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Abstract  34 

Ecological connectivity depends on key elements within the landscape, which can 35 

support ecological fluxes, species richness and long-term viability of a biological 36 

community. Landscape planning requires clear aims and quantitative approaches to 37 

identify which key elements can reinforce the spatial coherence of protected areas 38 

design. We aim to explore the probability of the ecological connectivity of forest 39 

remnants and amphibian species distributions for current and future climate scenarios 40 

across the Central Corridor of the Brazilian Atlantic Forest. Integrating amphibian 41 

conservation, climate change and ecological corridors, we design a landscape ranking 42 

based on graph and circuit theories. To identify the sensitivity of connected areas to 43 

climate-dependent changes, we use the Model for Interdisciplinary Research on Climate 44 

by means of simulations for 2080-2100, representing a moderated emission scenario 45 

within an optimistic context. Our findings indicate that more than 70% of forest 46 

connectivity loss by climate change may drastically reduce amphibian dispersal in this 47 

region. We show that high amphibian turnover rates tend to be greater in the north-48 

eastern edges of the corridor across ensembles of forecasts. Our spatial analysis reveals 49 

a general pattern of low-conductance areas in landscape surface, yet with some well-50 
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connected patches suggesting potential ecological corridors. Atlantic Forest reserves are 51 

expected to be less effective in a near future. For improved conservation outcomes, we 52 

recommend some landscape paths with low resistance values across space and time. We 53 

highlight the importance of maintaining forest remnants in the southern Bahia region by 54 

drafting a blueprint for functional biodiversity corridors. 55 

 56 

Keywords  57 

Anura, Atlantic Forest, functional corridor, climate models, dispersal ability  58 

 59 

Introduction 60 

 61 

The implementation of Protected Areas (PAs) is among the most effective methods for 62 

long-term biodiversity conservation plans (Rodrigues et al. 2004), working as a key 63 

strategic tool in the development of environmental policies and efforts to sustain natural 64 

ecosystem processes (Le Saout et al. 2013; Laurance et al. 2014). The selection of PAs 65 

is often aimed to preserve either species of different taxonomic groups, conservation 66 

target species (e.g., threatened and/or endemics), or combinations of different abiotic 67 

conditions favourable to local ecosystems that will likely protect a wide range of 68 

biodiversity (Lawler and White 2008). Given that habitat loss is the most important 69 

threat to species survival (Haddad et al. 2015), the protected sites chosen by decision-70 

makers can determine which species will be able to survive in the area (Jenkins et al. 71 

2015). The effectiveness of these selected sites in reaching conservation goals depends 72 

on how many of the target species are represented in a given area (Dietz et al. 2015). 73 

Although generally unseen, amphibians are the most abundant land vertebrates in humid 74 

tropical forests (Stebbins and Cohen 1995).  Globally, they include over 7,000 species 75 
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of frogs (Anura), 700 species of salamanders (Caudata) and 200 species of caecilians 76 

(Gymnophiona) (Frost, 2019). However, amphibian conservation actions have 77 

overlooked the biodiversity patterns in an effective conservation policy (Campos et al. 78 

2017).    79 

Among all vertebrates, amphibians are the group with the most species (24%) 80 

whose geographical ranges are unprotected and not included in PAs (Nori et al. 2015). 81 

More than 2,000 amphibian species are listed as threatened by extinction, which makes 82 

them the most threatened vertebrate group worldwide (Stuart et al. 2004; IUCN 2018). 83 

Many reductions and extinctions of amphibians have occurred due to the habitat loss 84 

(Stuart et al. 2004; Becker et al. 2007; Ferreira et al. 2016), mainly in the Neotropical 85 

region, which harbours a significant amount of the global amphibian diversity (Young 86 

et al. 2004; Silvano and Segalla 2005; Becker et al. 2007). Amphibian conservation in 87 

fragmented landscapes is directly related to the establishment of protected areas and 88 

requires special management tools such as habitat restoration and management of forest 89 

patches, ensuring habitat quality and, hopefully, the permanence of the species (Ochoa-90 

Ochoa et al. 2009; Lourenço-de-Moraes et al. 2018). Therefore, compiling data about 91 

species distribution ranges is key to planning conservation actions (Verdade et al. 2012; 92 

Morais et al. 2013; Campos et al. 2017). 93 

Conservation strategies aimed at protecting threatened amphibians were 94 

proposed by previous studies that highlighted parts of the Brazilian Atlantic Forest as 95 

high priority areas (e.g., Loyola et al. 2008; Campos et al. 2013; Lemes and Loyola 96 

2013; Dias et al. 2014). In addition, some taxonomic groups of amphibians from small 97 

areas within the Atlantic Forest were identified as potential surrogates of biodiversity in 98 

Brazil (Campos et al. 2014). Species with access to mountainous regions may migrate to 99 

higher altitude areas with lower temperatures (Colwell et al. 2008), which in the case of 100 
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the Atlantic Forest, should retain greater humidity due to better-preserved forest cover 101 

(Ribeiro et al. 2009). However, the survival of threatened amphibians in fragmented 102 

tropical landscapes is dependent on the integrity and persistence of their PAs(Urbina-103 

