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Preface 

 
This dissertation is submitted in partial fulfilment of the requirements for the Doctoral Degree in 

Environment and Sustainability and includes the results of my PhD study carried out from October 2015 

to September 2019 at the NOVA School of Science and Technology, NOVA University Lisbon. Most of 

the research work developed during the PhD project was undertaken at Resolution Lab, CENSE, 

Departamento de Engenharia e Ciencias do Ambiente (DCEA), NOVA School of Science and Technology, 

NOVA University Lisbon, under the supervision of the Doctor Eduardo P. Mateus (Cense Researcher) 

and the co-supervision of the Associate Professor with Habilitation Alexandra B. Ribeiro and of the 

Assistance Professor Juan M. Paz-Garcia (University of Málaga, Spain). Additionally, the sensors’ 

development and measurements were performed at the Centre of Physics and Technological Research, 

CEFITEC, hosted by the Associate Professor Maria Raposo. The Business Plan and market assessment 

were undertaken during the Hiseedtech training programme at the NOVA School of Business and 

Economics, NOVA University Lisbon. 

During the period of my PhD scholarship, I worked abroad twice, hosted by prestigious international 

universities:  

 March-July 2017. Department of Civil Engineering, Technical University of Denmark, BYG·DTU, 

Lyngby, Denmark. Hosted by the Associate Professor Lisbeth M. Ottosen  

 July-October 2019. ECORECYCLING, at Sapienza Università di Roma, Italy. Hosted by the 

Associate Professor Francesca Pagnanelli 

The present research is part of the projects entitled “Development of Nanostrutures for Detection of 

Triclosan Traces on Aquatic Environments, PTDC/FIS-NAN/0909/2014”, sponsored by Fundação para a 

Ciência e a Tecnologia and e.THROUGH - Thinking rough towards sustainability, sponsored by Grant 

Agreement 778045, H2020-MSCA-RISE-2017 from the European Commission and Fundação para a 

Ciência e a Tecnologia for the research grand SFRH/BD/114674/2016. 

Therefore, the dissertation is organized as follows:  

Part I - The knowledge collected in the appended publications is compiled with the aim of organizing 

the information and explaining the methodology used. Part I contains a general introduction and a 

description of the PhD project, the statement of the research objectives and a summary of the main 
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achieved results from the papers published, submitted and planned (manuscripts) during the research 

period. Part I it is designed to organize the content and define the links between the peer-reviewed 

scientific publications submitted and published during the PhD project.  

Part II - Collects the relevant peer-reviewed scientific publications submitted and published during the 

PhD project, including journal papers and conference contributions. 

I hereby declare that, as the first author, I provided the major contribution to the research and 

experimental work developed, as well as to the interpretation of the results and the preparation of the 

publications submitted during the PhD project.  

Monte de Caparica, 23nd September 2019 

Cátia Magro 
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Resumo 

 

As principais barreiras encontradas para alterar o paradigma das soluções de reutilização de água estão 

relacionadas com o nível de maturação das tecnologias desenvolvidas, com a remoção de 

contaminantes orgânicos emergentes, com a carência de ferramentas de análise rápida, fiável e 

economicamente viáveis para monitorização ambiental. Neste sentido, a presente dissertação propõe 

a aplicação de tecnologias de base elétrica a efluente secundário com o objetivo de promover a sua 

reutilização através (i) da remoção de triclosan e de contaminantes inorgânicos, (ii) da concepção e 

estudo de línguas eletrónicas como potenciais ferramentas para monitorizar processos de degradação; 

(iii) da recuperação/reutilização de hidrogénio para fins energéticos e da produção de materiais de 

construção.  

De acordo com os objetivos mencionados, os principais resultados do presente projeto de 

doutoramento são descritos de seguida:  

(i)  

 Os reatores eletroquímicos testados são eficazes para degradar triclosan e os seus 

produtos de degradação/metabolito. O tipo de elétrodo utilizado no processo é uma 

variável importante, uma vez que afeta a eficiência e cinética de degradação, assim 

como os subprodutos gerados após o tratamento; 

 A seletividade e sensibilidade de um GC/MS/MS permite, após otimização operacional, 

a deteção e quantificação de triclosan (em efluente na gama dos ng/L), sem a 

derivatização do analíto, demonstrando que os métodos-padrão devem ser ajustados 

consoante a matriz e os compostos em estudo.  

(ii)  

 Línguas eletrónicas revestidas com filmes finos de polieletrólitos orgânicos são capazes 

de distinguir com uma resolução de pico-molar, por meio de uma Análise de 

Componentes Principais, entre água mineral e efluente secundário, discriminando 

simultaneamente triclosan a diferentes concentrações; 

 A estabilidade do revestimento nas línguas eletrónicas é afetada pelas características 

da matriz (p.e. pH e teor em elementos), em detrimento da molécula a ser detetada; 

tendo em conta esta dependência, filmes finos produzidos com a técnica de 

pulverização catódica, mais robustos e estáveis, foram adicionados à composição da 

língua eletrónica desenvolvida; 
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 A língua eletrónica desenvolvida tem potencial como ferramenta de monitorização 

ambiental e seguimento da degradação dos compostos em estudo, quando conectada 

a um reator eletroquímico dinâmico; observou-se a semi-quantificação de triclosan e 

metil-triclosan usando uma língua eletrónica composta por cinco sensores; observou-

se a semi-quantificação de 2,4,6-triclorofenol e 2,4-diclorofenol usando um único 

sensor revestido com filmes de menor espessura. 

(iii)  

 O hidrogénio, um subproduto gerado durante o processo electrodialítico, provou, 

conceitualmente, potencial para ser armazenado, reutilizado e/ou utilizado numa 

célula de combustível com membrana de troca de protões, para gerar energia; 

 A utilização de efluente tratado com o processo electrodialítico é uma solução com 

potencial para substituir a água potável utilizada na produção de materiais de 

construção. Esta substituição produz materiais com características indicadas para a 

indústria da construção, aumentando a sustentabilidade do processo e a valorização 

do reator desenvolvido, no mercado. 

 

Palavras-chave: água; processos eletroquímicos; contaminantes orgânicos emergentes; monitorização 

ambiental em tempo real; línguas eletrónicas; hidrogénio; reutilização de efluente secundário; materiais 

de construção. 
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Abstract 

 

Some of the barriers for a paradigm change on water reuse solutions are related to their maturing 

technology level, to the removal of emerging organic contaminants and to the availability of rapid, 

reliable and cost-effective monitoring tools. Thus, in this dissertation, electro-based techniques  were 

applied to secondary effluents aiming to promote water reuse through the (i) removal of triclosan and 

inorganic contaminants, (ii) development and test of electronic tongue sensors that may be used as 

complementary monitoring tools coupled with degradation processes, and (iii) enhancing of the 

technology maturity level with the recovery of self-produced hydrogen and freshwater replacement in 

the production of construction materials. 

With these objectives, the main findings in this PhD project are described hereunder: 

(i)  

 Electrochemical reactors are effective for degrading triclosan and its by-products. The 

type of electrodes is an important variable that strongly impacts the degradation 

efficiency, the kinetics and the by-products generated after treatment; 

 GC/MS/MS selectivity and sensitivity allows, after operational optimization, the 

detection and quantification of triclosan, without the analyte derivatization, in the 

effluent at ng/L level, showing that standard methods should be adjusted “case-by-

case”. 

(ii)  

 Electronic tongues coated with organic polyelectrolyte thin films are able to distinguish 

at pico-molar resolution, by means of principal component analysis, between mineral 

water and secondary effluent matrices and discriminating triclosan at different 

concentrations; 

 The coating’s stability is affected by characteristics of the water to be analysed (e.g. 

such as pH and elements content), rather than by the molecule to be detected; Due to 

this dependency, sputtering thin films, more robust and stable, should be added to the 

electronic tongue array; 

 A customized electronic tongue proved be a potential complementary monitoring tool 

to follow the degradation pathway of the target compounds across the treatment, 

when coupled to a dynamic electrochemical reactor; It was possible to semi-quantify 

methyl-triclosan and triclosan using the array, whereas for phenolic compounds (2,4-
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dichlorophenol and 2,4,6-trichlorophenol) best results were obtained by using a single 

sensor and thinner film as coating.  

(iii)  

 The remediation process by-product, hydrogen, showed, on a proof of concept level, 

its potential to be stored, reused or used as fuel in a proton-exchange membrane fuel 

cell, to generate energy; 

 The use of electro-treated effluent showed to be sustainable for replacing freshwater 

in construction materials production. This replacement can provide high quality 

materials with features that are valued by construction materials industry, increasing 

the market value of the reactor developed.  

 

Keywords: water; electrochemical processes; emerging organic contaminants; real time monitoring; 

electronic tongue’s systems; hydrogen; secondary effluent reuse; construction materials. 
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Part I 

 

“Anyone who has never made a mistake has never tried anything new. “ 
 

- Albert Einstein - 
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1. Introduction 

 

Water scarcity can be defined as the shortage of the freshwater resources required to meet demand. 

Every continent is affected by water scarcity, and it was classified by the World Economic Forum (2015) 

[1] as the highest global risk regarding potential its effects over the next decade. Climate change, rapidly 

growing population and increased urbanization are the main reasons for this trend. Today, an estimated 

3.6 billion people - nearly half the world’s population - already live in areas that are potentially water-

scarce at least one month per year. According to the United Nations, this number could increase to 

between 4.8 and 5.7 billion by 2050, as two out of every three people are likely to be living in cities or 

other urban centres. Logically, both the European Economic Area and the United Nations Environment 

Programme call for action to increase water-use efficiency in all sectors. Of the barriers to a wider 

uptake of water reuse solutions, technical and scientific uncertainties are considered to be among the 

top six main challenges: “the water reuse sector in Europe seems to be mature, technical solutions are 

well-known and available to cover a wide range of applications and environments. However, these 

solutions are not always cheap and there remain a few technical challenges, in particular, the removal 

of emerging organic contaminants (EOCs) and the need for rapid monitoring techniques that are reliable 

and cost-effective” (European Commission, 2015).  

EOCs are defined as “chemical substances that have no regulation and are suspected to negatively 

affect the environment or whose effects are unknown” [3,4]. Among EOCs, triclosan (TCS, 2,4,4'-

Trichloro-2'-hydroxydiphenyl ether) is an antimicrobial agent that has been used for more than 50 years 

as an antiseptic, disinfectant or preservative in clinical settings and in several consumer products. TCS 

has been detected in wastewater treatment plants [5–7] and in surface water [8,9]. Recent reviews of 

TCS recount numerous health effects, ranging from endocrine-disruption to uncoupling mitochondria 

[10,11]. Although, in 2016,  the US Food and Drug Administration banned TCS from certain washing 

products, namely hand soap and body wash [12] and from hospital products by the end of 2018 [13], it 

is still permissible to have TCS in e.g. toothpastes, cosmetics, clothes or toys [14]. Furthermore, TCS 

derivatives, such as the metabolite methyl-triclosan (MTCS) [15], which is even more persistent [16] 

and TCS by-products formed by repeated exposure to chlorine in water, such as 2,4-Dichlorophenol 

(DCP) and 2,4,6-Trichlorophenol (TCP) are also a cause for concern, since they present a health risk to 

humans and are recognized as persistent priority pollutants in the United States, Europe and China [17]. 
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The electrokinetic (EK) technique also referred to as “electroremediation” has been used to remove, 

separate, and promote contaminants degradation since the early nineteenth century, targeting soil 

remediation [18]. Favourable results have been observed for the removal of EOCs in soil [19,20], sludge 

[21] and effluent [22]. EK consists in the application of a low-level direct current, inducing 

physicochemical changes in the media, leading to species transports by (1) electromigration - the 

movement of ions in solution, (2) electrophoresis - the movement of charged, dissolved or suspended 

particles in pore fluid and (3) electroosmosis - the movement of fluids across a conduit. Additionally, 

the electrolysis of water occurs at the electrodes, generating H+ by water oxidation at the anode and 

OH- by water reduction at the cathode. The “phenomenon” is a useful feature when 

remediation/degradation/removal/recovery processes are involved since the generated by-product, 

hydrogen, can be used as fuel in proton-exchange membrane fuel cells to produce electrical energy, to 

reduce the energy costs of electro-remediation, and to generate value. Moreover, as an energy carrier, 

H2 can be used to accumulate energy during electric power demand valleys, and to generate electric 

power during peak periods. Therefore, a reservoir can be integrated into the electrodialytic (ED) system, 

from where the H2 produced can be recovered and used for different purposes.  

Furthermore, not only cutting-edge technologies for contaminants removal are under the spotlight, but 

also sensors as monitoring tools. Electronic tongue (e-tongue) devices are gaining special attention for 

liquid matrices. One of the most interesting aspects that motivate the development of e-tongues is their 

potential for real time parallel monitoring of multi-analyte determination in a single sample analysis 

[23]. E-tongue is “a multi-sensory system, formed by an array of sensors with low-selective thin film 

layers or sensorial layers, combined with advanced mathematical procedures for signal processing 

based on pattern recognition and/or multi-variate data analysis” [24]. From a structural and 

manufacturing point of view the choice of the type of thin film or sensorial layer is a critical step for the 

accomplishment of a reliable qualitative and quantitative device. Compared to traditional sampling and 

analysis, sensors can provide a fast response on the output data in a continuous, safe, and cost-effective 

way. Notwithstanding the potential advantages of e-tongues, there are still many challenges related to 

the stability and monitoring reliability, including recognition and transduction elements, matrix effects, 

reversibility, and the need of in situ calibration. Finally, e-tongues are not intended to replace traditional 

methods, but they can be useful and complementary tools when speed and a lower-cost routine 

response are required. 

The removal of EOCs using EK technologies in combination with fast monitoring tools has potential to 

ensure an effective, competitive and integrated solution for water reuse.  
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After water, concrete is the most widely consumed material in the world [25]. The concrete industry 

represents 9% of all industry withdrawals and 1.7% of all global water consumption [26] . In a concrete 

mix, the water-cement ratio is around 0.45 to 0.60. In other words, more than 17 billion m3 of 

freshwater is used in the production of concrete each year. Today, freshwater is the only type of water 

that meets the industry standards for concrete production. Moreover, if inadequate water is used, the 

quality of the concrete can significantly decrease, leading to a structural failure that would represent 

between 5% and  9.4% of the total costs of concrete production [27]. However, tap water supply is 

highly limited, especially in dry regions such as the Middle East and Africa, where construction 

companies often have no other option than to rely on water that is at least partially polluted. The EK 

technology has the potential to reduce the need of freshwater by replacing it with electro-treated 

effluent in concrete production. The versatility of the EK reactor can provide full control of water 

characteristics (e.g. pH, salts content), allowing the production of high-quality construction materials, 

without jeopardizing reference parameters, e.g. compressive strength or setting times.   

Different issues are discussed in Part I: electrochemical reactors for the degradation of TCS and its by-

products (in Magro et al. submitted 2019a), GC/MS/MS as a monitoring technique for TCS detection 

and quantification in effluent (in Magro et al. under preparation 2019b), e-tongue build up with LbL thin 

films for detection and semi-quantification of TCS (in Magro et al. 2019c, Pereira-da-Silva et al. 2019, 

Zagalo et al. 2019, Magro et al. 2019h; Magro et al. submitted 2019d), customized e-tongue coupled to 

an electrochemical reactor to “follow” the analytes electro-degradation (in Magro et al. submitted 

2019e; Magro et al. chapter under preparation 2020*), EK hydrogen self-energy generation (in Magro 

et al. 2019f; Magro et al. chapter under preparation**), potential of replacing freshwater with electro-

treated effluent in construction materials production (in Magro et al. 2019g; Provisional patent 

application 2019; Market assessment 2018). 
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2. Objectives 

 

The main objectives of this PhD project were: (i) to promote water reuse through the removal of 

contaminants by electro-based technologies, (ii) to develop and test sensors to be used as 

complementary, rapid and reliable monitoring tools, and (iii) to provide a market assessment of the 

potential of using electro-treated effluent in the construction sector.  

The specific objectives and its achievements through this project are summarized as follows:  

Study electrokinetics as an effective and viable technology to remove and/or degrade emerging organic 

compounds and inorganic species in a wastewater matrix  

o Different batch, flow and customized EK reactors were evaluated to optimize the 

removal/degradation of TCS, its derivative by-products and inorganic elements 

o Chromatographic techniques were developed and optimized for the analysis of TCS and its 

derivative by-products: DCP, TCP and MTCS 

Develop and test new monitoring tools for rapid, reliable and cost-effective detection of triclosan and its 

by-products during an electrochemical process, applied to a wastewater  

o Evaluation of Layer-by-layer polyelectrolytes and sputtering thin films as sensorial layers for e-

tongue systems 

o Evaluation of the combination of both layer-by-layer and sputtering thin films in a new e-tongue 

prototype coupled to a flow EK reactor - to detect and follow the degradation dynamics of 

target compounds 

Enhance the maturity level of electrokinetics technology  

o Self-produced hydrogen was evaluated as proof of concept concerning its purity, potential 

energy generation and remediation process savings 

o Wastewater valorisation in the production of construction materials was studied and assessed 

at a market level 
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3.  Summary of the research 

 

As both the scarcity and price of clean drinking water continue to rise across the world, the value of 

wastewater, as a source of water recovery, has a tendency to increase. One of the opportunities for 

improvement is the establishment of legal regulations to define how to manage wastewater and to 

establish which treatment technologies should be used for different types of reuse purposes. Over the 

last three decades, many research projects have focused their attention on the different applications 

of electrochemical technology in environmental remediation. Thousands of publications (bibliometric 

evaluation through SCOPUS, with keywords “electrochemical process” or “electrokinetic process”) have 

sought to develop new technologies or improve existing processes. Now, at the end of this long period, 

very few are being applied at their full-scale and most of them remain at the stage of ‘promising’ 

technologies. Most have recognisable benefits, but important technological difficulties and cost 

handicaps can be identified, which are related to missing components in the value chain of the 

technology and the existence of only a few highly specialized stakeholders [28]. When competitive 

solutions are fully marketed, it is difficult to displace them, unless the advantages of the new technology 

would help to obtain the same or increased level of performance and payback. Lessons must be learned 

in order to achieve full applicability of electrochemical technologies and to allow returns on invested 

money to companies and society. Among electrochemical technologies, the EK processes are now in 

the position of improving their technology maturity level and, thus, to play a role in the practical 

solutions that may be implemented in the wastewater reuses value chain.  

The methodology and results of the PhD research are summarized in the following subsections, 3.1 to 

3.7.  
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3.1 Electrochemical reactors for triclosan and its by-products degradation 

TCS and its derivative by-products reach water bodies due to the inefficient removal on wastewater 

treatment plants [29]. The electrochemical treatments, at bench scale, applied to EOCs, attains high 

performance in terms of TCS removal, mainly due to the, stability and activity of the anode which 

significantly affects the generation of reactive species, such as •OH [30]. Magro et al. (submitted 2019a) 

studied the degradation of TCS and its derivative by-products (MTCS, DCP and TCP) in effluent by two 

different electrochemical reactors. A batch and a flow reactor (mimicking a secondary settling tank in a 

wastewater treatment plant) were tested with two different working anodes: Titanium/mixed metal 

oxide (Ti/MMO) and niobium/boron-doped diamond (Nb/BDD). For both reactors, the best electrode 

combination was achieved with Ti/MMO as the anode. The batch reactor with 7 mA/cm2 during 4h 

attained degradation rates below the detection limit for TCS and TCP, and 94% and 43% for DCP and 

MTCS, respectively. The flow reactor, in approximately 1h with the same current density as the batch 

reactor, achieved degradation efficiencies of between 41% and 87% for the four contaminants. The 

results suggest a possible alternative technology that may be implemented in a secondary settling tank, 

since the combination of a low current density with the flow and matrix induced disturbance increased 

and speeded up the elimination of compounds.  

An upgraded “designed reactor” was developed and is the one included in the provisional patent 

application (2019). Being not in the patent application core, the reactor design also offers possibilities 

for the degradation of TCS and its by-products, as the design configuration includes the direct contact 

of electrodes into the matrix. In the “designed reactor”, the EOCs had two stages of degradation, in the 

cathode and the anode compartments, separately. EOCs suffer direct anodic oxidation when the 

contaminants come into contact with the anode surface and indirect oxidation in the liquid bulk, 

mediated by the oxidants that are formed electrochemically. From the point of view of removal rates, 

92% to below the detection limit was achieved for TCS, DCP and TCP with direct oxidation as the main 

factor of degradation. For MTCS, the direct and indirect oxidation showed equal contributions to the 

compounds’ degradation. Differently from the batch and flow reactor presented in Magro et al. 

(submitted 2019a), the “designed reactor”, includes ion-exchange membranes. The movement of the 

EOCs through the membranes was not detected. The use of membranes in the degradation solutions 

can be a potential disadvantage as it may contribute to the membrane fouling. A voltage increase due 

to fouling was not observed. Only a slightly yellow colour was observed in the anion exchange 

membrane at the end of the experiments, suggesting the adsorption of organic matter. Comparing the 

adsorption of compounds between both membranes, the phenomenon is greater with anion exchange 
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membrane and may be explained by the electrostatic interactions between organics and the membrane 

(anion exchange membrane 17% vs cation exchange membrane 8% adsorption, for MTCS).   
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3.2 Chromatography methods for triclosan detection in effluent 

When using High-Performance Liquid Chromatography with Diode-Array Detection (HPLC-DAD) it was 

not possible to detect TCS in the raw effluents used on the study. TCS is usually found in trace 

concentration in effluent matrices (2 ng/L - 40 µg/L) (Dhillon et al., 2015), a level below the LOD of the 

DAD method (around 0.5 mg/L). Therefore, it was necessary to develop a more sensitive and selective 

method using a gas chromatography-triple quadrupole mass spectrometry (GC/MS/MS) system.  Magro 

et al. (2017) presented an optimized GC/MS/MS method for TCS detection, without analyte 

derivatization, using Multiple Reaction Monitoring (MRM) mode. To achieve the optimized conditions, 

the operational parameters tested are: splitless time, liner type, injector temperature, MS source and 

interface temperature, Q1 and Q3 resolution (peak shape and area offset), collision gas pressure, 

collision energy and dwell time. Results from injector temperature showed that too high temperatures 

(>270 °C) can lead to thermo-degradation. The most critical factor was the liner’s type which can 

jeopardize the shape of the peak and its S/N on the chromatograph. Thus, if the liners are packed with 

quartz wool (normally used for “dirty” environmental matrices), TCS will react with the material even if 

it is deactivated and/or become adsorbed on it. Concerning the interface and source temperature, 

through a Design Expert programme and comparing TCS peak areas, the best results were obtained for 

the temperatures of 290 °C and 260 °C, respectively. The analyte peak area and shape are critical 

parameters for the quantitative analysis. Thus, Q1 and Q3 resolution, collision gas pressure (mtorr) and 

collision energy (eV) and dwell time (ms) were evaluated. The best results were achieved with Q1 

resolution = 0.7 and Q3 resolution = 2, collision gas pressure at 2.4 mTorr, collision energy at 20eV and 

a dwell time of 100 ms.  

The detection and optimized method conditions were reported preliminary in Magro et al. (2017) and 

comprehensively in Magro et al. (under preparation 2019b).  For quantification purposes in effluent 

matrices, a calibration curve was built, using standard concentrations that were expected to be found 

in real samples: eight-points (20, 40, 80, 120, 240, 320, 400, 700) ng/L, with a correlation factor of R2 = 

0.9801. For TCS analysis in effluent, a solid phase extraction method was optimized (Magro et al. 

submitted 2019a). Thus, different pH values, spiking stirring time before extraction, volume elution with 

different solvents, cartridges and syringe filters were evaluated. The best operational results concerning 

the analyte recovery (95 ± 3%) were achieved using (1) pH = 2 (no precipitation of organic matter; TCS 

in unionized form, less susceptible to photodegradation according to [31]); (2) 30 minutes of stirring 

time and a 30 minutes pause prior to extraction; (3) MeOH/ACE as the extraction solvent; (4) cartridges 

Oasis HLB; (5) PTFE syringe filters of (0.45 µm; 2% analyte loss). Six effluents (collected at two different 
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wastewater treatment plants at different times of the year) were analysed and TCS levels were found 

of between 106 and 624 ng/L.  
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3.3 E-tongues to triclosan detection and quantification 

E-tongues have been gaining greater attention in liquid matrices since 1997. There has been an increase 

in the number of scientific articles, with several applications, although those whose focus is on the 

detection of EOCs are still few and are applied to simplified solutions. However, as it was investigated 

in Magro et al. (2019c), there is a high potential of e-tongues for qualitative and semi-quantitative multi-

analyte analysis in complex matrices. If the e-tongues are well built and properly trained they can be 

used as tools for EOCs monitoring in aqueous environment matrices. The working electrodes in the e-

tongues array can be covered with films (coatings), improving the sensitivity of the electrical 

measurements. The ability to tune the composition of nanostructured thin films allow for an 

improvement in the sensor´s intrinsic (chemical or physical) properties for sensing applications. The 

layer-by-layer (LbL) nano-assembly technique is a flexible, easily-scalable, reproducible and versatile 

approach that allows the precise control of the coating thickness, composition and structure. This nano-

assembly technique is a powerful tool for the incorporation of a wide variety of coating types, such as 

polyelectrolytes. Polyelectrolytes are polymers with ionizable functional groups that form charged 

polyions (with an overall positive or negative charge). A substance with positively charged functional 

groups, mostly quaternary ammonium or amino groups, is used as a polycation, for instance 

poly(allylamine hydrochloride) (PAH) and poly(ethyleneimine) (PEI); whereas a substance with 

negatively charged groups, mostly sulfonic acids or carboxylic acids, are the most common functional 

groups used in polyanions, such as, poly(sodium 4-styrene sulfonate) (PSS). In preliminary works about 

sensors for TCS detection, Pereira-da-Silva et al. (2019), Zagalo et al. (2019) and Magro et al. (2019h) 

proved that if the outer layer is a negatively charged polyelectrolyte, less adsorption into the sensing 

layers is observed. Additionally, the influence of the solution’s pH and ionic strength in the electrical 

impedance measurements was demonstrated. 

Magro et al. (submitted, 2019d) studied the e-tongue concept in an array of sensors based on uncoated 

and coated gold interdigitated electrodes with (PAH/Graphene Oxide (GO))5 and (PEI/PSS)5 layer-by-layer 

thin films. The main objective was to study the e-tongue performance (stability, detection and semi-

quantification) for TCS analysis in mineral water and secondary effluent matrices by measuring the 

impedance spectra of the sensor device. The stability tests related with adsorption/desorption 

phenomena revealed that: (1) (PAH/GO)5 LbL films should be used to analyse acid matrices with low 

ionic strength, since the salts in the solution tend to discharge the GO film; (2) (PEI/PSS)5 LbL films 

combination reveals potential to be employed in alkaline aqueous matrices, such as secondary effluent, 

with high ionic strength; (3) uncoated gold sensors react with ions in the effluent and are damaged by 

S and Zn elements, and therefore should be avoided for these type of matrices. The data showed that 
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increasing the thickness (number of bi-layers to 10 or 20) did not directly increase the potential to TCS 

quantification. On the contrary, increasing the distance between the gold electrode and the outer layer 

of film that interacted with the TCS molecules, decreased the electrical signal. The choice of target 

sensing layers for each type of matrices is crucial to have a stable and robust device. Thus, if the highest 

performance sensors (uncoated gold sensors for mineral water and (PEI/PSS)5 for effluent) are used for 

the array’s composition, by means of Principal Component Analysis, it was possible to reach a device 

capable of distinguishing between aqueous matrices (mineral water vs effluent) and discriminate TCS 

according to its concentrations: (1) detection and semi-quantification of the target analyte in mineral 

and secondary effluent  for a range of concentration from 10-13 to 10-7M (0.3 ng/L - 30 μg/L); (2) device’s 

sensitivity of 0.19 ± 0.02 per decade (~ limit of quantification); (3) device’s resolution of 0.13 pM (~ limit 

of detection). 
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3.4 Multi-analyte e-tongue coupled to an electrochemical reactor 

According to Magro et al. (submitted 2019d), a combination of (PEI/PSS)5 is suitable for TCS detection 

and semi-quantification in a secondary effluent matrix. However, when the matrix’s pH is below 7, 

desorption of the thin film occurred when immersed in the solutions. In this regard and taking into 

account the fact that pH changes can occur in electrochemical remediation, stable thin films of TiO2 and 

ZnO built up with the sputtering technique were considered to be part of the e-tongue’s sensorial 

layers. Those films presented high mechanical stability under pH fluctuations. Magro et al. (submitted 

2019e) reported a customized e-tongue, built up with an array of layer-by-layer and sputtering thin film 

sensors. The aim of the array set-up was to access real time degradation in a dynamic electrochemical 

flow reactor and provide a sensor that is capable of performing semi-quantification analysis for TCS and 

its derivative by-products: DCP, TCP and MTCS. The e-tongue’s capability to “follow” the analytes 

electro-degradation kinetics in a secondary effluent was supported by the data obtained using HPLC-

DAD. Monitoring and semi-quantitative analysis was accomplished using the sensor’s array for TCS and 

MTCS. For DCP and TCP more accurate results were achieved using a single sensor device. These data 

observations lead to the discussion of the importance of characterizing the nanomaterial used to 

perform the impedance measurements. This characterization, using field emission scanning electron 

microscope, allowed total understanding of the “sensorial” impedance response. The observations 

supported that the “sensorial response” is related to the final morphology, structure and properties of 

the thin films and their consequent interactions with the different EOCs’ physical-chemical behaviour 

on the effluent matrix. For DCP and TCP (with molecular weight of 163 and 197 g/mol), the better 

responses were achieved with the polyelectrolyte thin films (built with 5 bi-layers) or using a thin film, 

built by sputtering technique (TiO2), but with low thickness (≤160 nm). For TCS and MTCS (with 

molecular weight of 290 and 303 g/mol) detection and semi-quantification, the sputtering technique 

with bilayers of semi conductive oxides (thickness = 713 nm) was the one giving better impedance 

response. According to the experimental data, the thin films with more “hydrophobic character” should 

be used for TCS and MTCS, the analytes with higher Log kow, whereas the more “hydrophilic” ones are 

best suited for DCP and TCP, the analytes with lower Log kow.   

Although sensors’ systems are becoming attractive to the market [32], as potential tools for 

environmental monitoring, there is still a lack of information when these sensor devices are targeting 

multi-analyte analysis. In Magro et al. (chapter under preparation 2019*), the drawbacks, advantages 

and challenges of having electronic tongues coupled with electrochemical processes are discussed.   
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3.5 Electrokinetic Hydrogen self-energy generation 

The hydrogen feedstock market has a total estimated value of  €105 billion and is expected to grow in 

the coming years, reaching €142 billion by 2022 [33]. Hydrogen is gaining a more prominent role as an 

enabler of the clean energy transition. Technologies for H2 production are taking advantage of the 

current market expansion, promoting their optimization and development to higher maturity levels. 

One of the most established technologies for hydrogen production from renewable energy sources is 

water electrolysis. Around 4 % of the global hydrogen supply is produced via electrolysis [33]. However, 

due to the high production costs,H2 is still not economically competitive with other fuels [34] . 

Hydrogen is a by-product of EK technologies and thus they can be part of hydrogen market production. 

As in a symbiotic system, the remediation treatment can take the advantage of H2 market technologies 

maturity trend, enhancing the technology readiness level (TRL) and minimizing, due to the potential of 

energy generation, one of its drawbacks for scaling-up. As a novel feature, the H2 produced during the 

treatment in the cathode compartment may be used as fuel in a proton-exchange membrane fuel cell 

to produce electrical energy and reduce the energy costs of electroremediation processes. In this 

context, the design of the ED reactor may be reconfigured with the incorporation of a gas collection 

system that may avoid the H2 dissipation during remediation of the environmental matrices. Thus, the 

H2 produced in the process can be collected and recovered to be used for different purposes. 

Magro et al. (2019f) addressed the feasibility (proof-of-concept) of using the H2 produced by 

electrochemically-induced remediation of secondary effluent and mine tailings matrices. The results 

shown that the H2 captured and reused is promising because: (1) The H2 flow rate production is not 

dependent of the matrix under treatment. No statistically significant differences between the matrices 

were found when the highest current density was applied; (2) self-produced H2 achieved average 

purities ranged between 73% and 98%; (3) for both matrices a stable open circuit voltage (~1V, cell 

maximum nominal voltage) was generated by a proton-exchange membrane fuel; (4) treatment energy 

savings of around 7% were reached (restriction due to fuel cell full capacity). This study supported that 

the H2 purity, flow rate production and voltage generation are not directly affected by the matrices 

under treatment, when a three compartment ED reactor was used. Moreover, some improvements can 

be obtained. Thus, in the provisional patent application (2019), for its “designed reactor”, the H2 flow 

rate was found to be 60% faster than in the conventional three compartments ED reactor. Also, for the 

“designed reactor”, when H2 was directly collected from the matrix compartment, a similar level of gas 

purity was achieved.  
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Additionally, Magro et al. (chapter under preparation 2019**), observed that for the conventional 

reactor, if the salty water is replaced by effluent in a mine tailings suspension, the proton-exchange 

membrane fuel voltage increases, as does its stability. A higher conductivity was measured, meaning 

more free ions in the system, which directly affects the fuel cell efficiency. Furthermore, the removal 

of hazardous contaminants and the recovery of critical raw materials can be enhanced (3% for Cu, 5% 

for As, 22% for Sn and 27% for W), increasing their further reuse. 
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3.6 Potential of replacing freshwater by electro-treated effluent in construction 
materials 

The construction industry already recognizes the value of improving resources productivity and 

sustainability, namely in the replacement of cement and water sources [35]. However, the transition to 

a more circular economy requires changes throughout value chains, from product design to new 

business models, from new ways of turning waste into resources and by new modes of consumer 

behaviour [36]. Nowadays, the increased demand for construction materials, as a result of global 

growth, calls for an alternative way of developing construction materials from different sources. In this 

perspective of “changing times”, Magro et al. (2019g) reported the feasibility of replacing freshwater by 

electro-treated effluent in the production of mortars (construction materials). After the ED treatment 

applied to an effluent, the data showed removal rates of 50-100% for cations, 85-99.7% for anions and 

an acid final matrix pH, parameters that affect the quality and durability of materials. Using 50% and 

100% of treated effluent in the materials mix showed higher setting times and workability, and similar 

flexural/compressive strengths compared to the reference mortars. 

To overcome the parameters that were different to the reference values, such as setting times, 

workability and matrix final pH, a tuning reactor was developed: the provisional patent application 

(2019) “designed reactor”. In this application an optimal combination was disclosed: acid media - 

breaking complexes between elements; alkaline media - removing salts and electrodes in contact with 

the contaminated matrices - promoting electro-degradation (see section 3.1). The design modifications 

ensured that the alkaline pH does not change the setting time and workability values significantly. 

Design differences do not affect the overall removal efficiencies. The removal process, for the “designed 

reactor”, is slower compared to the three compartment reactors described in Magro et al. (2019g), but 

the process became more easier to control. 99% of the salts removal was achieved in the conventional 

reactor, but the “designed reactor” encompasses fewer hardness matrices in the end (approximately 

70% of the elements removal) and offers a dynamic process which is easier to further work. It is 

important to point out that all the parameters studied are key-factors for the standards in the 

construction industry:  EN 1015-3, EN-196 and EN 206-1 and NBR 15900. In addition, one of the positive 

features of the final materials, when the product is used as a pre-treatment is the change in the colour 

(grey to light brown – although not always, depending on the effluent source) or texture (rough to 

softer) of the materials, which may, for instance, avoid the use of artificial pigments. 

As one of the main objectives of this PhD project was to enhance maturity level of EK process 

development, a market assessment was performed for provisional patent application (2019) “designed 
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reactor”. The TRL of the developed technology, on a scale of 1 to 7 is considered to be at level 3 

(experimental proof of concept) to 4 (technology validated in laboratory), accordingly to the European 

Commission definition.   

The primary market assessment was built for three potential markets segments: construction materials 

industry, municipal and industrial wastewater treatment plants. Following an 18 week study, the 

construction materials industry was found to be the priority market for the reuse of treated secondary 

effluent. There are several reasons for entering this market. First of all, the provisional patent 

application reactor performance is higher in this segment. More precisely, after the cleaning process, 

the treated effluent characteristics fulfil all the requirements stated by construction materials standards 

(e.g. salt content, conductivity) that allows its use in the production of materials while ensuring a high-

quality concrete. Secondly, the analysis among the potential company’s stakeholders showed that entry 

barriers are lower in the concrete production segment, in comparison with the wastewater treatment 

segments. Thirdly, for the construction segment the novelty of the application is higher. Distributing 

effluents to concrete batch plants and/or reuse this “reclaimed water”, with the ultimate goal of 

producing high-quality concrete, is a practice which does not yet exist, accordingly to the conducted 

research. However, the potential control of the water characteristics used to materials production was 

seen as a feature that a client value significantly.  

