

thermodynamic and kinetic properties of the individual redox centers in the protein. 
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Thermodynamic characterization of domain D and fragment CD from G. 

sulfurreducens 

NMR can provide the spectroscopic distinction of the various hemes in a way that is highly sensitive 

to their redox state (212). Indeed, in conditions of slow intermolecular and fast intramolecular electron 

exchange rates on the NMR timescale, it is possible to follow NMR signals from a particular heme 

methyl through the oxidation stages of the protein, providing the necessary data to establish the 

oxidation order of the redox centers (213,219). This approach was previously used to characterize in 

detail the thermodynamic properties of domain C of GSU1996 (197). The application of this 

methodology depends on the complexity of the system that is given by the size of the molecule, number 

of hemes and if the convenient electron exchange conditions are met. In the case of domain C, the 

decrease of temperature and increase of ionic strength were essential to achieve the slow 

intermolecular electron exchange regime necessary to follow the NMR signals through the different 

oxidation stages (197). Unfortunately, for domain D the slow intermolecular exchange regime on the 

NMR time scale was not achieved in the same experimental conditions, even collecting data at a proton 

Larmor frequency of 800 MHz, precluding the determination of the detailed thermodynamic properties 

of this domain with this methodology. The complexity of the NMR spectra of the hexaheme domains of 

GSU1996 and of the GSU1996 itself prevents the discrimination of the NMR signals from each heme 

in each oxidation stage (244). 

The 1D 1H-NMR spectra of domains C, D and of fragment CD exhibit the typical features of low-spin 

c-type cytochromes with signals from the heme methyl groups shifted to the low-field region between 

10 and 40 ppm (Figure 4.2). The dispersion of these signals is highly dependent on the relative 

orientation between neighboring hemes and on the relative orientation of the axial ligands (233). 

Interestingly, the 1D 1H-NMR spectrum of fragment CD is similar to the sum of the spectra of the 

individual domains, suggesting that the arrangement of the hemes and the axial ligand geometries in 

fragment CD are conserved. 

For this reason, the thermodynamic model used to characterize the properties of fragment CD 

considers that the redox properties of the hemes and the heme interactions among pairs of hemes are 

conserved in fragment CD as in the individual domains C and D. In this model the redox properties of 

domain C previously reported were used (197), whereas the heme interaction energies of domain D 

were predicted from the heme iron-iron distances (Table 4.1). 

Redox titrations followed by UV-visible spectroscopy of domains C and D performed at pH 7 and 8 

show that both proteins do not present redox-Bohr effect within the pH range (Figure 4.3). Indeed, 

published data for domain C showed that the pKa of the redox-linked ionizable center is lower than 6 

(197). For these reasons, the microscopic thermodynamic model only considers one ionizable center 

that is associated with domain C (Figure 4.1). 
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The fitting of the redox titrations of domain D and of fragment CD to the thermodynamic model 

provides the reduction potential of the three hemes of domain D. Together with the published data for 

domain C and the calculated pairwise interactions between the hemes, the information is sufficient to 

achieve the detailed thermodynamic characterization of fragment CD (Table 4.2). Clearly, the model 

captures well the trend of the data and indicate that the redox behavior of the hemes in domains C and 

D are the same as in fragment CD (Figure 4.3). 

Table 4.1 – Heme redox interaction energies of domain D in fragment CD from GSU1996. These values were 

determined from the Debye-Hückel model of shielded electrostatic interactions (see Materials and Methods). 

  Heme pairs Distance (Å) Interaction energies (meV) 

Fragment CD 

ID-IIID 

ID-IVD 

IIID-IVD 

IC-ID 

IC-IIID 

IC-IVD 

IIIC-ID 

IIIC-IIID 

IIIC-IVD 

IVC-ID 

IVC-IIID 

IVC-IVD 

11.3 
18.0 
12.1 
30.7 
40.6 
48.3 
21.8 
30.4 
39.5 
14.7 
25.3 
32.3 

34 
9 
29 
1 
0 
0 
5 
1 
0 
17 
3 
1 

 

Figure 4.2 – NMR fingerprint of fragment CD and its domains. (A) 1D 1H-NMR spectra of domains C, D and of 
fragment CD from G. sulfurreducens at 289 K and pH 8. The NMR spectral region where heme methyl groups of 
low-spin c-type cytochromes appear are highlighted by a gray box. (B) Three-dimensional structures of domain C, 

domain D and fragment CD. The 3D structures of domains C and D were taken from the 3D structure of the 
fragment CD (pdb: 3OUE). The hemes are numbered by analogy to the structurally homologous hemes in 
tetraheme cytochromes c3. 
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The thermodynamic parameters of fragment CD from GSU1996 show that the reduction order of the 

hemes are IC, IVD, IVC, ID, IIIC and IIID (Figure 4.4). 

Interestingly, in fragment CD the heme III of both domains C and D is the last one to be reduced. In 

the characterization of the individual domain C, heme III was shown to be the last one to be reduced 

(197), as it was observed for domain D. This constitutes further evidences that the redox behavior of 

the individual domains is maintained in the hexaheme fragment. 

 

Table 4.2 – Microscopic thermodynamic parameters determined for fragment CD from GSU1996 in the fully 
reduced and protonated protein.  

Hemes 

Energies (meV) 

IC IIIC IVC ID IIID IVD 
Protonatable 

center 

IC −106 44 7 1 0 0 −4 

IIIC  −136 40 5 1 0 −25 

IVC   −125 17 3 1 −13 

ID    −155 (7) 34 9 - 

IIID     −178 (5) 29 - 

IVD      −113 (4) - 

Protonatable center       340 

Diagonal terms (in bold) represent the oxidation energies of the six hemes and the deprotonation energy for the 

protonatable center in the fully reduced and protonated protein. The off-diagonal elements represent the redox 

and redox-Bohr interaction energies between the seven centers (italic elements are the heme redox interaction 

energies of domain D in fragment CD presented in this table). The thermodynamic properties of domain D are 

shown in a gray box, which includes the oxidation energies of the three hemes (in bold), and the redox interaction 

energies between the three centers. Standard thermodynamic expressions relate the oxidation energies and 

deprotonation energy with reduction potentials and pKa, respectively. Standard errors for the three parameters 

extracted from fitting the model to the experimental data are indicated within brackets and were calculated from 

the diagonal element of the covariance matrix, considering an experimental uncertainty of 3%. 

 

 

Figure 4.3 – Redox titrations followed by visible spectroscopy of domain C, domain D and fragment CD at 
pH 7 and 8 (289 K). Redox titrations of domain C were previously performed (197), whereas redox titrations of 

domain D and of fragment CD were performed in this work. The solid lines represent the best fit of the experimental 
data with the thermodynamic model described in Materials and Method section and give rise to the thermodynamic 
parameters reported in Table 4.2. 
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Kinetic characterization of fragment CD 

The kinetic traces obtained for the reduction of fragment CD from GSU1996 with sodium dithionite 

do not show pH dependence in the pH 7–8 range (Figure 4.5). This is in agreement with the data 

obtained from the redox titrations monitored by UV-visible spectroscopy for fragment CD (Figure 4.3). 

Reductive kinetic traces were obtained with the protein poised at different levels of reduction. This 

way, the different kinetic experiments start from equilibrium between the different stages of oxidation in 

a condition that depends solely on the thermodynamic properties of the hemes (246). 

The kinetic model uses the thermodynamic parameters to discriminate the rate constants for the 

reduction of the individual hemes (203). 

 

Figure 4.4 – Reduced fraction of the individual hemes in fragment CD from GSU1996 calculated at pH 7 
with the thermodynamic parameters presented in Table 4.2. 

Figure 4.5 – Kinetics of reduction of fragment CD from GSU1996 by sodium dithionite at different pH values. 

Gray lines are the kinetic data obtained for the fully oxidized state of the protein, for 70% and 34% oxidized fraction 
at pH 7.01, and for 65% and 50% oxidized fraction at pH 7.79. Black lines are the fit of the kinetic model to the 
data. The concentration of sodium dithionite used in the kinetic experiments was 115 μM (after mixing), while the 
concentration of fragment CD was 0.91 and 0.90 μM (after mixing) at pH 7.01 and 7.79, respectively. 
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Table 4.3 – Reference rate constants for each heme in the reduction process with sodium dithionite (𝑘𝑖
0) 

for fragment CD from GSU1996 at 289 K. Standard errors were calculated from the diagonal element of the 

covariance matrix considering an experimental uncertainty of 5% of the total amplitude of the optical signal in the 
kinetic traces are given in parentheses. 

  𝒌𝒊 
𝟎(× 106s−1M−1) 

Domain C 

Heme I 

Heme III 

Heme IV 

0.0 (5.7) 

0.0 (2.4) 

0.0 (5.2) 

Domain D 

Heme I 

Heme III 

Heme IV 

74.0 (2.2) 

274.3 (1.2) 

0.0 (2.1) 

 

 

Table 4.3 presents the reference rate constants for each heme obtained by the best fit of the kinetic 

model to the experimental data acquired at different pH values for fragment CD. These reference rate 

constants are intrinsic to each heme and allow defining the contribution of each heme in the reductive 

process of the protein. 

Only hemes from domain D, in particular hemes I and III, contribute to the entrance of electrons in 

the fragment CD from GSU1996 (Table 4.4). 

Interestingly, heme III, the heme that contributes more to the reduction of fragment CD (Table 4.4) 

is the most exposed heme of domain D (195) and it is the heme with the lowest reduction potential in 

fragment CD. Clearly, the exposure of the hemes is not the most important factor contributing for the 

reductive kinetic process of the protein since heme I from domain C is the most exposed heme at 

fragment CD (195), and does not contribute to the reduction process of the hexaheme protein. 