In a top-down approach, as the world’s demand for water will increase in the next few decades, making 

the total market of construction companies located in the United States, the Middle East and Africa, 

Europe and Asia more relevant. Therefore, in the market value simulations performed in the business 

plan and market assessment (2018), multiplying the number of companies located in these four regions 

(1 658 104) by the average reactor price (current water solutions product average price: €65 000) 

equals a total market value of €108 billion. The target market considers construction companies in 

which the need is already high. The water scarcity issue is higher in dry regions located in the Middle 

East and Africa as well as in Asia. Asia has the most polluted water [37] in the planet and the biggest 

concrete production accounting for 5 billion tons of concrete per year. Following the same logic, the 

target market will have the size of €440 million. The size of the target market shows the potential for 

starting the market entry strategy that will focus on scaling-up with an industrial partner in a win-win 

solution, with the purpose of testing the hypothesis that a full-scale product is viable. 
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3.7 Future work 

Despite the conclusions in the appended papers regarding the three main core subjects on this PhD 

project, there are still gaps in the knowledge to be explored and some ideas to be developed, regarding 

the full application of electrokinetic process for the degradation of emerging organic contaminants, 

evaluation of new sensor systems for their monitoring and the viability of scaling-up electro-based 

technologies. Thus, some of the most important topics for future work are summarized as follows:  

o The independent manufacture of mixed metal oxide electrodes, to be used in the ED process, 

should be evaluated. It is expected that at industrial level, significant additional costs may be 

incurred due to the outsourcing of this manufacture.  The building of electrodes in-house would 

also be extremely important to have less dependency of electrodes production suppliers.  

o The “sensorial” output impedance data are complex, demanding a time-consuming analysis. In 

order to compare sensor systems and therefore, their performance and drawbacks, it is 

important to develop of a standard analysis method. Additionally, it is needed a trained librarian, 

to gather all the information from previous sensors measurements. If standardized data 

treatment was employed in all research groups, the comparison between methods, sensors and 

their characteristics would be more accurate.  

o The efficiency of e-tongue multi-analyte quantification may improve if: (1) biosensors build up 

with lipids are considered as sensing layers, since some EOCs are, e.g, TCS, lipophilic molecules; 

(2) hybrid layers are developed, such as TiO2/PSS, that will provide a negative charge to the 

outcome layer, resulting in “sensorial” signal increase. 

o The study of increasing the nominal voltage of the proton-exchange membrane fuel and 

understanding its full potential to feed a larger system.  

o Regarding the provisional patent application “designed reactor”, the scaling-up is required to the 

next phase in order to conduct tests on industrial mortars production in a construction company, 

together with the reactor pilot implementation on the facility. 

o One of the main obstacles in the EU wastewater reuse implementation is the price of wastewater. 

In this PhD project, initial values were achieved in an integrated solution that includes: 

wastewater as a raw material in a product reactor solution. However, we still do not fully 

understand its behaviour on a larger scale. It is believed that the scaling-up on an industrial level 

will improve the process, price and market knowledge. Additionally, a bottom-up approach 

regarding the market size is also recommended for further actions.  
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a b s t r a c t

Degradation technologies applied to emerging organic contaminants from human activities are one of
the major water challenges in the contamination legacy. Triclosan is an emerging contaminant,
commonly used as antibacterial agent in personal care products. Triclosan is stable, lipophilic and it is
proved to have ecotoxicologic effects in organics. This induces great concern since its elimination in
wastewater treatment plants is not efficient and its by-products (e.g. methyl-triclosan, 2,4-
dichlorophenol or 2,4,6-trichlorophenol) are even more hazardous to several environmental compart-
ments. This work provides understanding of two different electrochemical reactors for the degradation of
triclosan and its derivative by-products in effluent. A batch reactor and a flow reactor (mimicking a
secondary settling tank in a wastewater treatment plant) were tested with two different working anodes:
Ti/MMO and Nb/BDD. The degradation efficiency and kinetics were evaluated to find the best combi-
nation of current density, electrodes and set-up design. For both reactors the best electrode combination
was achieved with Ti/MMO as anode. The batch reactor at 7 mA/cm2 during 4 h attained degradation
rates below the detection limit for triclosan and 2,4,6-trichlorophenol and, 94% and 43% for 2,4-
dichlorophenol and methyl triclosan, respectively. The flow reactor obtained, in approximately 1 h,
degradation efficiencies between 41% and 87% for the four contaminants. This study suggests an alter-
native technology for emerging organic contaminants degradation, since the combination of a low
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current density with the flow and matrix induced disturbance increases and speeds up the compounds’
elimination in a real environmental matrix.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

The world’s rapid population growth over the last century has
been a major factor into the demand for water resources usage and
reuse. To overcome these water challenges, water contamination
must be taken into account. Recently, the environmental quality
criteria of water resources have been linked to a new class of
environmental pollutants, the emerging organic contaminants
(EOCs), a reality that has increased the need for sustainable tools
that guarantee their quality and safety standards, enable their
monitoring and promote the prosperity of a healthy population and
environment (Corcoran et al., 2010). EOCs are defined as “chemical
substances that have no regulation and are suspected to negatively
affect the environment or whose effects are unknown” (Daughton,
2004; Geissen et al., 2015). Among EOCs, triclosan (TCS, 2,4,40-tri-
chloro-20-hydroxydiphenyl ether) is an antimicrobial agent that has
been used for more than 50 years as an antiseptic, disinfectant or
preservative in clinical settings and several consumer products. TCS
has been detected in wastewater treatments plants (Brose et al.,
2019; Chen et al., 2019; Halden, 2019) and in surface water (Hua
et al., 2005; McAvoy et al., 2002). Recent reviews on TCS recount
numerous health effects ranging from endocrine-disruption to
uncoupling mitochondria (Olaniyan et al., 2016; Weatherly and
Gosse, 2017). Although in 2016 the US Food and Drug Administra-
tion banned TCS from certain wash products, namely hand soap
and body wash (Food and Drug Administration, 2016) and hospital
products by the end of 2018 (Food and Drug Administration, 2017),
it is permissible to have TCS in e.g. toothpastes, cosmetics, clothes
or toys (Bever et al., 2018). Furthermore, TCS derivates, such as the
metabolite methyl-triclosan (MTCS) (Guo et al., 2009), which is
even more persistent (Balmer et al., 2004) and TCS by-products,
formed by repeated exposure to chlorine in water such as 2,4-
dichlorophenol (DCP) and 2,4,6-trichlorophenol (TCP) are also
under concern, since they present health risk to humans and are
recognized as persistent priority pollutants in the United States,
Europe and China (Xing et al., 2012).
Several clean-up technologies have been developed and used to

improve the quality and safety of water reuses. Among these
technologies, the electrochemically-induced advanced oxidation
processes (e.g. Fenton’s reaction and anodic oxidation) have been
receiving special attention (Glaze et al., 1987; Oturan and Aaron,
2014; Panizza and Cerisola, 2009). Another alternative is the elec-
trokinetic process which is based on the application of a low-level
direct current between a pair of electrodes, that in addition to
remove contaminants from the contaminated matrix by electric
potential also promotes the generation of �OH and therefore en-
hances the oxidation of EOCs. This technology proved to be efficient
in the degradation of EOCs in soil (Guedes et al., 2014), sludge
(Guedes et al., 2015) and effluent (Ferreira et al., 2018). The optimal
combination between the electrode materials (e.g. titanium/mixed
metal oxides (Ti/MMO), boron-doped diamond (BDD), platinum)
and the reactor design are key factors, since the oxidation process is
dependent on the materials nature and the reactor workability
(Schranck and Doudrick, 2020; Walsh and Ponce de Le�on, 2018).
Regarding the reported works on different electrode materials and
batch/flow reactors, Ren et al. (2016) presented a vertical-flow
electro-Fenton reactor, composed of 10 cell compartments using

PbO2 anode and modified graphite felt mesh cathode for the
degradation of tartrazine, reaching with the optimal conditions,
TOC removal efficiency of 100%. P�erez et al. (2017) studied a
microfluidic flow-through electrochemical reactor for wastewater
treatment that achieved, with diamond anodes, complete miner-
alization of clopyralid spiked in a low-conductive matrix. Wang
et al. (2019) reported a continuous-flow reactor for electro-
chemical oxidation of various alcohols using a carbon anode, where
800 mA enabled effective oxidation up to 99% yield in 10 min.
Moreover, comparative studies in electrodes combinations were
described: Yoon et al. (2012) reported a flow reactor for the elec-
trochemical degradation of phenol and 2-chlorophenol using Pt/Ti
and BDD electrodes, as well as Ambauen et al. (2019) comprised an
electrochemical oxidation batch reactor for salicylic acid degrada-
tion with BDD and Pt electrodes. In both studies similar removal
rates in the different electrodes combinations were attained,
showing that not only the electrodes type highly influence the
compounds degradation efficiencies, but also the physicochemical
characteristics of the contaminants to be degraded. BDD and MMO
have been mainly and equally used as anodes (Moreira et al., 2017),
both showing similar performances in the degradation efficiency
(Brillas and Martínez-Huitle, 2015; Skoumal et al., 2008; Yoon et al.,
2012). BDD was reported as electrochemical inactivator of phenolic
compounds (Sir�es et al., 2007; Wang and Farrell, 2004), and Ti/
MMO was used to degrade organic contaminants in wastewater
(Yuan et al., 2013).
The aim of this study was to carry out an experimental elec-

trochemical treatment for the degradation of TCS and its by-
products MTCS, DCP and TCP, in a real wastewater matrix: a sec-
ondary effluent. A batch reactor was the starting core, with ex-
periments on (1) electrodes combination (Ti/MMO as anode and
cathode; BDD/Nb as anode and Ti/MMO as cathode); (2) current
densities; (3) degradation kinetics. Furthermore, a flow reactor,
designed to mimic a secondary settling tank in a wastewater
treatment plant, was introduced to find a system that has the po-
tential for operational implementation.

2. Materials and methods

2.1. Chemical, standards and effluent characteristics

TCS (99%), MTCS (99%), DCP (98%) and TCP (98%) were pur-
chased from SigmaeAldrich (Steinheim, Germany), see Table S1, at
supplementary data. Individual stock solutions for calibration
purposes were prepared with 1000 mg/L in methanol and stored
at �18 �C. The methanol, acetonitrile, acetone and formic acid used
were from SigmaeAldrich (Steinheim, Germany) in gradient grade
type. Water (Type I) was from a Millipore system (Bedford, MA,
USA). The effluent used was the liquid fraction collected in the
secondary settling tank at a wastewater treatment plant (Lisbon,
Portugal). Effluent samples were collected in April and May and its
initial characterization, for future works comparison, is presented
in Table S2, at supplementary data.
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2.2. Methods

2.2.1. Electrochemical degradation reactors
Two different set-ups are represented in Fig. 1. The experiments

were carried out in an electrochemical batch reactor (EBR) and in
an electrochemical flow reactor (EFR). The electrodes used were
made of Ti/MMO Permaskand wire: Ø ¼ 3 mm, L ¼ 80 mm
(Grønvold & Karnov A/S, Denmark) and Nb/BDD plate: H ¼ 50 mm,
L ¼ 80 mm, T ¼ 1 mm (Neocoat, Switzerland), assembled in
different configurations (as anode or as cathode). A power supply
E3612A (Hewlett Packard, Palo Alto, USA) was used to maintain a
constant current in the electrochemical reactors and the voltage
was monitored. The volume of effluent treated was approximately
500 mL for each reactor. The effluent flow (9 mL/min) in the EFR
was maintained by a peristaltic pump (Watson-Marlow 503 U/R,
Watson-Marlow Pumps Group, Falmouth, Cornwall, UK).
All electrochemical experiments were carried out in duplicate,

in dark conditions, and at a controlled room temperature of 22 �C,
according to the conditions presented in Table 1. Control experi-
ments, without applying current, were also carried out. During the
experiments, the pH was measured with a Radiometer pH-
electrode EDGE (HANNA, USA) and the conductivity with a Radi-
ometer Analytic LAQUA twin (HORIBA Ltd., Japan). In both reactors
(EBR and EFR) the matrix was spiked with the four compounds
under study (TCS, MTCS, DCP and TCP), in order to monitor their
degradation process (0.8 mg/L for each). To assess EOCs removal
kinetics in the EBR, samples were collected every 15 min, during

4 h. For EOCs determination and quantification, initial and final
samples were extracted following the procedures described in
section 2.2.2.

2.2.2. Instruments and analytical procedures
The effluent initial characterization was performed for the

following chemical parameters: Chemical Oxygen Demand, COD
(determined by volumetric method after a previous oxidation with
potassium dichromate in an open-reflux, at 160 �C, in an acidic
environment, for 60 min); biological oxygen demand, BOD5
(determined by using a specific probe: OxiTop IS6, GlobalW Gold
River, CA, USA); Total P concentration was determined by Induc-
tively Coupled Plasmawith Optical Emission Spectrometry, ICP-OES
(HORIBA Jobin-Yvon Ultima, Japan), equipped with generator RF
(40.68 MHz), monochromator Czerny-Turner with 1.00 m
(sequential), automatic sampler AS500 and dispositive CMA-
Concomitant Metals Analyzer. Cl�, NO3� and SO42� were analyzed
by Ion Chromatography, IC (DIONEX ICS-3000, USA), equippedwith
conductivity detector.
The extraction of the analytes in the effluent was performed by

solid-phase extraction using Oasis HLB (200 mg, 6 mL; Waters
Corporation, Saint-Quentin-en-Yvelines Cedex, France). The solid-
phase extraction cartridges were conditioned by washing with
3� (6mL) of methanol, followed by re-equilibriumwith 3� (6 mL)
of Milli-Q water. For organic compounds enrichment, the samples
were acidified to pH ¼ 2 before extraction using nitric acid. The
200 mL aqueous samples were passed through the cartridge at a

Fig. 1. Electrochemical reactors under study: (a) case 1 Ti/MMO as anode and cathode; (b) case 2 Nb/BDD as anode and Ti/MMO as cathode (EBR and EFR related to Electrochemical
Batch Reactor and Electrochemical Flow Reactor, respectively).
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flow rate of approximately 10 mL/min by applying a moderate
vacuum, followed by a dried period of approximately 3 min by
vacuum. The retained analytes were eluted sequentially with
2 � (4 mL) of methanol and 1 � (4 mL) of acetone, conferring a
concentration factor of 16.7x to the analysis.
Determination of the target compounds was performed in an

Agilent 1260 Infinity II high-performance liquid chromatography
(HPLC) equipped with a quaternary pump and auto-sampler, and a
diode array detector (DAD)/fluorescence detector 1100 Series
(Agilent Technologies Inc., USA). An EC-C18 column (InfinityLab
Poroshell 120 High Efficiency with 4.6 mm � 100 mm, 2.7 mm,
Agilent Technologies Inc., USA) was used. All HPLC runs were per-
formed at a constant flow (1.5 mL/min), in gradient mode, with the
oven set to 36 �C. A mixture of acetonitrile/Milli-Q water/formic
acid was used as eluents (A: 5/94.5/0.5% and B: 94.5/5/0.5%) with a
gradient of 60% of B (0e2 min) followed by 97% of B (2e3.5 min)
and 98% of B until 5 min. Calibration curve was performed in the
range between 0.5 and 20.0 mg/L. The limits of detection and
quantification in this work were, respectively, 0.7 and 2.0 mg/L for
TCS, 1.3 and 3.9 mg/L for MTCS, 0.7 and 2.0 mg/L for DCP, 1.0 and
3.0 mg/L for TCP. Recovery tests were made with fortified effluent
for 1 h of contact time (30 min of slow agitation). The recovery
percentages were between 62 and 120% in all cases. The same HPLC
system was used to monitor the EOCs’ degradation rates and ki-
netics behavior. The percentage of degradation was calculated ac-
cording to Equation (1):

1� Final EOC mg=L
Initial EOC mg=L

�100 (1)

Themineralization of EOCswas analyzed from the decay of their
total organic carbon, TOC, which was determined on a Vario TOC
select analyzer (Elementar, Langenselbold, Germany), after filtra-
tion using 0.70 mm membrane filters. The screen and diagnostic of
new peaks related to compounds formed after the electrochemical
treatments was performed by liquid chromatography/mass spec-
trometry (LC/MS)L, LC Agilent 1200 Series with Binary pump - MS
Agilent 6130 B Single Quadrupole (Agilent Technologies Inc., USA).
All sample analysis was carried out in duplicate. The statistical

data obtained was analyzed by the GraphPad Prism version 8.0e.
Statistically significant differences among samples for 95% level of
confidence were calculated through t-test on way and ANOVA.

3. Results and discussion

In the following section, electrochemical reactors for the
degradation of EOCs in effluent were tested (cases according to
Table 1 conditions), correspondingly:

i. EBR was tested to find the best current for both electrodes’
combination: Cases 1 and 2;

ii. EBR degradation kinetics was studied for the most appro-
priated current, for both electrodes’ combination: Cases 1
and 2; electro-byproducts were investigated as well.

iii. EFR degradation was studied for both electrodes combina-
tion: Cases 1 and 2, in order to have a final decision onwhich
one is the best option for a reactor operational
implementation.

3.1. Electrochemical treatment evaluation

3.1.1. Electrochemical batch reactor (EBR): pH, conductivity and
voltage
Table 2 presents the pH, conductivity and voltage measured at

the beginning and after 4 h of the EBR treatment.
In the control experiments (data not shown) there were no

significant pH and conductivity changes in the effluent. pHwith the
Ti/MMO as anode remained approximately constant, whereas for
Nb/BDD as anode, acidification occurred, as the applied current
increased (initial vs final at different pH: p value ¼ 0.001e0.01 at
95% of confidence level). This indicates that Nb/BDD anode has a
better tendency for water oxidation promoting, the acidification of
the media (pH decreases from around 8 to 3.8).
The conductivity of the matrix increased in the experiment with

the highest current density and only when using Nb/BDD as anode.
The degradation process may cause the presence of more ions in
solution, and consequently higher conductivity at the end of the
experiments. The voltage drop behavior is in accordance with the
changes observed in the conductivity. A slight variation of voltage
between theworking electrodes was observed in all cases, except in
the control assay, related to the changes in conductivity due to
electrolysis reactions. Concentration profiles within the reactor
were observed, indicating that mixing could play an effect on en-
ergy requirements.

3.1.2. Electrochemical batch reactor (EBR): current density
Fig. 2 shows the removal of the target EOCs, measured as the

Table 1
Experimental scheme: evaluated parameters.

Current density at anode
(mA/cm2)

Kinetics study Reactor type

Case 1: Ti/MMO as anode and cathode 2, 3, 7, 14 7 mA/cm2 EBR
Case 2: Nb/BDD as anode and Ti/MMO as cathode 2, 4, 8.5, 10 10 mA/cm2 EBR
Case 1: Ti/MMO as anode and cathode 7 e EFR
Case 2: Nb/BDD as anode and Ti/MMO as cathode 10 e EFR

Table 2
pH, conductivity and voltage before and after the EBR treatment during 4 h, with Ti/
MMO or Nb/BDD as anode.

Current density at anode
(mA/cm2)

pH Conductivity
(mS/cm)

Voltage (V)

Initial 8.3 ± 0.1 1.2 ± 0.2 13.7 ± 7.6

Ti/MMO
2 8.0 ± 0.1 0.7 ± 0.1 6.5 ± 0.6
3 7.9 ± 0.1 1.0 ± 0.5 9.4 ± 3.5
7 8.5 ± 0.5 1.1 ± 0.1 14.2 ± 0.8C

14 8.5 ± 0.6 1.0 ± 0.0 17.6 ± 5.6

Initial 8.4 ± 0.2A 1.4 ± 0.9 15.4 ± 10.2

Nb/BDD
2 7.0 ± 0.0B 1.1 ± 0.5 9.6 ± 1.9
4 5.8 ± 1.3a 1.0 ± 0.5 11.0 ± 0.1
8.5 3.9 ± 0.0a,b 1.2 ± 0.2 25.0 ± 5.4
10 3.8 ± 0.1a,b 2.4 ± 0.2 12.0 ± 1.4c

Statistical analysis: Multiple comparisons were statistically performed at p < 0.05;
data with lower case letters are statistically significantly different from the ones
with the same capital letter.
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percentage of degradation. Control experiments showed no
degradation. As the experiments were carried out in dark condi-
tions, photodegradation was not taking place. Compound volatili-
zation from effluent is not expected to be an important degradation
process based on the estimated Henry’s law constant of the studied
compounds (kH > 10

�6) (Table S1 at supplementary data). Thus, the
degradation rates are attributed namely to (1) biotic factors, (2)
direct anodic oxidation, and (3) indirect oxidation in the liquid bulk.
Direct anodic oxidation occurs as the contaminants get in contact
with anode surface and are destroyed by the electron transfer re-
action. Indirect oxidation in the liquid bulk is mediated by the ox-
idants that are formed electrochemically, such as chlorine,
hypochlorite, hydroxyl radicals, ozone and hydrogen peroxide
(Klavarioti et al., 2009). Also, if the pH during the experiments is
greater than EOC’s pKa (Ti/MMO 7 and 14mA/cm2), the compounds
were in their ionized form, more susceptible to degradation
(Chianese et al., 2016).
In a simpler design as EBR (Fig. 1), the main removal mechanism

is the electro-degradation that corresponds to compounds’ oxida-
tion and reduction. At the anode, the EOCs suffer both direct and
indirect degradation whereas, in the cathode, only indirect degra-
dation will occur. As mentioned before, in the case 2 experiments
(4, 8.5, 10 mA/cm2, with Nb/BDD as anode) the pH turned acidic,
thus, the hydroxyl radical had a standard reduction potential of
2.8 V (�OH þ e� þ Hþ¼H2O). In the case 1 experiments the alkaline
pH decreases the standard reduction potential to 1.8 V
(�OH þ e� ¼ OH�). Moreover, chemical structures (Table S1 at
supplementary data) and reactivity will play a role in the degra-
dation process. For instance, the phenolic ring of TCS can be acti-
vated by the two O-containing groups and may be attacked by �OH
radicals, with production of hydroxylated TCS (Yuan et al., 2013). In
both cases 1 and 2, TCS was degraded below its detection limit.
Additionally, if an aromatic molecule carries an aliphatic side chain,
�O- attacks there by H abstraction whilst �OH adds preferentially to
the aromatic ring (applied to TCS in its ionized: EBR experiments
with 7 and 14mA/cm2) (Buxton et al., 1988). Performing a statistical
comparison with a one-way t-test, with 95% confidence, for the
highest current densities, in case 1 (Ti/MMO as anode at 14 mA/
cm2) and case 2 (Nb/BDD as anode at 10 mA/cm2) regarding the
removal rates, Ti/MMO is slightly better at the degradation of TCP
(<LOD and ~91%, with a p value ¼ 0.0061). BDD is clearly more
efficient at degrading MTCS (~47%e84% with a p value ¼ 0.015).
According to the above data, the decision for the best current

density in the following sections were based on: (1) Ti/MMO anode,
7 mA/cm2 was chosen because either less intermediate peaks (by-

products formed after electro-degradation) were detected in the
LC/MS analysis or also, in the case of the highest current tested, the
ratio between the energy consumption and the degradation rates
were similar and less costly; (2) Nb/BDD anode, 10 mA/cm2 was
chosen due to the higher degradation observed for MTCS
compound.

3.1.3. Electrochemical batch reactor (EBR): degradation kinetics
Normalized decay of concentration as a function of time over

4 h, for the two electrodes combination at the best current density
conditions, are present in Fig. S1 at supplementary data. Consid-
ering a pseudo first-order degradation for all contaminants, the
corresponding law rate can be written as Equation (2):

LnðC = C0Þ¼ � kt (2)

where k (min�1) is the apparent constant rate of the reaction.
According to experimental data, Table 3, the EOCs removal

follow a pseudo first-order kinetics (R2 � 0:9).
From the kinetics obtained it is possible to estimate that the

contaminants removal starts immediately after the application of
the electric current (see Fig. S1 at supplementary data). The fastest
rate was achieved with Ti/MMO for TCS and the slowest for MTCS in
both electrodes combination (Table 3). Comparing both anodes, the
degradation velocity is lower with Nb/BDD that also presents
identical degradation rates for all the analytes under study,
showing amore constant degradation velocity behavior. The higher
adsorption’s strength of �OH radicals on each electrode surface
(adsorption enthalpy) the lower oxidizing power (Kapałka and
Comninellis, 2009). Even though, the BDD electrodes are well
known by their high oxidizing power (Alfaro et al., 2006; Kapałka
et al., 2008; Kapałka and Comninellis, 2009), the presence of
chloride species can slow down the electrodes performance in the
EOCs degradation, and therefore the indirect oxidation by active

Fig. 2. Emerging organic contaminants degradation with different currents intensities: (a) case 1: Ti/MMO as anode and cathode; (b) case 2: Nb/BDD as anode and Ti/MMO as
cathode; during 4 h treatment (error bars related to the standard deviation: n ¼ 2; TCP - 2,4,6-trichlorophenol; DCP - 2,4-dichlorophenol; TCS e triclosan; MTCS - methyl-triclosan).

Table 3
Pseudo first-order kinetics (LnðC =C0Þ ¼ � kt) of EOCs removal through (k x 10�2
h�1).

Anode Ti/MMO anode at
7 mA/cm2

Nb/BBD anode at
10 mA/cm2

EOCs k R2 k R2

TCP 1.67 0.94 0.61 0.96
DCP 1.97 0.92 0.60 0.99
TCS 7.61 0.97 0.60 0.90
MTCS 0.44 0.91 0.60 0.97
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chlorine species may not occur (Anglada et al., 2009; Mascia et al.,
2007; Pereira et al., 2015; Scialdone et al., 2009).
Following the kinetics, it is important to mention that EOCs

degradation was considered as the elimination of parent organic
compound. The parent compound loss indicates transformation at
an unknown degree, and not necessarily mineralization (that
showed in section 3.1.4), where sometimes the by-products can be
more harmful than the parent compounds. In this sense, the
experimental samples were screened by LC/MS. Comparing Ti/
MMO and Nb/BDD as working anodes, the latter presents possible
by-products from electro-EOCs degradation pathways, while the
former produced no detectable by-products (results not shown).
The degradation of TCS in chlorine matrices (effluent initial Cl�

concentration was 192.6 ± 83.9 mg/L) led to the formation of two
tetra- and one penta-chlorinated hydroxylated diphenyl ether, as
well as 2,4-dichlorophenol. Chlorination of the phenolic ring and
cleavage of the ether bond were identified as the main triclosan
degradation pathways (Canosa et al., 2005). Free chlorine mediated
oxidation of triclosan leads to the formation of chloroform and
other chlorinated organics (Fiss et al., 2007; Rule et al., 2005).
Therefore, TCS is assumed as the main contributor for the identified
by-products, since the other three EOCs are TCS natural by-
products or metabolite. Thus, the diagnostic of ions masses in
case 2 (10 mA/cm2) were screened and estimated from the profile
isotopes of a mass spectrum: ion 128 with one hydroxyl and one
chlorine in the phenolic ring, 161 and 196 ions (from TCS ring
breaking or from spiking DCP and TCP), 177 ionwith two hydroxyls
and two chlorines that are not possible to conclude the position on
the ring, and 272 ion corresponding to TCS losing the hydroxyls.
Due to the obtained data, a more thorough study is needed to assess
the exact mechanisms pathways for the four compounds under
study, when an electrochemical treatment is applied.

3.1.4. Electrochemical flow reactor (EFR): emerging organic
contaminants degradation at the best conditions
An EFR reactor, mimicking the secondary settling tank in a

wastewater treatment plant was developed and tested. The EFR had
a flow rate of 9 mL/min, meaning 55 min of retention time to every
500 mL of a batch of effluent spiked with EOCs. The path of the
effluent goes through an internal chamber where the electrical
current is being applied, followed by a second chamber, the reactor
outlet (Fig. 1). Using a flow will have significant effect on the
oxidation rates, since it can enhance the mass transport of organic
species to the electrode surface where they undergo oxidation
mainly by the hydroxyl radicals, and increase the turbulence in the
system, that is, at that moment, hydrodynamic.
Table 4 presents the effluent pH, conductivity and voltage before

and after the EFR treatment, where there were no statistically
significant differences between these parameters, contrarily to EBR
treatment (see Table 2). All the parameters remained approxi-
mately constant.
Fig. 3 shows the removal of the target EOCs. Similar to the EBR,

the photodegradation and compound volatilizationwere not taking
place in the degradation process, thus the degradation only occurs
due to the direct anodic oxidation or indirect oxidation in the liquid

bulk.
Accordingly, in approx. 1 h of electrokinetic treatment, the set-

up achieved degradation rates for TCP 61% (± 7%), DCP 41% (±
1%), TCS 87% (± 1%) and, MTCS 41% (± 1%) when Ti/MMO was used
as the working anode. The lower rates observed for DCP may be
explained by the hypothesis that, due to the TCS degradation path,
DCP will be formed when the �OH radicals attached the phenolic
ring (Yuan et al., 2013). Comparing the degradations rates in case 1
and 2, there are statistically significant differences at 95% confi-
dencewhen different anodes are used: for TCP p value¼ 0.0196, for
DCP p value ¼ 0.0079 and for TCS p value ¼ 0.0055. However, for
MTCS degradation in both cases 1 and 2, no statistically significant
differences were found. MTCS degradation data, points out for the
compound’s dependency in the matrix composition and treat-
ment’s retention time. Regarding the removal rates of TCS, DCP and
TCP when Nb/BDD was used as anode in the EFR treatment, some
clarifications can be pointed out: (1) processes such as polymeri-
zation of phenolic compounds on the electrode surface can occur,
thus decreasing the performance of the electrode; (2) formation of
organochloride molecules that are resistant to degradation
(Korshin et al., 2006); (3) in alkaline conditions (end pH around 7.1)
the Nb/BDD reacts with hydroxide (OH�), which can recombine
with �OH to form H2O. At alkaline pH and lower current densities,
the abundance of OH� retarded the oxidation of compounds by �OH
(Hayashi et al., 2016); (4) additionally, though not observed in
current work, at alkaline conditions the surface morphology of Nb/
BDD may also change, producing inhibitory conditions for organic
oxidation, and ultimately degrading the Nb/BDD surface
(DeClements,1997; Gonz�alez-Gonz�alez et al., 2010; Griesbach et al.,
2005). Wachter et al. (2019) also observed a decrease in the
removal efficiencies using Nb/BDD as anode, when lower applied
current densities (5 and 10 mA/cm2) and pH 10 were combined.
In order to understand the dynamics of the degradation process

between the two tested reactor designs, an estimation of the four
EOCs was performed in the EBR using the pseudo first-order ki-
netics for 1 h treatment. Thus, the data suggested (estimations
values obtained from Fig. S1, at supplementary data) that EFR leads
to an improvement of degradation for TCP (EBR 45% vs EFR 61%),
DCP (EBR 28% vs EFR 41%), and MTCS (EBR 12% vs EFR 41%), when
Ti/MMO was used as working anode. In the case 2, Nb/BDD as
anode, only MTCS (EBR 20% vs EFR 49%) increased its degradation
using a dynamic system. For TCS, the degradation occurs in both
anodes from the first 15 min on, however the degradation between
the flow vs the batch reactors are not statistically different.
The Total Organic Carbon, TOC was analyzed for the different

electrode combination (Ti/MMO anode, 7 mA/cm2 and Nb/BDD
anode, 10 mA/cm2) in both EBR and EFR treatments. The potential
to mineralization was given by comparison data from the TOC in
the initial inlet (effluent spiked with EOCs) and the TOC data of the
four experiments. Therefore, the TOC decay when Ti/MMO is used
as working anode with 7 mA/cm2 in EBR and EFR was 36% and 27%,
respectively, in effluent. If Nb/BDD is used as working anode with
10 mA/cm2 in EBR and EFR was 30% and 22%, respectively in
effluent. Accordingly, the Ti/MMO as anode seems to present more
efficiency to mineralization of the compounds under study.

Table 4
The pH, conductivity and voltage before and after EFR treatment during 1 h.

Anode Current density at anode
(mA/cm2)

pH Conductivity
(mS/cm)

Voltage (V)

Ti/MMO 7 initial 7.6 ± 0.5 1.6 ± 1.0 14.5 ± 2.2
end 7.6 ± 0.6 1.2 ± 0.5 13.4 ± 2.8

Nb/BDD 10 initial 7.3 ± 0.0 2.3 ± 0.0 16.8 ± 6.4
end 7.1 ± 0.0 1.5 ± 0.4 13.8 ± 3.3
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Wachter et al. (2019) reported that, for a complete TOC removal
many oxidation steps, higher current densities and longtime
treatment should be applied. A non-dependence of the TOC
removal rate on the electrodes characteristics may be expected for a
systemwhere the organic molecule and its oxidation intermediates
are oxidized on the anode surface. The results obtained in the
present work were in agreement with those reported by the
Medeiros de Araújo et al., 2014 on the mineralization of the dye
Rhodamine B and Souza et al. (2016) on the mineralization of the
DCP.
In terms of reactor design, EFR using Ti/MMO anode could be a

valid choice to a scale-up reactor for EOCs degradation, both by a
financial point of view (Ti/MMO cheaper compared to Nb/BDD), an
energy consumption perspective (lower current density, same
degradation rates; energy consumption according to Portuguese
energy price for householders (0.2154 V) and the kWh required for
the EBR and EFR treatments: 0.0014 V for EBR using Ti/MMO anode
and 0.0029 V using Nb/BDD anode or for EBR 0.0003 V for EFR
using Ti/MMO anode and 0.0009 V using Nb/BDD anode, were
calculated), but also due to the faster degradation kinetics (when
t ¼ 1; LnðC =C0Þ ¼ � k �). Furthermore, according to LC/MS anal-
ysis, no detectable by-products were observed with this set-up.

4. Conclusion

Applied to a secondary effluent, two different electrochemical
reactors were tested for the degradation of triclosan and its de-
rivative by-products: methyl-triclosan, 2,4-dichlorophenol and
2,4,6-trichlorophenol. The compounds elimination promoted by
two different anodes, Ti/MMO and Nb/BDD, in the electrochemical
batch reactor and in the electrochemical flow reactor were evalu-
ated. In both reactors the best electrode combination was accom-
plished with Ti/MMO, presenting faster kinetics degradation and
less dependency on electrical current, achieving similar elimina-
tions with a cheaper electrode. In the batch reactor at 7 mA/cm2,
during 4 h, the degradation rates were below the detection limit for
triclosan and 2,4,6-trichlorophenol, and 94% and 43% for 2,4-
dichlorophenol and methyl triclosan. In the flow reactor, in a 1 h
treatment, the degradation efficiencies varied from 41% to 87% for
the four contaminants under study. Electrochemical flow reactor
implementation inwastewater treatment plants may be considered
as viable option from an operational point of view. The combination
of a low current density with the flow, and induced matrix
disturbance, increased and speed up EOCs degradation.
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Abstract:
Triclosan (TCS) an antimicrobial agent is a personal care products widely used on a daily basis. TCS is being
released to the environment by wastewater treatment plants processing at sub-ppb effluent concentrations,
presenting toxic and endocrine disrupting activity. A method for detection and quantification of TCS in effluent
was developed. The optimization of the method complies the different triple quadrupole gas chromatography
mass spectrometer conditions: injector, transfer line and source temperature, collision gas pressure and energy,
injection mode. This method will allow the fast and efficient environmental monitoring of TCS and related
compounds in aqueous matrices.

1 INTRODUCTION

Emerging organic contaminants (EOC), among
them the personal care products class, have gathered
increasing interest in recent years [1]. This group
of EOC encompasses a wide range of chemicals, in-
cluding several phenolic compounds such as triclosan
(TCS), see Table 1.

TCS is employed as antimicrobial and preserva-
tive agents in several consumer products, e.g. de-
odorants and toothpastes. The continuous detection
of TCS has led to debate on its safety, effectiveness
and usage regulation, that comply with the needs of
environmentally friendly monitoring techniques [2].
Due to advances in analytical technology, a plethora
of organic compounds, from pharmaceuticals to per-
sonal care products, are detectable and quantifiable in
water if extremely sensitive techniques are applied.
However, identification and quantification of environ-
mental matrices is challenging due to the low sensi-
tivity of available instrumentation, the vast physio-
chemical properties of target analytes, and the rela-
tively low levels that occur in aqueous environmental

matrices (2 ng/L-1 - 40µg/L of TCS found ) [3–5].
Several detectors have been applied in tandem with
GC and LC separations, yet, mass spectrometric de-
tection has emerged as the most commonly employed
due to its selectivity and sensitivity, where the triple
quadrupole mass spectrometer is generally considered
the most sensitive [6–8]. In this study an effective and
non derivatization method for determination of TCS
in effluent , by gas chromatography-triple quadrupole
mass spectrometry in Multiple Reaction Monitoring
mode (MRM), was developed. Solid phase extraction
(SPE) was used to concentrate and purify the TCS
in real effluent, prior to analysis. To the best of our
knowledge, most studies do not challenge the stan-
dard conditions of the instrumentation, even though
each case is different, and many analytes would ben-
efit from this type of optimization.



2 EXPERIMENTAL

2.1 Chemicals and standards

TCS (99%) was purchased from Sigma–Aldrich
(Steinheim, Germany). Individual stock solutions
for calibration purposes were prepared at 200 mg/L
in methanol/ACE (2:1) and stored at -18oC. The
methanol and acetone used were from Sigma–Aldrich
(Steinheim, Germany) in gradient grade type. Water
(Type I) was from a Millipore system (Bedford, MA,
USA). The effluent used was the liquid fraction col-
lected in the secondary settling tank at a wastewater
treatment plant (Lisbon, Portugal). The gas Hellium
was 99.9% pure.

2.2 Standard solutions

A concentrated solution of TCS (200 mg/L) was pre-
pared by dissolving in methanol/ACE (2:1). Eight-
point calibration (20, 40, 80, 120, 240, 320, 400, 700)
ng/L were performed in triplicate.

2.3 Samples and extraction

The extraction of TCS present in the effluent was per-
formed by solid phase extraction (SPE), using Oasis
HLB (200 mg, 6 mL) from Waters (Saint-Quentin En
Yvelines Cedex, France). The SPE cartridges were
conditioned by washing with 3 x 6 mL of methanol,
followed by re-equilibrium with 3 x 6 mL of Milli-Q
water. For TCS enrichment, the samples were acidi-
fied to pH 2 before extraction using nitric acid, with
30 min of slow stirring and 30 min pause time after the
spiking. The 200 mL aqueous samples were passed
through the cartridge at a flow-rate of approximately
10 mL/min by applying a moderate vacuum, flow by a
dried period of approximately 3 min by vacuum. The
retained analytes were eluted sequentially with 2 x 4
mL of methanol and 1 x 4 mL of acetone and filtrated
by PTFE syringe filters before GC-MS/MS analysis.

2.4 Instrumentation

The GC-MS/MS method used for effluent detection
and quantification is described in Tables 2.

To achieve the optimized conditions, it was tested
in GC: splitless time, liner type, injector. In the MS:
source and interface temperature, Q1 and Q3 resolu-
tion (peak shape and area offset), collision gas pres-
sure, collision energy and dwell time. The tests were
conducted in a standard solution of 1 mg/L of TCS to
better understanding parameters changes.

3 RESULTS AND DISCUSSION

GC–MS/MS in MRM mode has become a popu-
lar analytical tool for the analysis of complex matrices
due to its high specificity, and most of all selectivity.
The identification of analytes is based on chromato-
graphic retention time and specific transitions from
the MS/MS analysis. The initial step for developing a
GC–MS/MS method was establishing the chromato-
graphic retention time in order to select an appropri-
ate precursor ion for TCS. The GC–MS/MS analy-
sis of triclosan standard in full-scan and SIM mode
showed the molecular ion peaks of m/z 288 for the
native triclosan at time 21.1 min. The detection of
triclosan and the established chromatographic reten-
tion time can be confirmed through the NIST EI-mass
spectrum library search. The ion resulted from the
loss of two chlorines was m/z 218 for triclosan. Thus,
the ions at m/z 218 was chosen as the precursor ions
for the second-stage mass spectrometric analysis, and
after that ions at m/z 155.

In the following section, the first phase was find-
ing the best conditions in GC-MS, meaning the opti-
mization of injection volume, split time and interface
and injector temperature.

3.1 Optimization of GC–MS/MS
conditions

The plots for the best splitless time and injector tem-
perature are presented in Figure 1. These two pa-
rameters are crucial for success in the analysis, when
the goal is to achieve a quantification method. Re-
garding Figure 1, the splitless at 1min is the one that
presents less standard error, being the suitable choice.
To injector temperature, the signal decrease beyond
260oC suggested possible degradation, therefore, for
TCS analysis a temperature of 250oC was chosen, to
guarantee the non-termo-degradation. Additionally,
not only the temperature or injector mode are crit-
ical factors, but also the type of liner’s type which
can jeopardize the shape of the peak and its S/N on
the chromatograph (Figure 2). Thus, if the liners are
packed with quartz wool (usually used for “dirty” en-
vironmental matrices), TCS will react with the mate-
rial even if it is deactivated and/or become adsorbed
on it.

The Design Expert program was used to find
the maximum peak area, when temperatures of in-
terface and source are combined, Figure 3. The
curve obtained, implies the great dependency of TCS,
mostly, on the interface’s temperature. The higher
area achieved for TCS was with a combination of 290
oC for the interface temperature and 260oC for the



source temperature.

3.2 MS/MS conditions

The optimization of the MS/MS parameters for tri-
closan analysis was reached by monitoring, not only
the peak intensities, but also the shape of the se-
lected quantification ions. In environmental samples,
commonly present trace concentrations, where the
peak shape is an imperative parameter for the anal-
ysis quantification. Thus, four parameters were stud-
ied and optimized: Q1 and Q3 resolution (peak shape
and area offset), collision gas pressure, collision en-
ergy and dwell time.

Figure 4 present the Q1 and Q3 resolutions, where
it can be observed for both combinations, peak shape
and area offset, the best results were with Q1 at 0.7
and Q3 at 2.

Contrary to the typical energy used in organic
compounds, to TCS, the highest area was achieved
with 20eV of energy (Figure 5). Therefore, for the
collision gas, it was found that both too high and too
low pressures decreased the analyte signal. The ideal
collision gas pressure, for the 20 eV of collision en-
ergy was 2.4 mTorr (Figure 5).

Moreover, the dwell time was evaluated. The
lower (100 ms), in Figure 6, was the one with best
peak shape and higher area.

The optimization of these parameters is crucial in
trace analysis of environmental samples. The linearity
and TCS peak shape were determined with standard
solutions (section 2, standard solutions, n = 3). Figure
7, show the calibration line through the different con-
centrations and the respective TCS chromatograms.

3.2.1 Effluent samples

For effluent SPE extraction, different pH values
(2,7 and 12), volume elution with different solvents
(MeOH or MeOH/ACE), stirring time (1. spiked and
stirred overnight; 2. spiked, 30 min stirred, 30 min
of pause; 3. spiked immediately prior to extraction),
cartridges (Oasis HLB, Strata-X, Strata C18-E, Strata
C18-U) and syringe filters (RC, Nylon and PTFE)
were evaluated. The experiments were performed by
spiking TCS in effluent (0.8 mg/L) where all the ex-
periments data were an average of duplicates. It was
found that the recovery was higher at low and neu-
tral pH values (2 and 7). The pH 2 was chosen as
it will avoid precipitation of organic matter and el-
ements that are in the matrix composition, and de-
crease the potential to photodegradation of TCS, as
at pH 2 most molecules will be in their ionized form.
At pH 12 the organic matter or fats/oil were not dis-
solved and promoted the saturation of SPE packings

after 50 mL in the loading sample step. For the stir-
ring time the best option was a slow agitation (30
min), but not sufficient to promote the degradation,
and a pause time where the TCS was diluted in the
matrix (30 min). Methanol and a methanol/acetone
solutions were examined as extraction solvent. The
MeOH/ACE was found to be the most effective op-
tion, since ACE is a strong solvent for hydrophobic
compounds, e.g. TCS. Additionally, the extraction
volume of (4 x 4) mL MeOH + 4 mL ACE was found
to be ideal, as 95% (± 3%) of TCS was recovered.

For effluent sample cleanup, the SPE cartridges
were also studied. Recovery for TCS, when employ-
ing HLB showed a better result (95%) comparing to
Strata-X (78%), Strata C18-E (114%), Strata C18-U
(67%). The filtration with PTFE syringe filter ob-
tained the lower losses (2% analyte loss).

Accordingly, a total of six effluent were analyzed
for TCS using the present method and the results are
shown in Table 3. Prior to the analysis, the SPE de-
scribed above was applied. In the effluent samples,
106-624 ng/L of TCS was detected. The typical chro-
matogram is shown in Figure 8.

4 CONCLUSIONS

GC/MS/MS in MRM mode allowed the success-
ful determination of trace amounts of TCS in effluent
real samples, in a fast and efficient monitoring. TCS
is an instable compound, with low volatility, found
in trace concentration in aqueous environmental sam-
ples. Therefore, our proposed method has many prac-
tical advantages, including simplicity, higher selectiv-
ity and can be included in the green analytical moni-
toring techniques, since no derivative agent was used.
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Table 1. Triclosan physical and chemical characteristics*. 

Chemical structure Formula 
Molar mass 

g mol -1 

Log Kow pKa 
Solubility in water 

mg L-1 

Polarizability 

Å3 

Boiling 

Point 

 

 

5-chloro-2-(2,4-

dichlorophenoxy)phenol 

C12H7Cl3O2 289.54 4.76 7.9 10 (20°C) 26.96 120ºC 

* Pubchem, https://pubchem.ncbi.nlm.nih.gov. 

 

Table 2. GC-MS/MS final method. 

Instrument  

 Gas Chromatography - Triple Quadrupole MS 

Systems – EVOQ Bruker 

 

Column 

 

DB-5 30 m, 0.25 mm i.d., 0.25 μm film (df) 

Running 

 

 

Initial Temperature 40 ºC for 1 min 

Heating Ramp 10 ºC/min 

Final Temperature 300 ºC for 3 min 

 

Carrier Gas helium 

Constant Flow 1 mL/min 

Injector 250 ºC, 1 min splitless 

Interface 290 ºC 

Source 260 ºC 

MRM TCS (288>218, 288>155) 

Collision gas pressure 2.4 

Collision energy 20eV 

 

 

 
Table 3. Concentrations of triclosan in SPE effluent extract samples.  

TCS (ng/L) 

Effluent  

I II III IV V VI 

127.80 106.58 472.41 623.61 519.92 458. 37 

 

 

https://pubchem.ncbi.nlm.nih.gov/


 
 

 

 

Figure 1.  Interface and source temperature (injector at 250ºC). 

 

 

 

 

 

 
Figure 2.  Q1 and Q3 resolution: peak shape (a-c) and area offset (d). 
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Figure 3.  Relation between collision energy and collision gas pressure.  

 

 

 

  
 

  LOD LOQ 

TCS (ng/L) 20 40 80 120 240 320 400 600   

RSD (%) 8 9 5 5 5 13 15 18 132 395 

 

Figure 4.  Calibration line and chromatograph for all the concentrations under study. 
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Supplementary Material  

 

 

Figure S1. Splitless time and injector temperature.  

 

 
  

Figure S2. Liner type: (a) with glass fiber; (b) without glass fiber. 
 

 

 

 

 
 

Figure S3.  Dwell Time 
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Figure S4. Typical MRM chromatogram of triclosan in effluent sample. 
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REVIEW

Overview of electronic tongue sensing in environmental
aqueous matrices: potential for monitoring emerging organic
contaminants
Cátia Magro, Eduardo P. Mateus, Maria Raposo, and Alexandra B. Ribeiro

Abstract: Emerging organic contaminants (EOC) are synthetic or naturally occurring chemicals that have the potential to enter
the environment and cause known or suspected adverse ecological and human health effects. Despite not being commonly
monitored, EOC are often detected in effluents and water bodies because of their inefficient removal in conventional wastewater
treatment plants. There is a growing concern about the presence and impact of EOC as well as the need for reliable and effective
water monitoring using sensors capable of detecting the target molecules in complex media. Due to their specificities, such as
fast response times, low cost, portability and user-friendly operation, electronic tongue (e-tongue) systems present some advan-
tages over the traditional analytical techniques (e.g., chromatographic systems) used for environmental monitoring. We re-
viewed e-tongue sensors, focusing on their ability for real-time environmental monitoring. A bibliometric evaluation was carried
out, along with a study of the status of the existing e-tongue systems, how they worked, and their applications in different fields.
The potential of e-tongue sensors to detect organic contaminants in aqueous environmental matrices is discussed, with a
particular focus on EOC.

Key words: electronic tongue, environmental monitoring sensing, emergent organic contaminants, pharmaceuticals and
personal care products.

Résumé : Les contaminants organiques émergents (COE) sont des produits chimiques synthétiques ou d’origine naturelle qui
pourraient s’immiscer dans l’environnement et causer des effets défavorables, connus ou soupçonnés, sur le plan écologique et
sur la santé des humains. Malgré qu’ils ne soient pas généralement surveillés, les COE sont souvent détectés dans les effluents et
les plans d’eau, à cause de la difficulté à les éliminer des stations d’épuration conventionnelles. Il y a une préoccupation
croissante quant à la présence et à l’impact des COE, ainsi qu’un besoin de surveillance fiable et efficace de la pollution de l’eau
en utilisant des capteurs capables de détecter les molécules cibles dans des milieux complexes. En raison de leurs spécificités,
comme des temps de réponse rapides, leur prix avantageux, leur portabilité et fonctionnement simple, les systèmes de langue
électronique (ou capteur organoleptique) présentent quelques avantages par rapport aux techniques analytiques traditionnelles
(p. ex., systèmes chromatographiques) utilisées pour la surveillance de l’environnement. Dans le cadre de cet examen, les langues
électroniques (capteurs organoleptiques) sont passés en revue, en se penchant sur leur capacité de surveiller l’environnement en
temps réel. On a effectué une évaluation en utilisant la bibliométrie, de pair avec une étude de l’état des systèmes de langue
électronique existants, de comment ils ont fonctionné et des applications de ceux-ci dans différents domaines. Le potentiel de ces
capteurs organoleptiques à détecter des contaminants organiques dans des matrices environnementales aqueuses est discuté, avec un
accent particulier sur les COE. [Traduit par la Rédaction]

Mots-clés : langue électronique, surveillance de l’environnement par capteurs, contaminants organiques émergents, produits
pharmaceutiques et de soins personnels.

1. Introduction
Currently, the world faces a rising global demand for water due

to an increasing population and climate change. Both water avail-
ability and quality are under stress (Pal et al. 2014). The global
population is expected to exceed 9 billion by 2050, and 70% of
people will be living in urban areas. This growing problem is
usually coupled with poor wastewater management, old wastewa-
ter infrastructure plants, and limited disposal strategies with ei-
ther minimal treatment practices or none at all (Corcoran et al.
2010). Consequently, wastewater treatment plants are releasing
new classes of potential organic contaminants into water bodies,

known as emerging organic contaminants (EOC), as these are not
completely removed by the existing technologies (Stülten et al.
2008; Matamoros et al. 2009).

EOC are defined as “chemical substances that have no regula-
tion, are suspected of affecting the environment or whose effects
are unknown” (Daughton 2004; Geissen et al. 2015). Some of the
EOC are included in the priority pollutant lists developed by both
the European Union and the United States Environmental Protec-
tion Agency. In 2000, an initial list of 33 priority substances was
also identified under the Eurpoean Union Water Framework Di-
rective 2000/60/EC (European Commission) to be used as a control
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measure for the next 20 years (Ellis 2008). In 2007, pharmaceuti-
cals and personal care products (PPCP) such as diclofenac, iopami-
dol, musks, and carbamazepine were identified as future emerging
priority candidates. Ibuprofen, clofibric acid, triclosan, phtha-
lates, and bisphenol A are proposed additions to this list. Stuart
and Lapworth (2013) have a clearer definition: “Emerging organic
contaminants are compounds now being found in groundwater
from agricultural and urban sources that were previously not
detectable, or thought to be significant. EOC include pesticides
and degradates, PPCP, industrial compounds, fragrances, water
treatment byproducts, flame retardants, and surfactants, as well as
‘life-style’ compounds such as caffeine and nicotine”.

It is necessary to find suitable sensors that allow for monitoring
of EOC molecules. The development of reliable real-time sensors
for environmental monitoring of EOC in wastewater treatment
plants (WWTP) is challenging, as sensors must be selective for
target compounds and sensitive enough to detect them at trace
levels. One of the main challenges is to ensure analyte detection in
environmental complex matrices that contain countless spurious
molecules (potential interfering compounds) as well as micro-
scopic life (Albareda-Sirvent et al. 2001). These matrix effects can
jeopardize the analysis of a target molecule.

Sensors are an integral part of many engineered products, sys-
tems, and manufacturing processes as they provide feedback,
monitoring, safety, and some other benefits (Stroble et al. 2009).
The term sensor started to gain currency during the 1970s. The
American National Standards Institute describes a sensor as “a
device which provides a usable output in response to a specific
measurand, where the output is defined as an electrical quantity,
and a measurand is defined as a physical quantity, property, or
condition which is measured” (American National Standards
Institute (ANSI) 1982). Sensors should be in direct contact with the
object under investigation, transform nonelectric information
into electric signals, respond quickly, operate continuously or at
least in repeated cycles, and be small in size (Gründler 2007).

Depending on the purpose, there are different types of sensors.
Ranging from very simple to complex classifications (Fraden 2010),
the sensor properties (materials and detection means used, specifi-
cations, conversion phenomena, field of applications, or stimuli) can
be used to classify them. However, considering the purpose of
monitoring target molecules in aqueous complex matrices, the
optimal sensor would detect the presence of the target molecule,
determine its concentration, and give general information about
the complex matrix where the target molecules are inserted.
Therefore, it seems that suitable sensors for providing that infor-
mation are chemical sensors, taking into account the definitions
given by Hulanicki et al. (1991).

Chemical sensors are complex devices optimized for a particu-
lar application. An ideal chemical sensor will respond instanta-
neously to a target compound (analyte) in a medium, producing a
measurable signal output at a determined analyte concentration
(Council 1995). However, despite significant advances in the last
few decades, the way in which these devices respond to different
stimuli in the sample is still relatively unknown. The complexity
of a chemical sensor application is related to technical difficulties
related with the measurements and specific nature (i.e., elemental
or molecular) of the substance to be analyzed (Hulanicki et al.
1991). According to the International Union of Pure and Applied
Chemistry, chemical sensors are defined “as devices or instru-
ments that determine the detectable presence, concentration, or
quantity of a given analyte.”

Chemical sensors are based on two functional units: a receptor
part and a transducer part. In the receptor, the chemical informa-
tion is transformed into a form of energy, which may be measured
by the transducer. The receptor may account for different princi-
ples: (i) physical, no chemical reaction takes place; (ii) chemical,
where there is a chemical reaction with the analyte that gives rise
to the analytical signal; and (iii) biochemical, in which a biochem-

ical process is the source of the analytical signal. In some cases, it
is not possible to decide whether a sensor operates in a chemical
or a physical mode, e.g., an absorption process. In the transducer
section, the device transforms the energy-carrying chemical infor-
mation on the sample into a useful analytical signal (Council
1995).

Regarding detection of EOC molecules in an environmental ma-
trix, both physical and (bio)chemical principles are adequate. For
physical detection, the electrical properties of a device consti-
tuted by a thin layer of film, for example, prepared from mole-
cules with affinity to the target compound and deposited on the
solid support with electrical electrodes, will change as the target
molecules are being adsorbed. On the other hand, electrochemi-
cal sensors are based on the current measurement resulting from
the oxidation–reduction reactions of the analyte at a suitable elec-
trode. Electrochemical sensors achieve selectivity through molec-
ular coatings, film coatings on electrodes, or chemically modified
electrodes. The design of molecular selectivity for analytes in-
volves an accurate choice of the sensing chemistry and associated
materials (Ciosek and Wró 2007). Selectivity in sensing devices is
related to a preferred response to a single sample substance,
where the remaining substances can be considered formally as
interfering substances. In a sensor’s array, each sensor must have
a specific capacity to distinguish between components of the mix-
ture, i.e., it should distinguish between sample and interferent.
The sensor can respond to both analyte and interferent with a
different sensitivity (Gründler 2007). Chemical reactivity can in-
volve a wide range of chemical phenomena, including: (i) recog-
nition of size/shape/dipolar properties of molecular analytes by
molecular films, phases, or sites; (ii) selective permeation of ana-
lyte in a thin-film sensor; and (iii) catalytic reaction cycle of
the sensing materials, which results in analyte consumption
(National Academy Press 1995).

The concept of electronic tongue (e-tongue) emerged through
the need for the detection, classification, and differentiation of
complex substances. Since the first prototype in 1990 by Hayashi
et al. (1990), e-tongue has become one of the most promising
monitoring systems to develop a fast, cheap, and objective
method for evaluating different matrices (Sìliwinìska et al. 2014).
Sensing tongue systems were inspired by the human tongue,
which can detect five tastes: salty, sour, sweet, bitter, and umami
(Winquist 2008). The tasting senses in a human tongue are chem-
ical senses, as they respond to a stimulus produced by food mol-
ecules on the tongue’s taste cells, thus producing the sensation of
taste. The taste receptor organs are located in the taste buds. In
the process of flavor detecting, a series of electrical impulses are
generated with different intensities and are transmitted to the
brain–transducer, where they are compared to identify flavors
(Smith and Margolskee 2001). In a similar way, the e-tongue with
an array of sensors that measure electrical signals can be inter-
preted by mathematical methods, leading to information about
the presence of the target molecule and its concentration in the
complex matrix.

Given the importance of this new way of using sensors, the
focus of this review is e-tongues, because of their scientific rele-
vance for the detection of compounds in aqueous matrices and
the growing number of scientific publications using this system.
There are, however, other types of tongues or noses that may be
considered for the detection of organic molecules, for example
using optical sensors as in the work of the Suslick group (Rakow
and Suslick 2000), and the Lundstrom and D’Amico groups
(Filippini et al. 2006). The number of scientific publications on
EOC detection is not yet strong enough.

To better recognize and assess the research status on e-tongues,
we performed a bibliometric study (June 2018), making use of
the online version of SCOPUS. With the search word “electronic
tongue” (Fig. 1a), a total of 1297 scientific papers (articles and
reviews) was obtained. In the 1297 papers with the subject of
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e-tongues, the dominant research areas are chemistry (36.3%), en-
gineering (29.8%), and environmental sciences (6%), for which
China, Spain, and USA are the top 3 countries, contributing 34% of
the papers. The search word “electronic tongue” was refined with
the sub-subject “water” (Fig. 1b) to link the subject to aqueous
matrices. We also examined the connection between the search
word “electronic tongue” and the sub-subject “organic contami-
nants” (e.g., EOC), obtaining an additional 22 papers from 2004 to
2017 (Fig. 1b).

Although the number of published papers on e-tongues that
focused on the detection of organic components is still small, this
detection method is considered a promising monitoring tool.
Since its development, it has been used for a variety of purposes,
e.g., water, wastewater and food analysis (Zhuiykov 2012; Panasiuk
et al. 2015; Cetó et al. 2016; Díaz-gonzález et al. 2016; Goméz-Cravaca
et al. 2016; Peris and Escuder-gilabert 2016; Wei et al. 2017; Son and
Hyun 2018), while fulfilling environmental monitoring needs
(Di Natale et al. 1997; Krantz-Rülcker et al. 2001; Gutiérrez et al. 2008;
Winquist 2008; Campos et al. 2012; Askim et al. 2013; Tahara and
Toko 2013; Capelli et al. 2014; Justino et al. 2015).

Conventionally, chemical sensing of unknown substances is
performed in an analytical laboratory with complex benchtop
equipment, including mass spectrometry, chromatography, nu-
clear magnetic resonance, X-ray, and infrared technology. These
methods are very accurate enabling the identification of most
unidentified chemical classes with a high degree of confidence
and precision (Banerjee et al. 2016), which can be used to calibrate
sensors. Nonetheless, the e-tongue presents potential advantages:
(i) sample pretreatment may not be mandatory, (ii) the source of
errors due to sample transport or storage may be drastically re-
duced or eliminated, and (iii) a fast response may be achieved in
environmental emergencies (Albaladejo et al. 2010). The possibil-
ity of environmental monitoring in real-time mode and operating
on long-term scales can enable data collection that may be crucial

for understanding the full range of potential contamination in all
its phases and environmental compartments. Moreover, real-time
tools used for environmental monitoring represent a cutting-edge
technology that, with the right approval and support from gov-
ernment agencies, along with an increase in the quality of the
produced data, will undoubtedly become a part of modern envi-
ronmental monitoring laboratories (Gałuszka et al. 2015).

This review aims to present how pollutants in aqueous media
can be detected using the e-tongue, and to highlight the opportu-
nities for the detection of EOC–PPCP in these matrices. In addi-
tion, the concept of the e-tongue and examples of its successful
applications are analyzed.

2. Electronic tongue—the concept
The e-tongue is based on chemical sensors with low selectivity,

that display cross-sensitivity to multiple components in liquids
(Ciosek and Wró 2007), and can be considered as “a multi-sensory
system, formed by an array of low-selective sensors, combined
with advanced mathematical procedures for signal processing,
based on pattern recognition and (or) multi-variate data analysis”
(Vlasov et al. 2005). The seminal work of Di Natale et al. (1997), one
of the pioneers on the subject of the e-tongue, used a chalcogenide
glass sensor array with an artificial neural network analysis for
the detection of heavy metal cations and inorganic anions in a
complex aqueous solution. Thus, if the e-tongue is configured and
properly trained (e.g., the choice of materials), it can be used to
characterize complex liquid samples and recognize the quali-
tative and quantitative composition of multi-species solutions
(Escuder-gilabert and Peris 2010).

2.1. Components
The e-tongue system with its base components is schematized

in Fig. 2. Typically, the electrical signals measured in an array of
sensors immersed in, or covered with, liquid samples are recorded

Fig. 1. (a) Annual distribution of published scientific papers on e-tongues from 1989 to 2017 and (b) number of scientific papers published on
e-tongues applied to water and organic contaminants (data adapted from SCOPUS, accessed in June 2018).
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and processed by mathematical procedures to achieve a pattern.
This pattern allows for a comparison of the results obtained with
the data of calibrated libraries already gathered from previous
complex solutions in which its composition was also carefully
analyzed in conventional laboratories. This means that a library
should be attained for each sensor array. In most cases, the liquid
sample must be placed in a controlled temperature or at a con-
trolled flux, if the electrical properties are dependent on the tem-
perature or atmosphere.

The e-tongue’s components are explained in more detail as fol-
lows.

2.1.1. Methods for measuring the electrical signal
There are several types of sensors that can be applied in e-tongues.

A wide variety of chemical sensors have been employed,but the ones
most commonly used for detecting pollutants are electrochemical
systems (e.g., potentiometric, voltammetric, and amperometric) and
electrochemical–physical systems (e.g., impedance) (Krantz-Rülcker
et al. 2001; del Valle 2010; Zou et al. 2015). The classification is
related to the primary signal after an interaction with the analyte
when a potential electrochemical current or resistivity–capacitance
change is generated and measured.

Voltammetric and potentiometric sensors have several applica-
tions in environmental monitoring and the detection of pharma-
ceuticals in food (Gutiérrez et al. 2008; Mimendia et al. 2010; Wei
and Wang 2011). In potentiometric sensors the current is moni-
tored without current flow, whereas in voltammetry sensors a
potential is applied, and the resulting current is measured
(Winquist 2008). Voltammetric methods are more versatile and
robust, as they are usually less influenced by electrical distur-
bances, and the potentiometric measurements are considered to
be simpler (Holmin et al. 2001). From the point of view of detec-
tion, potentiometry operates in terms of the system’s net charge
being disadvantageous in nonelectrolyte media, whereas cyclic
voltammetry operates in complex liquids requiring compounds
that can be oxidized or reduced actively onto the working elec-
trode (Legin et al. 1999; Holmin et al. 2001; Ivarsson et al. 2001).

Amperometry is preferred for monitoring a time-dependent
change with a wide dynamic range (Wang et al. 2015). Amperomet-
ric systems are directly measured in electrochemical reaction

rates taking place at the electrodes, where the current derives
from the oxidation or reduction of electroactive compounds at a
working electrode while a constant potential is applied (Kirsanov
et al. 2004).

In the impedance system, the full scan of different alternated
current frequencies or a selected number of discrete values, may
be used (conductivity or capacitance) in a simpler conceptual im-
plementation (del Valle 2010). The impedance technique is based
on the electrode perturbation caused by an external signal of
small magnitude. Measurements can be performed in an equilib-
rium or stationary state, allowing for the characterization of aque-
ous environmental matrices by analyzing the electrical impedance
as a function of frequency signals applied to nanostructures ad-
sorbed onto solid substrates (Riul et al. 2002). E-tongue systems
that measure the electric impedance using conducting polymers
(alone or combined with lipids) can work as sensorial unities, as
they recognize the taste below the biological limit (Ferreira et al.
2003), eliminating the need for human panels.

According to SCOPUS (accessed in June 2018), the number of
publications referring to the term “electronic tongue” (broken
down according to the different sensors: potentiometric, voltam-
metric, amperometric, and impedance) has been growing steadily
since the research in 1997. On potentiometric, voltammetric and
amperometric systems, the number of articles published appears
to have stabilized over the last few years, whereas the number of
articles published for impedance systems is increasing.

2.1.2. Array of sensors
The choice of sensors is dependent on the measuring method.

In voltammetric measurements, for instance, a reference elec-
trode (e.g., Ag/AgCl), a counter electrode (e.g., Platinum (Pt)), and a
working electrode are typically required. Working electrodes are
made of noble and non-noble metals, such as Copper (Cu), Gold
(Au), Nickel (Ni), Palladium (Pd), Pt, and Silver (Ag), and other
materials such as glassy carbon (GC). Working electrodes can also
be covered with films, increasing the sensitivity of the sensor. The
physical properties measured (e.g., capacitance and resistance)
can be improved if the interdigitated electrodes (IE) are covered
with thin films (Riul et al. 2002).

Fig. 2. Schematic components of an electronic tongue.
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A thin film, deposited onto IE, based on insulator, semiconduc-
tor, or conductive materials with affinity for the target molecule,
will have a different resistance and (or) capacity as the analyte
molecules are being adsorbed onto it, allowing for the detection
of a target compound or analyte in a solution. Taylor and
Macdonald (1987) analyzed this situation and presented a simple
equivalent circuit that describes the AC electrical behavior. Such
impedance or conductance spectra will be dependent on both the
number of molecules adsorbed onto the thin film surface and the
other constituents of the solution matrix. The adsorption of target
molecules could be due to both physical interactions (ionic, hy-
drogen bonds, van der Waals, dipolar) and chemical bonds, where
the measured electrical signal will incorporate information from
them in greater or lesser detail depending on the film used. There-
fore, thin films should be prepared in view of their ability to
adsorb the analyte or adsorb other constituents of the aqueous
matrix. Hence, several thin films should be prepared to develop
the e-tongue, based on both physical and chemical methods of
detection. Different kinds of thin molecular films could be pre-
pared, namely Langmuir–Blodgett or self-assembled or layer-by-
layer films (Oliveira et al. 2014).

2.1.3. Mathematical treatment of measured data
Regardless of the system used (potentiometric, voltammetric,

amperometric, or impedance systems) for monitoring aqueous
environmental matrices, the complexity of the information ex-
tracted will involve an analysis of a large number of variables.
Some of these variables are not significant in the interpretation of
results, and only the relevant information is collected, thereby
reducing the volume of data (Wilson and Baietto 2009). Thus,
without losing any information, relevant data can be obtained
using statistical methods that will reduce data volume. Some ex-
amples of the discussion on the processing methods of multi-
variate data in e-tongues and noses can be found in Richards et al.
(2002), Scott et al. (2007), Palit et al. (2010), and Cetó et al. (2013).

Pattern recognition techniques (Fig. 2b) consist of the following
sequential stages: signal preprocessing, dimensionality reduc-
tion, and prediction–validation (Rodríguez Méndez et al. 2016).
The signal preprocessing prepares the feature vector for future
processing. It includes compensation for sensor drift, scaling of
the data, and extracting representative parameters (Raposo et al.
2016). The intrinsic complexity, richness, and cross-selectivity of
the signals generated by sensor arrays provide certain advantages,
as the resulting data set contains meaningful information about
the sample. The choice of method depends on the type of available
input data acquired from the sensors and the type of information
that is sought. The digital outputs generated by e-tongue sensors
need to be analyzed and interpreted to provide useful information
to the operator (Wilson and Baietto 2009).

There are different advanced methods based on the statistical
treatment of data that can be used for feature extraction and for
finding the most important parameters (Rodríguez Méndez et al.
2016). Multi-variate data analysis comprises a set of techniques
that can be used for the analysis of data sets with more than one
variable by reducing high dimensionality in a multi-variate prob-
lem when variables are partly correlated (Wilson and Baietto
2009). The first approach for the classification of the sample typ-
ically involves graphical analysis and comparing samples or com-
paring the identification of unknown elements with those from
known sources in libraries (Dymerski et al. 2011). This involves the
development of calibrated libraries, which are required for each
e-tongue. Multi-variate analysis can be divided into unsupervised
or supervised techniques. Unsupervised methods are used to find
or confirm patterns, making comparisons between different un-
known samples to discriminate between them in cases where the
database of known samples has not been previously constructed.
Supervised methods use the response variable to discover pat-
terns associated with the response.

Unsupervised methods include singular value decomposition
and principal components analysis (PCA), which use only the ma-
trix of features by samples, as well as clustering. Supervised meth-
ods include multiple regression and classification as well as more
recently developed techniques, such as sliced inverse regression,
requiring a variable response, which is usually a phenotype, in
addition to the feature by sample matrix (Rodríguez Méndez et al.
2016). The training process for supervised methods, e.g., artificial
neural networks, involves a discrete amount of known sample
data to train the system and is very efficient in comparing un-
known samples to known references (Hodgins 1997).

2.1.4. Conditioning of the liquid samples
When electrical signals are temperature dependent, a thermo-

stat and (or) thermal bath enables continuous maintenance–
monitoring of the sample temperature during analysis, providing
reproducibility and repeatability of measurements (Sìliwinìska
et al. 2014).

In some instances, flow techniques are important for e-tongue
systems, providing automation of the analytical methods. The
main benefits of automation of the analytical procedures are the
increase in sample frequency, minimization of sample contami-
nation, improvement of analyst security, and lower reagent–
sample consumption, which implies lower personal and consum-
able costs (Cerdà et al. 2014). In an e-tongue system, there are two
main flow mechanisms that are commonly used for water analysis
(Mesquita and Rangel 2009): flow injection analysis (FIA) operated
exclusively by hand and sequential injection analysis (SIA) based
on multi-commutation operation. Comparing the two techniques
SIA presents advantages over FIA, as it uses fewer reagents and
results in less waste production, being an environmentally
friendly methodology that can perform the largest number of
analyses. SIA systems have been successfully used with potentio-
metric e-tongues (Cortina et al. 2005). When these techniques are
used, FIA and SIA have the potential to decrease analysis time and
increase repeatability (Sìliwinìska et al. 2014). Nonetheless, there
is no solid argument in favor of using a particular flow technique
separately, but the advantages increase if they are combined or
developed specifically for the purpose, e.g., Richards et al. (2003).

2.2 Applications
Because of the ease with which the e-tongue can be operated,

research efforts have been dedicated to the development and use
of a wide range of applications, e.g., carcinogenic trihalomethanes in
public water supply systems (Carvalho et al. 2007); detection of
phenolic compounds (Olivati et al. 2009); detection and monitor-
ing of ammonium, nitrite, and nitrate ions in waters (Nuñez et al.
2013); and quantification of ammonium and phosphate ions in
wastewaters (Campos et al. 2014). Di Natale et al. (2000) combined
e-nose and e-tongue sensors to classify urine, merging data ob-
tained from each of the sensor arrays. Also, e-tongue coupled with
e-nose was used for analyzing different types of Moroccan waters
(Haddi et al. 2014). Table 1 presents a summary of some e-tongue
and hybrid systems in different fields: aqueous environmental
matrices and complex liquid matrices. Published manuscripts
were chosen based on either their importance for improving the
sensing field or the complexity of the matrices, which can actively
contribute to the development of a new e-tongue system. The
results from all these papers can serve to contribute to an up-
graded e-tongue system for detecting EOC in aqueous environ-
mental matrices.

Portable environmental sensing technology is particularly ap-
pealing for pollution monitoring, but it is more limiting than its
nonportable counterparts. However, e-tongue systems have great
potential and are highly relevant for continuous environmental
pollutant monitoring (Kim et al. 2012). It is important to stress that
environmental portable sensing technology meets the criteria of
green analysis: automation, low power consumption, avoidance
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of reagent use, and no waste generation (Tobiszewski et al. 2010).
Traditional analytical instruments can be less attractive, as they
are not able to provide continuous monitoring or work as remote
sensing, and have high operating costs.

3. Opportunities in sensing technology applied to
aqueous matrices

Environmental samples can be extremely complex. Therefore
the main obstacles when dealing with liquid samples are the low
concentrations of EOC occurrence in water media (Bourgeois et al.
2003; Justino et al. 2015).

Either e-tongue systems or chromatography methods can be
used to detect and determine such pollutants at low concentra-
tions (ng/L or pg/L) levels. Consequently, to validate e-tongue data,
chromatography methods are often used to confirm the concen-
tration levels of the target compound. Tahri et al. (2018) showed
that Headspace (HS) Gas Chromatography – Mass Spectrometry
(MS) could contribute to the validation results obtained from a
voltammetric e-tongue system. Here are some examples of studies
that can be coupled with an e-tongue system. (i) Gas chromatog-
raphy and liquid cromatography (LC), both coupled with tandem
MS, were used to determine the contaminants of emerging con-
cern (e.g., nonlyphenol–PPCP) in municipal wastewater effluents
and marine receiving water (Vidal-Dorsch et al. 2012). (ii) Ronan
and Mchugh (2013) used LC coupled with tandem MS with electro-
spray ionization in negative mode to determine natural and syn-
thetic steroid estrogens in seawater and marine biota. (iii) Li et al.
(2016) also used the LC-MS–MS method to determine 45 commonly
used PPCP in sludge. To achieve equal ranges of accuracy in detec-
tion and analysis when compared with chromatography methods,
many electronic sensing investigations focused their efforts on
the detection of contaminants in real environmental matrices.

A SWOT (strengths, weaknesses, opportunities, threats) analy-
sis was carried out, Fig. 3 highlights some of advantages and lim-
itations of e-tongue sensing; additionally, it emphasizes the
positive external aspects that would enhance the benefits of this
system and points out some of the negative aspects that can jeop-
ardize the competitive advantages of e-tongue sensing. One of the
main advantages of this technology is that it enables quick access
to information in simple or complex liquid, which, combined
with its relatively easy production, will soon allow the e-tongue to
be used on a global scale. Moreover, e-tongue systems are embod-
ied in the trend of Industry 4.0, allowing for the use of portable

instruments in environmental site assessments, automation, and
online detection (the internet of things). Environmental samples
represent a composite mixture of various compounds in gaseous,
liquid, or solid states. This complexity can result in analytical
problems, such as interferences, which usually pose a challenge
for field analysts. From a global point of view, traditional environ-
mental assessment techniques using off-side analysis provide bet-
ter data quality, but the trade-off is a poorer understanding of the
pollution distribution and a lower information value of the data
set compared with on-site analysis.

The fast progress in e-tongue technology in recent years has
increased the number of applications for environmental sample
analysis. An example of a successful e-tongue system used in aque-
ous environment media is the work of Campos et al. (2013), who
developed an e-tongue to monitor the presence of ammonium
nitrate in water based on pulse voltammetry. It consisted of an
array of eight working electrodes (Au, Pt, Rh, Ir, Cu, Co, Ag, and Ni)
encapsulated in a stainless steel cylinder. The electrochemical
response of these different electrodes was studied in the presence
of ammonium nitrate in water to further improve the design of
the wave form used in the voltammetric tongue. Afterwards, the
response was tested with a set of 15 common inorganic salts
(NH4NO3, MgSO4, NH4Cl, NaCl. Na2CO3, (NH4)2SO4, MgCl2, Na3PO4,
K2SO4, K2CO3, CaCl2, NaH2PO4, KCl, NaNO3, K2HPO4). PCA showed
good discrimination between ammonium nitrate and the remaining
studied salts. One year later, the same research team used a voltam-
metric e-tongue to evaluate the concentration of ammonia and
orthophosphate in influent and effluent wastewater, since the quan-
tification of these components in WWTP has further implications in
the eutrophication process (Campos et al. 2014).