The entrance of electrons through heme III from domain D clearly shows how GSU1996 works as a 

nanowire protein. Heme III from domain D, at one extreme of GSU1996, can receive electrons from the 

physiological electron donor and transfer them to the other hemes within the protein. Since, at least in 

fragment CD, this heme has the lowest reduction potential, it is spontaneously re-oxidized by the other 

hemes in the fragment and remains free to receive electrons from redox partners, allowing the protein 

to function as a nanowire device (Figure 4.6). 

 

CONCLUSION 
 

Nanowire cytochromes are a new class of proteins found in the genome of several Geobacter 

species proposed to be responsible for long-range electron transfer. 

 

Table 4.4 – Fraction of electrons that enter fragment CD from GSU1996 by each heme, calculated at pH 7 
with the thermodynamic parameters from Table 4.2 and the reference rate constants presented in Table 
4.3. 

Stages 
Hemes 

IC IIIC IVC ID IIID IVD 

Fraction of electrons 0.00 0.00 0.00 1.36 4.64 0.00 
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The elucidation of the detailed thermodynamic and kinetic properties of the C-terminal half of the 

protein GSU1996 from G. sulfurreducens opens the possibility to unravel the electron transfer 

processes performed by this new class of proteins. 

Indeed, the entrance of electrons through the heme that is at one edge ensures that the electrons 

may flow within the protein to the other end, allowing it to work as a nanowire. Further studies will enable 

the characterization of the full length protein and the elucidation of the electron transfer processes 

during its oxidation. This information will also be of significant importance to increase our knowledge on 

the extracellular electron transfer processes performed by G. sulfurreducens, a key asset to improve its 

biotechnological applications, such as microbial fuel cells. 

 

 

  

Figure 4.6 – Schematic representation of the most important microstates for the reduction of fragment CD 
from GSU1996. Black and white dots representing the hemes in the reduced and oxidized state, respectively. 
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THERMODYNAMIC AND KINETIC CHARACTERIZATION SUPPLEMENTARY DATA 
 

Thermodynamic analysis 

The reduced fractions of domain D and fragment CD were determined with the α peak (552 nm) 

according to the methodology previously described (240,246). Briefly, the reduced fractions were 

determined by integration of the area from the α peak located between the respective isosbestic points. 

The optical contribution of the redox mediators was subtracted by the measurement of the α peak 

relative to the flat line that connects the isosbestic points. Experimental potential data were corrected 

in agreement with the electrode calibration performed at 289 K and the potential value for the Ag/AgCl 

electrode relative to the standard hydrogen electrode (214 mV).  

The determination of the reduced fractions of domain D is explained next as a working model. As 

earlier described, the different microstates in a triheme cytochrome may be grouped in four macroscopic 

oxidation stages (S0-3), connected by three one-electron redox steps that contain the microstates with 

the same number of oxidized heme groups. Each microstate pair (protonated/deprotonated) is 

connected by one-electron redox step that may be described by a total of 24 Nernst equations identical 

to: 

 

𝐸 = 𝐸° +
𝑅𝑇

𝐹
𝑙𝑛

𝑜𝑥

𝑟𝑒𝑑
                                                                                                                              Equation 4.S1 

 

In each case, three Nernst equations connect the microstates in the oxidation stage 1 and the 

microstates in the oxidation stage 0; six equations connect the microstates in the oxidation stage 2 and 

the microstates in the oxidation stage 1 and, finally, three Nernst equations connect the microstates in 

the oxidation stage 3 and the oxidation stage 2. For instance, departing from the completely reduced 

microstate and following the sequential oxidation of the heme groups I, III and IV (represented by 1, 3 

and 4, respectively) along the four oxidation stages:  

 

𝑃0

1𝑒−

⇌
𝐸1

°
𝑃1

1𝑒−

⇌
𝐸3

°
𝑃13

1𝑒−

⇌
𝐸4

°
𝑃134 

 

the three relevant Nernst equations, expressed as a function of 𝑃0, are: 

 

𝐸 = 𝐸1
° +

𝑅𝑇

𝐹
𝑙𝑛

𝑃1

𝑃0
⇔ 𝑃1 = 𝑃0𝑒(𝐸−𝐸1

° )
𝐹

𝑅𝑇                                                                                             Equation 4.S2 

𝐸 = 𝐸3
° +

𝑅𝑇

𝐹
𝑙𝑛

𝑃13

𝑃1
⇔ 𝑃13 = 𝑃0𝑒(2𝐸−𝐸1

° −𝐸3
° )

𝐹

𝑅𝑇                                                                                   Equation 4.S3 

𝐸 = 𝐸4
° +

𝑅𝑇

𝐹
𝑙𝑛

𝑃134

𝑃13
⇔ 𝑃134 = 𝑃0𝑒(3𝐸−𝐸1

° −𝐸3
° −𝐸4

° )
𝐹

𝑅𝑇                                                                           Equation 4.S4 

 

where 𝐸, 𝐸1
𝑜, 𝐸3

𝑜 and 𝐸4
𝑜 represent, respectively, the experimental measured potential and the standard 

potential between each oxidation stage; 𝐹 represents the Faraday constant; 𝑇, the temperature and 𝑅, 

the ideal gas constant. 
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The reduced fraction is determined by the relation between the reduced species and the total of 

reduced and oxidized species. Therefore, accounting for the electrons present in the several 

microstates, the reduced fraction may be written as following: 

  

𝑓𝑟𝑒𝑑𝑢𝑐𝑒𝑑 =
3𝑃0 + 2𝑃1 + 𝑃13 + 0𝑃134

3𝑃0 + 2𝑃1 + 𝑃13 + 0𝑃134 + 0𝑃0 + 𝑃1 + 2𝑃13 + 3𝑃134
 

⇔ 

𝑓𝑟𝑒𝑑𝑢𝑐𝑒𝑑 =
3𝑃0 + 2𝑃1 + 𝑃13

3(𝑃0 + 𝑃1 + 𝑃13 + 𝑃134)
 

 

This can be written as a function of the different potentials, by replacement of 𝑃1, 𝑃13 e 𝑃134 by the 

three Nernst equations (Equation 4.S2; Equation 4.S3 and Equation 4.S4) above described: 

 

𝑓𝑟𝑒𝑑𝑢𝑐𝑒𝑑 =
3+2𝑒

[(𝐸−𝐸1
° )

𝐹
𝑅𝑇]

+𝑒
[(2𝐸−𝐸1

° −𝐸3
° )

𝐹
𝑅𝑇]

3(1+𝑒
[(𝐸−𝐸1

° )
𝐹

𝑅𝑇
]
+𝑒

[(2𝐸−𝐸1
° −𝐸3

° )
𝐹

𝑅𝑇
]
+𝑒

[(3𝐸−𝐸1
° −𝐸3

° −𝐸4
° )

𝐹
𝑅𝑇

]
)

                                                           Equation 4.S5 

 

The standard reduction potentials (𝐸°) were calculated by fitting the experimental data to Equation 

4.S5, with the Solver tool of Microsoft Excel (Microsoft. Microsoft Excel. Redmond, Washington: 

Microsoft, 2010. Computer Software) and considering 𝐹 =  96500 𝐶. 𝑚𝑜𝑙−1, 𝑅 =  8.314 𝐽. 𝐾−1. 𝑚𝑜𝑙−1 

and 𝑇 =  289 𝐾. 

The respective energy values can be related with the reduction potentials by: 

∆𝐺 = −𝑛𝐹∆𝐸                                                                                                                                       Equation 4.S6 

 
Relative to the fully reduced and protonated reference microstate, each microstate energy value 

arises as a sum of the suitable energy terms depicted from the four redox centers, the six two-center 

interactions, the solution potential in a particular oxidation stage and the proton chemical potential (in 

the case of the deprotonated form): 

𝐺𝑖 = 𝐺𝑖𝐻 + 𝑔𝐻 + ∑𝑔𝑖𝐻 − 2.3𝑅𝑇𝑝𝐻                                                                                                      Equation 4.S7 

𝐺𝑖𝐻 = ∑𝑔𝑖 + ∑𝑔𝑖𝑗 − 𝑆𝐹𝐸                                                                                                                     Equation 4.S8 

 

In Equation 4.S7 and Equation 4.S8, 𝑖 stands for the particular microstate that can be in the 

deprotonated or protonated (𝐻) forms; 𝑔𝑖 represents the heme oxidation energy; 𝑔𝑖𝑗 the interaction 

energy between pairs of hemes; 𝑔𝐻 the deprotonation energy of the fully reduced protein and 𝑔𝑖𝐻 the 

interaction energy between the hemes and the redox-Bohr center. 