Regarding detection of EOC, e.g., PPCP, and excluding the cases
of pharmaceutical applications, the publications mentioning
e-tongues are practically nonexistent in the literature (Raposo
et al. 2016 and the references therein). PPCP are of increasing
concern because of their environmental persistence, accumula-
tion in the environment at a global scale, and their steady detec-
tion in all environmental water compartments. Pharmaceutical
products, for instance, are additionally designed to maintain their
active forms and chemical properties long enough to perform
their therapeutic purposes, and thus at least 50% of a dose may be
potentially excreted unchanged into the environment, where
these products will then remain (Bila and Dezotti 2003). Conse-
quently, PPCP have been widely detected in the effluents of

Fig. 3. Electronic tongue SWOT (strengths, weaknesses, opportunities, threats) analysis.
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WWTP due to their incomplete removal treatment rates and in
their receiving water bodies (Matamoros et al. 2009; Zhang et al.
2014). PPCP and their metabolites (generated by metabolization
and abiotic processes, such as hydrolysis or photolysis) are usually
detected in trace concentrations, and many of them have raised
considerable ecotoxicological concerns (Stülten et al. 2008).

To address detection of these micropollutants, attempts have been
carried out to develop sensors that can work on the continuous mon-
itoring in aqueouscomplex matrices. Arvandet al. (2012) developed a
voltammetric sensor based on GC electrodes modified with carbon
nanotubes for the detection of diclofenac (anti-inflammatory) in
blood serum and seawater. Their aim was to develop a new technol-
ogy that: (i) is simple, (ii) has a reduced-cost nanocomposition, (iii) has
multi-functional properties benefitting from multi-walled carbon
tubes (MWCNT) – Cu(OH)2 nanoparticles and hydrophobic ionic liq-
uid 1-ethyl-3-methylimidazolium hexafluorophosphate, and (iv) has
good electrocatalytic activity for the electro-oxidation of diclo-
fenac. The authors achieved a new voltammetric sensor sensitive
in the range of 0.18–119 mM, with a detection limit of 0.04 mM
(Arvand et al. 2012). Liu et al. (2011) developed an impedance
Ni(II)tetrakis(4-sulfonatophenyl) porphyrin (NiTPPS) carbon nanotube
composite electrode for the detection of three endocrine disrupting
compounds—bisphenol A, nonylphenol, and ethynylestradiol—in
underground, tap, and lake water. The authors optimized experi-
mental parameters: hydrodynamic potential of 0.7 V for FIA and
NiTPPS surface coverage of 2.2 nmol cm−2. The final results showed
an improvement in the sensitivity, stability, and detection limit
(from 15 nmol/L to 260 nmol/L).

To detect 4-n-octylphenol (OP) in solutions with a concentration
range of 5 × 10−8 to 1 × 10−5 mol/L, Zheng et al. (2012) developed a
MWCNT modified GC electrode (GCE). The oxidation peak of OP
(oxidized directly on the MWCNT/GCE) showed an improvement
with the use of MWCNT/GCE, compared with those using a bare
GCE. The detection limit achieved was 1.5 × 10−8 mol/L. Wan et al.
(2013) conducted studies in the detection of 4-tert-octylphenol in
lake and river waters with a polymer–carbon nanotube film-
coated electrode. The electrode was prepared by coating a pol-
ished and clean GCE with a carbon nanotube film and then
covering it with a conducting film from L-lysine. The detection
limit achieved was 0.5 nM, and the method could be applied for
low concentration, in-site and online monitoring of 4-tertoctylphenol
in water (Wan et al. 2013).

A sensing layer, based on layer-by-layer films prepared with
the common polyelectrolyte poly (allylamine hydrochloride)
and pazo-polyectrolyte poly[1-[4-(3-carboxy–4-hydroxyphenyl-azo)
benzenesulfonamido]-1,2-ethanediyl, sodium salt] was used for
the detection of deltamethrin, a pesticide, where the sensor
response was obtained from impedance spectroscopy measure-
ments (100 Hz) (Abegão et al. 2013). Sensor sensitivity was 41.1 ±
0.7 k� per decade of concentration and had a reproducibility of
approximately 2% in a binary solution of ethanol and deltame-
thrin. The sensor was able to detect concentrations below 0.1 nM.
One year later, Pimentel (2014) also worked with an e-tongue sys-
tem based on impedance spectroscopy, which attempted to detect
a low concentration (nM and pM) of ibuprofen in an aqueous
medium. The same working group developed a nano-sensor that
can detect picomolar concentrations of triclosan in an aqueous
medium (Marques et al. 2017). Also seeking to detect triclosan, Gao
et al. (2010) synthesized molecularly imprinted core-shell carbon
nanotubes and detected PPCP in aqueous matrices in concentra-
tion ranges from 0.01 to 40 �g/mL.

For sensitive and selective detection of the Carmine pigment in li-
quidsamples,Zhaoetal. (2018) developedascreen-printedcarbon-based
disposable electrochemical sensor: PEDOT (Polystyrene sulfonate –
gold nanoparticles – carbon-Poly(3,4-ethylenedioxythiophene) and
�Mercaptoethylamine. The sensor response was obtained by cyclic
voltammetry, differential pulse stripping voltammetry, and imped-
ance spectroscopy in a range of concentrations between 9.0 × 10−9 to

3.9 × 10−6 mol/L, with a detection limit of 6.05 × 10−9 mol/L showing
good stability and reproducibility.

The full implementation of the e-tongue system will require a
high-sensitivity EOC concentration in the environment with long-
term stability, together with amenability of being incorporated
into automatic systems and then in the field. In contrast to the
inorganic compound e-tongue applications (e.g., heavy metals
that will potentially be deployable in the near future), e-tongue
systems designed to detect organic molecules in complex aqueous
matrices will require further development, especially regarding
selectivity and stability (Díaz-gonzález et al. 2016).

4. Conclusions
Since 1989, there has been an ever greater number of scientific

publications regarding the applications of e-tongue systems for
environmental monitoring. E-tongue prototypes can have differ-
ent types of measuring methods (e.g., potentiometric, voltammet-
ric, amperometric, or impedance), and several applications have
been developed and studied over the years, resulting in a deeper
understanding of these devices.

The choice of e-tongue methods is highly dependent on the
composition and complexity of the solution to be examined.
In real-time monitoring of EOC contaminants, such as PPCP,
e-tongue sensing technologies are still under development. To the
best of the authors’ knowledge, there are a few works concerning
both environmental aqueous matrices and EOC. Nevertheless, the
efforts to properly train these devices to characterize complex
liquid samples and detect contaminants in aqueous media have
increased the possibility of constructing a device that is sensitive
enough to be comparable with conventional techniques. How-
ever, despite the high sensitivity, low-cost, easy operation, and
rapid response that will enhance its commercial value, there re-
mains a lack of selectivity as far as e-tongue data are concerned.

E-tongue technology will undoubtedly find important applica-
tions in environmental monitoring. With continuing strides be-
ing made in scientific research, the e-tongue approach employed
without sample preconditioning and using a simple analysis can
address the problem of EOC in aqueous matrices. The hybrid sys-
tems that reap the advantages of different sensing devices, or the
e-tongue system working with the impedance spectroscopy re-
sponse and nanofilms produced (i.e., with the layer-by-layer tech-
nique) may present possible solutions that are of interest for the
further development of real-time sensors.

Acknowledgements
Financial support was provided by project “Development of

Nanostrutures for Detection of Triclosan Traces on Aquatic Envi-
ronments” (PTDC/FIS-NAN/0909/2014). CENSE-Center for Environ-
mental and Sustainability Research, which is financed by national
funds from FCT/MEC (UID/AMB/04085/2013). This paper is part of
a project that has received funding from the European Union’s
Horizon 2020 research and innovation programme under the
Marie Skłodowska-Curie grant agreement No 778045. C. Magro
acknowledges to Fundação para a Ciência e a Tecnologia for her
PhD fellowship (SFRH/BD/114674/2016).

References
Abegão, L., Ribeiro, J., Ribeiro, P., and Raposo, M. 2013. Nano-molar deltamethrin

sensor based on electrical impedance of PAH/PAZO layer-by-layer sensing
films. Sensors, 13(8): 10167–10176. doi:10.3390/s130810167. PMID:23966185.

Albaladejo, C., Sánchez, P., Iborra, A., Soto, F., López, J.A., and Torres, R. 2010.
Wireless sensor networks for oceanographic monitoring: a systematic re-
view. Sensors, 10(7): 6948–6968. doi:10.3390/s100706948. PMID:22163583.

Albareda-Sirvent, M., Merkoçi, A., and Alegret, S. 2001. Pesticide determination
in tap water and juice samples using disposable amperometric biosensors
made using thick-film technology. Anal. Chim. Acta, 442(1): 35–44. doi:10.
1016/S0003-2670(01)01017-0.

American National Standards Institute (ANSI). 1982. Electrical transducer no-
menclature and terminology. Instrument Society of America, Research Tri-
angle Park, N. C.

Magro et al. 211

Published by NRC Research Press

E
nv

ir
on

. R
ev

. D
ow

nl
oa

de
d 

fr
o

m
 w

w
w

.n
rc

re
se

ar
ch

p
re

ss
.c

om
 b

y 
M

rs
 C

át
ia

 M
ag

ro
 o

n 
10

/1
6/

19
F

or
 p

er
so

na
l 

us
e 

on
ly

. 



Arvand, M., Gholizadeh, T.M., and Zanjanchi, M.A. 2012. MWCNTs/Cu (OH)
2 nanoparticles/IL nanocomposite modified glassy carbon electrode as a volta-
mmetric sensor for determination of the non-steroidal anti-inflammatory
drug diclofenac. Mater. Sci. Eng. C, 32(6): 1682–1689. doi:10.1016/j.msec.2012.
04.066.

Askim, J.R., Mahmoudi, M., and Suslick, K.S. 2013. Optical sensor arrays for
chemical sensing: the optoelectronic nose. Chem. Soc. Rev. 42(22): 8649.
doi:10.1039/c3cs60179j. PMID:24091381.

Atar, N., Eren, T., Yola, M.L., and Wang, S. 2015. A sensitive molecular imprinted
surface plasmon resonance nanosensor for selective determination of trace
triclosan in wastewater. Sens. Actuators, B, 216: 638–644. doi:10.1016/j.snb.
2015.04.076.

Banerjee, R., Tudu, B., Bandyopadhyay, R., and Bhattacharyya, N. 2016. A review
on combined odor and taste sensor systems. J. Food Eng. 190: 10–21. doi:10.
1016/j.jfoodeng.2016.06.001.

Bila, D.M., and Dezotti, M. 2003. Fármacos no meio ambiente. Quim. Nova, 26(4):
523–530. doi:10.1590/S0100-40422003000400015.

Bourgeois, W., Romain, A.C., Nicolas, J., and Stuetz, R.M. 2003. The use of sensor
arrays for environmental monitoring: interests and limitations. J. Environ.
Monit. 5: 852–860. doi:10.1039/b307905h. PMID:14710922.

Campos, I., Alcañiz, M., Aguado, D., Barat, R., Ferrer, J., Gil, L., et al. 2012. A
voltammetric electronic tongue as tool for water quality monitoring in
wastewater treatment plants. Water Res. 46(8): 2605–2614. doi:10.1016/j.watres.
2012.02.029. PMID:22424964.

Campos, I., Pascual, L., Soto, J., Gil-Sánchez, L., and Martínez-Máñez, R. 2013. An
electronic tongue designed to detect ammonium nitrate in aqueous solu-
tions. Sensors, 13(10): 14064–14078. doi:10.3390/s131014064. PMID:24145916.

Campos, I., Sangrador, A., Bataller, R., Aguado, D., Barat, R., Soto, J., and
Martínez-Máñez, R. 2014. Ammonium and phosphate quantification in
wastewater by using a voltammetric electronic tongue. Electroanalysis,
26(3): 588–595. doi:10.1002/elan.201300538.

Capelli, L., Sironi, S., and Del Rosso, R. 2014. Electronic noses for environmental
monitoring applications. Sensors, 14(11): 19979–20007. doi:10.3390/s141119979.
PMID:25347583.

Carvalho, E.R., Consolin Filho, N., Venancio, E.C., Jr., O, O.N., Mattoso, L.H.C.,
and Martin-neto, L. 2007. Detection of brominated by-products using a sensor
array based on nanostructured thin films of conducting polymers. Sensors,
7(12): 3258–3271. doi:10.3390/s7123258. PMID:28903292.

Cerdà, V., Ferrer, L., Avivar, J., and Cerdà, A. 2014. Evolution and description of
the principal flow techniques. In Flow Analysis. pp. 1–42. doi:10.1016/B978-0-
444-59596-6.00001-2.

Cetó, X., Céspedes, F., and del Valle, M. 2013. Comparison of methods for the
processing of voltammetric electronic tongues data. Microchim. Acta, 180:
319–330. doi:10.1007/s00604-012-0938-7.

Cetó, X., Voelcker, N.H., and Prieto-Simón, B. 2016. Bioelectronic tongues: new
trends and applications in water and food analysis. Biosens. Bioelectron. 79:
608–626. doi:10.1016/j.bios.2015.12.075. PMID:26761617.

Cetó, X., Saint, C., Chow, C.W.K., Voelcker, N.H., and Prieto-Simón, B. 2017.
Electrochemical fingerprints of brominated trihaloacetic acids (HAA3) mix-
tures in water. Sens. Actuators, B, 247: 70–77. doi:10.1016/j.snb.2017.02.179.

Ciosek, P., and Wróblewski, W. 2007. Sensor arrays for liquid sensing –
electronic tongue systems. Analyst, 132(10): 963–978. doi:10.1039/b705107g.
PMID:17893798.

Corcoran, E., Nellemann, C., Baker, E., Bos, R., Osborn, D., and Savelli, H. (eds).
2010. Sick water? The central role of wastewater management in sustainable
development. A rapid response assessment. UNEP/Earthprint.

Cortina, M., Gutés, A., Alegreta, S., and del Valle, M. 2005. Sequential injection
system with higher dimensional electrochemical sensor signals Part 2. Po-
tentiometric e-tongue for the determination of alkaline ions. Talanta, 66:
1197–1206. doi:10.1016/j.talanta.2005.01.023. PMID:18970109.

Daughton, C.G. 2004. Non-regulated water contaminants: emerging research.
Environ. Impact Assess. Rev. 24: 711–732. doi:10.1016/j.eiar.2004.06.003.

del Valle, M. 2010. Electronic tongues employing electrochemical sensors. Elec-
troanalysis, 22(14): 1539–1555. doi:10.1002/elan.201000013.

Di Natale, C., Macagnano, A., Davide, F., D’Amico, A., Legin, A., Vlasov, Y., et al.
1997. Multicomponent analysis on polluted waters by means of an electronic
tongue. Sens. Actuators, B, 44(1–3): 423–428. doi:10.1016/S0925-4005(97)00169-X.

Di Natale, C., Paolesse, R., Macagnano, A., Mantini, A., D’Amico, A., Legin, A.,
et al. 2000. Electronic nose and electronic tongue integration for improved
classification of clinical and food samples. Sens. Actuators, B, 64(1–3): 15–21.
doi:10.1016/S0925-4005(99)00477-3.

Díaz-González, M., Gutiérrez-capitán, M., Niu, P., Baldi, A., Jiménez-Jorquera, C.,
and Fernández-Sánchez, C. 2016. Electrochemical devices for the detection of
priority pollutants listed in the EU water framework directive. TrAC,Trends
Anal. Chem. 77: 186–202. doi:10.1016/j.trac.2015.11.023.

Dymerski, T.M., Chmiel, T.M., and Wardencki, W. 2011. An odor-sensing system-
powerful technique for foodstuff studies. Rev. Sci. Instrum. 82(11). doi:10.1063/
1.3660805.

Ellis, J.B. 2008. Assessing sources and impacts of priority PPCP compounds in
urban receiving waters. 11th Int. Conf. Urban Drainage, Edinburgh, Scotland,
U.K. pp. 1–10.

Escuder-Gilabert, L., and Peris, M. 2010. Review: highlights in recent applications

of electronic tongues in food analysis. Anal. Chim. Acta, 665(1): 15–25. doi:
10.1016/j.aca.2010.03.017. PMID:20381685.

Facure, M.H.M., Mercante, L.A., Mattoso, L.H.C., and Correa, D.S. 2017. Detection
of trace levels of organophosphate pesticides using an electronic tongue
based on graphene hybrid nanocomposites. Talanta, 167: 59–66. doi:10.1016/
j.talanta.2017.02.005.

Ferreira, M., Riul, A., Wohnrath, K., Fonseca, F.J., Oliveira, O.N., and
Mattoso, L.H.C. 2003. High-performance taste sensor made from Langmuir-
Blodgett films of conducting polymers and a ruthenium complex. Anal.
Chem. 75(4): 953–955. doi:10.1021/ac026031p. PMID:12622390.

Filippini, D., Alimelli, A., Di Natale, C., Paolesse, R., D’Amico, A., and
Lundström, I. 2006. Chemical sensing with familiar devices. Angew. Chem.,
Int. Ed. 45: 3800–3803. doi:10.1002/anie.200600050. PMID:16671131.

Fraden, J. 2010. Handbook of modern sensors: physics, designs, and applications,
Fourth Edition. Edited by J. Fraden. Springer Science+Business Media, New
York, N.Y., USA. doi:10.1007/978-1-4419-6466-3.

Gałuszka, A., Migaszewski, Z.M., and Namieśnik, J. 2015. Moving your laborato-
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Abstract:
Triclosan (TCS) is a bacteriostatic used in household items that has been raising health concerns, due to the
promotion of antimicrobial resistance and endocrine disruption effects both to humans and biota, demanding
therefore new devices for its continuous supervising in complex matrices. This work explores the potential
of the electronic tongue concept to be used as an environmental monitoring tool. The sensor was based on
polyelectrolyte layer-by-layer (LbL) films prepared onto gold interdigitated electrodes (IDE) and, the use of
electrical impedance spectroscopy as a means of transduction, together with Principal Component Analysis
(PCA). An electronic tongue, composed by sensors arrays with (polyethyleneimine (PEI)/ polysodium 4-
styrenesulfonate (PSS))5 and (poly(allylamine hydrochloride/graphene oxide)5 LbL films together with gold
IDE without coating were used to detect TCS concentrations from 10−15 to 10−5 M, in deionized water,
mineral water and waste water. Results show the electronic tongue’s ability to: 1) distinguish between TCS
doped and non-doped solutions; 2) sort out the TCS range of concentrations. Regarding film stability, strong
polyelectrolytes, as (PEI/PSS)n, presented more firmness as no significant desorption was observed when
immersed in waste water, making them reliable sensor devices. Finally, the data of gold IDE sensors and
(PEI/PSS)5, for the mineral water and waste water matrices, respectively, show the ability to distinguish the
two matrices. A sensitivity value of 0.19±0.02 per decade to TCS concentration and a resolution of 0.13 pM
were found from PCA second principal component, showing that the choice of stable sensing layers is the key
to develop quantitative electronic tongues.

Highlights:

• An e-tongue based on polyelectrolyte sensors to detect triclosan was developed;

• Traces of triclosan on waste water were monitored;

• Stable thin-films sensing layers are the key to develop quantitative e-tongues;

• PCA was used determine the sensitivity and resolution of the e-tongue;

• E-tongue achieved a resolution of 0.13 pM.

Abbreviations:

DW, deionized water; E-tongue, electronic tongue; EF, waste water; GO, graphene oxide; IC, Ion Chromatog-
raphy; ICP, Inductively Coupled Plasma with Optical Emission; IE, interdigitated electrodes; LbL, layer-by-
layer; MW, mineral water; PAH, poly(allylamine hydrochloride; PCA, Principal Component Analysis; PEI,
polyethyleneimine; PSS, poly(sodium 4-styrenesulfonate; TCS, triclosan.



1 INTRODUCTION

Triclosan (5-chloro-2-(2,4-dichlorophenoxy) phe-
nol) (TCS) is widely used as an antimicrobial, an-
tibacterial and preservative agent in different personal
care and consumer products [1]. TCS main physi-
cal and chemical characteristics are presented in Table
1. Structurally, TCS molecule has functional groups
for both phenol (5-chloro-2-(2,4-dichlorophenoxy)
phenol) and ether (2,4,4-trichloro-2-hydroxydiphenyl
ether) and its lipophilicity (log Kow = 4.8) results in
a potential for bioaccumulation. Several studies had
proved its allergy risk, antimicrobial resistance, de-
velopmental toxicity, and endocrine disruption, both
in humans and biota [2-8]. Due to its characteristics
and inefficient removal in the waste water treatment
plants, TCS and its bioactive metabolites and/or by-
products, have been detected in waste waters and su-
perficial waters, at 10−8 M to 10−12 M concentrations
range (2 ng L−1 - 40 µg L−1; Table A supplemen-
tary material ) [9–11]. Consequently, TCS is contin-
ually being introduced in the aquatic environment via
a number of routes, primarily by both untreated and
treated waste water [12].

Hence, nowadays, the monitoring of TCS is a mat-
ter of concern and an important hot topic. Tradi-
tional analytical methods for TCS determination use
gas or liquid chromatography and mass spectrome-
try [13–18] . However, chromatographic and mass
spectrometric methods in spite of their high reliabil-
ity are rather complex, time consuming and expensive
[19]. Subsequently, there is a need for rapid, low-
cost, and sensitive tools for real time monitoring of
TCS in environmental matrices [20-23]. Due to their
specificities, such as fast response times, and user-
friendly operation the electronic tongue (e-tongue)
systems present a great potential to compete, com-
plement or replace traditional analytical techniques
[24], used for environmental monitoring. Conceptu-
ally, an e-tongue is “a multi-sensory system, formed
by an array of low-selective sensors, combined with
advanced mathematical procedures for signal pro-
cessing, based on pattern recognition and/or multi-
variate data analysis” [25]. TCS is one of the most
studied pollutant in sensors development, as exam-
ples: a strand of carbon fibers has been designed
and characterized for use in a voltammetric detec-
tor for high-performance liquid chromatography to
detect triclosan in rabbit serum and urine [26]; an
electropolymerizing o-phenylenediamine (o-PD) on a
glassy carbon electrode was used to create an am-
perometric sensor over a linear range of 2.0x10−7 to
3.0x10−6 mol/L and a detection limit of 8.0x10−8

mol/L [21]; a multiwall carbon nanotube film was

developed for the rapid detection of TCS as electro-
chemical sensor with a linear range from 50 µg L−1

to 1.75 mg L−1, and the limit of detection of 16.5 µg
L−1 (about 57 nM) [27]. Accordingly, recent stud-
ies [28-32] have reported well succeeded applications
with sensors composed of layer-by-layer (LbL) thin-
films, that were produced with polyelectrolytes and
used to detect organic compounds (in ultra-pure wa-
ter matrices) using impedance measurements.

An impedance system, in a simpler conceptual im-
plementation, is the full scan of different alternated
current frequencies or a selected number of discrete
frequency values, that can be used (conductivity or ca-
pacitance) [33]. The impedance technique approach
is based on the electrode perturbation caused by an
external signal of small magnitude [34]. Measure-
ments can be performed in equilibrium or station-
ary. The characterization of aqueous environmen-
tal matrices is performed by analyzing the electrical
impedance components (reactance, resistance, capac-
itance and loss tangent) as a function of frequency
signals applied to nanostructures adsorbed onto solid
substrates with interdigitated electrodes [31]. It has
been reported that TCS adsorbed amount per unit of
area on thin-films is reduced if the outer layers have
negative charged polyelectrolyte [35]. The stability of
the sensorial layers produced by the LbL technique is
dependent of the solution’s pH and the degree of ion-
ization of the uppermost polyelectrolyte layer. Con-
sequently, the TCS pKa (see Table 1) will play an es-
sential role in its adsorption or non-absorption onto
the used thin-films. The aim of the present study was
to explore the potential of the e-tongue concept using
impedantiometric detection of TCS in environmental
complex aqueous matrices. A deionized water, a Por-
tuguese mineral water and a waste water effluent from
a waste water treatment plant (considered the primary
source of TCS into water bodies) were used as exper-
imental matrices. TCS was spiked to the aqueous ma-
trices and these “measured” using thin-films sensors
based on polyethyleneimine (PEI), poly(sodium 4-
styrenesulfonate) (PSS), poly(allylamine hydrochlo-
ride) (PAH) and graphene oxide (GO) (Figure 1), that
have been prepared with the LbL technique onto solid
supports with deposited gold electrodes.

To the best of our knowledge, regarding waste
water real samples and these two combinations of
thin-films sensors, this is the first study that explores:
(1) an e-tongue based in a set of five sensor devices
providing the possibility to distinguish different TCS
concentrations; (2) the use of electrical impedance
spectroscopy measurements for TCS detection in en-
vironmental aqueous matrices; (3) the stability of the
thin-films layers, analysis of adsorption and desorp-



tion phenomena, submitted to different aqueous ma-
trices and pH values.

2 MATERIALS AND METHODS

The experimental matrices were deionized water
(DW), a Portuguese mineral water (MW) and a waste
water (EF). DW was produced using a Millipore sys-
tem (Bedford, MA, USA), MW was a commercial
Portuguese mineral water and EF was the liquid frac-
tion collected in the secondary clarifier at a waste
water treatment plant (Lisbon, Portugal). Table 2
presents the characterization of the experimental ma-
trices for conductivity, pH, and total ion concentra-
tion parameters. These features were measured be-
cause (1) pH of aqueous solutions can lead to desorp-
tion phenomena of thin-film layers, as well as, may
change the TCS degree of ionization: from Table 2
one can observe that the studied matrices present pH
values in the range of 6.1 - 8.4; and (2) ion species and
respective concentration can interact with the outer-
most layer of the sensor’s thin-films or with the gold
in the gold IDE. All these measured parameters play
a crucial role in the stability of the thin-film sensors
and matrix-sensor interactions with the TCS molecule
(pKa 7.9). pH was measured with a Radiometer pH-
electrode EDGE (HANNA, USA). The conductiv-
ity values were measured in a Radiometer Analytic
LAQUA twin (HORIBA Ltd., Japan). Ca, Cu, K,
Mg, Na, P, S and Zn were determined by Inductively
Coupled Plasma with Optical Emission Spectrome-
try (ICP-OES) (HORIBA Jobin-Yvon Ultima, Japan).
Cl− and SO2−

4 were analyzed by Ion Chromatogra-
phy (IC) (DIONEX ICS-3000, USA), equipped with
a conductivity detector. Triclosan (TCS ≥ 97%) and
methanol (MeOH; gradient grade) used were from
Sigma–Aldrich (Steinheim, Germany). Experimen-
tal TCS dilutions range, 10−5 to 10−15 M were made
sequentially from a mother solution with a concentra-
tion of 10−4 M and analyzed immediately after prepa-
ration. All dilutions were prepared using experimen-
tal matrices/MeOH (9:1) solutions. A solution of each
experimental matrix/MeOH, without TCS, was used
as the blank standard (0 M).

The sensor devices used in this work were pur-
chased from DropSens (Llanera Asturias, Spain) and
are constituted by glass BK7 solid support with de-
posited gold interdigitate electrodes (IDE) compris-
ing 250 “fingers” each. The supports’ dimensions
were 22.8 x 7.6 x 0.7 mm and each “finger” has
5 µm of width which is the same spacing between
the “fingers”. An array of sensor devices without
and with different polyelectrolyte thin films deposited

onto IDE surface were used to detect the TCS in aque-
ous solutions. The deposited thin films were pre-
pared with polyethyleneimine (PEI), poly(sodium 4-
styrenesulfonate) (PSS), poly(allylamine hydrochlo-
ride) (PAH) and graphene oxide (GO) polyelec-
trolytes, all from Sigma-Aldrich (St Louis, MO,
USA), by the LbL technique [36]. Accordingly, thin
films of PAH/GO and of PEI/PSS deposited on BK7
solid support with gold IDE were obtained by ad-
sorbing alternate layers of electrically charged poly-
electrolytes at solid/liquid interface, washing away
with water the already adsorbed layers after being
immersed in the polyelectrolyte solution in order
to remove any polyelectrolyte molecules that were
not completely adsorbed. The polyelectrolytes were
made with a monomeric concentration of 10−2 M di-
luted in water Type I, produced with a Millipore sys-
tem (Bedford, MA, USA). The adsorption time pe-
riod of each layer ( i.e. immersion time in each poly-
electrolyte solution), was 30 seconds and, after the
adsorption of each layer, the thin-film was dried us-
ing nitrogen gas. Films of PAH/GO were prepared
with 5 bilayers, (PAH/GO)5, while films of PEI/PSS
were prepared with 5, 10 and 20 bilayers, designated
by (PEI/PSS)5, (PEI/PSS)10 and (PEI/PSS)20, respec-
tively. Table 3 lists the thin-films used to characterize
the aqueous solutions matrices under study.

The electrical analysis of aqueous matrices was
performed by measuring the impedance spectra of
these sensor devices when immersed in the aqueous
matrices with different TCS concentrations with a So-
lartron 1260 Impedance Analyzer in the frequency
range of 1 Hz to 1 MHz, applying an AC voltage of 25
mV. To avoid contamination of the sensor devices, the
impedance spectra of thin-films sensors and gold IDE
were recorded for the TCS experimental matrices in a
sequence of increasing concentrations from 0 to 10−5

M. All measurements were performed at room tem-
perature 25◦C. The stability of thin-films on the dif-
ferent experimental matrices was also studied by mea-
suring the ultraviolet-visible spectra of the LbL thin-
films before and after being immersed in the experi-
mental matrices/MeOH solutions spiked with 10−9 M
of TCS. The absorbance spectra were attained using
a double beam spectrophotometer UV-2101PC (Shi-
madzu) with a sampling interval between 800 nm to
200 nm, with a resolution of 0.5 nm. For each thin-
film combination, three absorbance spectra were ob-
tained: (1) before being immersed in the TCS solution
(t = 0 min) to establish a baseline; (2) after five min-
utes of immersion (t = 5 min); (3) after a cumulative
immersion time of ten minutes (t = 10 min). Char-
acterization of LbL thin-films stability, in EF at pH
values of 3, 6, and 8, were also performed.



Principal component analysis (PCA) was car-
ried out, regarding the normalized (Z normalization)
impedance spectroscopy data, to reduce the size of
data and to obtain a new space of orthogonal com-
ponents, in which different concentration patterns can
be observed and explained. Additionally, an array of
sensors, composed by all the thin-films and gold IDE
sensors, was analyzed as an e-tongue for TCS detec-
tion in EF experimental matrix. The ANOVA t-test
was performed at 95% of confidence (p<0.05), con-
cerning the Table 2 data, to prove that they are statis-
tically different.

3 RESULTS AND DISCUSSION

3.1 Impedance spectroscopy
measurements: Sensor response

To evaluate the prepared sensors’ ability to detect
TCS in DW, MW and EF, impedance spectra, of sen-
sor devices without and with thin-films adsorbed on
the IDE surface were measured. Figure 2 shows the
imaginary impedance spectra, also designated as elec-
trical reactance, measured by the different sensor de-
vices when immersed in the different aqueous matri-
ces doped with TCS concentrations from 0 to 10−5

M. The data points are related to the average of three
impedimetric measurements (reproducibility in sup-
plementary material Figure B for the lowest TCS con-
centration).

Different footprints were observed according to
the experimental aqueous matrices and sensor de-
vices. Similar behaviour is observed for DW for
all sensors. The gold IDE sensor presents a sim-
ilar footprint for the MW and EF matrices. The
(PAH/GO)5 sensor shows a similar behaviour, but dif-
ferent from the gold IDE, for the same matrices. The
(PEI/PSS)5 sensor shows different behaviour for MW
and EF matrices, however similar to the gold IDE and
(PAH/GO)5 sensor, for MW and EF matrices, respec-
tively. Sensor physical properties (PP), such as re-
actance, loss tangent and resistance at constant fre-
quency, may present increasing or decreasing mono-
tone functions as a function of TCS concentration. In
order to allow operational TCS measurements (sen-
sor sensitivity), a trend function of its concentration
must be found, for example at a given frequency, ex-
pressed as normalized reactance, loss tangent or resis-
tance spectra. A normalized response can be achieve
using the following relation:

PP(C)−PP(M)

(PP(0M))
(1)

where PP(C) is the physical property measured
at a given concentration, and PP(0 M) is the physi-
cal property measured at a reference solution for the
different type of matrices (TCS 0M in DW, MW or
EF). Plots I, II and III of Figure 3 present examples
of the normalized PP spectra to fixed frequencies, for
the different films and type of environmental aqueous
matrices.

The accomplished detailed analysis of obtained
spectra in TCS solutions prepared with all the experi-
mental matrices, Figure 2, shown that, the imaginary
impedance or reactance can be used as a transducing
variable. Regarding DW matrix (Figure 2 I a, b, c),
the gold IDE sensor does not show a clear trend, com-
pared to the thin-films sensors that present a more pro-
nounced sensitivity to discriminate different concen-
trations in the frequency ranges of 1 to 10 kHz, and of
100 to 1000 kHz. Thus, in order to better analyze the
response of these sensors, the reactance values mea-
sured in the gold IDE, (PAH/GO)5 and (PEI/PSS)5
sensors, at frequencies of 6.3, 25119 and 25119 Hz,
respectively, were normalized and plotted as a func-
tion of TCS concentrations in Figure 3 I. This figure
reveals that the reactance at these frequencies tends to
increase or decrease, depending on the type of sensor
for the TCS concentration ranges under study. The
gold IDE sensor appears to be insensitive (no visible
trend) to TCS presence in the studied concentrations,
while (PEI/PSS)5 sensor displays only significant sen-
sitivity in the 10−5 to 10−7 M concentration range.
Regarding DW matrix, the (PAH/GO)5 sensor (Fig-
ure 3 I) presents almost constant values of reactance
at 25119 Hz, was concerning data discrimination (dis-
cussed in section 3.2), the most “efficient” sensor.

Concerning the TCS detection in MW solutions,
the reactance spectra, represented in Figures 2 II a and
c, revealed analogous behavior for both gold IDE and
(PEI/PSS)5 sensors. In the present case (Figure 3 II),
the loss tangent at fixed frequencies, was used as the
transducing variable. The frequency values chosen
were 63, 100, and 16 kHz, respectively, for the gold
IDE, (PEI/PSS)5 and (PAH/GO)5 sensors. It should
be remarked that all sensors tend to follow a decrease
in loss tangent with decreasing TCS concentrations.

Overall, for the EF, the (PEI/PSS)5 sensor show to
be the most sensitive in the studied TCS concentration
range. At frequencies between 1 and 10 kHz, the reac-
tance spectra present a good response discrimination
(Figure 2, III(c)). The normalized responses at 4 kHz
as exhibited in Figure 3 III, clearly shows an electrical
resistance trend with increasing TCS concentrations.
It is important to remark, concerning the sensitivity
of the sensor, that TCS is being detected/measured
in a range of concentrations in accordance with real



samples. For instance, the results showed that for
the EF matrix, as the TCS concentrations increase,
the measured electrical resistance also increases in the
range of 10−8 to 10−12 M, in accordance with the re-
ported for waste water samples [9–11], supporting its
potential field applicability. Should also be referred
that EF matrix has a high amount of anions, Table 2,
which directly contribute to the increase of electrical
charge that can flow between electrodes, EF conduc-
tivity takes a value of 1400 µS/cm [2]. Concerning
the gold IDE sensors, the electrical response was op-
erationally difficult to obtain, due to the high conduc-
tivity of the medium, and only lower measurable val-
ues of resistance were obtained, as can be observed in
Figure 3 III. The EF matrix is composed by a high
concentration of ions, such as Zn and S (Table 2),
that interact with the gold electrodes, thus promoting
an overload of electrical resistance and contributing
to sensor damage during the electrical measurements
(optical microscopy images, in supplementary mate-
rial Figure D).

3.2 Principal Component Analysis:
Sensor capabilities

In this section three questions will be addressed:
(1) Are the tested sensors able to detect concentra-
tions of TCS equal and higher than zero?; (2) Are the
tested sensors able of distinguish different TCS con-
centrations?; (3) Do the tested sensors produce PCA
plots with observable patterns and trends according
to TCS concentrations? To look for sensor “dis-
crimination” from different concentrations of TCS,
on different matrices, the principal component analy-
sis (PCA), a multivariate analysis technique, was per-
formed after data normalization (Z type). The PCA
was used to explore the sensors sensory attributes to
produce different patterns for the range of TCS con-
centrations. The PCA was applied for the most sensi-
tive sensor, regarding impedance normalized data (av-
erage of 3 loops impedance measurements). The PCA
with the best score plots obtained for the sensors when
immersed in DW, EF and MW matrices, respectively,
are presented in Figure 4 I, II, III. The characterization
associated to the best sensor is the one where the vari-
ations in the plot among TCS concentrations are more
significant [37]. The first component F1, explains the
greatest data variation and is considered the most im-
portant, explaining more than 79.69% of the variance.
With the exception of the measurements on DW (Fig-
ure 4, I), PCA plots produced clearly distinguish the
sample matrices without TCS from the samples with
TCS (Figure 4, II and III).

Regarding the DW experimental matrices (Figure

4 I), although the PCA plot distinguishes the different
concentrations, one can observe that a trend of TCS
concentration per principal components according to
concentrations was not achieved. In the case of the
(PAH/GO)5 sensor, the non-doped solution is in the
same quadrant of the higher TCS concentration. A
concentration pattern and trend, related to TCS con-
centrations, is visible for the data plot obtained by
the gold IDE sensor (Figure 4, II), where eigenvec-
tors points tend to increase over the range of con-
centrations. The first two principal components, F1
and F2, explain 98.63% of the total variance. Even
more, this distinction is better when compared to the
one obtained by the thin-films sensors. For the EF
matrix, the best discrimination among concentrations
was achieved by the (PEI/PSS)5 sensor (Figure 4 III).
It can be observed that TCS concentrations produce a
clear trend between 10−5 and 10−13 M. The first two
principal components F1 and F2 account 99.65% of
the total variance. This sensor is capable of detec-
tion and semi quantification, having a clear trend and
pattern within the PCA plot. Considering MW and
EF experimental matrices, there is an evident pattern,
where the concentration of the non-doped solutions
(TCS = 0) may be regarded as an outlier point, be-
ing the nearest concentration, in both cases 10−15 M.
Additionally, for EF the effect of the number of bilay-
ers was tested for the most sensitive sensor obtained,
(PEI/PSS)5. The PCA plots, showed that 5 bilay-
ers revealed better response (PCA separation to TCS
concentrations) and signal intensity for impedance,
when compared to the ones with 10 or 20 bi-layers
of (PEI/PSS)5 (PCA plots in supplementary material
Figures E and F). This could be due to the thickness
increase with the number of bilayers which leads to
the increase of the distance between the gold elec-
trode and the outer layer of film that interacted with
the TCS molecules. As the film thickness increases,
the capacitance decreases, reducing the electrical sig-
nals intensity measured in TCS solutions with differ-
ent concentrations, i.e, for two distinct concentrations
the difference of any measured electric property is
smaller. The decrease in double-layer capacitance is
associated with a higher resistance imposed to elec-
tron spillover, where this phenomenon reduces the
metal capacitance according to jellium model[38].

The combination of sensor arrays is expected to
improve the capability of TCS concentration discrim-
ination. The array of sensors composed by the sen-
sor devices without any film deposited (gold IDE)
and with (PAH/GO)5, (PEI/PSS)5, (PEI/PSS)10 and
(PEI/PSS)20 thin-films deposited, was used to test the
e-tongue concept and to analyses its ability to produce
discrimination among TCS concentrations in the EF



matrix. The respective PCA plot, Figure 5, clearly
distinguish the sample matrices without TCS from
the samples with TCS. A concentration pattern and
trend, related to TCS concentrations, can be seen on
the PCA plot along the main axis. The first two prin-
cipal components F1 and F2 accounts for 81.71% of
the total variance. As it was observed in Figure 4 II
and III, the data followed the same direction, from re-
gion A (TCS) = 0 to region B where (TCS) > 0, prov-
ing that the electronic based in those sensor devices
is able to distinguish between non-doped waste water
and doped TCS waste water, producing an observable
pattern and trend regarding the different concentration
values.

3.3 Sensorial layers’ evaluation - sensor
stability

Notwithstanding the positive response behavior
of the thin-films sensors in the presence of the TCS
molecules in different aqueous matrices, both indi-
vidually and in array tell us that we are on the right
track for TCS detection, there is a need to evalu-
ate the stability of the thin-films in order to confirm
that the positive results are due to the presence of
TCS in the aqueous matrix and not to the loss of
polyelectrolyte molecules from the films by desorp-
tion. It is known that the LbL film stability is re-
lated with the electrostatic interactions, in the range
of one hundred of kJ/mol, between the opposite ion-
ized groups of cationic and polyelectrolyte molecules
[39,40]. Therefore electrostatic interactions play a
vital role in the adsorption of these molecular bilay-
ers but are also strongly pH dependent since the de-
gree of ionization of each polyelectrolyte is a func-
tion of pH [39,40]. Having in mind the goal of de-
velop a sensor dedicated to detect a specific molecule
in complex media that can present different pH, the
electrostatic interactions must be taken into account.
Moreover, the salts and/or other elements present in
the environmental matrices, change the degree of ion-
ization of LbL films and of molecules involved [41]
and therefore affecting the electrical properties (e.g.
impedance) of the sensor. Additionally, the ionic ele-
ments present in the matrices, can be adsorbed onto
the polyelectrolyte’s layers, changing the electrical
properties of the sensor. Thus, in order to ascertain
which sensor holds the best features for the detec-
tion of TCS with no loss/desorption of thin-film lay-
ers and no irreversible adsorption of TCS onto thin-
film, the adsorbed amount on the different thin-films
was analyzed before and after the thin-films to be im-
mersed on the different TCS aqueous matrices. The
adsorbed amount per unit of area can be easily es-

timated by measuring the UV-visible spectra of the
films since they absorb in this wavelength region and
TCS presents two main absorbance bands at 230 and
at 280 nm. In figures 6 are shown the UV-vis ab-
sorbance spectra of the LbL films, before and after
their immersion (t = 0, 5 and 10 minutes) into 10−9

M TCS aqueous solutions, prepared with DW, MW
and EF (see Materials and Methods section). These
obtained spectra were plotted together by type of film
and aqueous matrix, thus allowing for an insight on
the effects of adsorption and/or desorption occurring
on each LbL thin-film. Accordantly, if the absorbance
is seen to increase compared to the t = 0 is likely that
TCS molecules are being adsorbed on the thin-film
outermost surface. Contrarily, if the absorbance is
seen to decrease when compared to the spectrum mea-
sured before immersion of the film on the aqueous
matrix, t = 0, it is likely that polyelectrolyte molecules
are being desorbed from the thin-film. This desorp-
tion is related with losses in the electrostatic interac-
tions with consequence in changes in the electrical
impedance measured during the sensing procedure.
By analysing the spectra of (PAH/GO)5 thin-film dis-
played in Figures 6 I a), b) and c) it is possible to
observe that in both DW (a) and MW (b) there was
adsorption of TCS molecules on the films being more
significant in the case of DW. Also, in the DW, results
show that a slight desorption took place when the film
was immersed from five to ten minutes. This could be
due to the more surface-located layers not being prop-
erly adsorbed during the film preparation, and when
immersed for a second time suffer a washing process,
resulting in a loss of previous adsorbed matter. The
adsorption phenomenon in these cases holds an addi-
tional relevance aside from the detection factor, as it
can be used for removing TCS from solutions.

According to spectra of Figure 6 I(a) and I(b),
the GO outer layer does not seem to be deeply in-
fluenced by pH, given that both waters have different
pH values (5.7 for MW and 7.2 for DW, Table 1), and
there was adsorption, nonetheless. Moreover, given
the chemical structures of the TCS molecule and the
polyelectrolyte (GO), the adsorption observed could
be a result of either the formation of hydrogen bonds
or from the interactions of π-π stacking [42]. In the
case of EF, Figure 6 I(c), desorption takes place since
the absorbance decrease as the immersion time in the
EF matrix increased. This behaviour can be attributed
to the abundant presence of ions such as Mg2+, Na+,
SO2−

4 (Table 1), which strongly interacting with the
GO outer layer of, facilitating the change of charge
within GO layer, from negatively charged to a pre-
dominantly neutral one. By turning neutral, the strong
electrostatic interactions between the GO outer layer



and the remaining layers were weakened, which in
turn leads to polyelectrolyte molecules detachment as
shown in Figure 6(c) [43]. The effect of pH on the
degree of ionization of PAH and GO has been al-
ready discussed in literature [39,44,45]. In fact, it
was shown that although at higher pH GO is elec-
trically charged, the PAH film molecules lost a large
amount of charge, leading to both PAH and GO des-
orption. Due to this fact, this type of film (PAH/GO)5
should not be considered as sensing film for future
works containing EF.

From the characterization of UV-vis spectra of
(PEI/PSS)5 thin-films, Figure 6II, there was a clear
effect of film desorption in the cases of DW (a) and
MW (b). While for the DW the observed desorp-
tion increased with the immersion time, for the MW,
although desorption to be significant after five min-
utes, remained seemingly constant after the second
immersion, suggesting that a desorption plateau was
reached. As desorption was observed in both DW and
MW, (PEI/PSS)5 thin-films should not be elected as
sensing films for these aqueous matrices.

Regarding the thin-films in EF, spectra of Figure
6 II(c) show that the absorbance between immersion
times from t = 0 to t = 10 minutes slightly varied.
This indicate that there was no significant adsorption
either desorption, i.e., TCS adsorption or film losses.
It is also possible to infer that pH plays a fundamen-
tal role in the adsorption and desorption phenomena
regarding (PEI/PSS)5 LbL films. According to [46],
the PEI degree of ionization is strongly pH dependent
but the PSS is a strong polyelectrolyte, with a pKa
near 1 [41,47], it can be influenced by solution pH
due to the presence of a sulfonate group in its chem-
ical structure and furthermore, reaching a more sta-
ble state at pH > 7 [48]. Therefore, not only due
to this last referred reason but also due to the min-
eral waters (both have pH < 7), while for EF (pH
above 8, see Table 1) the (PEI/PSS)5 LbL films are
highly stable. To better understand the involved phe-
nomena, a subsequent study about the stability of
(PEI/PSS)5 thin-films was conducted by measuring
the absorbance spectra of (PEI/PSS)5 thin-films be-
fore and after to be immersed during different peri-
ods in EF matrices with different pH, namely, 3, 6
and 8, see Figures 7 a), b) and c), respectively. Clear
desorption occurred after immersion in Figures 7 (a)
and (b) while in (c) a seemingly constant pattern hap-
pens among the three spectra. Furthermore, as pH
increases in the TCS solutions from pH 3 to pH 8, the
phenomenon of desorption decreases, suggesting that
pH has a direct effect on the interaction between the
thin-film and TCS. The behaviours displayed in Fig-
ures 7 further show that the absorbance of TCS onto

the outer layer of PSS is deeply influenced by pH,
confirming what was observed in Figure 6 II(c). At
pH 8, the film exhibits a stable behaviour, due to PSS
being fully charged and PEI maintaining about 40%
of its electrical charge which is sufficient to maintain
the polyelectrolyte layers adsorbed in the LbL film
and, therefore, no desorption occurs. As the outer-
most layer of the (PEI/PSS)5 thin-film is negative and,
at high pH, the TCS is negatively charged, the TCS
molecules are repelled by the films and are not ad-
sorbed on its surface. Thus, neither desorption nor
adsorption phenomena are observed.

3.4 Electronic Tongue - Sensor
sensitivity and resolution

The results of the previous sections indicate that
(PAH/GO)5 LbL sensor should be applied to acid
aqueous matrices with lower ionic strengths, while
the (PEI/PSS)5 LbL sensor should be used with al-
kaline aqueous matrices with higher ionic strengths.
Additionally, the gold IDE sensor should be applied
to medium ionic strength in neutral solutions. Thus,
to the environmental aqueous matrices under study,
an array of sensors, composed by the gold IDE and
(PEI/PSS)5 sensors was set in order to understand
if the e-tongue concept were capable of “tasting”,
through the impedance data, MW and EF, doped with
TCS.

The PCA plot corresponding to the use of the ad-
equate sensor devices to the matrix is presented in
Figure 8(a). This plot clearly distinguishes the MW
from EF matrix. Inside each matrix PCA region it
was also possible to discriminate the TCS concen-
trations across the principal component F2. In Fig-
ure 8(b) the values of F2 were plotted as a function
of TCS concentrations for both type of matrices, and
a linear relation and working range of the e-tongue
was attained. The principal component F2 linear ten-
dency suggests that F2 data can be used to determine
the sensitivity, the slope of a linear function, of the
sensor. Analyzing F2 curves, in detail, one can infer
a linear range between 10−13 and 10−7 M range of
TCS concentrations. Considering the data within this
concentration range, the F2 feature plot vs. the loga-
rithm of concentration, allows fitting the plotted data
points to a straight line with a slope, (∆F2)/∆logC =
0.19±0.02, which corresponds to the sensor sensitiv-
ity or limit of quantification. Additionally, the sen-
sor resolution (smallest concentration that can be de-
tected) can be found near the smallest concentration
(Cs). The Cs 0.1 pM, the minimum value which can
be measured is 0.02, therefore, ∆logC = (0.02)/(0.19)
meaning, ∆logC = logC - logCs and, thus, C - Cs ∼



0.13pM, which corresponds to the sensor resolution,
or limit of detection, of 0.13pM ( 0.3pg/L).

4 CONCLUSIONS

An electronic tongue, consisting of an array of
sensors based on uncoated IDE and coated with dif-
ferent LbL films was shown to be able to detect
and quantify triclosan trace concentrations, within the
range of 10−15 to 10−5 M, in a MW and in EF matri-
ces, by measuring the impedance spectra of the sensor
device. Sensor devices stability tests related with ad-
sorption/desorption phenomena revealed that some of
the films are not appropriate as TCS monitoring tools
as they are highly influenced by both matrices’ ion
composition and pH. The experimental data suggests
that: 1) (PAH/GO)5 LbL films may be used to ana-
lyze acid matrices with low ionic strength, since the
salts in the solution tend to discharge the GO film; 2)
(PEI/PSS)5 LbL films combination reveals potential
and capacity to be employed in alkaline aqueous ma-
trices, such as waste water, with high ionic strength;
3) gold IDE (uncoated) sensors react with ions in the
solutions and are damaged by S and Zn elements and,
may be considered to analyze neutral solutions with
low ionic strengths.

Regarding the aim of this proof-of-concept study,
an e-tongue, which can be used as an “analytical” sen-
sor for the detection and quantification of TCS in the
monitoring of environmental aqueous matrices (EF
and MW), was achieved. The experimental data, ana-
lyzed through a PCA, supported and demonstrated the
sensor’s ability and potential to distinguish between
aqueous matrices and to discriminate TCS concentra-
tions using the principal component F2. For an ex-
perimental/environmental range of triclosan concen-
trations of 10−13 to 10−7 M (0.3 ng/L - 30 µg/L), the
e-tongue presents a sensitivity value of 0.19±0.02 and
a resolution of 0.13 pM. Finally, these results show
that the choice of more stable sensing layers is the key
to develop quantitative e-tongues and, in the case of
LbL films that stability is only achieved when strong
polyelectrolytes are employed in its preparation.
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Table 1. Triclosan physical and chemical characteristics 

Chemical structure Formula 

Molar 

mass g mol 

-1 

Log 

Kow 

pKa 
Solubility in 

water mg L-1 

Polarizability 

Å3 
CAS-No 

 

5-chloro-2-(2,4-

dichlorophenoxy)phenol 

C12H7Cl3O2 289.54 4.76 7.9 10 (20°C) 26.96 3380-34-5 

References: http://pubchem.ncbi.nlm.nih.gov/; https://chemicalize.com/  

 

Table 2. Characterization of the environmental matrices under study. 

 DW MW EF* 

pH 7.2  0.1 5.7  0.3 8.4  0.1 

Conductivity (S/cm) 46.5  0.7 113  37 1400  500 

ICP analysis (mg/L)    

Ca - 0.75  0.1 39.1  2.8 

Cu - - 0.02  0.01 

K 
- - 22.9  0.4 

Mg 
- 7.3  0.6 18.2  5.1 

Na 
- 1.7   0.1 161  58 

P - - 2.2  0.2 

S - - 32.9  8.6 

Zn 
- - 0.07  0.02 

IC analysis (mg/L)    

Cl- 
- 9.3   0.4 488.7  593.2 

SO42- 
- 1.3   0.3 84.1  92.4 

DW - deionized water; MW - mineral water; EF - waste water 

*collected between September and December 2018 

 

 

 

 

http://pubchem.ncbi.nlm.nih.gov/
https://chemicalize.com/


Table 3. Characteristics of the thin-films deposited on BK7 solid support with gold IDE to characterize the 

aqueous solutions matrices. 

Aqueous 

matrices 

Thin-film 

combinations 

Number of 

bilayers 

DW PAH/GO and PEI/PSS 5 

MW PAH/GO and PEI/PSS 5 

EF 
PAH/GO 5 

PEI/PSS 5, 10 and 20 

 



 

Figure 1. Chemical structure of polyethyleneimine (PEI), poly (sodium 4-styrenesulfonate) (PSS), 

poly(allylamine hydrochloride) (PAH) and graphene oxide (GO). 
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Figure 2.  Reactance (imaginary) impedance spectra of sensor device (a) of gold IDE sensor, (b) (PAH/GO)5 

sensor and (c) of (PEI/PSS)5 sensor, immersed in TCS DW (I) MW (II) and EF (III) at different TCS 

concentrations. 
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Figure 3.  Transducing variables normalization as function of TCS concentrations at fixed frequencies: I) DW - 

Reactance spectra at 6.3, 25119, 25119 Hz; II) MW - Loss tangent spectra at 63095, 16000, 100000 Hz and III) 

EF - Resistance spectra at 100000, 16000, 3981 Hz; to Gold IDE, (PAH/GO)5 and (PEI/PSS)5 sensors, 

respectively (n=3, average and standard deviations of the respective impedance data used for the normalization, 

in supplementary material C 1-3)  
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Figure 4. PCA plots of TCS concentrations (10-5 to 10-15 M) distinguished with: I) (PAH/GO)5 sensor for DW, II) 

gold IDE sensor for MW; III) (PEI/PSS)5 sensor for EF.  

Figure 5. PCA plot of TCS concentrations (10-5 to 10-15 M) distinguished with an electronic tongue sensor for EF. 

Figure 6. UV-Vis spectra of I) (PAH/GO)5 films and II) (PEI/PSS)5 before and after immersions times in 10 -9 M 

TCS solutions of: (a) DW; (b) MW and (c) EF. 
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Figure 7.  UV-Vis spectra of (PEI/PSS)5 films before and after immersions in 𝟏𝟎−𝟗 M TCS solutions in EF with 

pH of: (a) 3; (b) 6 and (c) 8.  

 

Figure 8. (a) PCA plot of TCS concentrations (10-5 to 10-15 M) distinguished gold IDE sensor for MW and 

(PEI/PSS)5 sensor for EF; (b) ((a) PCA data) principal components F2 factor scores as function of TCS 

concentrations for gold IDE sensor in MW and (PEI/PSS)5 sensor in EF. 
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Table A. Concentration guidance: molar, µg/, ng/L and pg/L 

 
M µg/L ng/L pg/L 

10-5  3000 
 

 

10-6  300 

10-7  30 

10-8  3 

10-9  0.3 

10-10  
 

30 
 

10-11  3 

10-12  0.3 300 

10-13  
 

30 

10-14  3 

10-15  0.3 

 

 
Figure B. Reactance (imaginary) impedance spectra of sensor device of gold IDE sensor, (PAH/GO)5 sensor and 

of (PEI/PSS)5 sensor, immersed in deionized water, mineral water and waste water with 10-15M of TCS (Related 

to the measurements in Figure 2) 
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Table C.1 Impedance data measurements, reactance (imaginary), used for the normalization of Plots I in Figure 

3 
 

  Fixed Frequency (Hz) 

Reactance 

(imaginary) (Ω) 

for deionized 

water 
  

 6.3 25119 25119 

TCS (M) Gold IDE (PAH/GO)5 (PEI/PSS)5 

 Average SD Average SD Average SD 

0 13.035 0.654 87.201 0.112 16.837 0.021 

10-15 7.466 0.041 84.483 0.030 16.338 0.004 

10-14 7.508 0.028 84.460 0.048 16.576 0.004 

10-13 7.270 0.032 83.752 0.092 16.616 0.005 

10-12 7.085 0.027 83.488 0.053 16.379 0.012 

10-11 7.035 0.030 83.668 0.017 16.461 0.003 

10-10 7.051 0.041 83.694 0.029 16.508 0.008 

10-9 6.976 0.019 83.889 0.017 16.541 0.003 

10-8 7.015 0.029 83.834 0.023 16.638 0.002 

10-7 6.939 0.023 84.166 0.015 16.538 0.011 

10-6 6.939 0.014 85.315 0.136 18.439 0.100 

10-5 6.795 0.020 87.068 0.086 21.371 0.044 

SD – standard deviation 

 
 

Table C.2 Impedance data measurements, loss tangent, used for the normalization of Plots II in Figure 3 

 

  Fixed Frequency (Hz) 

Loss Tangent 

(a.u) for mineral 

water  

 63095 16000 100000 

TCS (M) Gold IDE (PAH/GO)5 (PEI/PSS)5 

 Average SD Average SD Average SD 

0 6.586 0.038 2.956 0.000 4.454 0.001 

10-15 6.613 0.009 2.961 0.005 4.600 0.008 

10-14 6.547 0.009 2.892 0.003 4.578 0.006 

10-13 6.492 0.010 2.877 0.003 4.517 0.002 

10-12 6.413 0.005 2.876 0.005 4.522 0.002 

10-11 6.382 0.001 2.877 0.006 4.423 0.003 

10-10 6.347 0.001 2.863 0.003 4.457 0.001 

10-9 6.327 0.002 2.887 0.002 4.419 0.001 

10-8 6.256 0.001 2.870 0.003 4.386 0.004 

10-7 6.272 0.003 2.863 0.004 4.388 0.002 

10-6 6.210 0.003 2.854 0.004 4.329 0.004 

10-5 5.942 0.036 2.826 0.002 4.206 0.009 

SD – standard deviation 

 

 

 

 

 

 

 

 

 

 



 

 
Table C.3 Impedance data measurements, resistance, used for the normalization of Plots III in Figure 3 

 
  Fixed Frequency (Hz) 

Resistance (Ω) 

for waste water  

 100000 16000 3981 

TCS (M) Gold IDE (PAH/GO)5 (PEI/PSS)5 

 Average SD Average SD Average SD 

0 40.920 0.057 98.217 0.338 149.621 1.055 

10-15 40.781 0.041 94.688 0.561 150.891 0.286 

10-14 41.064 0.027 94.458 0.289 151.813 0.168 

10-13 41.241 0.066 93.091 0.145 153.332 0.217 

10-12 40.712 0.011 93.272 0.095 154.904 0.241 

10-11 40.906 0.032 93.219 0.076 154.231 0.124 

10-10 40.716 0.029 93.034 0.068 155.732 0.124 

10-9 40.596 0.030 92.116 0.047 156.077 0.153 

10-8 40.645 0.043 93.234 0.066 158.578 0.192 

10-7 40.794 0.023 92.224 0.039 158.783 0.142 

10-6 40.718 0.009 93.262 0.004 161.490 0.401 

10-5 41.151 0.021 92.677 0.218 167.916 0.771 

SD – standard deviation 

 
 

 
 

Figure D. Optical Microscopy Images of gold interdigitated electrodes without coating, gold IDE; Magnitude: 

(a) 4x, (b)10x and (c) 40x, analysed in waste water  

 

 

 
Figure E. PCA plot of TCS concentrations (10-5M to 10-15M) distinguished with (PEI/PSS)10 sensor for waste 

water 
 

(a) (b) (c) 



 

 
 

Figure F. PCA plot of TCS concentrations (10-5M to 10-15M) distinguished with (PEI/PSS)20 sensor for waste 

water 
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Abstract: Triclosan, which is a bacteriostatic used in household items, has raised health concerns,
because it might lead to antimicrobial resistance and endocrine disorders in organisms. The detection,
identification, and monitoring of triclosan and its by-products (methyl triclosan, 2,4-Dichlorophenol
and 2,4,6-Trichlorophenol) are a growing need in order to update current water treatments and enable
the continuous supervision of the contamination plume. This work presents a customized electronic
tongue prototype coupled to an electrochemical flow reactor, which aims to access the monitoring of
triclosan and its derivative by-products in a real secondary effluent. An electronic tongue device, based
on impedance measurements and polyethylenimine/poly(sodium 4-styrenesulfonate) layer-by-layer
and TiO2, ZnO and TiO2/ZnO sputtering thin films, was developed and tested to track analyte
degradation and allow for analyte detection and semi-quantification. A degradation pathway trend
was observable by means of principal component analysis, being the sample separation, according to
sampling time, explained by 77% the total variance in the first two components. A semi-quantitative
electronic tongue was attained for triclosan and methyl-triclosan. For 2,4-Dichlorophenol and
2,4,6-Trichlorophenol, the best results were achieved with only a single sensor. Finally, working as
multi-analyte quantification devices, the electronic tongues could provide information regarding the
degradation kinetic and concentrations ranges in a dynamic removal treatment.

Keywords: triclosan; electrochemical treatment; real time monitoring; layer-by-layer technique;
sputtering technique; electronic tongue; sensors

1. Introduction

Nowadays, both water quality and availability are under stress. The global population is
expected to exceed nine-billion by 2050, where 70% will be, living in urban areas [1]. This rising
demand for water, together with poor or inefficient wastewater management and limited disposal
strategies with minimal treatment practices, increases the need of sustainable tools to assure the
quality, monitoring, and prosperity of a healthy population and environment [2]. Emerging organic
contaminants (EOCs) are defined as “chemical substances that have no regulation and are suspected
to negatively affect the environment or whose effects are unknown” [3,4]. Among EOCs, antibiotics,
disinfectants, and antiseptics are especially relevant, as thousands of tons are yearly consumed
worldwide in medicine, agricultural, and as daily consumer products [5]. Furthermore, the reported
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data show that conventional wastewater treatment plants are inefficient in their elimination [6–12].
Triclosan (TCS or 2,4,4′-Trichloro-2′-hydroxydiphenyl ether) is a broad antimicrobial agent, with low
water-solubility (more susceptible to bio-accumulation) and that has been used for more than 50 years
as an antiseptic, disinfectant, or preservative in clinical settings and several consumer products, i.e.,
toothpastes, cosmetics, and plastics. On the basis of the available studies, it is now accepted that it
has extensive environmental and health effects, also being toxic to water living organisms due to its
photodegradation to chlorodioxins [13,14]. TCS has been detected in wastewater treatments plants
and surface waters [15,16]. Moreover, TCS derivatives have also been found, such as the metabolite
methyl-triclosan (M-TCS) [17], which is considered to be more persistent [18] and TCS by-products,
such as 2,4-Dichlorophenol (DCP) and 2,4,6-Trichlorophenol (TCP), which pose a health risk to humans
and are recognized as persistent priority pollutants in the United States, Europe, and China [19].

Innovative green tools for monitoring the degradation processes are currently in the spotlight.
Sensors, as compared to traditional sampling and analysis procedures, can provide fast response
on the output data in a continuous, safe, and cost-effective way, and therefore may play a role in
monitoring contaminants’ dynamics [20]. Among sensors, the electronic tongue (e-tongue) is gaining
special attention for liquid matrices. An e-tongue is a multi-sensory system, which formed by an
array of sensors with low-selective thin film layers or sensorial layers, and combined with advanced
mathematical procedures for signal processing based on pattern recognition and/or multi-variate data
analysis [21]. E-tongues have proved to be suitable devices for monitoring aqueous environmental
matrices contaminated with EOCs [22,23]. Some examples are Campos et al. (2012) [24], who developed
a voltammetric e-tongue [set of noble (Au, Pt, Rh, Ir, and Ag) and non-noble (Ni, Co, and Cu) electrodes
to the prediction of concentration levels of soluble chemical oxygen demand, soluble biological oxygen
demand, ammonia, orthophosphate, sulphate, acetic acid, and alkalinity from influent and effluent
wastewater. Years later, Cetó at al. (2015) [25] used a voltammetric bio e-tongue for simultaneous
monitoring of catechol, m-cresol, and guaiacol mixtures in wastewater. Thus, one of the most interesting
aspects that motivate the development of e-tongues is their potential for real-time parallel monitoring
of multiple species and multi-analyte determination in a single sample analysis [26,27]. The working
electrodes in the e-tongues array can be covered with films (coatings), which improves the sensitivity
of the electrical measurements. The ability to tune the composition of nanostructured thin films allow
for an improvement in the sensor’s intrinsic (chemical or physical) properties for sensing applications.
The layer-by-layer (LbL) nano-assembly technique, where the Brazilian group was the pioneer in the
subject [28–31], is a flexible, easily-scalable, reproducible, and versatile approach that allows for the
precise control of the coating thickness, composition, and structure. This nano-assembly technique
is a powerful tool for the incorporation of a wide variety of coating types, such as polyelectrolytes.
The type of thin film or sensorial layer chosen is a critical step for the accomplishment of a reliable
qualitative and quantitative device. In a preliminary study, Magro et al (2019) [32] found that the LbL
films prepared with polyethylenimine (PEI) and poly (sodium 4-styrenesulfonate) (PSS) build up with
five bilayers were suitable for TCS detection in wastewater. However, the polyelectrolyte layers of
these thin films may desorb when they are immersed in solutions below pH = 7. According to Zhu et
al. (2003) [33], even if the PEI degree of ionization is strongly pH dependent and the PSS is a strong
polyelectrolyte, with a pKa near 1, it can be influenced by solution pH due to the presence of a sulfonate
group in its chemical structure and furthermore. Studies on layer-by-layer films that were prepared
from aqueous solution with pH below 7 revealed that the PSS is completely ionized [34,35]. In this
regard, thin films of TiO2 and ZnO build-up with the sputtering technique can also be considered
as sensorial layers. These films proved to be efficient for the detection of molecules with phenolic
rings and they presented high mechanical stability under pH fluctuations [36–38]. This study aimed to
achieve a customized e-tongue device to follow real-time degradation and quantification of TCS and its
derivative by-products in an electrochemical flow reactor (EFR) treatment. The EFR, which mimics the
secondary clarifier in a wastewater treatment plant, was considered to be the most appropriate choice
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to couple with a monitoring real time tool device, due to its potential to operational implementation
and final matrix conditions (non-aggressive for thin film layers, e.g., pH effluent around 7.6).

To attain this proof-of-concept goal: (1) an array of thin films were prepared by LbL and sputtering
techniques and were characterized by a field emission scanning electron microscope, in order to
understand the device response for each EOCs; (2) the impedance electrical properties of these films
when immersed in effluent spiked with EOCs’ were acquired; (3) “calibration curves”, to individually
distinguish each EOCs were the base to train the customized e-tongue; and, (4) PCA results from
the e-tongue attached to a dynamic EFR were analysed to apprehend the potential for working as a
monitoring real time tool for EOCs’ degradation detection and semi-quantification.

2. Materials and Methods

2.1. Chemical and Standards

TCS (99%), M-TCS (99%), DCP (98%), and TCP (98%) were purchased from Sigma-Aldrich
(Steinheim, Germany, Table S1). Individual stock solutions for calibration purposes were prepared
with 1000 mg/L in methanol and stored at −18 ◦C. The methanol, acetonitrile, acetone, and formic acid
used were from Sigma-Aldrich (Steinheim, Germany) in gradient grade type. Water (Type I) was from
a Millipore system (Aqua Solutions, Bedford, MA, USA).

The sensor devices were purchased from DropSens (Llanera Asturias, Spain) and they were
formed by either a BK7 glass solid substrate with deposited interdigitated electrodes comprising 125
“fingers” each or by a ceramic solid substrate with deposited gold interdigitated electrodes comprising
eight “fingers” each. The supports’ dimensions were 22.8 × 7.6 × 0.7 mm and each “finger” had 10 or
200 µm of width, which was the same spacing between them. PEI and PSS from Sigma-Aldrich (St
Louis, MO, USA) were the chemicals used to prepare the sensing layers on the interdigitated electrodes.
The used gases argon, oxygen, and nitrogen had ≥ 99.9% of purity. The used effluent, pH (7.6 ± 0.5)
and conductivity (1.6 ± 1.0), was the liquid fraction that was collected in the secondary settling tank at
a wastewater treatment plant (Lisbon, Portugal).

2.2. Methods

2.2.1. Emerging Organic Contaminants Extraction and Quantification: Chromatography Approach

The extraction of EOCs in the effluent was performed by solid-phase extraction (SPE) while using
Oasis HLB (200 mg, 6 mL) from Waters (Saint-Quentin-En-Yvelines Cedex, France). The SPE cartridges
were conditioned by washing with 3 × (6 mL) of methanol, followed by re-equilibrium with 3 × (6
mL) of Milli-Q water. For EOCs enrichment, the samples were acidified to pH = 2 before extraction
using nitric acid. The 200 mL aqueous samples passed through the cartridge at a flow rate of approx.
10 mL/min by applying a moderate vacuum, followed by a dried period of approx. 3 min by vacuum.
The retained EOCs were eluted sequentially with 2 × (4 mL) of methanol and 1 × (4 mL) of acetone.

The EOCs determination was performed in an Agilent 1260 Infinity II high-performance liquid
chromatography (HPLC) that was equipped with a quaternary pump and auto-sampler and a diode
array detector (DAD)/fluorescence detector 1100 Series. An EC-C18 column (InfinityLab Poroshell
120 High Efficiency, 100 mm × 4.6 mm; 2.7 µm with Column ID, Agilent, Santa Clara, CA, USA) was
used. All of the HPLC runs were performed at a constant flow of 1.5 mL/min in gradient mode, with
the oven set to 36 ◦C. A mixture of acetonitrile, Milli-Q water and formic acid was used as eluents (A:
5/94.5/0.5% and B: 94.5/5/0.5%) with a gradient of 60% of B (0–2 min), followed by 97% of B (2–3.5 min)
and 98% of B until 5 min “Calibration curves” were performed in the range between 0.5 and 20.0 mg/L.
The limits of detection and quantification were, respectively, 0.7 and 2.0 mg/L for TCS, 1.3 and 3.9 mg/L
for M-TCS, 0.7 and 2.0 mg/L for DCP, and 1.0 and 3.0 mg/L for TCP. The recovery tests were made
with fortified effluent for 1 h of contact time (30 min of slow agitation). The recovery percentages were
between 62% and 120% in all cases.
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2.2.2. Emerging Organic Contaminants Quantification: Customized Electronic Tongue Concept

An array of sensor devices with different thin films that were prepared by LbL and sputtering
techniques deposited onto solid substrates with gold interdigitated electrodes were coupled to an EFR
(Figure 1). The e-tongue (Figure S1 for the information of the five sensors that composed the e-tongue)
was used to detect the TCS, M-TCS, DCP, and TCP degradation in the effluent.

Figure 1. Electrochemical flow reactor used to attach the e-tongue.

The LbL thin films were prepared with PEI and PSS polyelectrolytes by the LbL technique [28].
Accordingly, thin films of PEI/PSS that were deposited onto solid support with gold interdigitated
electrodes were obtained by adsorbing alternate layers of electrically charged polyelectrolytes at
solid/liquid interface, carefully washing with water (Type I) the already adsorbed layers after immersion
in the polyelectrolyte solution to remove the polyelectrolyte molecules that were not completely
adsorbed. The polyelectrolytes solutions were performed with a polymeric concentration of 10−2 M
diluted in water Type I, produced with a Millipore system (Bedford, MA, USA). The adsorption time
period of each layer (immersion time in each polyelectrolyte solution) was 30 s and the thin film was
dried [39] while using a nitrogen flow after the adsorption of each layer. The aforementioned sequence
was repeated five times in order to obtain a film with five bilayers, denoted as (PEI/PSS)5.

Monolayered films: TiO2, ZnO and bilayered film: TiO2/ZnO (being ZnO the upper layer) were
deposited at room temperature onto gold interdigitated electrodes glass substrates (22.8 × 7.6 ×
0.7 mm), by DC (voltage source, Huttinger PFG 10000) reactive magnetron sputtering in a custom-made
system. Tianium and zinc discs (Goodfellow, 99.99% purity) with 64.5 mm of diameter and 4 mm
of thickness each were used as the sputtering targets. A turbomolecular pump (Pfeiffer TMH 1001)
was used to achieve a base pressure of 10-4–10-5 Pa (before introducing the sputtering gas). Before
the sputter-deposition step of the films, a movable shutter was interposed between the target and the
substrates. The target was pre-sputtered in the Ar atmosphere for 2 min to clean the target surface.
The target-to-substrate distance was kept constant at 100 mm. Gases in the system were pure Ar and O2

and needle valves separately controlled their pressures. TiO2 and ZnO depositions were both carried
out in 100% O2 atmosphere. For the TiO2 film the total pressure was kept constant at 2 Pa, the sputtering
power was 530 W, and the deposition time was 25 min. In the case of ZnO film, the total pressure
was fixed at 4.8 Pa, the sputtering power was 300 W, and the deposition time was 30 min. TiO2/ZnO
bilayered films were prepared while using the aforementioned deposition conditions for TiO2 and
ZnO. No external substrate heating was used during the deposition. The substrate temperature was
measured by a thermocouple passing through a small hole in a copper piece that was in contact with
the substrate. During the deposition process, the sample temperature increased up to 60 ◦C due to the
plasma particle bombardment of the substrate. The characterization of the thin films thickness and
morphology was performed by a field emission scanning electron microscope (FEG-SEM JEOL 7001F)
operating at 15 keV. A gold thin film was coated on the films surface before SEM analysis to charge
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build-up prevention. The images of the cross section allowed for the estimation of the films’ thickness.
Therefore, the measured thickness is given by the trigonometric equation since the positioning of the
sample has a slope relative to the axis of incidence of the electron beam which can be deduced through
the geometry involved. The indicated correction was calculated while using Equation (1).

dSEM =
dobs

cosα
(1)

where the dSEM is the real thickness, dobs is an average of the measured thickness values estimated from
the cross-section images and α is the beam incident angle (20◦).

The electrical analysis of the aqueous matrices was performed by measuring sequentially the
impedance spectra of each sensor device when immersed (about 3 min each) in effluent with different
EOCs concentrations, while using a Solartron 1260 Impedance Analyzer (Solartron Analytical, AMETEK
scientific instruments, Berwyn, PA, USA) in the frequency range of 1 Hz to 1 MHz, while applying an
AC voltage of 25 mV. The impedance data was collected from the SMaRT Impedance Measurement
Software (AMETEK scientific instruments, Berwyn, PA, USA). Calibration solutions were performed at
25 ◦C and then prepared while using effluent spiked with EOCs concentrations in the degradation
range that were expected in the electrochemical flow reactor (0 to 0.8 mg/L). For all measurements a
blank standard (0 mg/L) was used. For the electro-degradation monitoring, every 15 min (total time
of treatment 120 min) was assembled an aliquot to be measured for each sensor, in the impedance
conditions that are described above.

2.2.3. Data Analysis

Principal component analysis (PCA) was carried out regarding the normalized Z-score
normalization, z =

x− µ
σ impedance spectroscopy data (capacitance, impedance, imaginary, and real

and loss tangent measurements), where x is the mean of three impedance measurements at a fixed
frequency, µ the average of all the frequency ranges, and σ the standard deviation of all the frequency
ranges. PCA was the choice of data proceeding to reduce the size of data and obtain a new space of
orthogonal components, in which different concentration patterns can be observed and explained with
Excel XLSTAT Programme. All of the sample analyses were carried out in duplicate or triplicate.

3. Results and Discussion

3.1. Sensors Characterization: Morphology and Thickness

As described in the Materials and Methods section, (PEI/PSS)5 LbL films and TiO2, ZnO,
and TiO2/ZnO sputtered films (see sensors composition in Figure S1 in Supplementary Materials) were
prepared and characterized. Figure 2a,b presents the SEM images and the respective thickness of those
thin films. The characterization of the sensors layers is important to explain the sensors performance,
since the homogeneity, particle size, and thickness will affect the electrical measurements: resistance,
molecules’ adsorption, capacitance, and further capability of detection.