Finally, the 𝑝𝐾𝑎 values of the fully reduced and oxidized states of the triheme domain are determined 

by: 
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𝑝𝐾𝑎 (𝑓𝑢𝑙𝑙𝑦 𝑟𝑒𝑑𝑢𝑐𝑒𝑑) =
𝑔𝐻F

2.3𝑅𝑇
                                                                                                             Equation 4.S9 

𝑝𝐾𝑎 (𝑜𝑥𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑠𝑡𝑎𝑔𝑒 1 − 3) =
(𝑔𝐻+∑𝑖=1

3 𝑔𝑖𝐻)𝐹

2.3𝑅𝑇
                                                                                 Equation 4.S10 
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CHAPTER 5  
INTERACTION STUDIES BETWEEN GSU1996 AND THE PPC’S 

FAMILY 
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ABSTRACT 
 

Nanowire cytochromes that contain at least 12 heme groups, have been proposed to play a role in 

electron storage in conditions of environmental lack of electron acceptors. Up to date, no redox partners 

have been identified in G. sulfurreducens and concomitantly the extracellular electron transfer and 

electron storage mechanisms remain unclear. Complexes of redox proteins show weak affinity and 

diminished lifetime, which makes them difficult to identify. Nuclear magnetic resonance spectroscopy 

techniques have already proved to be a powerful tool to probe for such partners, as it leads to the 

identification not only of interacting partners and determination of its associated parameters, but also 

of specific docking sites and structural modifications upon formation of these transient complexes. In 

the present work, potential redox partners were probed by interaction studies performed by NMR 

techniques. NMR chemical shift perturbation measurements of the heme methyl signals of GSU1996 

and PpcA showed that the proteins form a transient redox complex in an interface that involves heme 

groups from two different domains located at the C-terminal of GSU1996. Overall, this study provides 

for the first time a clear evidence for an interaction between periplasmic cytochromes that might be 

relevant for the extracellular electron transfer and electron storage pathways in G. sulfurreducens. 
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INTRODUCTION 
 

G. sulfurreducens has been used as a reference model in the study of the physiological features of 

Geobacter species, as it was the first species with a complete genome sequenced and with a genetic 

manipulation system developed (106,134) and it was shown that the ability of performing EET is related 

with the extremely high abundance of c-type cytochromes (105,134,182). It was proposed that the 

electrons released by the oxidation of organic molecules are transferred into the periplasmic space via 

two different constitutive inner membrane pathways formed by the transmembrane cytochromes CbcL 

(GSU0274) and ImcH (GSU3259) (171,172), and that a network of periplasmic c-type cytochromes 

establish the interface with the outer membrane electron transfer components that ultimately reduce 

the extracellular acceptors (135).  

The periplasmic dodecaheme cytochrome GSU1996 and its homologues GSU0592 and GSU2210 

were proposed to act as capacitors for electron storage in the absence of external acceptors (117). 

Both GSU0592 and GSU2210 were found to be more expressed under growth conditions with Fe(III) 

oxide, while GSU1996 was found to be more abundant in the presence of Fe(III) citrate (179). 

The electron transfer mechanism processes performed by the C-terminal half of the cytochrome 

GSU1996 were recently investigated (256) and the data obtained suggested that GSU1996 may 

function as a nanowire device. However, the redox partners of this protein remain to be identified. 

This is one of the major interrogations that needs to be addressed, in order to understand how G. 

sulfurreducens is able to conduit EET and perform electron storage. In order to answer these questions, 

in this work NMR chemical shift perturbation measurements were used to explore the interaction 

between GSU1996 and the triheme cytochromes that belong to the Ppc’s family. PpcA is one of the 

most abundant components in the periplasmic space of G. sulfurreducens and its homologues PpcB, 

PpcC, PpcD and PpcE may also be potential partners of the dodecaheme GSU1996, although they 

possibly play distinctive roles in G. sulfurreducens (190,257,258). PpcA (GSU0612), PpcB (GSU0364), 

PpcC (GSU0365) and PpcD (GSU1024) were found both in Fe(III) citrate and Fe(III) oxide cultures. 

While PpcB was found to be more abundant under soluble electron acceptor growth conditions, PpcD 

showed higher abundance in the presence of insoluble acceptor conditions (179) and PpcA had similar 

abundance in both conditions. PpcE (GSU1760) was only detected in soluble acceptor growth 

conditions (179). The thermodynamic properties of PpcA and PpcD revealed a redox-Bohr effect that 

may be indicative of its participation in e-/H+ energy transduction mechanisms that support cellular 

growth (259).  

Recent proteomic approaches based on affinity chromatography coupled with mass spectrometry 

techniques have been successfully used to identify novel interacting partners of human and plant c-

type cytochromes (260,261) and can be explored in the future to target for other putative GSU1996 

redox partners. The results obtained in the present work showed that GSU1996 and PpcA interact in a 

transient manner with the formation of a functional redox complex, which leads to the proposal of a 

unique electron transfer pathway during EET processes in G. sulfurreducens. This information adds an 

essential piece of information to the complex enigma encompassing G. sulfurreducens EET 
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mechanisms, and provides foundations towards the development of efficient bioelectrochemical 

applications in fields such as the production of bioenergy and bioremediation. 

 

MATERIALS AND METHODS 
 

Bacterial strains and plasmids 

G. sulfurreducens PCA and S. oneidensis MR-1 cells were used to clone the gsu1996 gene and the 

signal peptide derived from the small tetraheme cytochrome (STC, SO_2727), respectively. In order to 

obtain GSU1996 and its fragment AB, heterologous expression was tested aerobically under different 

conditions in several E. coli strains – BL21(DE3) (262), JM109 (263), JCB7123 (264) – and in S. 

oneidensis MR-1 (265). All E. coli strains harbored the pEC86 plasmid that contains the cytochrome c 

maturation System I, necessary to the proper assembly of the heme groups in c-type cytochromes 

produced under aerobic conditions (161). 

G. sulfurreducens cells were cultured in NBAF liquid media supplemented with 0.1% (wt/vol) yeast 

extract and 1 mM cysteine with a final pH of 6.7 (106). S. oneidensis cells were cultured in Luria-Bertani 

liquid medium (266), with both species grown at 30°C. Genomic DNA from G. sulfurreducens and S. 

oneidensis was extracted with NZY Tissue gDNA Isolation kit (NZYTech, Portugal). The gsu1996 gene 

with its native signal peptide was cloned into pBAD202/D-TOPO® vector (Invitrogen, USA) with the 

primers listed in Table 5.1 according to Shi et al. (267) (plasmid pBAD_gsu1996). In another construct, 

the native signal peptide of gsu1996 was replaced by the sequence of the signal peptide derived from 

the STC from S. oneidensis to produce a chimeric gene, following the procedure described by Costa et 

al. (268). This chimeric gene (named stcsp_gsu1996) was also cloned into pBAD202/D-TOPO® vector 

(Invitrogen, USA) (plasmid pBAD_stc-gsu1996). 

The expression plasmid of fragment AB from GSU1996 was constructed through modification of the 

plasmid pBAD_stc-gsu1996 with the NZYMutagenesis kit (NZYTech, Portugal) where a stop codon was 

inserted between domains B and C to avoid expression of fragment CD (Table 5.1). All the constructs 

were confirmed by GATC Biotech. The correct constructs were later transformed in E. coli and S. 

oneidensis for the production of the proteins. 

 

Protein expression and purification  

Positive transformants of S. oneidensis and E. coli harboring pBAD_gsu1996 or pBAD_stcgsu1996 

were used for expressions tests, where different media, induction times and inducer concentrations 

were tested.  

BugBuster™ Protein Extraction Reagent (Novagen, USA) was used to check the best 

overexpression conditions. Since in the case of S. oneidensis it was not possible to accomplish 

purification of GSU1996 (see Results – Expression and purification of cytochrome GSU1996 and its 

fragment AB), the E. coli strain selected for expression was BL21(DE3).  

Briefly, the transformants of E. coli BL21(DE3) harboring both pEC86 and pBAD_stc-gsu1996 were 

grown in 2 L Erlenmeyer flasks containing 1 L of Terrific Broth medium supplemented with 34 μg/mL 
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Table 5.1 – Oligonucleotides used in the construction of plasmids pBAD_gsu1996, pBAD_stc-gsu1996 and 
pBAD_stc-fragment_AB. In the forward primers gsu1996_FW and stcsp_FW a stop codon (in italic) and the 
ribosome binding site (in bold) were included to avoid fusion with HP-thioredoxin present in the pBAD202/D-TOPO 
vector (267). In order to construct the expression plasmid for fragment AB, pBAD_stc-gsu1996 was modified and 
primers fragment_AB_FW and fragment_AB _RV insert a stop codon that prevents expression of fragment CD (in 
italic). 

Name Sequence 5' to 3' 

pBAD_gsu1996 

gsu1996_FW CACCTAAGAAGGAGATATACATCCCATGAA 

gsu1996_RV TTACATGTTGTGGCACTTCACACAGTCATC 

pBAD_stc-gsu1996 

stcsp_FW CACCTAAGAAGGAGATATACATCCCGTGAGCAAAAAACTATTAAG 

stc_gsu1996_RV AACATTTTTCGTCTCCTTGGCAAATGCGGTTGGC 

stc_gsu1996_FW GCCAACCGCATTTGCCAAGGAGACGAAAAATGTT 

gsu1996_RV TTACATGTTGTGGCACTTCACACAGTCATC 

pBAD_stc-fragment_AB 

fragment_AB_FW CACCGTTTTCGGCGGGGTCATTTAGCCCTTGTGGCACTTGCCGCA 

fragment_AB_RV TGCGGCAAGTGCCACAAGGGCTAAATGACCCCGCCGAAAACGGTG 

 

chloramphenicol (NZYTech, Portugal) and 50 μg/mL kanamycin (NZYTech, Portugal) to mid-

exponential phase at 30°C with a shaking speed of 200 rpm. Protein expression was then induced with 

2 mM L(+)-arabinose (Acros Organics). After overnight incubation under the same conditions, the cells 

were harvested by centrifugation at 8000×g for 10 min at 4°C. 

The cell pellet was suspended in 20 mM NaPi buffer pH 5.9 with protease inhibitors (1 mM of each 

phenylmethylsulfonyl fluoride (Sigma-Aldrich) and benzamidine-HCl (Sigma-Aldrich)) and DNase I (1 

mg/mL) (Roche). 