In agreement with Figure 2a, glass conducting substrates are covered by homogeneous films.
However, the surface morphology of these films changes according to the deposition technique. Thus,
the LbL films exhibited a smooth surface with evidence of very small agglomerates or grains. On the
contrary, sputtering films presented a rougher surface and much larger agglomerates with different
shapes, depending on the oxide used. In particular, for TiO2 films, the agglomerates of grains with an
average lateral size of 30 nm are distributed over the substrate surface with a ‘blooming flower-like’
appearance. In the case of ZnO films, the surface presents a pronounced cone-like morphology and
lateral average size of approximately 100–120 nm. The outermost ZnO layer of the TiO2/ZnO bilayered
films show globular shape agglomerates, with the lateral average size approximately 100–150 nm.
The formation of agglomerates or particulates are a product of individual nano-phase grains that
exhibit different dimensions (ZnO > TiO2), which result in an increase of the active surface area and
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also promotes the formation of porous films. These characteristics are critical in the response device to
EOCs detection. The films thickness was evaluated from FEG-SEM cross-section images and Figure 2b
summarizes the obtained values. It can be observed that the thickness of the (PEI/PSS)5, TiO2, ZnO,
and TiO2/ZnO increases from 133 to 713 nm, in the mentioned order.

Figure 2. Scanning electron microscope (SEM) image of (PEI/PSS)5, TiO2, ZnO and TiO2/ZnO thin films
combinations: (a) Top and (b) cross section.
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3.2. E-Tongue Training for Emerging Organic Contaminants Recognition

To train the e-tongue device, it is first necessary to find the “calibration curves” for the individual
compounds. For that, i.e. to analyze their degradation pathway, impedance spectra of the sensors
when immersed in effluent spiked with the EOCs, at different concentrations, were acquired.

The PCA method was applied to carry out an exploratory analysis of the obtained impedance data,
though the reduction of the size of data and the creation of a new space of orthogonal components, in
which different concentration patterns can be observed. Figure 3 presents the PCA score plot of the
measured impedance data (see spectra in Figure S2 in the Supplementary Materials), obtained when the
five sensors (composition on Figure S1 in Supplementary Materials; (PEI/PSS)5 onto 10µm interdigitated
electrode, (PEI/PSS)5 onto 200 µm interdigitated electrode, TiO2 onto 10 µm interdigitated electrode,
ZnO onto 10 µm interdigitated electrode, and TiO2/ZnO onto 10 µm interdigitated electrode) were
immersed in effluent that was spiked with the four EOCs at different concentrations. Correspondingly,
the reproducibility of the measurements for the lowest concentrations (0.1 mg/L, more susceptible to
error), for each sensor for each compound can be observed in Figure S3 (in Supplementary Materials).

Figure 3. Principal component analysis (PCA) Score plot for the electronic tongue (five types of
sensors) for 2,4,6-Trichlorophenol (TCP), 2,4-Dichlorophenol (DCP), triclosan (TCS), and metabolite
methyl-triclosan (M-TCS)) individual measurements in the range of concentration 0, 1, 3, 5, 7, that
correspond to the effluent as sampled, and effluent spiked with 0.1, 0.3, 0.5 and 0.7 mg emerging
organic contaminants/L (EOCs/L).

On the PCA plot, as shown in Figure 3, the resulting analyte clustering by concentration are
represented. The first two components of the PCA explain 65.80% of the observed variation. The plot
observation supports the ability of the e-tongue device to “recognize” between individual EOCs-spiked
effluents and raw effluent (non-spiked) matrices. A trend along the first component (PC1), according
to the analyte concentrations might be observed on the plot, where the concentration increases from
right to left across PC1 axis, moving away from concentration zero, and thus supporting the potential
of the e-tongue device to discriminate quantitatively individual EOCs.

It was possible to determine individual “calibration curves” through the first two principal
components data (Figure S4 in Supplementary Materials). These estimated curves are useful tools for a
semi-quantitative extrapolation of the EOCs’ during EFR monitoring, where the effluent has a mix
contamination. It was observed that the best fitting is not linear, as it is usually demanded and seen in
chromatography methods [28], but polynomial, where the measure of goodness-of-fit observed ranged
from R2 = 0.86 (TCP) to R2 = 0.99 (TCS).



Sensors 2019, 19, 5349 8 of 13

3.3. E-tongue Performance for Emerging Organic Contaminants Semi-Quantification

Figure 4 shows the PCA plot from the normalized impedance data that were obtained by the
customized e-tongue for the EFR treatment dataset. The dataset is composed by the analysed aliquots
that were collected every 15 min in the course of the EFR treatment (120 min; t0–t120). A pattern in the
plot, through the two first principal components, related to the time of EFR treatment is identifiable.
The first two components of the PCA explain 77.27% of the observed variation. This observable trend
supports the device responsiveness towards the EOCs decreasing concentration (observation that is
supported by HPLC data) across time. The trend follows a similar behaviour from that observed for the
individual EOCs measurements, as on the mixed EOCs measurements are the highest concentrations
that drift away from concentration zero (see Figure S5 in Supplementary Materials). As noted for
the individual EOCs calibration plot (Figure 3), the e-tongue, when monitoring the mixed EOCS in
the effluent (Figure 4), is also able to “recognize” between EOCs-spiked effluent and raw effluent
(non-spiked) matrices.

Figure 4. PCA Score plot for electrochemical flow reactor (EFR) degradation path measured by the
electronic tongue in the effluent spiked with the four EOCs: t0 to t120 correspond to sampling every
15 min.

A three-dimensional (3D) plot was developed (Figure 5), by adding to the PC1 and PC2 data
axis, a Z axis with the EOCs concentration values t0 cross-check the individual EOCS e-tongue
semi-quantitative “sensorial signal” (Figure 3) with the mixed EOCs “sensorial signal” at the end of
EFR treatment (Figure 4). The purpose of adding the z axis was to allow for a visual evaluation of the
concentration range dimension obtained for the EOCs at the end of EFR treatment. Three parameters
compose the plot data: (1) the EOCs estimated concentrations by HPLC at t120 (TCP = 0.3 mg/L;
DCP = 0.45 mg/L; TCS = 0.03 mg/L; and, M-TCS = 0.29 mg/L) and (2) the PC1 and PC2 data attained
from Figure 4 at t120 (pink dots); (3) the interpolated PC1 and PC2 values from the data in Figure 3 that
are close to the HPLC estimated concentrations (TCP = 0.3 mg/L; DCP = 0.5 mg/L; TCS = 0.0 mg/L;
and, M-TCS = 0.3 mg/L) for each of the EOCs at t120 (blue dots)

It is observed on Figure 5 that, for TCS and M-TCS, the distance between the interpolation points
and the calibration points was lower, when compared with DCP and TCP. It is important to refer that
TCP and DCP are the most common by-products for the TCS and M-TCS degradation pathway, and
thus they are created at the same time that they are degraded, which might explain the experimental
results for these compounds.

Additionally, it was also important to understand which individual sensor, of the multi sensor
e-tongue, had the higher influence in the impedance “sensorial signal” for each EOCs. Thus, for
TCS and M-TCS, the best response was obtained with TiO2/ZnO, with the first two components of
the PCA explaining 96.65% and 96.92% (see PCA data on Supplementary Materials, Figure S6a,b)
of the total variance, respectively. For TCP, the best semi-qualitative analysis was achieved while
using the TiO2 sensor, with the first two components of the PCA explaining 99.96% (see PCA data
on Supplementary Materials, Figure S6c) of the total variance. Finally, for DCP, and apart from the
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others three EOCs, the (PEI/PSS)5 sensor with 10 µm interdigitated gold electrode had the highest
semi-qualitative response with the first two components of the PCA, explaining 98.68% (see PCA data
on Supplementary Materials, Figure S6d) of the total variance.

Figure 5. Visual evaluation of individual EOCs e-tongue semi-quantitative “sensorial signal” (individual
vs mix measurements). Blue dots: EOCs Individual PC1 and PC2 data from Figure 3; Pink dots:
high-performance liquid chromatography (HPLC) EOCs estimated concentrations for PC1 and PC2
data attained from Figure 4 at t120.

Figure 6 presents the same methodology for TCP and DCP, but only with TiO2 or (PEI/PSS)5

sensor impedance data for the semi-quantitative analyse of TCP and DCP.
Hence, analysing Figure 6, the distance between the interpolation points and the calibration points

was lower (distance units decreased 3.2 to DCP and 1.8 to TCP), while comparing to Figure 5 e-tongue
multisensory analyses for DCP and TCP.

The experimental data points to the importance of the nanomaterial used to build the e-tongue that
will influence the impedance response as the thin film final morphology, structure, and properties of
the thin films, and their consequent interactions with the different EOCs’ physical-chemical behaviour
on the effluent matrix [29].

According to [30] reported data, the thickness of the film is related to the hydrophobic or
hydrophilic final character. Thus, the film presents a more hydrophobic character when the thickness is
higher. The thin film morphology of the tested sensors, as presented at Figure 2a, suggests a hydrophilic
character for all the films tested, although, as the thickness increases, the hydrophobic characters also
increase (Figure 2a, (PEI/PSS)5 < rough surface < TiO2/ZnO). According to the experimental data, the
thin films with more “hydrophobic character”, due to film thickness, such as the TiO2/ZnO and ZnO
thin films presented better impedance responses in the semi-quantitative analysis of TCS and M-TCS,
the analytes with higher Log kow (Table S1 in Supplementary Materials).

For the sensors that were considered to be “more hydrophilic”, the TiO2 and (PEI/PSS)5 films
presented the best responses for DCP and TCP, the less lipophilic analytes. To DCP, for instance, the
higher porous size in the films with higher thickness, endorsed the molecule “semi-permeability”
through the thin film net, “giving” to the molecules a fluid character, which may be masking their
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detection. Thus, in the TiO2/ZnO and ZnO thin films (“hydrophobic character”), the phenolic molecules
movement will be faster than the detection, not allowing for the complete analysis understanding.
In the polyelectrolytes thin film, (PEI/PSS)5, this behaviour does not occur, since the film layers are
organic and without hole structures, only providing an impedance response to the electronegativity of
the DCP and TCP, as the film combination is itself negatively charged.

Figure 6. Visual evaluation of individual semi-quantitative “sensorial signal” (individual vs mix
measurements) for TCP with TiO2 sensor and for DCP with (PEI/PSS)5 sensor. Blue dots: EOCs
individual PC1 and PC2 data for TCP with TiO2 sensor and for DCP with (PEI/PSS)5 sensor; Pink dots:
HPLC EOCs estimated concentrations for PC1 and PC2 data attained from Figure 4 at t120.

4. Conclusions

At an electrochemical reactor’s outlet a customized e-tongue was attached, which was composed
of five sensors, built up with layer-by-layer and sputtering thin-films, to access the degradation
monitoring of TCS, M-TCS, DCP, and TCP. Three main issues were evaluated to analyse this hypothesis:
(1) characterization of the thin-films; (2) e-tongue training for the recognition of the different EOCs;
and, (3) e-tongue array performance in the detection and semi-quantification of the EOCs in a
mix contaminated effluent. Therefore, performing impedance measurements into the e-tongue
array, was observed analytes clustering by concentration in the calibration curves, where the first
two components of the PCA explained 65.80% of the total variance. The e-tongue array showed
responsiveness towards the EOCs decreasing concentrations during the electrochemical treatment,
showing a pattern trend through the first two principal components, being explained by 77.27% of the
total variance. The e-tongue recognized between individual EOCs-spiked effluents and raw effluent
(non-spiked) matrices. At the end of the treatment, t120, the cross-check of the analytes individual
semi-quantification was achieved for TCS and M-TCS with the e-tongue array. For DCP and TCP, better
results were accomplished with a single sensor, (PEI/PSS)5 with 10 µm interdigitated gold electrode
and TIO2, respectively. The characterization of thin films, while using field emission scanning electron
microscope, allowed for a total understanding of the “sensorial” impedance response. The present
study suggests innovative alternatives for complementing the traditional analysis with sensors devices,
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since the customized e-tongue was capable of semi-qualitative analyses thought electro-dynamic
degradation’s kinetics.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/19/24/5349/s1,
Figure S1. Scheme of the thin films used in the electronic tongue array; Figure S2. Resistance impedance spectra of
each sensor device under study to TCP; DCP, TCS and M-TCS; Figure S3. Resistance impedance spectra of each
sensor device under study to the effluent spiked with 0.1 mg/L of TCP; DCP, TCS and M-TCS (Reproducibility of
n = 3 impedance measurements); Figure S4. Electronic tongue calibration curves for each EOCs under study:
TCP, DCP, TCS and M-TCS, in the range of concentration: 0-0.8 ppm (x axis): data from Figure 3, first component
PC1 (y axis); Figure S5. EFR degradation path measured by an electronic tongue in the effluent with the 4 EOCs: 0
mg/L (non-spiked; t0 to t120 (spiked with the 4 EOCs) sampled every 15 min; Figure S6. PCA Score plot for the
best sensors, concerning effluent spiked (0–0.7 mg/L) with the 4 EOCs. Table S1. Chemical properties of the EOCs
under study; Table S2. Average and standard deviation error to the electronic tongue presented at Figure 4.
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H I G H L I G H T S

• Self-produced H2 from electrodialytic
treatment of environmental matrices
collected.

• Collected H2 average purity (% mol/
mol) of ≈98%.

• A fuel cell used to produce electricity
from the self-produced H2 (~1 V).

• Experimental self-generated energy
promotes savings on electroremedia-
tion (≈7%).

G R A P H I C A L A B S T R A C T

A R T I C L E I N F O

Keywords:
Electrodialytic treatment
Hydrogen production
Proton-exchange membrane fuel cell
Energy savings

A B S T R A C T

Electrodialytic technologies are clean-up processes based on the application of a low-level electrical current to
produce electrolysis reactions and the consequent electrochemically-induced transport of contaminants. These
treatments inherently produce electrolytic hydrogen, an energy carrier, at the cathode compartment, in addition
to other cathode reactions. However, exploring this by-product for self-energy generation in electroremediation
has never been researched. In this work we present the study of hydrogen production during the electrodialytic
treatment of three different environmental matrices (briny water, effluent and mine tailings), at two current
intensities (50 and 100mA). In all cases, hydrogen gas was produced with purities between 73% and 98%,
decreasing the electrical costs of the electrodialytic treatment up to ≈7%. A proton-exchange membrane fuel
cell was used to evaluate the possibility to generate electrical energy from the hydrogen production at the
cathode, showing a stable output (~1 V) and demonstrating the proof of concept of the process.

1. Introduction

Global energy demands from an increasing human population is a
major concern for the planet sustainability. Extensive research and
technology development have been focused on renewable energy
sources and other strategies to reduce CO2 emissions [1]. Fuel cell

technology, which can efficiently generate electricity using hydrogen as
fuel, has attracted widespread attention in recent years [2]. The proton-
exchange membrane fuel cells success depends on their ability to obtain
optimal fuel to electricity conversion with a high current density, as
well as the sustainable and economical production of the fuel [3]. Pure
hydrogen gas is scarce in Earth's atmosphere. However, it can be
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produced from different primary-energy sources. For instance, it can be
generated from fossil fuels through steam reforming, partial oxidation
or gasification and from renewable sources through biomass gasifica-
tion and water electrolysis [4,5]. Generation of H2 via water electrolysis
is still limited by the high cost, namely ≈ 3.8 times more expensive
than gasification, and ≈ 5 times more expensive than from methane
steam reforming [6]. Hence, steam reforming, which combines high-
temperature steam with natural gas, currently accounts for the majority
of the H2 produced. Hydrogen production via water electrolysis is
currently only applied in combination with renewable energy sources,
like solar or wind, and used as an energy storage system.
Electro-based technologies, such as electrokinetic and electro-

dialytic processes, have been the focus of vast environmental re-
mediation research over the last three decades [7,8], both in-situ [9,10],
and ex-situ [11–13]). Despite such research efforts, the technology
readiness level (TRL) for many of those technologies remains very low;
although most are considered promising, many are far from being in-
troduced as efficient processes into the market. Important barriers need
to be overcome to reach high TRLs [14]. Operational energy costs have
to be considered and, are related not only to the electrolysis reactions
but mainly with the stirring, the ohmic losses and the energy required
for the transport of charge through the porous matrix. In fact, the dis-
tance between electrodes (cell size) plays a crucial role in the energy
costs of the specific-energy required for the target contaminants re-
moval [7,15]. To the best of our knowledge, there has been minimal
research conducted related to the reuse of the elemental gases produced
in the electrolysis reactions during electrochemically-induced treat-
ments. The drawbacks found in the current literature are associated to
the reactors' design. Most electrokinetic and electrodialytic (ED) setups
are designed to allow for the produced gases to flow freely into the
atmosphere, while aiming to reduce pressure-related transport me-
chanisms. Thus, a gas collection strategy during the treatment is not
included in the system, causing gas losses to the atmosphere. As a novel
feature, the H2 produced during the treatment at the cathode com-
partment may be used as fuel in a proton-exchange membrane fuel cells
to produce electrical energy and reduce the energy costs of electro-
remediation. Additionally, as an energy carrier, H2 can be used to ac-
cumulate energy during the electric power demand valleys, and to
generate electric power during the peaks. Therefore, a reservoir can be
integrated into the ED system where it can recover and use the H2
produced for different purposes.
This work evidences the possibility of using the H2 produced during

electrochemically-induced remediation of three different environ-
mental matrices: (1) moderately-salted water – briny water, (2) sec-
ondary effluent from a wastewater treatment plant, and (3) mine tail-
ings. Our proof of concept demonstrates that the H2 captured and
reused from these ED treatments is feasible. Herein, a three-compart-
ment ED set-up was used to minimize the interactions of the sample and
the contaminants with the electrolysis reactions (Fig. 1).

2. Theory

2.1. Proton-exchange fuel cell

A fuel cell is an electrochemical device that converts the chemical
energy from a fuel into electricity through the reaction of the fuel with
oxygen or another oxidizing agent. For example, a proton-exchange
membrane fuel cell (PEMFC) combines H2 and O2 to produce electricity
and heat without emitting other products which are different from the
water formed in the reaction Eq. (1) [16]:

+ →H 1
2

O H O2 2 2 (1)

A fuel cell, unlike a battery, produces electricity as long as fuel is
supplied, never losing its charge. The pollution-free production of en-
ergy and high power density makes the fuel cell technology a viable

approach for future energy industries [2]. Fuel cells show high energy
conversion efficiency, up to 60%, higher than traditional internal
combustion engines [17]. This efficiency can increase up to 80% with
heat-recovery systems [18].

2.2. Electro-based technologies

Electrokinetic and ED strategies are commonly applied to remove
organic [19] and/or inorganic contaminants from soils or other porous
matrices, such as sewage sludge, fly ash or construction materials
[20–22]. The electrochemically-induced transport is based on the ap-
plication of a low level direct current which promotes electrolysis re-
actions at the electrodes [20,23,24], involving in most cases water
oxidation at the anode, Eq. (2), and water reduction at the cathode, Eq.
(3): + + → =+ − °e l EO (g) 4H 4 2H O( ); (25 C) 1.23 Vanode2 2

o (2)

+ → + =− − °l e EH (g) 2OH 2H O( ) 2 ; (25 C) 0.83 Vcathode2 2
o (3)

Competing redox reactions may occur as, for example, the produc-
tion of chlorine at the anode in systems with high chloride contents
[25], Eq. (4):+ → =− − °ECl (g) 2e 2Cl ; (25 C) 1.36 Vanode2

o (4)

or the deposition of metals (Me) at the cathode, Eq. (5):+ →+ −eMe 2 Me2 o (5)

The electrochemical-induced transport of chemical species takes
place by three main transport mechanisms: electromigration, electro-
osmosis, and electrophoresis. Diffusion and advection may also play an
important role [20]. In the case of the ED process, electrodialysis also
occurs, as ion-exchange membranes are used to separate the matrix
from the electrode compartments (aiming to control the pH conditions
of the electrolytes and the treated matrix while improving the se-
lectivity on the contaminant removal [20]). Over the years, different
electro-based remediation set-ups have been proposed, where the
configuration of the sample and the electrode compartments have been
modified depending on the nature of the contaminant and matrix
[26,27].

3. Materials and methods

3.1. Materials

The briny water solution was prepared with NaCl (PA grade, Merck,
Germany) and tap water (Almada, Portugal). Effluent, the liquid frac-
tion that results from wastewater treatments, was collected in the sec-
ondary clarifier at a wastewater treatment plant (Lisbon, Portugal).
Mine tailings were collected at Panasqueira mine (Covilhã, Portugal,
40°10′11.0604″N, 7°45′23.8752″W). Panasqueira mine produces
around 900 t WO3/year [28] and the pond where the residues are de-
posited is an open air impoundment that contains rejected ore con-
centrates with high metal levels [29]. The matrix used for this study is a
rejected fraction from the sludge circuit, that is directly pumped to the
Panasqueira dam.

3.2. Experimental set-up

The ED cell set-up was a 3 compartment acryl XT cell [30] (RIAS A/
S, Roskilde, Denmark), as represented in Fig. 1. The internal diameter
was 8 cm and the central and electrolyte compartments length were
5 cm. The two electrode compartments were separated from the central
section by an anion exchange membrane, AR204SZRA, MKIII, Blank
(Ionics, USA) and a cation exchange membrane, CR67, MKIII, Blank
(Ionics, USA). The electrodes were made of Ti/MMO Permaskand wire:
Ø = 3mm, L=50mm (Grønvold & Karnov A/S, Denmark). Ti/MMO
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anodes are used to degrade organic contaminants in wastewaters, and
Ti/MMO is also applied as cathode to reduce chlorinated and nitro
compounds in groundwater [31]. A power supply E3612A (Hewlett
Packard, Palo Alto, USA) was used to maintain a constant current in the
ED cell.
For briny water and effluent experiments, 250mL of liquid sample

was added to the central cell compartment. For the mine tailings ex-
periments, suspensions were prepared at a liquid/solid (L/S) ratio of 9,
by mixing 22.2 g of solid mine tailings within 200mL of briny water.
The anolyte and catholyte compartments were set with 250mL of
0.01M NaNO3.
Twelve ED experiments were carried out in duplicate according to

the conditions presented in Table 1. In experiments 1–6 the gas pro-
duced at the cathode, rich in H2, was collected in a 30mL storage cy-
linder (Horizon Fuel Cell Technologies, USA) (experimental scheme at
supplementary data B.1), where the volume was verified every 10min.
In experiments 7–9, the cathode compartment exhaust was directly
connected to the tedlar sample bag, single polypropylene fitting with
500 mL of capacity (SKC, USA), for purity analysis. In experiments
10–12, the cathode compartment exhaust was directly connected to the
PEMFC. In all cases, the ED cell voltage and the fuel cell open circuit
voltage were registered every 10min. The fuel cell open circuit voltage
was measured in order to validate the H2 catchment and conversion
into power needs.

The single PEMFC (Horizon Fuel Cell Technologies, USA) was used
(32×32×10mm), with a nominal voltage of≈ 1 V. The PEMFC has a
cathodic plate, designed as a part of the cell's membrane electrode

Fig. 1. Electrodialytic cell with 3 compartments [ø = 8 cm, central and electrolyte compartments with L=5 cm, CEM – cation exchange membrane; AEM – anion
exchange membrane, An- – anions, Cat+ – cations], stirrer (only used for mine tailings suspension) connected to a proton-exchange membrane fuel cell.

Table 1
Electrodialytic experimental conditions.

Experiment ED Code Duration (h) Current intensity (mA)

ED tests with gas capture at the cell cathode compartment (n= 2)
1 BW 50 2 50
2 EF 50 2 50
3 BW 100 1 100
4 EF 100 1 100
5 MTBW 50 2 50
6 MTBW 100 1 100

ED tests to H2 purity (n= 2)
7 BW 6 100
8 EF 6 100
9 MTBW 6 100

ED tests with direct connection to PEMFC (n=2)
10 BW 1 100
11 EF 1 100
12 MTBW 1 100

BW-Briny Water; EF-Effluent; MT-Mine Tailings; PEMFC – Proton-Exchange
Membrane Fuel Cell.
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assembly that collects O2 directly from the air by natural convection.
PEMFC voltage and resistance were measured and monitored by a
multimeter KT1000H (KIOTTO, Portugal).

3.3. Methods

pH and conductivity were measured at the beginning and at the end
of all ED experiments, both in central and electrode compartments.
Briny water, effluent and mine tailings pH were measured with a
Radiometer pH-electrode EDGE (HANNA, USA), and conductivity was
measured in a Radiometer Analytic LAQUA twin (HORIBA Ltd., Japan).
The mine tailings pH and conductivity measurements are referred to the
liquid phase resulting from the suspension from a liquid component
(either deionized H2O or briny water), with a L/S ratio of 9.
Total concentrations of As, Ca, Cu, K, Mg, Na, P, S, Sn, W, and Zn

were determined by Inductively Coupled Plasma with Optical Emission
Spectrometry (ICP-OES) (HORIBA Jobin-Yvon Ultima, Japan),
equipped with generator RF (40.68MHz), monochromator Czerny-
Turner with 1.00 m (sequential), automatic sampler AS500 and dis-
positive CMA-Concomitant Metals Analyser. Cl– and SO42– were ana-
lyzed by Ion Chromatography (IC) (DIONEX ICS-3000, USA), equipped
with conductivity detector. To quantify the elements in the solid matrix,
an acid extraction was carried out mixing 0.5 g of mine tailings, 3mL of
HCl (37%) and 9mL of HNO3 (65%) and, placed on a shaking table for
48 h at 125 rpm. For the IC analysis of the mine tailings (Cl– and SO42–

content), microwave assisted acid extraction was carried out according
to EPA method 3051 A: 0.5 g of mine tailings were placed in a vessel
with 3mL of HCl (37%), and 9 mL of HNO3 (65%) and placed in a
microwave Ethos (Milestone S.r.l, Bergamo, Italy). At the end, all the
samples were diluted in deionized water (1:25), filtered by vacuum
using 0.45 μm MFV3 glass microfibre filters (Filter lab, Barcelona,
Spain) and analyzed by ICP-OES and IC.
The H2 purity percentage was determined by Gas Chromatography

Thermal Conductivity Detector (GC-TCD) using a Trace GC Ultra
(Thermo Electron Corporation, USA), with a Carboxen 1010 plot
column (length: 30m, diameter: 0,32 mm). The analytical run was
performed in an isothermal mode at 35 °C for 50min. A gastight syringe
(vici precision sampling, Baton Rouge, Lousiana, USA) was used to
inject a volume of 250 μL (injector at 200 °C), detector/transfer line at
120 °C. To calculate the H2 purity two methods were used: (1) internal
linear calibration and response factor (H2 peak area/response factor),
where the standard deviation is related to error of these methods, by
comparing with the injection of 100% H2; (2) molar proportions (mol/
mol), were determined assuming air as impurity in the H2. Thus, the H2
was calculated considering the number of H2 mol in 100mol of air
(H2+ air gases).
All sample analysis was carried out in duplicate. The data from the

experiments were analyzed by the software Origin Pro 8.5 and the
statistical data obtained by the GraphPad Prism version 7.0e.
Statistically significant differences among samples for 95% level of
significance were calculated through ANOVA tests.

4. Results and discussion

4.1. Matrix characterization

Matrices selection is an important step as the matrices’ character-
istics will affect H2 purity and further energy generation. PEMFC, de-
spite the robustness and stability, may be sensitive to contaminants in
the fuel [32]. The briny water was chosen as a working system blank,
where NaCl was added to emulate the effluent without interferences.
Briny water, with sufficient ionic conductivity to maintain the current
applied for the remediation period chosen (1 and 2 h), is typically used
in systems for the electrolytic production of H2. The effluent and mine
tailings are, individually, matrices with high potential to be reused as
raw materials in several sectors. For example, ED treated effluent has

recently been tested for cement based construction materials [33]. Mine
tailings are an example of solid matrix that can be successfully treated
via ED as stirred suspensions mixtures [34]. In these cases, H2 pro-
duction and exploitation is highly attractive, since it can allow the
decrease of energy costs in an industrial scale application.
Table 2 presents the initial characterization of the three studied

matrices. The matrices had enough initial conductivity to allow current
passage and facilitate the electrolysis reactions to occur at the imposed
rate. The initial pH of the studied matrices was in the range 4.6–7.7.
Mine tailings were slightly acidic (pH ≈ 4.57), presenting a high con-
centration of arsenic (218.57 ± 132.31 mg As/kg), and significant
amounts of other metals (76.82 ± 39.30mg Cu/kg, 1.95 ± 0.53mg
Sn/kg and 5.34 ± 1.42mgW/kg), as well as a high sulfur content
(240.9 ± 4.6mg/kg).
The ED process was applied to briny water, effluent and mine tail-

ings suspension in briny water. In all cases, the pH at the anode com-
partment decreased to ~2 and the pH at the cathode compartment
increased until ~12. The pH at the central compartment also decreased
in all cases. This phenomenon was expected as anion exchange mem-
branes are known to have limited perm-selectivity, which means that
only protons (H+) are able to cross this membrane. The acidification of
the central compartment was more noticeable in the experiments at
100mA (Fig. 2). The acidification phenomena proved to be influenced
by the current intensity. The smallest variation in the potential applied
in the ED cell will increase the H+ production in the media. Thus, not
only the current intensity should be considered to analyze the results,
but also the error associated to the power supplier ( ± 3 mA).
Final concentrations of the major concerned elements in the liquid

matrices (Cl– and SO42–) and in the mine tailings suspension (As, Cu, Sn
and W) are presented in Tables 3 and 4, respectively.
In general, the target contaminants removal from the matrices was

higher in the experiments operated at 100mA, for the same amount of
circulated charge. When ED treatment is performed at higher current
intensities, the electromigration transport is predominant over diffusion
or other transportation phenomena. The amount of salts amount is
extremely heterogeneous in the effluent. The season periods of the
sampling procedure affected chemical and physical properties of the

Table 2
Initial characterization of briny water, effluent and mine tailings.

Matrix

BW* EF** MT*

pH 6.89 ± 0.08 7.67 ± 0.16 4.57 ± 1.74
Conductivity (mS/
cm)

1.81 ± 0.11 2.41 ± 2.12 0.84 ± 0.52

ICP-OES analysis (mg/L) (mg/L) (mg/kg)
Ca 29.06 ± 0.02 51.74 ± 18.34 91.11 ± 27.08
K 5.33 ± 0.01 47.80 ± 29.10 –
Mg 10.30 ± 0.38 118.00 ± 137.17 –
Na 602.5 ± 17.68 524.55 ± 532.55 –
P 0.07 ± 0.10 3.21 ± 0.04 36.57 ± 18.74
S 49.04 ± 26.07a 84.89 ± 65.27 789.59 ± 214.13A

As n.d. n.d. 218.57 ± 132.31
Cu 0.09 ± 0.01 0.04 ± 0.00 76.82 ± 39.30
Sn n.d.b n.d.b 1.95 ± 0.53B

W n.d.c n.d.c 5.34 ± 1.42C

Zn 1.07 ± 0.88 0.07 ± 0.06 –

IC analysis (mg/L) (mg/L) (mg/kg)
Cl– 499.3 ± 8.1 908.1 ± 1013.7 5.6 ± 2.3
SO42– 66.8 ± 1.5de 149.45 ± 127.07dE 240.9 ± 4.6D

BW-Briny Water; EF-Effluent; MT-Mine Tailings.
*collected at 2-09-2018; ** collected at 5-09-2018 and 12-09-2018; nd- not
detected.
Statistical analysis: Multiple comparisons were statistically performed at
p < 0.05 (95% confidence interval); data with lower case letters is statistically
significantly different to the ones with the same capital letter.
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samples collected due to the fluctuations in weather conditions and also
the wastewater treatment plant process efficiency.
The slightly extraction of Sn and W from mine tailings may be re-

lated to specific chemical limitations, such as desorption or dissolution
mechanisms. For example, W complexes are quickly decomposed and
stabilized by high concentrations of chloride ions (MT: 5.6 ± 2.3 mg/
kg; BW: 499.3 ± 8.1 mg/kg), where the most common product of the
decomposition is [W2Cl9]3−. Alternatively, the adsorption of sulfate
ions on metallic W surface results in the electronic structure mod-
ification. The O2 reduction reaction is blocked during the ED process,
which is already low in cationic dissolution in electrochemical pro-
cesses [35].

4.2. Hydrogen generation and use

Fig. 3 shows the volume of collected gas produced at the cathode
compartment during experiments 1–6. As the volume of the gas deposit
was 30mL, it was filled before the ED process ended. Experiments at
50mA showed matrix related differences in the gas flow rate, reaching
the 30 mL of H2 production at different rates. There are no statistically
significant differences for the flow rates obtained at 100mA (Table E at

supplementary data). However, the flow rates of H2 are significantly
different (p < 0.001) in the experiments at 50mA.
The gas generated at the cathode compartment, in the experimental

setup 3, 4 and 6 during 6 h, was captured and analyzed via GC-TCD, in a
tedlar sample bag. Table 5 presents the purity of the captured gas for
these experiments carried out at 100mA.
The average H2 purity (% w/w) of the produced gas was≈ 73% (w/

w), where the highest value observed was in the ED experiment applied
to the effluent, that produced a gas with 90.4 ± 0.3% of H2. Thus, only
the H2 purity in the effluent experiment has a statistically significant
difference (p < 0.05) compared to briny water and mine tailings sus-
pension, while briny water and mine tailings suspension does not have
a statistically significant difference between each other (Table 5). In
order to validate and make a comparison with the purity results ob-
tained in % w/w, another approach to determine the H2 purity was
carried out. Thus, the calculation of the gas was also performed con-
sidering the molar fraction of the H2 in the air gases. Comparing the two
methods, the % mol/mol of H2 of the produced gas was 19% higher, in
average, comparing to the % w/w (Table 5). In the % mol/mol analysis,
the purity of the H2 was higher than 97% in all samples, whereas in the
% w/w the H2 purity oscillated between 72% and 90%. The mass and
the molar compositions are different, and it is expected a higher molar
purity, as long as the other components in the gaseous phase are hea-
vier (e.g. N2, O2).
As mentioned before, the flow rate production for H2 in the ED

treatments can be directly related to the current intensity and the ma-
trix. Assuming the H2 captured at 1 atm and 25 °C, a total of≈ 45.6mL
of pure dry H2 would be theoretically obtained, at a rate of 0.76 mL/
min in the experiments at 100mA. The volume of collected gas at the
cathode, shown in Fig. 3 (Table B.2 at supplementary data), was clearly
higher than the expected during the first few minutes of treatment, with

Fig. 2. pH of the liquid phase at the central cell compartment before and after
the electrodialytic experiments at 50mA and 100mA (error bars related to the
standard deviation: n=2). BW-Briny Water; EF-Effluent; MT-Mine Tailings.

Table 3
Concentration of anions in briny water and effluent, before and after the
electrodialytic experiments at 50mA (2 h) and 100mA (1 h).

50mA 100mA
Initial (mg/L) Final (mg/L) Final (mg/L)

Cl– BW 499.3 ± 8.1 285.5 ± 40.3 15.7 ± 22.2
EF1 1624.9 490.5 129.1
EF2 191.3 83.0 20.5

SO42– BW 66.8 ± 1.5 16.8 ± 2.3 14.1 ± 5.0
EF1 239.3 114.4 36.1
EF2 59.6 30.0 27.9

BW – Briny Water; EF-Effluent.
EF1 – collected at 5-09-2018.
EF2 – collected at 12-09-2018.

Table 4
Concentration of elements in mine tailings before and after the electrodialytic
experiments at 50mA (2 h) and 100 mA (1 h).

50mA 100mA
Initial solid phase (mg/
kg)

Final solid phase (mg/
kg)

Final solid phase (mg/
kg)

As 218.6 ± 132.3 196.2 ± 50.73 113.9 ± 19.7
Cu 76.8 ± 39.3 38.3 ± 13.9 26.4 ± 3.5
Sn 2.0 ± 0.5 2.2 ± 0.2 1.7 ± 0.4
W 5.3 ± 1.4 5.7 ± 0.4 4.9 ± 1.6

Fig. 3. Gas flow rate generation (mL/min) during the electrodialytic experi-
ments with BW, EF and MTBW, at 50mA and 100mA (collected maximum
volume 30mL). BW-Briny Water; EF-Effluent; MT-Mine Tailings.

Table 5
H2 purity analysis by GC-TCD.

Matrix H2 (% w/w) H2 (% mol/mol)*

BW 74.19 ± 0.63A 97.63 ± 0.08B

EF 90.43 ± 0.25a 99.26 ± 0.02b

MTBW 72.39 ± 0.68A 97.41 ± 0.09B

*Calculated assuming air as impurity in the H2; Statistical analysis: Multiple
comparisons were statistically performed at p < 0.05 (95% confidence in-
terval); data with lower case letters is statistically significantly different to the
ones with the same capital letter; BW-Briny Water; EF-Effluent; MT-Mine
Tailings.
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a change in the production rate after the first 10 to 20min. This may
indicate that competing cathode reactions took place. For example, a
possible electrode reaction that could have taken place is the formation
of NO2 (g) from the reduction of the nitrates (E0= 0.803 V), shown in
Eq. (6).+ → + + =− + − °NO g H O NO aq H e E( ) ( ) 2 ; (25 C) 0.803 Vcathode

o
2 2 3

(6)

This reaction produces 1mol of NO2 (g) per circulated electron,
twice as much as the H2 reaction and would increase the pH of the
cathode compartment twice as fast. However, the pH changes at the
cathode and the decrease of nitrate concentration in time will promote
that the water reduction electrolysis reaction become predominant after
the first several minutes of the reaction. NO2 (g) might be in a solution
in the form of N2O4 below 21 °C.