Cell disruption was attained by three passages through a French Press (Thermo ScientificTM IEC) 

at a pressure of 1400 psi (1 psi=6.9 kPa). Cell debris were removed by centrifugation at 10000×g for 

20 min at 4°C, and the supernatant was ultracentrifuged at 150000×g for 1 h and 30 min at 4°C in an 

Optima LE-80K Beckman Coulter ultracentrifuge. The supernatant with the soluble protein was dialyzed 

in 20 mM NaPi buffer pH 5.9, and the resulting sample was loaded onto cation-exchange columns 

(HiTrap SP HP, GE Healthcare Life Sciences) pre-equilibrated with the same buffer. The fractions were 

eluted with a linear gradient of 0–500 mM NaCl. The fractions with GSU1996 were pooled, concentrated 

and the buffer was exchanged to 20 mM NaPi buffer pH 7.8 with 100 mM NaCl added. This sample 

was then loaded onto a HiLoad™ 16/600 Superdex™ 75 prep grade column (GE Healthcare Life 

Sciences) pre-equilibrated with the latter buffer. Fragment AB best overexpression conditions were 

determined in the same manner as for cytochrome GSU1996. Accordingly, fragment AB was expressed 

in E. coli JCB7123 harboring both pEC86 and pBAD_stc-fragment_AB, with the same expression 

protocol described above for GSU1996. In this case, protein expression was achieved through induction 

with 1 mM L(+)-Arabinose (Acros Organics). Purification of fragment AB was performed as described 

by Londer et al. (196). Fragment CD and PpcA were expressed and purified as previously described 

(196,269). PpcB-E expression and purification was performed as described in earlier work 

(232,258,269) with the minor changes explained next. PpcB-E were expressed in E. coli BL21(DE3) 
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harboring plasmid pEC86 (161) and 100 µg/mL ampicillin was used instead of carbenicillin in the growth 

media. Protein expression was induced in all cases by addition of 10 µM isopropyl β-D-1-

thiogalactopyranoside and cells were disrupted by three passages in a French Press (Thermo 

ScientificTM IEC) at a pressure of 1400 psi (1 psi=6.9 kPa). 

All the chromatographic steps were performed in an ÄKTAprime™ plus FPLC system (GE, 

Amersham Biosciences). The presence and purity of the proteins were confirmed by 12% SDS-PAGE 

with both heme (245) and Coomassie blue staining. A single band on the SDS-PAGE confirmed the 

purity of the proteins. 

1D 1H-NMR was used to check for the correct folding of the proteins. All protein concentrations were 

determined by UV-visible spectroscopy with the specific absorption coefficient of the α-band at 552 nm 

determined for the reduced cytochrome PpcA (𝛥휀552𝑛𝑚 = 32.5 mM−1 cm−1 per heme) (152). The 

cytochrome samples were completely reduced by the addition of a diluted solution of sodium dithionite 

(Sigma). 

 

NMR experiments 

Samples preparation 

The buffers of purified proteins GSU1996, fragments AB and CD, as well as of PpcA-E were 

exchanged through ultrafiltration procedures with Amicon Ultra Centrifugal Filter Units (Millipore) for 45 

mM NaPi buffer pH 7.0 prepared in 99.9% 2H2O (Cambridge Isotope Laboratories) with NaCl added to 

a final ionic strength of 100 mM and with 0.04% azide (wt/vol) (Sigma). 

 

NMR titrations 

All the NMR experiments were performed at 298 K on a Bruker Avance II 500 MHz NMR 

spectrometer equipped with a BBI-XYZ probe. Titrations were performed between proteins in the 

oxidized state as follows: 200 μM of GSU1996, fragment AB or fragment CD were titrated in 3 mm NMR 

tubes (Wilmad) with increasing amounts of Ppc’s (stock solution of 2 mM) with ratios of Ppc’s/protein 

ranging from 0 to 10. 1D 1H-NMR spectra were recorded for each titration step. In the case of fragment 

AB and fragment CD, the experiments were only attained with PpcA for the 1:10 ratio. The pH of the 

samples was confirmed before and after each titration. 

 

Data analysis 

The effect of the addition of PpcA-E to GSU1996 cytochrome heme methyl proton chemical shift 

was analyzed by comparison of the NMR spectra obtained in the absence and in the presence of the 

Ppc’s with the TopSpin™ 3.2 NMR software from Bruker Biospin. All the chemical shifts are reported in 

parts per million (ppm) and the 1H chemical shifts were calibrated with the water signal as internal 

reference. Only chemical shift perturbations equal to or larger than 0.03 ppm were considered 

significant (270). The chemical shift variation of the heme methyl signals of GSU1996 upon addition of 

Ppc´s was used to determine the dissociation constant between the cytochromes with a two-parameter 
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nonlinear least-square fit of the data that considers a one-site binding model and corrects for dilution 

effects (Equation 5.1) (199,271). 

∆𝛿𝑏𝑖𝑛𝑑 =
1

2
∆𝛿𝑚𝑎𝑥(𝐴 − √𝐴2 − 4𝑅)                                                                                                        Equation 5.1 

 

In Equation 5.1, 𝛥𝛿𝑏𝑖𝑛𝑑 is the chemical shift change relative to the GSU1996 free protein when 

titrating with Ppc’s, 𝛥𝛿𝑚𝑎𝑥 is the chemical shift change as 𝑅 =
[𝑃𝑝𝑐′𝑠]

[𝐺𝑆𝑈1996]
→ ∞ and A is described in 

Equation 5.2, with Kd as the dissociation constant. 

 

𝐴 = 1 + 𝑅 +
𝐾𝑑([𝐺𝑆𝑈1996]𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑅+[𝑃𝑝𝑐′𝑠]𝑠𝑡𝑜𝑐𝑘)

[𝐺𝑆𝑈1996]𝑖𝑛𝑖𝑡𝑖𝑎𝑙[𝑃𝑝𝑐′𝑠]𝑠𝑡𝑜𝑐𝑘
                                                                               Equation 5.2                                                                                       

 

Data regarding the methyl signals of GSU1996 that showed identical behavior were fitted 

simultaneously to define the dissociation constant with the Microsoft® Office Excel add-in Solver 

(Generalized Reduced Gradient Nonlinear Algorithm (272)). Experimental uncertainty was estimated 

from the covariance matrix with an experimental uncertainty given by the NMR spectral resolution. 

 

Binding reversibility 

The binding reversibility between GSU1996 and the Ppc’s was evaluated after NMR titrations as 

described: each final GSU1996:Ppc’s mixture was loaded into a HiLoad™ 16/600 Superdex™ 75 prep 

grade column (GE Healthcare Life Sciences) connected to an ÄKTAprime™ plus FPLC system (GE, 

Amersham Biosciences) and the efficiency of the separation was assessed both by the 

chromatographic data and 12% SDS-PAGE with Coomassie blue staining.  

1D 1H-NMR spectra were further acquired in the same conditions of the titrations to check for the 

integrity of the pure proteins after separation. 

 

RESULTS 
 

Expression and purification of cytochrome GSU1996 and its fragment AB 

The existence of the cell machinery necessary for the production of c-type cytochromes in S. 

oneidensis and E. coli and the ease handling of cultures, in particular their capability to grow under 

aerobic conditions, turn these organisms in the best candidates to perform heterologous expression, 

when compared with G. sulfurreducens. Albeit some degree of expression occurred in S. oneidensis, 

the profusion of other c-type cytochromes (273) prevented the proper purification of GSU1996. The 

insertion of the small tetraheme cytochrome signal peptide from S. oneidensis prior to the gsu1996 

gene was expected to increase the expression yield of GSU1996, as previously observed for other 

proteins (274). In fact, the purification of GSU1996 yielded approximately 1 mg of GSU1996 per liter of 

E. coli culture, which is two times higher compared with that obtained with previous expressions 

systems (194). 
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In the case of fragment AB, E. coli JCB7123 harboring pEC86 and pBAD_stc-fragment_AB plasmids 

was the most effective strain. A final yield of approximately 1 mg of protein per liter of culture was 

obtained, which corresponds to nearly four times the one earlier reported (196). 1D 1H-NMR spectra 

confirmed the proper assembly of GSU1996, fragment AB, fragment CD and Ppc’s in the periplasmic 

space of E. coli (221) (Figure 5.1 and Figure 5.S1). 

 

Chemical shift perturbation experiments 

NMR spectroscopy is exquisitely sensitive to changes in the nuclei chemical environment. The 

structures of the cytochromes GSU1996 and Ppc’s showed that the hemes are considerably exposed 

to the solvent (191,195) and therefore, in the case GSU1996 and the Ppc’s establish an electron 

Figure 5.1 – 1D 1H-NMR spectra of GSU1996, fragment AB and fragment CD at pH 7 and 298 K. 
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transfer complex it is expected that the chemical shift and/or broadness of the NMR heme methyl proton 

signals will be affected.  

In the present study, the proton signals of cytochrome GSU1996 that were clearly visible in the 

paramagnetic region of the NMR spectra (from 40 to 25 ppm, Figure 5.1) and those of the Ppc’s (from 

Figure 5.2 – Expansions of 1D 1H-NMR spectra showing the most affected heme methyl signals of GSU1996 
(A) and PpcA (B). 
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27 to 9 ppm, Figure 5.S1) were followed upon addition of increasing amounts of Ppc’s (see Figure 5.2 

for an example).  

Unfortunately, in the case of the interaction studies between GSU1996 and PpcB further elucidation 

of a putative interaction between these proteins was prevented, as it was detected that the nanowire 

underwent some degree of protein degradation in the time course between the sample preparation and 

the NMR acquisition. This can be observable in the unusual multiple signals observed in the NMR 

spectra below 30 ppm (Figure 5.3). 