4.3. Electrical energy requirements in the ED experiments

Among the ED experiments with H2 capture (experiments 1–6 in
Table 1), the ED cell voltage decreased overtime. The rapid decrease of
the cell voltage was more evident in the experiments at 100 mA (Fig. 4).
According to the Ohm’s law, if the current intensity (I) is constant,

the voltage (V) and the resistivity (R, or conductivity) are strongly re-
lated, Eq. (7):=V RI(V) (7)

where I is the current intensity, V the voltage and, R is the re-
sistance.
The decrease of the ED cell voltage is related to a conductivity in-

crease in the electrode compartments. The initial conductivity of the
electrolyte was moderately low, 0.90 ± 0.06 mS/cm, and it increased
to values between 3 and 4 mS/cm at the anode, and 2–3 mS/cm at the
cathode, at the end of all experiments, which is consistent with the pH
changes observed. In the central compartment, the conductivity
changed depending on the matrix (Fig. 5). Due to the highly hetero-
geneous environmental samples under study, high standard deviations
in the ED experiments’ behavior were observed. Nevertheless, in gen-
eral, it stayed with values that assure conductivity. However, the ex-
periment MTBW at 100mA had a voltage increase after half an hour
and a decrease on the conductivity at the end of the experiment (Fig. 5).
The treatment at 100mA produced the reduction of ions (related to the
H+ migration through the anion exchange membrane) in the central
compartment, and an energy efficiency decrease of the process due to
an increase of the ohmic losses. In the experiments at 50mA, the longer

running times allowed diffusion and dissolution/desorption kinetics to
replete the ion content in the central cell compartment. Effluent and
mine tailings are matrices with high dependency on the sampling and
weather conditions (effluent high standard deviations in the salts con-
tent, in line with the conductivity values). Mine tailings are a hetero-
geneous matrix implying different amounts of metals and salts content,
with different variations in the charged species during the sampling.
As the ED experiments are carried out at a constant current, the

electrical energy required during the process, accounting only for the
energy applied by the DC power source, can be calculated from Eq. (8):∫=E I V t dt( )

t

t
cell

0 (8)

Using a numerical chained-trapezoidal integration, the estimated
electrical energy is presented in Fig. 6. As expected, the electrical en-
ergy required increases as the electrical current increases, for the same
amount of circulated charge. These results are consistent with the
conductivity of those matrices. According to the results presented in the
Fig. 6, the experiments carried out at 100 mA required ~8.7 ± 0.8 kJ
of electrical energy, while the experiments carried out at 50 mA re-
quired an average of ~4.8 ± 0.7 kJ.

4.4. Energy savings

Considering a faradaic efficiency of 100% and no competition to the
water reduction as the cathode electrolysis reaction, ~1.86mmol of H2
would be produced in experiments 1–6 at the end of the ED experiment,
either at 50 mA in 2 h or at 100mA in 1 h. Using a fuel cell at low

Fig. 4. Cell voltage during the electrodialytic experiments with BW, EF and
MTBW, at 50mA and 100mA. BW-Briny Water; EF-Effluent; MT-Mine Tailings.

Fig. 5. Conductivity of the liquid phase at the central cell compartment before
and after the electrodialytic experiments (error bars related to the standard
deviation: n= 2). BW-Briny Water; EF-Effluent; MT-Mine Tailings.

Fig. 6. Estimation of the cumulative electrical energy consumed during the
electrodialytic experiments. BW-Briny Water; EF-Effluent; MT-Mine Tailings.
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temperatures and considering the higher heat of combustion of H2 as
141.8 MJ kg−1, a total of 0.53 kJ may have been recovered from the
process. The efficiency of the chemical energy conversion to electrical
energy at the fuel cell depends on the quality of the H2 gas produced,
where a maximum of 98% (mol/mol) hydrogen average purity was
achieved during the ED treatments. Considering that current fuel cell
has energy conversion efficiencies of around 60%, a total of 0.32 kJ
could have been transformed into electrical energy. This translates to
~3.1% of the electrical energy required in experiment 4 (EF 100mA,
the worst case), and ~6.9% of the electrical energy required in ex-
periment 5 (MTBW 50mA, the best case). Reducing the electrical en-
ergy dependency, mainly due to stirring needs (for solid fine matrices),
transport of charge through the porous matrix, and to feed a power
supply for the electrode’s reactions, may also have impact in the total
variable costs of the overall ED process (~7%).
As expected, the higher the current intensity used in the ED treat-

ment, the higher the electrical energy requirements for the same
amount of circulated charge. In the experiments presented, those car-
ried out at 50mA during 2 h required almost half of the electrical en-
ergy to produce the electrolysis reactions than those carried out at
100 mA during 1 h. On the other hand, higher applied currents obtain
better removal efficiencies, provided that there are no phase-transfer
kinetic limitations, such as dissolution or desorption processes.
In general, one of the main advantages of the ED treatment applied

to liquid matrices compared to ED treatments applied solid porous
matrices is that the energy requirements for the electrolysis reactions
are considerably smaller, due to the higher conductivity of the matrices.
Thus, in solid porous matrices, the ED treatment would reach higher
voltage gradients due to the lower conductivity and will require long-
lasting treatments. The ED treatments presented show requirements of
electrical power for the electrolysis in the range of 1–5W. However, ED
treatments carried out for the mine tailings suspension required addi-
tional energy for the stirring system at the sample central cell com-
partment. A 10W stirrer system was used, meaning that the electrical
energy required for the stirring system could be up to ten-fold com-
pared to the energy required for the electrolysis reactions. For the
purpose of energy optimization in ED treatments applied to suspen-
sions, the reduction of stirring costs is critical. In this sense, PEMFC
could be an important factor in ED energy savings by reducing the
operation costs by powering a low-energy stirring system.
To evaluate the possibility of reducing energy requirements from

the ED treatments by the in-operando production of electricity from H2
gas formed at the cathode, a PEMFC was connected directly to the
exhaust pipe of the cathode compartment in experiments 7–9, corre-
sponding to the same matrices under ED treatment at 100mA during
1 h.
The initial open circuit voltage of the PEMFC was, in all cases, near

1.4 V, and it decreased and stabilized at a value of ~1V (Fig. 7), as
expected for a single PEMFC [32]. To obtain higher voltages, a stack of
FCs connected in series could be used. Comparing the voltage generated
by PEMFC in the different cases, there are no statistically significant
differences (p < 0.05) (see Table C at supplementary data). The data
supported the statement that the production of electricity by a PEMFC
is independent of environmental matrices used in the ED treatments
presented, despite the fluctuation observed for the case of effluent.
The data presented in this study indicates that the gas produced at

the cathode has a purity between 72.4% and 99.3%. Therefore, in a
field scale ED treatment, the produced H2 could also be stored and sold
for transportation or other industrial sectors. The production costs of H2
via electrolysis vary around 8–11 €/kg, which is higher than that ob-
tained via steam methane reforming using natural gas or biogas
[36,37]. The H2 produced during ED treatments, that until now has
been an unexploited byproduct, may be an alternative source of H2 for
transportation or energy storage.

5. Conclusions

In this study it is proved the possibility to produce H2 with average
purities between 73% and 98% from electrodialytic treatments and
used to generate electrical energy with a proton-exchange membrane
fuel cell. This estimation was performed according to the H2 formed at
the cathode electrolysis reaction, which can reduce the energy costs
associated to the electrodialytic treatments, as well as any other re-
mediation treatment based on electrochemically-induced transport.
The efficiency of chemical to electrical energy conversion at the fuel

cell would depend on the quality of the H2 gas produced. Thus, specific
studies on possible competitive cathode reactions are needed depending
on the system. However, in the matrices tested in this study, H2 gas was
produced in all cases. This suggests that H2 purity seems to be more
affected by external factors (experimental errors, nitrate reduction to
NO2 or temperature increase) than the matrices composition. Flowing
the produced H2 gas through a single proton-exchange membrane fuel
cell, resulted in a stable open circuit voltage (~1 V), that demonstrated
the potential to recover energy from the H2 byproduct, that otherwise
would be released to the atmosphere and lost.
This research shows there are new possibilities for energy saving

and H2 production for different purposes in electrodialytic treatment,
leading to an increase in the sustainability and applicability of the
electro-remediation, decontamination or degradation contaminantś
processes.
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A B S T R A C T

The reduction of tap water consumption in all activity sectors, including the building industry, is crucial to the
sustainability of water resources. Effluents from wastewater treatment plants have the potential to replace
freshwater in the construction sector but they contain a critical mixture of impurities, which hampers their use in
mortars production. In this work, the viability of using effluent as an alternative to potable water for the pro-
duction of mortars, after electrodialytic treatment, was assessed. Electrodialytic technology (ED-T) is a proven
technique for decontamination of porous and aqueous matrices.

ED-T experiments were conducted with 500mL of effluent for 6, 12 and 24 h, with a current intensity of
25mA. The results showed that after ED-T 6 h, the removal efficiencies of critical components were above 85%
of their initial concentrations. Mortar properties such as setting time, workability, flexural strength, compressive
strength and morphology were obtained for 100% effluent and tap water/effluent mixtures (50:50) with and
without ED-T pre-treatment. The mortars with the ED-T treated effluent showed similar initial setting times and
workability, higher flexural and compressive strength compared to the mortars reference.

1. Introduction

The world’s freshwater resources are in short supply, as economic
activities, population growth, climate change, and the lack of appro-
priated resources management have caused a significant increase of
water use. The United Nations’ Sustainable Development Goals stated in
2015 that: water scarcity affects more than 40% of the global popula-
tion and is estimated to rise [1]. Currently, water scarcity affects an
estimated 1.9 billion people and 2.1 billion people live with drinking
water services not safely managed [2]. The critical point of water
scarcity has led scientists to look for new and efficient ways to make the
most out of nontraditional sources, including sea water, brackish water
and wastewater. To match the demand of “zero-waste” system, it is
essential to find solutions that minimize the consumption of freshwater.

Concrete is the second most consumed material in the world after
water, being directly related to the use of freshwater [3]. Water use for
the concrete industry represents 9% of all industry withdrawals and
1.7% of all global water consumption [4]. In a concrete mix, the water-
cement ratio is around 0.45 to 0.60. In other words, more than 17
billion m3 of freshwater are used in the production of concrete per year

[4]. Nowadays, freshwater is the only type of water that fulfils the in-
dustrial standards, for quality and safety demands. In fact, if polluted
water was used, the quality of the concrete would be significantly
lower, leading to structural failures that would represent 5%–9.4% of
the total costs in concrete production [5].

Various sources of non-freshwater have already been tested as al-
ternatives to freshwater in concrete mixtures, such as (a) processed
wastewater sludge [6], (b) polyvinyl acetate resin wastewater [7], (c)
car washing wastewater [8], (d) untreated/treated textile effluent [9]
and (e) domestic wastewater before chlorination [10]. Noruzman et al.
[11] proved that the use of non-freshwater in the concrete mix can
provide a proper mix design and acceptable standards regarding tol-
erable limits. However, due to the composition specifications and to
different types of impurities that can exist in each type of water, it is
difficult to draw a sound conclusion. Thus, some improvements in past
studies need to be addressed in order to take water reuse into con-
sideration: (1) expected degree of human contact, (2) concentration of
microbiological and chemicals and, (3) which pre-treatments are ne-
cessary [12].

The electrodialytic technology (ED-T) consists on the application of
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a low level current density, either direct current or alternate current, of
a few mA/cm and a low potential gradient of V/cm, between suitably
located electrodes [13]. In the ED-T, ion-exchange membranes are used
to separate the matrix to be treated from the electrode compartments.
An anion-exchange membrane (AEM) is used at the anode end and a
cation-exchange membrane (CEM) at the cathode end. This set-up al-
lows selective separation of anions and cations from the matrix. Ca-
tionic species move towards the cathode through the CEM, that hinders
the transport of anions and anions move towards the anode through the
AEM, that only partially hinders the transport of protons, as it does not
work as a perfect rectifier. The ED-T has proved to be efficient for the
removal of organic or/and inorganic contaminants, such as heavy me-
tals and salts [14], in decreasing organic matter and fats [15] and in the
inactivation of microorganisms in fresh sewage sludge from wastewater
treatment plant (WWTP) [16].

Therefore, the present study aims to investigate the use of effluent
from an urban WWTP secondary treatment, after electrodialytic process
in mortars’ production. The physical and functional mortar properties
were performed and compared with the industry main standards.

2. Materials and methods

2.1. Materials

Tap water was collected at the Technical University of Denmark,
Lyngby, Denmark. The effluent was sampled after the secondary clari-
fier at Mølleåværket A/S WWTP in Lyngby, Denmark. The plant uses
the BioDenitro method in the aeration tanks and no tertiary treatment
[17]. The plant treats 8–12 million m3 of wastewater on a yearly basis,
corresponding to a 115 000 population equivalent.

The cement used for mortar preparation was the Ordinary Portland
Cement (OPC) and the sand was the CEN standard sand.

2.2. Tap water and effluent characterization

All experiments were carried out in triplicate.
The pH in the effluent and tap water were measured with a

Radiometer pH-electrode and conductivity in a Radiometer Analytic.
Total concentrations of Ca, K, Mg, Ni, P, S, Si and Zn were de-

termined by Inductively Coupled Plasma with Optical Emission
Spectrometry (ICP-OES), and Cl–, NO3– and SO4

2– by Ion
Chromatography (IC).

The regulatory parameters for effluent discharge in water bodies –
namely biological oxygen demand (BOD5), chemical oxygen demand
(COD), NH4

+, NO2 and Ntotal – were determined by Spectrophotometer
DR2800 kits, and total suspended solids (TSS) by gravimetric analysis.

2.3. Electrodialytic experiments

Three different electrodialytic experiments ED-T were carried out,
in triplicate, according to the conditions presented in Table 1.

The ED-T cell used (Fig. 1) was a 3 compartment conventional one
[18], made of plastic (RIAS, Acryl XT). The internal diameter was 8 cm
and the central compartment length was 10 cm. The 2 electrode com-
partments were separated from the central one by ion exchange mem-
branes, an AEM AR204SZRA, MKIII, Blank and a CEM CR67, MKIII,

Blank, both from Ionics. The electrodes were platinum coated titanium
wire (Ø=3mm) by Grønvold & Karnov A/S. A power supply (Hewlett
Packard E3612 A) was used, maintaining a constant current of 25mA.

The effluent (500mL) was placed on the central cell compartment.
Both anolyte and catholyte compartments were set with 500mL of
0.01M NaNO3 adjusted to pH 2 with HNO3, and recirculated by using
“Pan World” magnetic pumps (Plastomec Magnet Pump model P05).

Control experiments for each treatment, without applied current,
were also carried out.

pH and conductivity in the electrolytes and in the central com-
partment were measured twice (T0 and T6,12,24h) per treatment.

At the end of the ED-T experiments, the effluent in the central
compartment was analyze by ICP-OES and IC (as in Section 2.2).
Membranes were soaked in 1M HNO3 and the electrodes in 5M HNO3,
overnight, being their aqueous phases collected and analyzed for Ca, K,
Mg, Ni, P, S, Si and Zn by ICP-OES, as well as the electrolytes.

2.4. Mortars bars: physical and functional tests

After ED-T, the treated effluent was used to prepare mortars ac-
cording to EN 196-7 [19]. The mixture consisted of 225mL water (tap
water or effluent), 450 g of OPC and 1350 g of CEN standard sand, with
0.5 water/binder ratio of and a sand/cement ratio of 3%. Mortar
samples were performed using tap water, ED-T pre-treated effluent and
mixtures of 50% each. The tested mortar samples consisted of hor-
izontal prismatic specimens (160×40 x 40mm) made in triplicates.
The mortar bars were defined as:

• Reference (100% tap water)• Raw (effluent without pre-treatment; 50% or 100%)• ED-T (effluent with ED-T pre-treatment during 24 h, 12 h, 6 h; 50%
or 100%)

Mortars demolding was carried out after 24 h and the samples were
cured horizontally in a tap water bath for 7, 14 or 28 days at 20–21 °C.

The following tests were carried out on the mortar specimens in
accordance with:

• Setting time (min) - Standard ASTM C 191 [20] performed by a
Vicat Needle. The period of penetration tests was performed by al-
lowing a 1mm Vicat needle to settle into this paste. The Vicat initial
setting time was the time elapsed between the initial contact of raw
materials and the time when penetration was measured to be 25mm
or less. The Vicat final setting time was the end point to be the first

Table 1
Electrodialytic experimental conditions.
Experiment Code Effluent treated (mL) Duration (h) Current

intensity (mA)

1 ED-T 6 h 500 6 25
2 ED-T 12 h 12
3 ED-T 24 h 24

Fig. 1. Electrodialytic 3 compartments cell with ø=8 cm, central compartment
L=10 cm and electrolyte compartment L=5 cm. CEM – cation exchange
membrane; AEM – anion exchange membrane.
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penetration measure that does not mark the specimen surface with a
complete circular impression.• Workability - Standard EN-1015-3 [21] using a flow table test,
where vertical difference between the top of the mold and the dis-
placed original center of the top surface of the specimen was mea-
sured as the slump value.• Flexural strength at 28-day - Standard EN 196-1 [22] with third
point loading (two steel supporting rollers of Ø 10.0 ± 0.5mm and
a third steel loading roller of the same diameter placed centrally
between the other two) at a loading rate of 0.2 kN/s, performed by
Instron 6022 10 kN;• Compressive strength at 7, 14 and 28 days - Standard EN 196-1C
[22] by a Toni machine using a loading rate of 2.5 kN/s (t-test was
performed to find statistical differences, 95% of confidence level)• Morphology at 28 days with 100% of replacement by raw and ED-T
effluent - performed by scanning electron microscope (SEM). No
sample pre-treatment was performed. Acceleration voltage of the
SEM was 20–25 kV with large field detector, in low vacuum with a
magnification of 800x.

3. Results and discussion

3.1. Characterization of tap water and effluent before and after
electrodialytic treatment

3.1.1. Initial characterization
Table 2 presents the characteristics of water samples under study:

Tap water and effluent. The data shows that almost all raw effluent
components were higher than those found in tap water. The exception
was for Ca, Mg, Si, Zn average concentrations, nevertheless within the
BS EN 1008 (2002) requirements [23].

Chemical impurities in water are active players in the reactions
between water and cement and, being prone to interfere with the set-
ting and hardening of cement and consequently with the development
of strength and durability of concrete [24].

Comparing the chloride content in the raw effluent and in tap water
(207.3 vs 63.0 mg/L, Table 2), and according to BS EN 1008 (2002)

[23] requirements (to pre-stressed concrete or grout propose, chloride
shall not exceed the level of 500mg/L; Cl2 residual ≤ 1mg/L), both are
under the standard, but not under NP 423≤50mg/L [25]. The lower
the chloride concentration the better, as a high Cl− content will in-
crease the potential for corrosion in reinforced concrete. Also, sulfate
(65.7 vs 31.7mg/L; BS EN 1008≤2000mg/L; NP 413≤30mg/L
[26]) together with macro elements, can lead to the formation of
complexes, increasing the cracking formation.

The value of COD, was higher in the raw effluent (comparing with
the other experiments), and presented a large variability between
samples (69% RSD). This parameter plays an important role in water
and cement reaction, promoting a negative effect in the control of the
cement paste of mortars (delays in setting time) [27]. Moreover, when
handling effluents, their pathogen content is also relevant due to safety
reasons and material acceptance for further uses.

Thereby, the ED-T proposed as a pre-treatment with the potential
for the removal of unwanted parameters was studied.

3.1.2. ED-T experiments
The conductivity decreased with time, from 1.3mS/cm to 0.1 μS/

cm in about 12 h (Table 2), which is a consequence of the desalination
of the effluent, leading to increase system resistivity (expressed by the
cell voltage). In the ED-T experiments the final voltage achieved 35.9,
74.2 and 74.1 V, for respectively 6, 12 and 24 h. In the case of the ex-
periments with 12 and 24 h, the voltage increased up to the limit of the
power supply and, thus, the current decreased below the stablished
25mA, down to almost open-circuit conditions.

The final pH of the ED-T effluent was 4–5 (Table 2), inside the range
of the standard BS EN 1008 (2002) ≥ 4–8 [23].

3.1.3. Removal rates
The ED-T treatment reduced the concentration of all ions, elements

and parameters in the effluent in all experiments (Table 2).
The data shows that the transport in the bench reactor is fast

achieving, in a few hours, the necessary removal of ions to prevent the
side effects on the mortar properties (Table 2). Anions removal at the
end of the ED-T experiments ranged between 85–99.7%. The results

Table 2
Characterization of the tap water and effluent before and after 24, 12 and 6 h of ED-T.

Tap Water Effluent

Raw ED-T 24 h ED-T 12 h ED-T 6 h

pH 7.7 ± 0.1 7.9 ± 0.3 4.0 ± 0.3 4.0 ± 0.5 5.0 ± 0.3
Conductivity (μs/cm) 755.5 ± 23.3 1304.5 ± 109.6 0.1 ± 0.02 0.1 ± 0.01 0.2 ± 0.01
Parameters (mg/L)
TSS – < 4 n.d. n.d. n.d.
BOD5 – 3.55 ± 0.05 3.1 ± 0.0 5.1 ± 0.4 4.1 ± 0.4
COD – 403.5 ± 279.3 226 230 ± 4.2 221 ± 8.5
Ntotal – 7 2 6 1
NO2 – 0.11 ± 0.00 0.02 ± 0.00 0.02 ± 0.00 0.02 ± 0.00
NH4

+ – 0.16 ± 0.01 0.08 ± 0.01 0.07 ± 0.01 0.09 ± 0.01
Ptotal – 0.63 ± 0.42 n.d. n.d. n.d.
Elements (mg/L)
Ca 105.3 ± 12.1 99.7 ± 13.3 0.3 ± 0.0 0.3 ± 0.1 5.9 ± 3.6
K 4.9 ± 0.7 24.2 ± 0.7 0.5 ± 0.2 0.3 ± 0.2 1.2 ± 0.4
Mg 20.3 ± 0.7 15.7 ± 0.9 0.05 ± 0.01 0.04 ± 0.01 1.2 ± 0.7
Na 35.6 ± 4.2 118.7 ± 0.7 0.5 ± 0.1 1.5 ± 1.8 10.2 ± 8.3
S 11.1 ± 3.3 20.6 ± 1.9 0.2 ± 0.1 0.2 ± 0.1 3.0 ± 1.1
Ni 0.005 ± 0.000 0.06 ± 0.02 0.004 ± 0.005 0.003 ± 0.004 0.004 ± 0.004
Si 9.3 ± 0.7 8.4 ± 0.4 5.8 ± 0.6 6.6 ± 0.2 7.5 ± 0.6
Zn 0.8 ± 0.6 0.05 ± 0.02 ±0.01 0.01 ± 0.01 0.02 ± 0.02
Anions (mg/L)
Cl– 63.0 ± 2.2 207.3 ± 3.9 2.0 ± 0.2 2.1 ± 0.8 23.1 ± 10.5
NO3– 2.0 ± 2.8 13.5 ± 3.2 8.3 ± 3.8 9.1 ± 15.7 11.9 ± 19.4
SO4

2– 31.7 ± 2.2 65.7 ± 2.3 0.4 ± 0.1 0.2 ± 0.3 9.9 ± 3.9

*n.d. – not detected.
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showed (Table 2) that an optimal removal of the ions was achieved in
approx. 6 h, indicating that there is no need of expending more energy
as in ED-T 12 h or 24 h. The anions removal is an important variable
due to its weak interaction with cement, for example, on the mortars
final compressive strength.

The removal of the elements quantified by ICP analysis was in the
range of 50–97.8%.

The parameters TSS and COD, that interfere with the cement paste
final properties, were also reduced after ED-T (COD removal rates: ED-T
24 h 44%; ED-T 12 h 43%; ED-T 6 h 45%) complying with the re-
quirements of standard NP 1414 (COD≤500 mg/L) [27]. The effluent
values of BOD5 before and after ED-T experiments were in accordance
with USEPA limit of BOD5 ≤ 30mg/L [28]. Furthermore, Guedes et al.
2016 [29] reported the inactivation of biological activity in similar
environmental matrices using ED-T, thus is expected the same phe-
nomena in the present work.

The qualitative and quantitative analysis of ED-T treated effluent
shows that its overall composition after 6 h of treatment matches the
standards and can supply a product with less risk components, such as
corrosion, than the used conventional tap water.

Assuming a linear behavior of the voltage in time, for the ED-T 6 h
experiment at 25mA, the treatment required approximately 4.05 kWh/
m3 of pre-treated effluent. With an average energy price in Denmark of
0.30 € per kWh (in Europe is ∼ 0.2 € per kWh), the estimated cost
related to the energy consumption is 1.215 €/m3 of pre-treated effluent.
The electricity energy cost can be significantly reduced by an optimi-
zation study on the duration of the ED-T pre-treatment based on the
material’s mechanical properties.

The results suggest that the operational time, and therefore the
energy costs, could be reduced by using less concentrated electrolytes in
the electrode compartments. The low pH found in the effluent at the
end of the experiments suggests that protons are entering the central
compartment via permeation through the non-ideal AEM or by diffu-
sion from the cathode compartment. Optimizing the electrolyte con-
centrations for the process will increase the selectivity and improve the
energy efficiency.

Nevertheless, for optimization purposes, a variability in the effluent
characteristics is expected to occur as they are influenced by daily
factors such as weather conditions, influent composition or operational
conditions at the biological reactor, and must be taken into account.

3.2. Mortars bars: physical and functional quality parameters

3.2.1. Effects on cement paste – setting time and workability
Setting time and workability are important properties of materials.

Setting time is defined as a specified time required for concrete or
mortar to change from liquid state (initial setting time) to a solid state
(final setting time), where the surface becomes sufficiently rigid to
withstand a definite amount of pressure. Workability can be divided
into three different categories (low, medium and high), describing the
ability to mix, place, consolidate and finish with minimal loss of
homogeneity a mortar preparation. Workability is a property that di-
rectly impacts strength, quality, appearance, and the cost of labor op-
erations. Setting time and workability are influenced by pH, dissolved
organic matter, COD and salts. The aim of the tests was to understand if
the moderately low pH after the ED-T would affect those two para-
meters.

Table 3 presents the initial and final setting time, workability ca-
tegory and slump values tests according to pH of the aqueous matrices
used. Standards BS EN 1008 (2002) [23] and ASTM C94 [30] re-
commend that the water used for concrete production should have a
pH≥4–8, since a lower pH can promote the dissolution of cement in
the mortar mix. The final pH obtained in all effluents was in accordance
to the values referred in the two standards (pH between 8-4).

Setting time can be divided into initial setting time and final setting
time based on the degree of rigidity. Comparing the different mixtures,

with reference tap water, there was a delay on the initial setting time of
20min, when the mix was performed with 100% or 50% raw effluent
and 10min when performed with 50% ED-T treated effluent (Table 3).
Using 100% ED-T treated effluent no measurable difference was ob-
served comparing to the reference mortar. The final setting time in-
creased when raw and ED-T effluent is incorporated, having a reference
time difference of 50–130 min.

Delay in setting times is related to pH, temperature, humidity, su-
gars and dissolved organic matter (constituent of COD) presented on
raw effluent. Sugars adsorb on the surface of the cement grains and thus
might delay the cement hydration. The obtained results are in line with
other studies [31,32]. Dissolved salts also influence the setting time
process [31]. The ammonia in the raw effluent has been reported to
cause bleeding action (flow of water to the top of the concrete due to
osmotic pressure) [33]. In the current study, applying ED-T as a pre-
treatment decreased approximately 60% the NH4

+ concentration. This
will eliminate the possible bleeding action and turn the paste similar
with the reference’s setting time. According to BS EN 1008 the initial
time shall not be less than 1 h from the reference mortar (experiments
achieved a range of difference 0–20 min) and the final setting time
should not exceed 12 h (experiments between 4.8 and 7 h).

Workability tests were conducted as described in Section 2.4, where
vertical difference between the top of the mold and the displaced ori-
ginal center on the specimen top surface was measured as the slump
value. The use of effluent, either with or without ED-T treatment, in-
creased the slump: 16–33mm differences (Table 3). The cement paste
produced with reference water was considered, according to EN 1015-3
[21], as a high workability mortar. The experiments using mixed ef-
fluents resulted in a high workability category cement paste as well
[21]. High workability paste can be used in inaccessible locations, large
flat areas, underwater applications and pumping concrete over long
distances (BS EN 206) [34]. This similarity in the paste prepared with
effluent, can present a positive enhancement in the mortars production,
since it can be an alternative to the use of superplasticizer to stabilize
and manipulate the paste [10,35,8].

3.2.2. Effects on mortar properties – flexural strength, compressive strength
and morphology

Flexural strength of concrete is a key mechanical property, which
represents the ability of a beam or slab to resist failure in bending. The
load, extension and flexural strength (also known as modulus of rup-
ture, or bend strength, or transverse rupture strength) results were
determined for three 40×40 x 160mm prisms specimens. These spe-
cimens were casted and tested after 28 days of curing, as showed in
Fig. 2.

Comparing with the reference, flexural strength results showed ED-
T 12 h experiment effluent replacement as the highest strength (data in
line with the similar morphology as Fig. 4a and d). Consequently, the
same experiment had the highest load, where the most similar to the
reference were ED-T 6 h and 24 h with 50% of tap water replacement.
Comparing the 100% of replacement (Fig. 2b), the highest flexural

Table 3
Setting times and slump values using: tap water (reference), raw effluent (50
and 100% replacement) and effluent with ED-T treatment (50% and 100% re-
placement).

Mix Initial
Setting
time (min)

Final
Setting
time (min)

Workability
(mm)

Slump (mm)

pH 7.7 Reference
(tap water)

140 290 High
100 – 150

101 ± 2

pH 7 - 8 Raw 50% 160 340 117 ± 2
Raw 100% 160 420 129 ± 3

pH 4 - 5 ED-T 50% 150 400 131 ± 2
ED-T 100% 140 420 134 ± 9
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stress was obtained after ED-T 6 h treated effluent, followed by ED-T
12 h. Regarding the extension - deflection of the material - for all the
mortars made with untreated or treated effluent, after the application of
the load, the moment of failure occurred earlier comparing to the re-
ference. In this way, the largest extension for the reference mortar in-
dicates that the strengthening was more required in this experiment
than in the ED-T or raw effluent experiments.

Fig. 3 presents the compressive strength of mortars produced with
tap water, 50% and 100% of raw effluent and treated effluents (ED-T 6,
12 and 24 h) with 7, 14 and 28 days of curing age. The increase of
material strength is related with mortar age. The higher the strength
value, less deformable is the material.

The strength variations addressed between the reference (7,14 and
28 days) and the other mortar experiments (7, 14 and 28 days) are
within BS EN 1008 [23] (Fig. 3), which refers that the average

compressive strength shall be at least 90% of the average compressive
strength of corresponding specimens prepared with tap water.

Comparing 7 days cured specimens, with 100% of raw effluent and
50% of ED-T 12 h treated effluent, with the reference mortar, a trend in
increased mortar strength was observed, c.a. 5 and 11% of gain; σ= 0.2
and 1.4, respectively). Still, this was only statistical relevant when the
50% of effluent treated in ED-T for 12 h was used (p < 0.05). The same
trend for increased strength was also observed for the specimens after
28 days of curing, ED-T 12h effluent either with 50% or 100% re-
placement and ED-T 6h effluent with 50% of replacement (55.9, 56.8,
58.6 MPa; σ = 1.3, 2.1 and 0.8, respectively), although without sta-
tistical relevance at 95% confidence level. This highest “early” strength
could be a result of changes in effluent chemical properties during ED
treatment, that highly influences mortar physico-chemical parameters.
This might be due to the decreased COD in the effluent after

Fig. 2. Load, vertical displacement and flexural stress values of mortar at 28 days of curing age for tap water (reference), (a) raw effluent and effluent after ED-T
treatment with 50% of replacement and (b) raw effluent and effluent after ED-T treatment with 100% of replacement.

Fig. 3. Compressive strength of age 7, 14 and 28 days using: tap water (reference), raw effluent (50 and 100% replacement) and effluent with ED-T treatment (6, 12
and 24 h - 50% and 100% replacement).
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electrochemical treatment (Table 2), a parameter that is known to de-
crease material strength [36]. After the ED-T pre-treatment, a COD
removal was achieved in the three ED-T experiments (43–45%;
Table 2).

3.2.3. Morphology SEM
Scanning electron microscope was used to visualize the dimensional

morphology of the prepared mortar samples to compare visual char-
acteristics, such as formation of different crystals, void spaces and crack
formation, in relation to the reference (using tap water Fig. 4a). Fig. 4
showed that the most significant difference was obtained when the tap
water was replaced by 100% of raw effluent. It was also possible to
observe the new formation of subhedral to anhedral crystals, more
pronounced in Fig. 4b) and e). The bed matrix became denser and with
less void spaces compared to the reference. In the case of ED-T 6, 12 and
24 h (Fig. 4e, d and c), mortar specimens’ structures between aggregate

are structurally intact. This observation corroborates the higher
strength in compressive tests in ED-T specimens, as less interatomic
spacing requires higher stresses for unwanted cracks to occur, being,
therefore, a positive outcome [37]. In all mortar specimens’ micro
cracks effect were not observed.

4. Conclusion

Concerned with water scarcity around the world, the aim of the
present study was to explore alternatives for freshwater use in the
building industry. Herein, the feasibility of using ED-T as a pre-treat-
ment in mortar preparation was investigated, to remove effluent con-
taminants such as Ca, Zn, Cl–, SO4

2− and COD that influence properties
of the mortars’ material. Based on the experimental conditions observed
the following main conclusions are drawn:

Fig. 4. Images of SEM: (a) reference mortar, (b) 100% of replacement with raw effluent, (c) 100% of replacement with ED-T 24 h effluent, (d) 100% of replacement
with ED-T 12 h effluent, (e) 100% of replacement with ED-T 6 h effluent; magnification: 800x.
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1 The electrodialytic pre-treatment achieved a high removal of critical
elements and a decrease in the effluent discharged parameters that
affect materials’ quality and durability.

2 Workability that affect the mortar were moderate and tolerable. The
workability increased in all the mortars compared to the reference.
These results can avoid further use of superplasticizer. Compressive
tests had an increase on resistance in specimens prepared with ED-T
effluent, comparing with the reference and raw effluent. SEM
showed changes in the morphology, where the replacement with
raw effluent seems to show no space between pours, causing a
possible problem. However, even if the void spaces are inferior with
ED-T 12 h and ED-T 6 h, they are still tolerable and had a positive
impact in flexural and compressive strength.

3 In some specimens, even if the raw effluent showed the potential to
replace water in construction materials, the authors are concerned
about the pathogens and other impurities that affect the material
final quality, durability and safety. Hence, the ED-T can be a way to
make effluents non-hazardous contributing for a large scale use.

Further studies are needed on the long-term durability performance
and micro-biological activity of mortars mixed with urban effluent
treated with ED-T, as well as on the process optimization.

Acknowledgments

C. Magro acknowledges Fundação para a Ciência e a Tecnologia for
her PhD fellowship (SFRH/BD/114674/2016). Paz–Garcia acknowl-
edges the financial support from the “Plan Propio de Investigación y
Transferencia de la Universidad de Málaga”, code: PPIT.UMA.B1.2017/
20 and PPIT.UMA.B5.2018/17, and the “Ministerio de Educación,
Cultura y Deporte - Subprograma Estatal de movilidad, y Plan Estatal de
Investigación Científica y Técnica y de Investigación 2013–2016”, code:
CAS17/00196. This work has received funding from the European
Union’s Horizon 2020 research and innovation programme under the
Marie Skłodowska-Curie grant agreement No. 778045, and from FCT/
MEC through grant UID/AMB/04085/2013.

References

[1] United Nations General Assembly, Transforming our world: The 2030 agenda for
sustainable development, http://www.un.org/ga/search/view_doc.asp?symbol=
A/RES/70/1&Lang=E. (2015) 1–5. doi:10.1007/s13398-014-0173-7.2.

[2] WWAP (United Nations World Water Assessment Programme)/UN-Water, The
United Nations World Water Development Report 2018: Nature-Based Solutions for
Water, Paris (2018).

[3] M.-S. Low, Material Flow Analysis of Concrete in the United States, Massachusetts
Institute of Technology, MA, US, 2005, p. 189 M.Sc. Thesis in Building Technology.

[4] S.A. Miller, A. Horvath, P.J.M. Monteiro, Impacts of booming concrete production
on water resources worldwide, Nat. Sustain. 1 (2018) 69–76, https://doi.org/10.
1038/s41893-017-0009-5.

[5] P.E. Josephson, Y. Hammarlund, The causes and costs of defects in construction: a
study of seven building projects, Autom. Constr. 8 (1999) 681–687, https://doi.org/
10.1016/S0926-5805(98)00114-9.

[6] C. Barrera-Díaz, G. Martínez-Barrera, O. Gencel, L.A. Bernal-Martínez, W. Brostow,
Processed wastewater sludge for improvement of mechanical properties of con-
cretes, J. Hazard. Mater. 192 (2011) 108–115, https://doi.org/10.1016/j.jhazmat.
2011.04.103.

[7] Z.Z. Ismail, E.A. Al-Hashmi, Assessing the recycling potential of industrial waste-
water to replace fresh water in concrete mixes: application of polyvinyl acetate
resin wastewater, J. Clean. Prod. 19 (2011) 197–203, https://doi.org/10.1016/j.
jclepro.2010.09.011.

[8] K.S. Al-Jabri, A.H. Al-Saidy, R. Taha, A.J. Al-Kemyani, Effect of using wastewater
on the properties of high strength concrete, Procedia. Eng. 14 (2011) 370–376,
https://doi.org/10.1016/j.proeng.2011.07.046.

[9] S.B.M. Kanitha, P. Ramya, V. Revathi, Potential utilisation of untreated/treated
textile effluent in concrete, Int. J. Res. Eng. Technol. 3 (2014) 518–522, https://doi.

org/10.15623/ijret.2014.0319093.
[10] G. Asadollahfardi, M. Delnavaz, V. Rashnoiee, N. Ghonabadi, Use of treated do-

mestic wastewater before chlorination to produce and cure concrete, Constr. Build.
Mater. 105 (2016) 253–261, https://doi.org/10.1016/j.conbuildmat.2015.12.039.