The data obtained showed changes both in the chemical shift and broadness of particular heme 

methyl signals from GSU1996 upon the presence of PpcA, PpcC, PpcD and PpcE, which may indicate 

an interaction between the proteins. The dissociation constant determined for GSU1996 and PpcC 

yielded 8.91 (0.10) mM, 2.23 (0.10) mM with PpcD and 5.98×104 (0.10) mM for PpcE, which is not in 

agreement with the existence of specific interactions. In the case of the dissociation constant 

determined for GSU1996 and PpcA, a value of 1.17 (0.10) mM was obtained, which is consistent with 

previously values reported for transient interactions between electron transfer complexes 

(217,275,276). The most affected signals in GSU1996 correspond to heme methyl signals at 34.91 and 

30.72 ppm (Figure 5.2 A) and the progressive shift of these signals with the increasing addition of PpcA 

indicates that the free and bound forms of GSU1996 are in fast regime on the NMR time scale. Likewise, 

PpcA heme IV signals, in particular those of the solvent exposed heme methyls 21CH3 and 71CH3, are 

the most affected by the presence of GSU1996 (Figure 5.2 B). The dependence of the chemical shift 

perturbation as a function of [PpcA]/[GSU1996] ratio returned hyperbolic binding curves (Figure 5.4).   

Figure 5.3 – Heme methyl region expansions of 1D 1H-NMR spectra of GSU1996 properly folded (below) 
and GSU1996 that experienced possible degradation (above). The shadowed box highlights one of the most 
affected regions in GSU1996. 
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Furthermore, chromatographic and SDS-PAGE data and 1D 1H-NMR spectra acquired for the pure 

proteins after separation confirm that the interactions between GSU1996 and the PpcA is completely 

reversible (Figure 5.5). 

 

Structural map of the interaction site between cytochromes GSU1996 and 

PpcA 

Comparison of the NMR spectra obtained for GSU1996 fragments AB and CD with that of the whole 

protein (Figure 5.1) suggests that the C-terminal of the molecule is involved in the interaction with PpcA.  

Figure 5.4 – Binding curves of GSU1996 from G. sulfurreducens with PpcA. The chemical shift perturbation 
of the heme methyl signals at 34.91 and 30.72 ppm (see Figure 5.2) are plotted as a function of the PpcA:GSU1996 
molar ratio. The solid lines represent the best global fit to the 1:1 model. 

Figure 5.5 – Gel filtration of the mixture GSU1996:PpcA at the end of the NMR titration experiments. 

GSU1996, with the larger molecular weight, is the first to be eluted and it is readily followed by PpcA, the smaller 
cytochrome, which indicates the reversible nature of the binding between both proteins.   
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This was further confirmed by chemical shift perturbation studies between PpcA and fragments AB 

and CD carried out in the same experimental conditions as for GSU1996 (Figure 5.6). 

The data gathered showed that only signals from fragment CD change upon interaction with PpcA 

(Figure 5.6). The most affected signals of GSU1996 at 34.91 and 30.72 ppm were assigned to heme 

IV of domain C and heme I of domain D, respectively (277). 

 

 

 

Figure 5.6 – Expansion of the low-field region of 1D 1H-NMR spectra obtained for GSU1996 and its two 
fragments in the absence (dashed lines) and in the presence (solid lines) of PpcA (1:10). The most affected 

signals from domain C and D are highlighted in the gray boxes. Crystal structures were produced with UCSF 
Chimera 1.6.3 software (320) with data accessible from PDB’s 3OV0 (GSU1996), 3OUQ (fragment AB) and 3OUE 
(fragment CD) (321). 
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DISCUSSION 
 

Until the disclosure of the mechanistic biomolecular information surrounding the EET processes it 

will not be possible to improve and implement biotechnological applications sustainable at an industrial 

scale. It is then crucial to understand the EET mechanisms performed by Geobacter, including the 

identification of redox partners and elucidation of their mode of interaction. In respiratory electron 

transfer pathways, the interactions between redox partners occur in a transient manner, to maintain 

high-turnover rates and provide the basis to withstand a continuous electron flow (214,215). In G. 

sulfurreducens, MHCs have a key role in extracellular respiration and are responsible for electron 

transfer processes across the cell envelope and electron storage (6,117,118,176,182). A new family of 

cytochromes was proposed to contribute to the enhancement of the cellular electron storage capacity 

in G. sulfurreducens (117), where GSU1996 is the only cytochrome with a known three-dimensional 

crystal structure (195).  

The organization of the hemes along the polypeptide chain in a nanowire like arrangement and the 

recent thermodynamic and kinetic characterization of fragment CD indicates that GSU1996 is able to 

work as an electron capacitor (195,256). It was shown that heme III from domain D at the edge of the 

C-terminal of the protein is thermodynamic and kinetically competent to receive electrons from 

physiological partners. 

However, the GSU1996 redox partners and their interaction interfaces are still unknown. Interaction 

studies of redox partners are defying due to the small lifetime of the complex that is usually on the order 

of milliseconds (217). NMR spectroscopy is a choice of excellence to detect transient protein-protein 

interactions due to its high sensitivity, which allows readily detection of changes in the chemical 

environment (217).  

Indeed, in chemical shift perturbation experiments, proteins are monitored during the course of a 

titration where the formation of the complex modifies the chemical environment of the nuclei at the 

interface of the interaction site (278). Therefore, chemical shift perturbation data gathered by NMR 

provide information about the complex interface and also the relative orientation of the proteins, even 

though these complexes show low affinity (214,217,270). 

The interaction studies performed in this work between GSU1996, as well as between its C- and N-

terminal fragments with PpcA show that the dodecaheme cytochrome interacts in a transient manner 

with the heme IV region of PpcA with the formation of a redox complex with a dissociation constant of 

1.17 mM. Heme IV from domain C and heme I from domain D are involved in the interacting region 

between the two proteins, a feature that is reinforced by the structural characteristics of GSU1996. 

Indeed, domains C and D are connected by a flexible linker (195), suggesting that in solution they may 

slightly bend in the presence of redox partners to allow the formation of an interaction site relevant for 

electron transfer. Overall, the results obtained clearly suggest that the two proteins may be in vivo 

periplasmic partners, and this is consistent with the previous proteomic studies in G. sulfurreducens 

which showed that both proteins are expressed when acetate and Fe(III) citrate are used as electron 

donor and acceptor, respectively (152,179,182). Although it is possible that GSU1996 may have other 

partners, the studies performed with PpcC-E did not reveal interactions with the dodecaheme. 
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Thus in the presence of electron acceptors (e.g. iron sources) PpcA, that may be reduced via CbcL, 

ImcH or MacA inner membrane cytochromes (see Figure 5.7), will transfer electrons to the extracellular 

environment through porin-cytochromes Oma-c/B (GSU2738, GSU2739 and GSU2737) and Oma-c/C 

(GSU2732, GSU2733 and GSU2731) (168). On the other hand, in the absence of extracellular electron 

acceptors it is then plausible to suggest that electron transfer components with high number of hemes, 

like the nanowire GSU1996, may be used as large cell storage units to sustain cell survival until new 

sources are available. This hypothesis is further supported by studies on the electrochemical 

performance of G. sulfurreducens biofilms that showed that (i) c-type cytochromes abundance positively 

correlates with G. sulfurreducens biofilms capacitance and that these biomolecules are key players in 

cellular charge storage (117,118); (ii) there is no significant self-discharge behavior in the course of 

time when in conditions of lack of electron acceptors (118) and (iii) current production was impaired in 

the absence of electron donors but with no impact in capacitance (279).  

 

Figure 5.7 – Model for extracellular electron transfer on G. sulfurreducens mediated by porin cytochromes. 
The inner membrane quinol oxidases CbcL (proposed to be required for respiration of electron acceptors with 
redox potentials lower than −0.1 V versus normal hydrogen electrode) and ImcH (proposed to be required for 
respiration of electron acceptors with redox potentials higher than −0.1 V versus normal hydrogen electrode) 
receive electrons from the quinone pool (170) and transfer them to the extracellular environment through a net of 
c-type cytochromes across the periplasm and porin-cytochrome complexes (Oma-c/B and Oma-c/C) located on 

the outer membrane. When in lack of terminal acceptors the electrons can be stored in large MHCs, like GSU1996, 
and provide for cell survival until new sources of acceptors became available. The tridimensional structures 
indicated in the figure were produced with UCSF Chimera 1.6.3 software (320) with data accessible from PDB’s 
4AAL (MacA), 2LDO (PpcA) and 3OV0 (GSU1996) (321). 
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The similar redox-active windows of G. sulfurreducens cytochromes GSU1996 and PpcA at pH 7 

(135) support a thermodynamically sustainable interaction between GSU1996 and PpcA, and point also 

for the reversibility of the direction of the electron flow. 

Therefore, when electron acceptors become available, the electrons stored at GSU1996 may be 

used to reduce the electron acceptors, discharging the cell and leaving GSU1996 available to be re-

reduced. 

According to this hypothesis and in light of the data gathered, it is possible that the interaction 

between both GSU1996 and PpcA may be triggered by a cell or environmental signaling mechanism to 

respond to the devoid of external electron acceptors, favoring the interaction between the two 

cytochromes rather than the electron transfer to terminal acceptors. The precise mechanism that 

modulates the functional binding between GSU1996 and PpcA and/or their redox potentials is still 

unknown. 

However, there are examples in the literature describing the switch from functional to non-functional 

interactions. This is the case of cytochrome c, for which it was demonstrated that the post-translational 

modification by phosphorylation or nitration of tyrosine residues is important to control its multiple 

functions (280,281). Cytochrome c is an electron transfer carrier in the mitochondrial intramembrane 

space but it has also been shown to play crucial roles in programmed cell death, a switch that can be 

fine-tuned by the nitration of specific tyrosine residues. 