[11] A.H. Noruzman, B. Muhammad, M. Ismail, Z. Abdul-Majid, Characteristics of
treated effluents and their potential applications for producing concrete, J. Environ.
Manage. 110 (2012) 27–32, https://doi.org/10.1016/j.jenvman.2012.05.019.

[12] M. Silva, T.R. Naik, Sustainable use of resources – recycling of sewage treatment
plant water in concrete, in: J. Zachar, P. Claisse, T.R. Naik, E. Ganjian (Eds.),
Second Int. Conf. Sustain. Constr. Mater. Technol. 2010, pp. 1–10 INC.

[13] Y.B. Acar, A.N. Alshawabkeh, Principles of electrokinetic remediation, Environ. Sci.
Technol. 27 (1993) 2638–2647, https://doi.org/10.1021/es00049a002.

[14] G.M. Kirkelund, C. Magro, P. Guedes, P.E. Jensen, A.B. Ribeiro, L.M. Ottosen,
Electrodialytic removal of heavy metals and chloride from municipal solid waste
incineration fly ash and air pollution control residue in suspension - test of a new
two compartment experimental cell, Electrochim. Acta 181 (2015) 73–81, https://
doi.org/10.1016/j.electacta.2015.03.192.

[15] B. Ebbers, L.M. Ottosen, P.E. Jensen, Electrodialytic treatment of municipal was-
tewater and sludge for the removal of heavy metals and recovery of phosphorus,
Electrochim. Acta 181 (2015) 90–99, https://doi.org/10.1016/j.electacta.2015.04.
097.

[16] P. Guedes, C. Magro, N. Couto, A. Mosca, E.P. Mateus, A.B. Ribeiro, Potential of the
electrodialytic process for emerging organic contaminants remediation and phos-
phorus separation from sewage sludge, Electrochim. Acta 181 (2015) 109–117,
https://doi.org/10.1016/j.electacta.2015.03.167.

[17] Lyngby-Taarbæk Kommune - Økonomiudvalget, (2014), pp. 1–90 https://
lyngbytaarbaek.plan.ramboll.dk/view.html?planid=08541641-0f8e-45b1-87fd-
820222c7840e.

[18] A.B. Ribeiro, J.T. Mexia, A dynamic model for the electrokinetic removal of copper
from a polluted soil, J. Hazard. Mater. 56 (1997) 257–271, https://doi.org/10.
1016/S0304-3894(97)00060-5.

[19] BS EN 196-7:2007 - Methods of Testing Cement. Methods of Taking and Preparing
Samples of Cement, British Standards Institution, 2008.

[20] ASTM C191-18, Standard Test Methods for Time of Setting of Hydraulic Cement by
Vicat Needle, West Conshohocken, PA, (2018), https://doi.org/10.1520/C0191-18.

[21] BS EN 1015-3:1999 - Methods of Test for Mortar for Masonry Part 3: Determination
of Consistence of Fresh Mortar (by Flow Table), British Standards Institution, 1999.

[22] BS EN-196-3:2016 - Methods of Testing Cement. Determination of Setting Times
and Soundness, British Standards Institution, 2016.

[23] BS EN 1008:2002 - Mixing Water for Concrete. Specification for Sampling, Testing
and Assessing the Suitability of Water, Including Water Recovered From Processes
in the Concrete Industry, As Mixing Water for Concrete, British Standards
Institution, 2002.

[24] P. Tiwari, R. Chandak, R.K. Yadav, Effect of salt water on compressive strength of
concrete, Int. J. Eng. Res. Appl. 4 (2014) 38–42 ISSN 2248-9622 https://ijera.com/
papers/Vol4_issue4/Version%205/H044053842.pdf.

[25] NP 423:1966, Água. Determinação do teor de cloretos, IGPAI (in Portuguese),
Lisboa, 1966.

[26] NP 413:1966, Água. Determinação do teor de sulfatos, IGPAI (in Portuguese),
Lisboa, 1966.

[27] NP 1414:1977, Determinação do consumo químico de oxigénio de águas de
amassadura e de águas em contacto com betões. Processo do dicromato de potássio,
IGPAI (in Portuguese), Lisboa, 1977.

[28] Environmental Protection Agency (EPA), Guidelines for Water Reuse Technical
Issues in Planning Water Reuse Systems, Washington (DC) (2004).

[29] P. Guedes, E.P. Mateus, J. Almeida, A.R. Ferreira, N. Couto, A.B. Ribeiro,
Electrodialytic treatment of sewage sludge: current intensity influence on phos-
phorus recovery and organic contaminants removal, Chem. Eng. J. 306 (2016)
1058–1066, https://doi.org/10.1016/j.cej.2016.08.040.

[30] ASTM C94/C94M-17A - Standard Specification for Ready-mixed Concrete, (2017),
https://doi.org/10.1520/C0094_C0094M-17A West Conshohocken, PA.

[31] O.S. Lee, M.R. Salim, M. Ismail, M.D.I. Ali, Reusing treated effluent in concrete
technology, J. Teknol. 34 (2001) 1–10, https://doi.org/10.11113/jt.v34.648.

[32] I. Al-Ghusain, M.J. Terro, Use of treated wastewater for concrete mixing in Kuwait,
Kuwait J. Sci. Eng. 30 (2003) 213–228.

[33] A.M. Neville, Properties of Concrete, Pearson Education Limited, England, 2011,
https://doi.org/10.4135/9781412975704.n88.

[34] BS EN 206-1:2000 Concrete - Part 1: Specification, Performance, Production and
Conformity, British Standards Institution, 2001.

[35] P.C. Aïtcin, Cements of yesterday and today - concrete of tomorrow, Cem. Concr.
Res. 30 (2000) 1349–1359, https://doi.org/10.1016/S0008-8846(00)00365-3.

[36] K. Sarkor, T.M. Miretu, B. Bhattacharjee, Curing of concrete with wastewater and
curing compounds: effect on strength and water absorption, Indian Concr. J. 88
(2014) (2014) 87–93.

[37] B. Muhammad, M. Ismail, M.A.R. Bhutta, Z. Abdul-Majid, Influence of non-hydro-
carbon substances on the compressive strength of natural rubber latex-modified
concrete, Constr. Build. Mater. 27 (2012) 241–246, https://doi.org/10.1016/j.
conbuildmat.2011.07.054.

C. Magro et al.



 130 

 



Confidential information 

 

 131 

Provisional Patent Application 
 

“Electrodialytic reactor and process for the treatment of contaminated aqueous matrices” 
 

Inventors: C Magro, AB Ribeiro, EP Mateus P Guedes 

 
Registration number: 115384 

  



Confidential information 

 

 132 

 

  



Confidential information 

 

 133 

ABSTRACT  

 

“ELECTRODIALYTIC REACTOR AND PROCESS FOR THE TREATMENT OF 

CONTAMINATED AQUEOUS MATRICES” 

 

The present application relates to an electrodialytic reactor suitable 

for the treatment of contaminated aqueous matrices by removing macro 

and micro elements. The present application also relates to a process 

for the removal of said elements from the contaminated aqueous 

matrices. The reactor described herein is a three compartment 

apparatus and takes advantage of electrodes and separators to remove 

positively charged compounds from the matrix in a first step and 

elements with negative charge in a second step, assessing also 

differences in the pH. Enhancements in the reactor configuration lead 

to an improvement of the final characteristics of the aqueous matrix 

and increase its value for further use. Additionally, it is possible 

to couple a fuel cell to the reactor in order to recover and use the 

hydrogen produced and transform it to energy to power the reactor or 

stored and sold. 
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EXECUTIVE SUMMARY 

 

2Resource is an electrodialytic reactor that convert treated 

wastewater into water that can be reused in several applications, with 

a main focus on the production of concrete, an industry that represents 

1.7% of all global water consumption. The solution will reduce the 

fresh water consumption on concrete production, replacing 100% of the 

fresh water by treated wastewater. Climate change, rapidly growing 

populations and increased urbanization are some of the factors that 

have a high impact on water consumption around the globe. Focusing on 

the concept of circular economy, 2Resource aims to have a direct 

contribution to solve water problems namely in water scarce regions 

(Middle east) or with high water pollution (Asia). In these regions, 

concrete batch plants oftentimes have no other choice than to use 

reclaimed or low quality water in a concrete mix. This can result in 

low quality concrete, hence in construction defects, structural 

failure leading to safety and insurance problems. 2Resource has lower 

capital expenditures and lower operation costs, including maintenance 

and energy consumption, no chemicals are used during the entire 

process, electrodes are not destroyed during the process and does not 

produce hazardous by-products. Also, 2Resource has the flexibility on 

the customizable reactor that will fit for the client’s needs. After 

the cleaning process, the water characteristics are ideal (e.g. salt 

content) to be reused in the production of concrete, ensuring highest 

material quality. 2Resource consists of an interdisciplinary team with 

a mix of members with more than 20 years of electro-based technology 

technologies and project management, together with the energy and 

knowledge of PhD students all with a remarkable passion for climate 

innovation and entrepreneurship. After completing the registration 

priority data in the patent process, 2Resource will need 3 years until 

the go to market with the final product and the breakeven will be 

reached before the end of the second year in the market. Total funding 

is estimated to be around €1,9 million.  

Our vision 

Providing an eco-friendly, efficient and effective wastewater 

treatment for a wide range of industries through an electro-based 

reactor technology. 

Our mission 

Providing wastewater as a safe renewable resource for citizens, 

industries and companies contributing to sustainable water use. 
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Abstract 

 

Chromatography conventional techniques are the gold standards to detect pollutants in environmental 

matrices. Those methods are known to be highly selective, when compared to modern alternatives, such 

as sensors. Nevertheless, sensors have shown advantages in sample’s manipulation and preparation, 

accelerating contamination’s cloud responses in a cost-effective way. Thus, sensors are now attractive 

to the market, being sustainable and highly sensitive to organic molecules, with the nano-material 

choice as the key point for success.  Not only the methods for detection are under the spotlight, but also 

the new removal technologies. The combination between sensors and removal treatments can provide 

powerful tools for the future of environmental monitoring. However, there is a lack of information when 

a multi-analyte analysis is the ultimate goal. This chapter will discuss the drawbacks, challenges and 

advantages on having electronic tongues coupled with electrokinetic processes, to access the detection 

on emerging organic contaminants in wastewater. 

 

Keywords: sensors; electronic tongue; nano-materials; electrokinetic process; environmental 

monitoring 
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Abstract 

 

Electro-based technologies consist on the application of a low-level electrical current to produce 

electrolysis reactions and consequent electrochemically-induced transport of contaminants. Although 

the in-depth research on pollutants removal efficiencies carried out in the past two decades, the 

technology readiness level is still far to leverage its introduction in the market. In an electrodialytic 

reactor, the self-hydrogen recovery from the electrolytic production at the cathode compartment is now 

raising awareness to innovative strategies, mitigating electroremediation drawbacks. Hydrogen 

production during the electrodialytic treatment of three different matrices: briny water; wastewater; and 

mine residues suspensions, was recently reviewed with positive achievements. The improvement of the 

removal and recovery ratio of substances was studied by the combination of solid and liquid matrices. 

Also, hydrogen purity and energy savings within the process were accessed.  

 

 

Keywords: Technology transfer, scale-up potential market, electroremediation, wastewater, mine 

residues, hydrogen, energy. 
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Abstract: The electronic tongue concept based on layer-by-layer (LbL) films can be used to the detection 
in water of triclosan (TCS), a pernicious molecule used in personal care products and widely released in 
the environment. In this work, we analyzed the adsorption of TCS on poly(allylaminehydrochloride) 
(PAH) and poly[1-[4-(3-carboxy-4hydroxyphenylazo) benzenesulfonamido]-1,2-ethanediyl, sodium 
salt] (PAZO) layers of PAH/PAZO LbL films. We demonstrate that the adsorbed amount is strongly 
dependent of pH, the efficiency of adsorption of TCS on PAH layer is higher, and, when PAZO is 
the outmost layer, the electrical parameters can discriminate the ionic strength on solutions of TCS. 

Keywords: triclosan; LbL; sensor; impedance spectroscopy; adsorption 
 

1. Introduction 

Water is an essential and indispensable good to human health and nature’s wellbeing, and therefore 
it is of the utmost importance to preserve and maintain its quality and cleanliness. That is why the 
detection and monitorization of triclosan in water bodies, such as rivers, groundwater, as well as 
soils, remains as a paramount necessity due to it being present in a multitude of day-to-day products 
(dubbed PPCPs—pharmaceuticals and personal care products) and displaying fairly high levels of 
toxicity [1–5]. Therefore, and also related to the non-regulation of this compound, there is a growing 
concern about the presence and impact of PPCPs, as well as the need for reliable and effective water 
monitoring using sensors capable of detecting the target molecules in complex media [6]. One of the 
main challenges in sensors’ monitoring is the ensure analyte effective detection in environmental 
complex matrices that contain countless spurious molecules (potential interfering compounds),  
as well as microscopic life. These molecules, such as salts or even fluctuations of pH can jeopardize 
the analysis of a target molecule. 

The purpose of this study was to assess the sensitivity of a sensor based on the electronic tongue 
concept [7] composed by an array of thin films prepared by layer-by-layer (LbL) technique [6]. In the 
present case, LbL films of poly(allylamine hydrochloride) (PAH) and poly[1-[4-(3-carboxy-
4hydroxyphenylazo) benzene sulfonamido]-1,2-ethanediyl, sodium salt] (PAZO) (PAH/PAZO) were 
prepared onto quartz supports or gold interdigitated electrode deposited on glass (DropSens) by 
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alternated adsorbed layers using 10−2 M aqueous solutions of these polyelectrolytes. In the present 
case, thin-films with 10 bilayers of PAH/PAZO ((PAH/PAZO)10 and (PAH/PAZO)10/PAH) were 
prepared. The amount of TCS adsorbed on these films was measured by ultraviolet-visible (UV-vis) 
spectroscopy using a UV 2101 PC Scanning Spectrophotometer while the characterization of electrical 
measurements when these films are immersed in 10−5 M aqueous solutions of TCS prepared with 
different salt concentrations was done using a Solartron 1260 Impedance Analyzer (frequency range 
of [1–1M] Hz, AC voltage of 25 mV). 

2. Results 

Figure 1a,b presents the absorbances at 232 nm and 280 nm of reused sensors based on 
(PAH/PAZO)10 and (PAH/PAZO)10/PAH LbL films after immersion in 10−4 M TCS solutions with 
decreasing pH of 9.04, 8.04, 7.0, 6.13, 4.68, 3.70 and 2.30. These absorbances were calculated by 
subtracting the UV-Vis spectrum after immersion from the initial one of each thin film. 

 
Figure 1. Absorbance of TCS at: (a) 232 nm and (b) 280 nm in the LbL thin films vs. pH. 

From data presented in Figure 1 it is possible to observe that the adsorbed amounts of TCS, 
proportional to measured absorbances, are higher for all pHs when the TCS is adsorbed on 
(PAH/PAZO)10/PAH films. Despite presenting different values of absorbances, the adsorption 
behaviour of TCS in both thin films is similar confirming that we are analyzing the same adsorbed 
amount. Starting at alkaline pH, as pH decreases the absorbances tend to increase until pH 6.13. Then, 
as pH decreases the absorbances tend to decrease. However, at the lowest pH of 2.30, the 
(PAH/PAZO)10 presents a slight increment of absorbances. At acidic pH (lower than 6.13), the 
absorbance tends to decrease due to desorption phenomena, particularly of PAH/PAZO thin-films. 
Adsorption studies of PAZO onto PAH/PAZO LbL films revealed that the electrostatic forces, 
governing the interactions between PAH and PAZO layers, are strongly dependent on solutions  
pH [8]. It has been reported that the adsorbed amount of PAZO decreases as the pH of PAH aqueous 
solutions become more acidic, namely at pH 4 [9]. It is also important to note that at pH 2.30,  
the absorbance of (PAH/PAZO)10 thin film revealed a slight increment. This fact is justified by a shift 
in the absorption bands of PAZO at acidic pH [10]. In fact, we also measured the spectra of 10−4 M 
PAZO solutions at pH 2.5 and pH 6, data not shown here, and an increase of absorbance, namely at 
232 nm, was observed as well as a shift on the PAZO peak position which proves that the increase of 
absorbance at pH 2.30 is not related to adsorption of TCS. 

The pH and ionic strength of the TCS solutions can also influence the electrical properties 
measured when these films are immersed in these solutions, namely, the ionic strength affects the 
impedance spectra at higher frequencies. In order to conduct this study, seven solutions were 
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prepared, each with different concentrations of NaCl: 0 M, 10−3 M, 10−2.5 M, 10−2 M, 10−1.5 M, 10−1 M and 
0.5 M. Figure 2a,b illustrate the principle components analysis (PCA) [11] of this study. 

 
Figure 2. PCA plot of: (a) (PAH/PAZO)10 and (b) (PAH/PAZO)10/PAH thin films immersed in TCS 
aqueous solutions with different NaCl concentrations (0 M to 0.5 M). 

The obtained PCA plots, Figure 2a,b, demonstrate that the impedance spectra data obtained with 
both type of films allow the distinction between different salt concentrations. However, the one 
obtained with (PAH/PAZO)10 LbL films has succeeded in distinguishing of the NaCl concentration, 
displaying a sequential-like pattern. For example, considering the obtained values of PC1, if one plots 
its values versus NaCl concentration, a function is obtained. 

3. Conclusions  

This study allowed to conclude that TCS adsorbs on both (PAH/PAZO)10 and (PAH/PAZO)10/ 
PAH LbL films but there is an adsorption increase of TCS when the outmost layer is positive. We also 
verified that the adsorbed amount of TCS increases when the pH decreases attaining a maximum and 
followed by a decrease as pH also decreases. We proved that this last decrease is not related to the 
decrease of TCS on the surface but to the change of PAZO spectra for lower pH. We also 
demonstrated that although pH and ionic strength have a strong influence in the impedance spectra 
of these films when immersed in solutions, one can find patterns that allow to distinguish between 
different ionic strengths. Interestingly, when we consider (PAH/PAZO)10 films one can attain a 
pattern in which the values of PC1 follow a function when plotted versus the salt concentration. 
Finally, it should be referred that the characterization of adsorption variables are fundamental in the 
choice of the adequate LbL films that can be used in the development of electronic tongue to detect, 
in the present case, TCS. 



Proceedings 2019, 15, 25 4 of 4 

 

Author Contributions: Conceptualization, P.M.Z.; methodology, P.M.Z.; software, P.M.Z., C.M. and J.P.-d.-S.; 
validation, P.M.Z., C.M. and J.P.-d.-S.; formal analysis, P.M.Z.; investigation, P.M.Z.; resources, M.R.; data 
curation, P.M.Z., C.M. and J.P.-d.-S.; writing—original draft preparation, P.M.Z.; writing—review and editing, 
P.M.Z.; visualization, P.M.Z.; supervision, P.A.R. and M.R.; project administration, P.A.R. and M.R.; funding 
acquisition, N.E.B., B.B., P.A.R. and M.R. 

Funding: This research was funded by Fundação para a Ciência e a Tecnologia through projects 
UID/AMB/04085/2013, PTDC/FIS-NAN/0909/2014 and a Portugal-Morocco bilateral project.  

Acknowledgments: P.M. Zagalo and J. Pereira-da-Silva acknowledge their fellowships PD/BD/142768/2018, 
PD/BD/142767/2018 from RABBIT Doctoral Programme, respectively. C Magro acknowledges Fundação para a 
Ciência e a Tecnologia for her PhD fellowship SFRH/BD/114674/2016. 

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the 
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to 
publish the results. 

References 

1. Adolfsson-Erici, M.; Pettersson, M.; Parkkonen, J.; Sturve, J. Triclosan, a commonly used bactericide found 
in human milk and in the aquatic environment in Sweden. Chemosphere 2002, 46, 1485–1489. 

2. Roberts, J.; Kumar, A.; Du, J.; Hepplewhite, C.; Ellis, D.J.; Christy, A.G.; Beavis, S.G. Pharmaceuticals and 
personal care products (PPCPs) in Australia’s largest inland sewage treatment plant, and its contribution 
to a major Australian river during high and low flow. Sci. Total Environ. 2016, 541, 1625–1637. 

3. Yueh, M.-F.; Tukey, R.H. Triclosan: A Widespread Environmental Toxicant with Many Biological Effects. 
Annu. Rev. Pharmacol. Toxicol. 2016, 56, 251–272. 

4. Mendez, M.O.; Valdez, E.M.; Martinez, E.M.; Saucedo, M.; Wilson, B.A. Fate of Triclosan in Irrigated Soil: 
Degradation in Soil and Translocation into Onion and Tomato. J. Environ. Qual. 2016, 45, 1029. 

5. Olaniyan, L.W.B.; Mkwetshana, N.; Okoh, A.I. Triclosan in water, implications for human and 
environmental health. SpringerPlus 2016, 5, 1485. 

6. Marques, I.; Magalhâes-Mota, G.; Pires, F.; Sério, S.; Ribeiro, P.A.; Raposo, M. Detection of traces of triclosan 
in water. Appl. Surf. Sci. 2017, 421, 142–147. 

7. Magro, C.; Mateus, E.P.; Raposo, M.; Ribeiro, A. B. Overview of electronic tongue sensing in environmental 
aqueous matrices: Potential for monitoring emerging organic contaminants. Environ. Rev. 2018, 27, 202–214  

8. Raposo, M.; Ferreira, Q.; Timóteo, A.R.M.; Ribeiro, P.A.; Rego, A.M.B.D. Contribution of counterions and 
degree of ionization for birefringence creation and relaxation kinetics parameters of PAH/PAZO films. J. 
Appl. Phys. 2015, 118, 114504. 

9. Ferreira, Q.; Ribeiro, P.A.; Oliveira, O.N.; Raposo, M. Long-Term Stability at High Temperatures for 
Birefringence in PAZO/PAH Layer-by-Layer Films. ACS Appl. Mater. Interfaces 2012, 4, 1470–1477. 

10. Ferreira, Q.; Gomes, P. J.; Ribeiro, P. A.; Jones, N. C.; Hoffmann, S. V.; Mason, N. J.; Oliveira, O. N.;  
Raposo, M. Determination of degree of ionization of poly(allylamine hydrochloride) (PAH) and poly[1-[4-
(3-carboxy-4 hydroxyphenylazo)benzene sulfonamido]-1,2-ethanediyl, sodium salt] (PAZO) in layer-by-
layer films using vacuum photoabsorption spectroscopy. Langmuir 2013, 29, 448–455. 

11. Shlens, J. A Tutorial on Principal Component Analysis. 2014. Available online: https://arxiv.org/pdf/ 
1404.1100.pdf (accessed on 12 September 2018). 

 

 

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 
article distributed under the terms and conditions of the Creative Commons 
Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). 



 159 

Conference Paper 
 

“Triclosan Detection in Aqueous Environmental Matrices by Thin-Films Sensors” 
 

C Magro, PM Zagalo, J Pereira-da-Silva, EP Mateus, AB Ribeiro, PA Ribeiro & M Raposo 
 

Published in: Sensors Proceedings I3S, 2019 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 160 

 
 
 
 
 
 
 
 



  

Proceedings 2019, 15, 24; doi:10.3390/proceedings2019015024 www.mdpi.com/journal/proceedings 

Proceedings 

Triclosan Detection in Aqueous Environmental 
Matrices by Thin-Films Sensors † 
Cátia Costa Magro 1,*, Paulo Morgado Zagalo 2, João Pereira-da-Silva 2, Eduardo Pires Mateus 1, 
Alexandra Branco Ribeiro 1, Paulo António Ribeiro 2 and Maria Fátima Raposo 2  

1 CENSE, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia, 
Universidade Nova de Lisboa, Caparica 2829-516, Portugal 

2 CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 
Caparica 2829-516, Portugal 

* Correspondence: c.magro@campus.fct.unl.pt  
† Presented at the 7th International Symposium on Sensor Science, Napoli, Italy, 9–11 May 2019. 

Published: 15 July 2019 

Abstract: Triclosan (TCS), a bacteriostatic detected in water bodies, have inauspicious effects in 
human and biota. Consequently, there is a critical need of monitoring these type of compounds in 
aqueous matrices. In this sense, sensors, based on polyethyleneimine and polysodium  
4-styrenesulfonate layer-by-layer thin-films adsorbed on supports with gold interdigitated 
electrodes deposited, were developed. The aim was analyze the sensitivity of discrimination of TCS 
(10−15 M to 10−5 M) in deionized water, Luso® and in an effluent, by measuring the impedance spectra. 
LbL films can distinguish TCS concentrations in EF, while in LW was achieved an acceptable 
sensibility when interdigitated electrodes without films were used.  

Keywords: triclosan monitoring; thin-films interdigitated sensors; impedance spectroscopy 
 

1. Introduction 

Water management is one of the most serious economic, political, social and ecological issues 
that mankind faces today. A major challenge is to keep water resources clean and safe, taking into 
account that the mixture of potential contaminants is continuously changing in a dynamic society. 
Over the last decade, beyond the legacy contaminants, (e.g., “priority” pollutants and industrial 
intermediates) that display persistence in the environment, new classes of environmental emerging 
organic contaminants, mainly composed of products used in a large scale in everyday life, are being 
detected and reported worldwide and accumulating in water, soil and biota [1]. Among them 
Pharmaceuticals and Personal Care Products, a group that includes numerous chemical classes,  
is under increased concern due to its continuous detection in water compartments and permanent 
introduction into environment across the world [2]. Triclosan (TCS) is a bacteriostatic used in 
household items such as toothpaste or soaps. TCS has raised health concerns that include allergy risk, 
antimicrobial resistance, developmental toxicity, and endocrine disruption [3–8]. The actual  
non-regulation demands the urgency of having reliable tools that will allow the real time monitoring 
of these emergent compounds [9–11]. 

The aim of the present work was explore the potential of electronic tongue concept [12,13] using 
thin-films sensors based on polyethyleneimine (PEI) and poly(sodium 4-styrenesulfonate) (PSS)—to 
detect TCS spiked aqueous solutions:  deionized water (DW), Luso® Portuguese mineral water (LW) 
and an effluent from a wastewater treatment plant (EF), with different concentrations (10−15 M to  
10−5 M). The PEI/PSS thin-films with 5 bilayers [PEI/PSS]5, with 10−2 M monomeric concentrations, 
were prepared by the layer-by-layer (LbL) technique onto solid supports with deposited gold 
electrodes sensors as described in [14]. The detection of TCS was achieved by measuring the 
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impedance spectra of thin-films when immersed in the TCS aqueous solutions. The impedance 
spectra were measured, using a Solartron 1260 Impedance Analyzer, in the frequency range of 1 Hz 
to 1 MHz applying an AC voltage of 25 mV.  

2. Results 

The impedance spectra of [PEI/PSS]5 LbL films adsorbed on glass supports with interdigitated 
electrodes when immersed in TCS solutions prepared with different waters were measured. For 
comparison, the impedance spectra of glass support with interdigitated electrodes were also measured 
in the same conditions. Some examples of the obtained results are presented here. Figure 1a1,c1 show 
the resistance spectra of [PEI/PSS]5 LbL film immersed in TCS solutions prepared with DW and EF, 
respectively. While Figure 1b1 shows the loss tangent spectra of interdigitated electrodes without 
LbL films immersed in TCS solutions prepared with LW. The dependence of electrical resistance and 
loss tangent as a function of the frequency for the [PEI/PSS]5 combination was the better for DW and 
EF, contrary to LW where the best solution was the use of interdigitated electrodes without deposited 
thin-films. It seems that for more complex media, as LW or EF, the sensor is capable of discriminating 
TCS concentrations at high frequencies (LW [38,000 to 100,000 Hz]; EF [1000 to 10,000 Hz]), contrarily 
to DW [100 to 250 Hz]. From the measured spectra data, resistance and/or loss tangent at fixed 
frequencies were prepared. Figure 1a2,b2,c2 shows the resistance at 250 Hz, loss tangent at ~64 kHz 
and resistance at ~4 kHz plotted as a function of TCS concentration of the solutions prepared with 
DW, LW and EF, respectively. In the case of Figure 1a2, there is no clear tendency behavior, only a 
slight increment on the resistance between 10−15 M to 10−13 M, but still poor sensibility for the target 
molecule. Moreover, to LW the loss tangent tends to decrease with the increase of the TCS 
concentration, opposite to EF that increase the resistance with the increase of the TCS concentrations.  

The adsorption of TCS onto polyelectrolytes thin-films, is affected by the pH of TCS solution [15]. 
The pH affected both the degree of ionization of the last polyelectrolyte in the LbL thin-film and the 
dissociation of TCS [16]. DW, LW and EF pH: 8.00, 5.80, 8.26. The acidic pH in in the LW, contributed 
to the slight desorption of the film. The desorption results, not shown here, were obtained measuring 
the ultraviolet-visible spectra of the films before and after immersion in the TCS solutions in an UV-VIS 
2101 PC Scanning spectrophotometer. Hence, as previous observed, the best sensor to this water was 
gold interdigitated electrodes without deposited thin-films. Also, in more complex media, as EF 
matrix, [higher conductivity] the high amount of molecules promotes a higher fixed of the thin-films 
into the solid supports, having therefore less propensity to desorption or adsorption phenomena.  
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Figure 1. (a1) Resistance spectra of [PEI/PSS]5 LbL film immersed in TCS solutions prepared with DW 
and (a2) Resistance at 250 Hz vs. TCS solutions prepared with DW; (b1) loss tangent spectra of 
interdigitated electrodes without LbL films immersed in TCS solutions prepared with LW and  
(b2) Loss tangent at 64 kHz vs. TCS solutions prepared with LW; (c1) Resistance spectra of [PEI/PSS]5 

LbL film immersed in TCS solutions prepared with EF and (c2) Resistance at 4000 Hz vs. TCS 
solutions prepared with EF. 

3. Conclusions  

The detection of TCS through impedance spectroscopy yielded acceptable results for [PEI/PSS]5 
in EF and interdigitated sensor with films in LW. To EF there was not observed desorption of the 
molecules of the films neither adsorption of TCS, confirming the sensor capability to detected TCS 
target molecule.  
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Abstract: The widespread use of pharmaceuticals and personal care products (PPCPs) over the 

years has resulted in the contamination of aquatic environments. Triclosan (TCS) is a bacteriostatic 

used in household items, such as toothpaste or soaps. TCS has raised health concerns that include 

antimicrobial resistance and endocrine disruption both to humans and biota. The actual non-

regulation demands the urgency of having reliable tools that can allow the real time monitoring of 

these emergent compounds. 

The aim of the present work was to explore the potential of using thin-films sensors based on 

poly(allylamine hydrochloride (PAH), graphene oxide (GO), polyethyleneimine (PEI) and 

polysodium 4-styrenesulfonate (PSS) - to detect different TCS concentrations (10-15M to 10-5M). 

Deionized water, Luso® a Portuguese mineral water and an effluent from a wastewater treatment 

plant, were used to prepare the TCS solutions which were characterized by impedance spectroscopy 

(1Hz to 1MHz, electrical resistance, electrical capacitance and loss tangent as the transducing 

variables at fixed frequencies, AC voltage of 25 mV) using a Solartron 1260 Impedance Analyzer. 

The obtained data was analyzed by Principal Component Analysis. The results demonstrated 

discrimination of TCS concentrations in effluent wastewater for combination of [PEI/PSS]5 or 

[PEI/PSS]20. Additionally, in order to understand the thin-film behavior (desorption and/or 

adsorption) in the different waters and, consequently, different pHs (3, 6 and ≈ 8), the thin films 

were characterized with a UV-VIS 2101 PC Scanning spectrophotometer. These stability studies 

verified that thin-films molecules do not desorb or adsorb in the TCS solutions at pH ≈ 8 

 Keywords: triclosan monitoring; thin-films interdigitated sensors; impedance spectroscopy 
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Nowadays, keeping water resources clean and safe is one of the biggest challenges in water management 

systems. Water crisis is increasing due to the population growth, improvement of lifestyle, climate changes 

and also because of the lack of appropriate water resource management.  Therefore, it is crucial to reduce 

tap water consumption in all activity sectors, including the high volume in building industry. In this industry 

potable water is usually used since it is recommended by most specifications and its chemical composition 

is known and well regulated.  However, in order to create a balance between the resource and the demand, 

other alternatives are needed to re-cycle non-fresh water and promote the “zero-waste circular economy”.   

 Effluents from wastewater treatment plants have a potential to replace water in construction sector 

due to their characteristics. On the other hand, effluents may contain a complex mixture of anthropogenic 

and natural compounds that are not removed by conventional treatments and, consequently, different types 

of impurities are present, making difficult to draw a sound conclusion concerning their utilization in 

concrete mixtures.  

To handle with these barriers, a clean water technology before the reuse is required. Electrodialytic 

(ED) process is a remediation technique applied to contaminated matrices. The main principle is that when 

a low level direct current is applied between a pair of electrodes, the generated electric field induces 

transport processes and physicochemical changes in the applied matrix. These changes lead to species 

transport by coupled mechanisms, acting as the “cleaning agent”, by which the contaminants move out of 

the matrix towards one of the electrode compartments. The ED process has proved to be efficient for the 

removal of organic or/and inorganic contaminants, such as heavy metals and salts.  

 In this work the viability to use ED treated effluent in construction materials (e.g. mortars) as an 

alternative to tap water was assessed, thus promoting water management. 

 The ED process was optimized to remove or immobilize the heavy metals and salts from effluents 

collected from different wastewater treatment plants. Effluents were characterized before and after the ED 

process. The treated effluent was then used in the production of mortars. Characterization of cement was 

performed by X-ray diffraction, SEM-EDX and laser diffraction to understand the influence in the 

replacement of tap water by ED treated effluent. Materials tests were conducted (e.g. permeability, 

workability, compressive strength) as well as environmental safety tests (e.g. concentration levels and 

leaching of heavy metals and salts).  
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Electrodialytic technology (ED-T) is a clean-up process with feasible applications in environmental aqueous matrices. This process is based on the application of an electric current
density of mA/cm2 to the cross-sectional area of a matrix between pairs of electrodes. Water oxidation and reduction reactions are dominant, involving the generation of hydrogen gas:

Thus, collecting the hydrogen (H2) produced, there is a potential to increase ED-T cost-effectiveness, either using a proton exchange membrane fuel cell (PEM-FC), that converts the
chemical energy into power needs or by selling H2 for other applications.
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CONCLUSIONS ACKNOWLEDGMENTS

This study suggests new possibilities for energy savings in ED-T 
and H2 production for different purposes.   

RESULTS & DISCUSSION

METHODOLOGY

INTRODUCTION

H2 production in an ED-T laboratory scale – Figure 1

3 compartments cell → L= 15 cm & Ø = 8 cm

Electrodes MMO/Ti (from Permaskand) → L= 5 cm & Ø = 0.3 cm

CEM Cation exchange membrane & AEM Anion exchange membrane (from Ionics)

Electrolyte → 250 mL NaNO3 10-2 M

Parameters monitored
Voltage, pH, conductivity, H2 volume (mL), % of  H2 purity by Gas Chromatography Thermal Conductivity Detector (GC-TCD) 

Conditions tested

DC current → 100 or 50 mA & Duration → 1 and 2 h

H2 energy conversion 

Mini PEM Fuel cell (from Fuelcell store) → (w × h × d ) 32 mm×32 mm×10 mm   *max power output → appx. 0.6 V

Matrices tested

SW Salty Water → 250 mL tap water + 0.2 g NaCl

EF Secondary Effluent ( (from a WWTP, 760,000 equivalent inhabitants, Lisbon, PT) → 250 mL

⁃ GC-TCD: H2 produced by ED-T ≈ 95% purity
⁃ ED-T final parameters: SW 50 mA (pH 6.5, 1.4 mS/cm) & 100 mA (pH 3.2, 0.9 mS/cm); EF 50 mA (pH

6.4, 1.2 mS/cm) & 100 mA (pH 3.3, 1.3 mS/cm)
⁃ Time to reach 30 mL of H2 (full volume capacity): SW 50 mA - 70 min; SW 100 mA - 30 min; EF 50 mA

n- 50 min; EF 100 mA - 30 min
⁃ ED-T: The flow rate production for H2 is directly related to current intensity and matrix (Figure 2A)
⁃ A strong relation between voltage and H2 volume is supported by data shown in Figure 2B (R2 ≥ 0.93)
⁃ The voltage in conventional ED-T systems (Control: O2 and H2 are released to the atmosphere,

recirculation/agitation), shows a different behavior comparing to the ED-T-PEM-FC systems (H2 gas is
collected-isolated reactor). The voltage increased in the Control while in ED-T-PEM-FC systems a dropped
voltage was observed (Figure 2C). The second behavior may happen due to the activated polarization:
‣ Overpotential → more pressure → increased particle's collisions → increasing the velocity of the H2

reaction generation
⁃ 100 mA of current intensity means more energy consumption and costs in both matrices (Figure 3)

PEM-FC – Energy potential generation
⁃ To decrease the energy consumption of the ED-T 100 mA and take advantage of the H2 produced during

the treatment, a PEM-FC was connected to the ED-T gas collector for H2 power conversion
⁃ Considering PEM-FC maximum output voltage (appx. 0.6 V): 1) SW produced 0.1 V in 100 min (until the

average voltage in 3h of ED-T); 2) EF produced 0.8 V in 50 min (until the average voltage in 3h of ED-T)
⁃ Comparing SW with EF, the latest showed 3.5% more efficiency in the potential measured, meaning higher

savings/year in a full scale reactor (Figure 4) - more ions in the effluent matrix (data supported by Ion
Chromatography). Also, the voltage was more stable during the complete ED-T process

⁃ The efficiency of the PEM-FC is directly proportional to the PEM area (10 cm2). Extrapolating PEM area
to 300 cm2, PEM-FC would cover the total power needs of a complete ED-T treatment (≤ 3h)

Figure 2. (A) H2 volume variation, (B) Relation between H2

volume production and voltage & (C) Normalized voltage 

Measurement volume limit

C. Magro      J. Almeida

*c.magro@campus.fct.unl.pt
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