In fact, nitration of tyrosine residues impaired the functions of cytochrome c in cell life (respiration) 

and cell death (apoptosis) (282,283) as a result of protein structural changes that shift the cytochrome 

redox potential and lead to the formation of non-functional apoptosome (280,281). Similar mechanisms 

might account for the functional to non-functional switch between GSU1996 and PpcA. 

The present study shows for the first time an interaction between two periplasmic cytochromes from 

G. sulfurreducens and contributes to the current knowledge of the periplasmic cytochrome network 

interactions that are relevant for EET and electron storage pathways in this organism. This knowledge 

is of significant importance to understand the EET performed by this model organism, and contributes 

to the rational design of environmentally friendly and viable technology based in electrosynthesis 

naturally carried out by Geobacter bacteria. 
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INTERACTIONS SUPPLEMENTARY DATA

 

 

Figure 5.S1 – 1D 1H-NMR spectrum of the Ppc’s at pH 7 and 298 K. The insets show the expansion of the low-

field region with the Ppc’s heme methyl signals labeled (21CH3, 71CH3, 121CH3 and 181CH3). The specific 
assignment of the Ppc’s heme signals was previously reported (324). Solution structure of PpcA was produced 
with data accessible from PDB ID code 2MZ9 (325) and structures of PpcB-E with data from PDB ID codes 3BXU 
(232), 3H33 (258), 3H4N (258) and 3H34 (258) with resource to UCSF Chimera 1.6.3 software (320).  
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ABSTRACT 
 

New advances regarding the knowledge of the electron transfer networks of Geobacter species are 

required and in order to do so, the building blocks of these chains must continue to be unveiled. Here, 

the heterologous expression of the nanowire cytochrome GSU2210, of the outer membranes multiheme 

cytochromes OmcE and OmcS from G. sulfurreducens was attempted with resource to pBAD vector. 

Unfortunately, under the experimental conditions tested, none of the proteins was successfully 

produced.  

A new approach to label cytochromes based in a tetracysteine tag was also tested in the outer 

membrane cytochrome OmcF that aimed to enable the in vivo tracking of these proteins. Several 

expression conditions were tested to validate the expression of the properly folded protein, although 

none returned the OmcF-tagged protein. 
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INTRODUCTION 
 

Extracellular electron transfer (EET), defined as the electron exchange reactions that occur between 

microorganisms and their surrounding environment, is a remarkable process that is carried out during 

biogeochemical cycles. In this form of respiration, redox potential differences that occur along the 

oxidation and reduction of chemical compounds – where electrons are transferred from low potential 

electron donors to higher potential electron acceptors –, are converted into a life supporting form of 

energy, ATP (284,285). Indeed, several bacteria are able to transfer electrons to and from soluble and 

insoluble extracellular terminal electron acceptors in nature to withstand their respiratory metabolic 

processes (34,286). Examples of these electron acceptors are Fe(III) and Mn(IV) metal oxides, soluble 

humic acids or even electrodes (26). The energy transduction reactions are executed by chains of redox 

proteins that establish pathways headed for a sustained and controlled electron flow (215,216). 

Nevertheless, the mechanisms diverge among species and their unveiling is still in its early days. 

The electron flux that arises from these natural metabolisms have been diverted to be the basis of 

numerous Green Technologies currently under development. Microbial electrochemical systems 

(MXCs) make use of these microorganisms to transform the decomposing biomaterials chemical energy 

into electrical current and added-value chemical compounds. Such applications are created under the 

form of microbial desalination cells (MDCs) for water desalination (287–291); MECs (292–294) or 

microbial electrosynthesis cells (MESs) for chemical production (295,296); microbial remediation cells 

(MRCs) for environmental contaminants remediation (295–298) and MFCs for power generation (299–

301). Unfortunately, these applications are restrained by the power output of the microbial devices 

which is still far from attaining the one retrieved by hydrogen fuel cells (302). Nonetheless, numerous 

advantages arise from MXCs, among which are the low cost of the carbon sources needed to sustain 

their survival, and the needless use of noble elements when these bugs are employed as catalysts – 

simple graphite felt can be used (302). MFCs based supercapacitors have been pointed as prospective 

storage devices, as they are able to stock electrons at a low current and high potentials, and discharge 

them as electric current. These devices present the advantages of having a large surface to volume 

ratio, effective mass transport and small charges transfer distances (303).  

It is then of crescent interest to develop large-scale sustainable MXCs systems. These systems 

make use of electrochemically active bacteria that are able to perform electron transfer to electrodes 

through a network of redox active components like c-type cytochromes, pili and soluble electron 

shuttles. 

Geobacteraceae are an example of promising bacteria towards the scaling-up of these systems. 

Geobacter species ability to perform the reduction of soluble ions to more insoluble forms is already a 

natural contribute to bioremediation. Actually, the enrichment or stimulation of the activity of these 

species is an aid to slow the dispersion or even in the immobilization of dangerous metals like U(VI) 

(54,304,305). In MFCs, they coherently stockpile in anodes and a pre-enrichment with these bacteria 

may be a potential way to enhance these systems output, together with the selection or engineering of 

optimized strains (28,29).  
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Bioelectronics is another field where Geobacter species can be applied, once that electronical 

biomaterials can be developed with rather low costs, they are self-renewing and nontoxic (27). 

Moreover, its supercapacitor skills may be the basis to develop new biomimetic materials (26,118). 

Indeed, the electron storage reservoirs in these microorganisms may be the c-type cytochromes, as a 

high abundance can be observable at the naked eye by the red coloration of the cultures grown under 

limiting electron acceptor conditions (117). Therefore, it is of utmost importance to understand the 

mechanisms that underlie electron transfer in Geobacter.  

In order to proceed this quest, the characterization of the building blocks of the electron transfer 

chains is required, and many components are yet to be uncovered. In the case of G. sulfurreducens, 

three examples lacking in vitro characterization are the nanowire cytochrome GSU2210, the outer 

membrane tetraheme cytochrome OmcE and the hexaheme cytochrome OmcS. 

Although in vitro characterization provides a large amount of information that can be explored to 

elucidate the mode of action of these proteins and extrapolate in vivo roles, it is also of prime relevance 

to perform the study of the cytochromes in their native environment. The occurrence of such a high 

number of cytochromes in Geobacter spp. turns any effort to directly locate and study each of them in 

an impracticable mission. Therefore, an alternative may be to specifically tag a desired cytochrome so 

that it can be readily distinguishable from its counterparts in the cell.  

The procedure first described by Griffin and co-workers (306) involves the modification of the protein 

of interest by insertion of a tetracysteine motif (CysCysProGlyCysCys). Next steps involve the 

monitorization of its expression in cells and labeling of the protein with membrane-permeant biarsenical 

dyes, such as green FlAsH or red ReAsH (Life Technologies).  

In the present work, the heterologous overexpression of OmcE, OmcS and GSU2210 was 

attempted. A test run was also carried with the monoheme OmcF as a model in order to understand if 

the tetracysteine motif may be used as a tag in c-type cytochromes. 

 

MATERIALS AND METHODS 
 

In vivo labeling system approach for c-type cytochromes 

Following the methodology reported by Griffin and co-workers (306), a G. sulfurreducens mutant 

with the required gene disrupted could be used to construct a second mutant. This second mutant will 

harbor the plasmid with the protein of interest with the tetracysteine motif located downstream of the 

gene, according to the protocol described by Hoffmann and co-workers (307). Briefly, the desired gene 

is amplified from the genomic DNA and the codon sequence 5′-TGTTGCCCGGGCTGCTGT-3′ is used 

to combine with the gene so as to encode the tetracysteine motif. This codon comprises a SmaI/XmaI 

restriction site (CCCGGG) which allows for the screening of positive clones. The modified gene can 

then be cloned into vector pCDS as described by Leang and co-workers (173). A cassette with a 

kanamycin-resistance marker is excised from the knockout mutant and replaced with the vector pCDS-

Protein-Cys tagged. Once the tetracysteine-tagged protein is expressed by G. sulfurreducens, 

biarsenical dyes can be used to fluorescently label the protein and thus visualize it through confocal 

microscopy and/or fluorescence resonance energy transfer recordings. 
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Bacterial strains and plasmids 

G. sulfurreducens PCA cells were used to clone the gsu2210, omcE, omcS and omcF genes and 

the signal peptide derived from the small tetraheme cytochrome (STC, SO_2727) was cloned from S. 

oneidensis MR-1 cells.   

Heterologous expression of OmcE was tested aerobically under different conditions in E. coli strains 

JM109 (263) and JCB7123 (264) and in S. oneidensis MR-1 (265). STC-OmcE expression was tested 

in E. coli strains BL21(DE3) (262) and JM109 (263) and in S. oneidensis MR-1 (265), S. oneidensis 

MR-1 ΔcymA and S. oneidensis MR-1 ΔfccA Δstc. The last two S. oneidensis MR-1 mutant strains were 

kindly provided by Dr. Liang Shi and Dr. Johannes Gescher, respectively. OmcF-tetracysteine tagged 

expression tests were performed in E. coli strains BL21(DE3) (262), JM109 (263) and JCB7123 (264) 

and in S. oneidensis MR-1 (265). All E. coli strains harbored the pEC86 plasmid that contains the 

cytochrome c maturation System I, necessary to the proper assembly of the heme groups in c-type 

cytochromes produced under aerobic conditions (161). 

G. sulfurreducens cells were routinely cultured in NBAF liquid media supplemented with 0.1% 

(wt/vol) yeast extract and 1 mM cysteine with a final pH of 6.7 (106) and S. oneidensis cells were 

routinely cultured in Luria-Bertani liquid medium (266), with both species grown at 30°C. Genomic DNA 

from G. sulfurreducens and S. oneidensis was extracted with NZY Tissue gDNA Isolation kit (NZYTech, 

Portugal).  

Primer constructs were designed towards insertion into pBAD202/D-TOPO® vector (Invitrogen, 

USA) according to Shi et al. (267). Primers designed for the omcE, omcS and omcF genes with its 

native signal peptides (plasmids pBAD_omcE, pBAD_omcS, pBAD_omcF-tetracysteine tag) are listed 

in Table 6.1.  

Other designs (plasmids pBAD_stc-omcE, pBAD_stc-omcS and pBAD_stc-gsu2210 in Table 6.1) 

contemplated the replacement of the native signal peptide of omcE, omcS and gsu2210 by the 

sequence of the signal peptide derived from the STC from S. oneidensis to produce chimeric genes, 

following the procedure described in Costa et al. (268). 

All the constructs were confirmed by GATC Biotech. The successful constructs were transformed in 

E. coli and S. oneidensis aiming for the production of the proteins, as explained next. 

 

Protein expression 

Positive transformants of S. oneidensis and E. coli harboring pBAD_omcE, pBAD_stc-omcE and 

pBAD_omcF-tetracysteine tag were used in expressions tests, where different media and inducer 

concentrations (0–2 mM L(+)-arabinose from Acros Organics) were tested. Briefly, the transformants of 

E. coli or S. oneidensis were grown in 25 mL of media (Luria-Bertani or Terrific Broth (266)) 

supplemented with 34 μg/mL chloramphenicol (NZYTech, Portugal) and 50 μg/mL kanamycin 

(NZYTech, Portugal) in E. coli, or just 50 μg/mL kanamycin (NZYTech, Portugal) in S. oneidensis. In 

both cases, microorganisms were grown to mid-exponential phase at 30°C with a shaking speed of 200 

rpm. At this time, protein expression was induced with 0, 1 or 2 mM L(+)-arabinose (Acros Organics). 

After overnight incubation under the same conditions, the cells were harvested by centrifugation at 

8000×g for 10 min at 4°C. 



CHAPTER 6 – On the quest to unveil electron transfer chains of G. sulfurreducens 

 

96 

 

Table 6.1 – Oligonucleotides designed for the construction of plasmids pBAD_omcE, pBAD_omcS, 
pBAD_stc-omcE, pBAD_stc-OmcS, pBAD_stc-gsu2210 and pBAD_omcF-tetracysteine tag. In the forward 
primers omcE_FW, omcS_FW, omcF_FW and stcsp_FW a stop codon (in italic) and the ribosome binding site (in 
bold) were included to avoid fusion with HP-thioredoxin present in the pBAD202/D-TOPO vector® (267). 

Name Sequence 5' to 3' 

pBAD_omcE 

omcE_FW CACCTAAGAAGGAGATATACATCCCATGAGAAGCGAAGTAAAAATC 

omcE_RV CTACTTCTTGTGGCAACCCAGACAGAGCTTGC 

pBAD_omcS 

omcS_FW CACCTAAGAAGGAGATATACATCCCATGAAAAAGGGGATG 

omcS_RV TTAGTCCTTGGCGTGGCACTTGTTGCAGAG 

pBAD_stc-omcE 

stcsp_FW CACCTAAGAAGGAGATATACATCCCGTGAGCAAAAAACTATTAAG 

stc_omcE_RV ATTCTTGATGCTGGCGGCAAATGCGGTTG 

stc_omcE_FW CAACCGCATTTGCCGCCAGCATCAAGAAT 

omcE_RV CTACTTCTTGTGGCAACCCAGACAGAGCTTGC 

pBAD_stc-omcS 

stcsp_FW CACCTAAGAAGGAGATATACATCCCGTGAGCAAAAAACTATTAAG 

stc_omcS_RV CGCCGCCGGAGTGGAAGGCAAATGCGGTTG 

stc_omcS_FW CAACCGCATTTGCCTTCCACTCCGGCGGCG 

omcS_RV TTAGTCCTTGGCGTGGCACTTGTTGCAGAG 

pBAD_stc-gsu2210 

stcsp_FW CACCTAAGAAGGAGATATACATCCCGTGAGCAAAAAACTATTAAG 

stc_gsu2210_RV TGACGATCTTGTAGTCACGGGCAAATGCGGTTGG 

stc_ gsu2210_FW CCAACCGCATTTGCCCGTGACTACAAGATCGTCA 

gsu2210_med_FW GCCACCATGGCCGACATGGGC 

gsu2210_med_RV GCCGCACGACAAGCCCTTGCC 

gsu2210_RV GTAGAGCCGCTGGTGGCACCTG 

pBAD_omcF-tetracysteine tag 

omcF_FW CACCTAAGAAGGAGATATACATCCCATGAGAGGGCTTGCCC 

omcF_RV GGCAACAGTTAAGGAATGGGAAGCTCGCCACG 

tag_FW 
TCACGGCTCCATACAGCAGCCCGGGCAACAGTTAAGGAATGGGAAGCTCGCCAC

GAC 

tag_RV TCACGGCTCCATACAGCAGCCCGGG 

 

BugBuster™ Protein Extraction Reagent (Novagen, USA) was used to check for expression of the 

proteins. The presence of the proteins was assessed by 12% SDS-PAGE with heme staining (245). 

 

RESULTS AND DISCUSSION 
 

Development of an expression system for GSU2210, OmcE and OmcS 

In order to characterize and perform interaction studies with putative redox partners of outer 

membrane cytochrome OmcE, the hexaheme cytochrome OmcS and the nanowire cytochrome 
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GSU2210 from G. sulfurreducens, attempts were made to develop an expression system for the 

production of the proteins.  

In a first step, the omcE and omcS genes were cloned from G. sulfurreducens. Regarding omcE, 

successful amplification of the gene with the native signal peptide was accomplished at an optimal 

primer annealing temperature of 63°C (Figure 6.1). Subsequently, it was inserted into plasmid 

pBAD202/D-TOPO® (Invitrogen). This vector is a pUC-like plasmid that is able to replicate in bacterial 

cells such as E. coli and S. oneidensis MR-1. It uses a highly efficient topoisomerase-based strategy 

for directional cloning of PCR products (308) and the expression of the genes cloned is inducible by L-

arabinose (309). It also incorporates a V5-epitope and a His6 tag at the C termini of expressed proteins 

to facilitate subsequent protein detection and isolation. In addition, contains the His-Patch thioredoxin 

leader for increased translation efficiency and solubility of recombinant fusion proteins. However, in the 

constructions used in this work a stop codon was added to the forward PCR primers 5′ end immediately 

after CACC to avoid fusion with the His-Patch thioredoxin and a stop codon was added to the reverse 

PCR primers 3' end to prevent fusion with the His6 tag. The forward primer also contained a bacterial 

ribosome binding site. After expression attempts in several strains of E. coli (harboring the cytochrome 

c maturation gene cluster ccmA-H) and S. oneidensis MR-1 in different conditions of temperature, 

media, inducer concentration and periods of induction and expression, no expression was detected for 

the expected 24 kDa tetraheme cytochrome (Figure 6.2). Even though a band with the apparent size of 

OmcE was observed in the tests with E. coli JM109, the expression of the cytochrome was discarded, 

since this band is present in the profile of the E. coli strain when cultured in Terrific Broth medium 

without expression vectors (Figure 6.3). 

In a second attempt, the omcE gene was cloned into pBAD vector without the native signal peptide. 

This was replaced by the signal peptide from the Small Tetraheme Cytochrome (STC) from S. 

oneidensis, which is an abundant cytochrome present in the periplasm of S. oneidensis cells grown 

anaerobically with fumarate (310).  

Figure 6.1 – Agarose gel with omcE gene PCR products obtained at different primer annealing 
temperatures and NZYDNA Ladder III (NZYTech) as the molecular weight marker. 
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The expression attempts showed that this construction was also not able to conduit to the expression 

of OmcE neither in E. coli nor in S. oneidensis strains tested under the experimental conditions applied 

(Figure 6.4).  

  

 

Figure 6.3 – SDS-PAGE gel stained for hemes with NZYColour Protein Marker II (NZYTech) as a guide 
illustrates the cytochrome c expression profile of E. coli JM109 cultured in Luria-Bertani and Terrific Broth 
medium in the presence and in the absence of L(+)-arabinose. 

Figure 6.2 – Screening for OmcE expression in SDS-PAGE gels with NZYColour Protein Marker II 
(NZYTech) as a guide and heme staining. On the left, the results obtained for the expression tests with one of 
the E. coli strains used (JM109) under different media and inducer concentrations. On the right, the screening 
results obtained with S. oneidensis MR-1 under the same set of conditions. 
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Although no heterologous expression of OmcE have been obtained so far, E. coli strains specifically 

engineered for expression of outer membrane proteins (311) may help to overcome this situation in 

future work.  

In the case of OmcS, the cloning step had been succeeded both for the complete gene and for the 

gene lacking the native signal peptide with an optimal primer annealing temperature of 51.5°C (Figure 

6.5). Unfortunately, the amplification step yields were very low (about 10–30 ng/µL). Nonetheless, with 

the small amount of PCR product obtained, the insertion of the genes in pBAD vector was attempted, 

although without success. Sequencing results had not confirmed the presence of neither omcS nor stc-

omcS in pBAD vector.  

Concerning omcS, gene amplification improvements may be briefly tested with the application of 

alternative commercially available kits that are specific for the amplification of large genes. 

With respect to GSU2210, only gsu2210 primers have been constructed as described in Table 6.1. 

Development of an expression system for this cytochrome will be part of forthcoming endeavors.  

 

 

 

Figure 6.4 – Screening for STC-OmcE expression in SDS-PAGE gels with NZYColour Protein Marker II 
(NZYTech) and heme staining. On the left, the results obtained for the expression tests with E. coli BL21 in Luria-
Bertani medium and different inducer concentrations. On the right, the screening results obtained with S. 
oneidensis MR-1 Δfcca Δstc. Controls refer to E. coli BL21 or S. oneidensis MR-1 Δfcca Δstc without the expression 
plasmid. 
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Development of a labeling system for c-type cytochromes 

The primers forward and reverse for the complete gene were constructed, along with the one’s to 

fuse OmcF cytochrome with the tetracysteine fluorescent tag at the C-terminal of the molecule. The 

fusion gene omcF-tag was successfully produced, as illustrated in Figure 6.6. 

The fusion gene was properly inserted into pBAD and several expression attempts were performed, 

although none has been successful (see example in Figure 6.7). 

Replacement of the native signal peptide by STC leader sequence, as explained in the Materials 

and Methods section of CHAPTER 5, may aid to solve the expression issues, as it was observed in the 

case of the expression system developed in this work for GSU1996. OmpA signal peptide is another 

possibility, as a successful expression system has already been described for OmcF with this leader 

sequence (269,312). 

Unfortunately, the absence of a c-type tagged cytochrome constitutes the rate limiting step towards 

further work in the development of the proposed labeling methodology and thus, it will be addressed in 

upcoming efforts. 

 

 

 

 

Figure 6.5 – Agarose gels with omcS gene PCR products obtained at different primer annealing 
temperatures (on the gel at the left) and stc-omcS PCR fusion products (boxed on the gel at the right). 
NZYDNA Ladder III (NZYTech) was used as molecular weight marker. 
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CONCLUSION 
 

Understanding of electron transfer chains of Geobacter bacteria is direly needed. In that sense, 

proteomic advances are needed towards the unveiling of electron transfer components and their roles 

in the cells. 

Figure 6.7 – Screening for the 9.42 kDa OmcF-tag in SDS-PAGE gel with NZYColour Protein Marker II 
(NZYTech) and heme staining. The results shown were obtained with expression attempts in E. coli JM109. 

Figure 6.6 – Agarose gel with the omcF-tag PCR products. omcF-tag gene is indicated by the white box on 
the gel. NZYDNA Ladder III (NZYTech) was used as molecular weight marker. 
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Although OmcE heterologous expression was not well accomplished so far, different expression 

conditions and/or hosts may correct such situation. It is also possible that homologous overexpression 

of OmcE in G. sulfurreducens may be a hypothesis for the construct of pBAD with omcE bearing the 

native signal peptide. 

In the case of OmcS, application of more appropriate amplification systems may contribute to the 

availability of PCR products for insertion in pBAD vector so as to move forward to the expression tests. 

As to GSU2210, primers are already available for the appropriate cloning and insertion in pBAD 

vector. 

Finally, the in vivo c-type cytochrome labeling system has been hindered by the lack of a tagged 

protein. Nonetheless, a simple change in the leader sequence of the construct may solve this situation 

and enable future developments of this work. 
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FINAL CONCLUSIONS 
 

Macroscopic biological systems comprehension is far from providing the crucial answers that are 

required to boost biotechnological advances to the next level. Indeed, groundwork in molecular 

mechanisms such as electron transfer is needed without delay, as it will contribute to a more integrated 

understanding of the biogeochemical cycles of the elements on Earth, and also to the development of 

novel and enhanced biotechnological tools that cover a vast spectra (5,15). Examples go from 

bioenergy production (18,301,313), to bioremediation of contaminated environments (314–316) and 

recovery of added-value compounds, or to the development of new biocatalysts (33,89). Therefore, 

mechanistic comprehension of electron transfer performed by highly versatile and efficient 

microorganisms may allow major breakthroughs in the scaling-up of MXCs and in the creation and 

improvement of biomimetic applications (5,15). 

An atypical high number of multiheme c-type cytochromes are expressed in several microorganisms, 

such as Geobacter spp. (134,179,235), and these have been enrolled in electron transfer mechanisms 

that allow these bacteria to thrive successfully in so many environments, even under nutrient deprivation 

and other stress conditions (107,118). Multiheme c-type cytochromes mechanistic understanding is still 

in its early stages, as the complexity involved in their study raises impressively with the increase in 

molecular weight and number of hemes, and methodologies in use are not up to the challenges 

presented by these proteins. Indeed, the problems arise from the start, in the step of obtaining the 

cytochromes. Isolation of a specific cytochrome from organisms with such a high profusion of c-type 

cytochromes is an impossible task in most of the cases. Therefore, one way to solve this issue is to 

develop heterologous expression systems for the desired proteins. Although several methodologies 

have been reported (267,269,274,317), each cytochrome presents new and puzzling time-consuming 

challenges until the proper expression is achieved. While overexpression is the goal, usually, only small 

expression extension is accomplished. Next, purification steps need to be optimized and stability 

conditions established, so as to preserve the cytochrome in a properly folded functional state for as 

long as it is possible. Afterwards, materials and methodologies that allow the acquisition of the required 

data for the unveiling of mechanistic information need to be upgraded and/or created. Finally, data 

analysis can be defying with the increase in the number and idiosyncrasies of the hemes. Altogether, 

this translates in thousands of euros investment, dozens of liters of culture growth and in weeks, months 

or even years to develop an expression system, produce and purify the required amount of proteins 

needed to perform the also laborious studies that provide the underlying structural and functional 

details. For these reasons, large multiheme c-type cytochromes are still eagerly waiting to be 

uncovered.  

This work focused on the study of an electron transfer protein from G. sulfurreducens, the 

dodecaheme nanowire cytochrome GSU1996. In order to overcome the obstacles inherent to the 

characterization of a protein with such large size and number of hemes, a puzzle approach, based in 

its modular structure was validated. Consequently, the functional characterization of individual triheme 

domains C and D was used to assist in the characterization of the C-terminal end of GSU1996, the 

hexaheme fragment CD. The same was tested for the N-terminal end of GSU1996, the hexaheme 
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fragment AB. Although this fragment has been properly produced, the presence of more than one form 

of domain A in solution and the absence of domain B hindered further work with this side of the 

biomolecule. Nonetheless, it was observed that the thermodynamic and kinetic properties of fragment 

CD are suitable to promote the entrance of electrons in GSU1996 via heme III of domain D. 

Interaction studies between GSU1996 and putative interacting partners – PpcA to E – revealed that 

a transient redox interaction occurs amid GSU1996 and PpcA. Experiments performed with fragment 

AB and fragment CD showed that the complex formation involves the C-terminal of GSU1996 and heme 

IV of PpcA. This is in agreement with the structural features of GSU1996, given that the domains C and 

D are connected by a flexible linker and appear to have higher degree of mobility than the domains A 

and B in the N-terminal. 

Overall, data collected indicates that GSU1996 works as a nanowire device and it was proposed to 

be an electron storage unit in periods of cellular starvation, to withstand survival. In light of the 

reversibility of the electron flow between GSU1996 and PpcA, it is possible that electrons stored in 

GSU1996 may be latter used to reduce electron acceptors as they become available again in the 

environmental surroundings. Probably, such interaction is triggered in the course of a reaction to 

environmental parameters change, via a specific signaling mechanism that benefits the interaction 

between the nanowire cytochrome and PpcA instead of the electron transfer to external electron 

acceptors. 

The characterization methodology followed with GSU1996 has proven its value towards the study 

of large size c-type cytochromes, provided that the structural features allow this puzzle approach without 

loss of identity in the individual pieces. 

 

FUTURE WORK 
 

Although some issues have been successfully addressed in this PhD on the road to understand the 

nanowire cytochrome GSU1996, several others remain to be answered. In that sense, the N-terminal 

end of the molecule requires further studies in order to complete the GSU1996 functional puzzle. Based 

in the heterologous expression system developed by Dr. Yuri Y. Londer, expression yields of domain A 

had already been optimized in previous efforts (221). Unfortunately, this work revealed the coexistence 

of different conformations in solution. It was reported that periplasmic protein stability may rely upon 

their C-terminal residues (318). Therefore, a different expression system that includes an alternative 

gene coding sequence must be envisioned with the aim to produce a more stable solution form of the 

domain A, so as to allow the proper thermodynamic and kinetic characterization. In what concerns to 

domain B, attempts performed earlier failed to improve expression yields and purification (221) of the 

expression system established by Dr. Yuri Y. Londer. As in the case of domain A, other heterologous 

system need to be addressed. Regarding the achievement in the expression of GSU1996 and its 

fragment AB, one hypothesis in both cases may be the modification of the constructs proposed in this 

PhD to produce domain A and domain B.  
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The in vivo labeling of c-type cytochromes has also been hindered by the absence of a tagged 

protein. As referred in CHAPTER 6, the change of the leader sequence in the construct may solve this 

issue and allow further advances to validate the proposed methodology. 

With respect to other electron transfer components, and as discussed in CHAPTER 6, OmcE 

heterologous expression may be tested in microorganisms more suitable for expression of outer 

membrane proteins, as some engineered E. coli strains (311). In the case of OmcS, the yields in the 

amplification of the genes for posterior insertion in pBAD vector may be accomplished with the use of 

commercially available kits, targeted for the amplification of larger genes. Finally, GSU2210 primers 

have been constructed and will be the object of expression tests briefly. 
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