Cardona 2008; Ochoa-Ochoa et al. 2009; Lourenço-de-Moraes et al. 2019). 104 

 The economic growth policy in Brazil is widely based on the expansion of 105 

agricultural frontiers (Ribeiro et al. 2009), directly affecting the availability and the 106 

distribution of forest remnants in scattered private lands, which are gradually becoming 107 

crop and pasture production areas (Tabarelli et al. 2004). Forest isolation can affect 108 

many species' distributions by habitat loss, leading to long-term changes in the structure 109 

of the remaining fragments (Metzger 2009; Lourenço-de-Moraes et al. 2018). This 110 

factor means that the use of ecological connectivity metrics can be good indicators for 111 

measuring the isolation of PAs and their ecosystem functions (Gurrutxaga et al. 2011). 112 

Assessing ecological connectivity among PAs is becoming a relevant subject of 113 

growing international effort in relation to nature conservation policies (Bennett and 114 

Mulongoy 2006; Worboys et al. 2006). By using connectivity in planning, managers 115 

attempt to avoid functional isolation of PAs (Carroll et al. 2004; Liang et al. 2018) and 116 

mitigate the effects of climate change on the population structure of endemic species by 117 

allowing for range shifts (Bennett and Mulongoy 2006; Triviño et al. 2018). Thus, an 118 

understanding of future climate conditions is essential for predicting the effects of 119 

habitat isolation and species range shifts. In an attempt to understand these effects, 120 

modelling species responses to different climatic scenarios of environmental conditions 121 

has proven to be an effective tool (Carnaval and Moritz 2008; Diniz-Filho et al. 2009; 122 

Austin and Van Niel 2011; Araújo and Peterson 2012). Researchers are combining 123 

environmental spatial data with ecological and evolutionary processes to predict how 124 

species will shift their ranges in the future (Elith et al. 2010; Kearney et al. 2010; 125 
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Martensen et al. 2017; Triviño et al. 2018; Lourenço-de-Moraes et al. 2019). Ecological 126 

niche models (ENMs), also referred to as species distribution models (SDMs) (Peterson 127 

et al. 2011; Rangel and Loyola 2012), have been increasingly used to estimate the 128 

spatial ranges of species for future scenarios of climate change (Peterson et al. 2011). 129 

These predictions may provide useful contributions to decision-making regarding 130 

biodiversity conservation (Loyola et al. 2014).  131 

Ecological implications of species tolerances to climate change are increasing 132 

and contributing to a better understanding of how spatiotemporal connectivity 133 

information can be incorporated into dispersal patterns (Bled et al. 2013). Climatic 134 

change may alter species distributions (Pearson and Dawson 2003; Raxworthy et al. 135 

2008), as well as significant species turnovers (Peterson et al. 2012). In this context, 136 

ecological connectivity of forest landscapes is of paramount importance to ensure the 137 

flow of species among potential climate refuges (Pearson and Dawson 2005). 138 

Considering that climate change can aggravate environmental stresses from habitat loss 139 

and fragmentation, there is high interest in maintaining ecological connectivity in 140 

changing climates (Hamilton et al. 2016). However, only a few studies considered the 141 

potential impact of climate change on the fragmentation of populations (Duan et al. 142 

2016). 143 

Ecological connectivity strategies depend not only on the existence of structural 144 

connections between habitat patches but also on habitat suitability, stepping stones, 145 

matrix permeability and the target organisms’ responses to these elements (Tischendorf 146 

and Fahrig 2000; Baum et al. 2004). Complex agroforestry systems are often used as 147 

suitable habitats for different species across fragmented landscapes, also improving 148 

dispersal pathways and connecting local species assemblages (Faria et al. 2007). 149 

Advances in conservation biogeography have addressed many interactions between 150 
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habitat suitability and species response, varying in complexity, realism and data 151 

requirements (Franklin 2010). Graph and circuit theories are complementary methods 152 

that have been used to provide efficient approaches for identifying biodiversity 153 

corridors (McRae et al. 2008; Spear et al. 2010). While circuit theory models outline 154 

high-conductance areas between patches (McRae et al. 2008), graph-based models 155 

determine the optimal least-cost routes pairwise landscape distances (Urban and Keitt 156 

2001). However, efficient ecological corridors must facilitate dispersal movements and 157 

consider species life-history requirements (Rosenberg et al. 1997). In this context, 158 

amphibians have been cited as highly appropriate species for examining landscape 159 

effects on community structure, due to their relatively limited mobility, sensitivity to 160 

dispersal barriers and strong microhabitat associations (Austin et al. 2002; Spear et al. 161 

2005; Lee-Yaw et al. 2009).  162 

To answer where the amphibian species could disperse in the face of climate 163 

change, we assess how changing climate might affect the protected network 164 

effectiveness for amphibian distributions. Here, we explore the probability of the 165 

ecological connectivity of forest remnants and amphibian species for current and future 166 

climate scenarios. Specifically, we aim at modelling the ecological connectivity to 167 

represent forest remnants that most contribute to upholding amphibian connectivity in 168 

the Central Corridor of the Brazilian Atlantic Forest, estimating the species turnover 169 

between current and future amphibian species distributions. We evaluate if the PAs 170 

network of this corridor safeguards amphibian species that occur in this region, testing 171 

if this network can work as an effective biodiversity corridor for amphibians. Then, we 172 

show the relationship between environmental variables and amphibian species 173 

distributions across the protected network. We highlight the importance of maintaining 174 

forest remnants in the main Atlantic Forest biodiversity corridor (i.e., the Central 175 
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Corridor), suggesting implications for amphibian conservation planning and providing 176 

new approaches on ecological connectivity in different climatic conditions. These 177 

results may be useful as a tool for designing conservation strategies that incorporate the 178 

effects of climate change and habitat fragmentation in a landscape planning approach.   179 

 180 

Materials and Methods 181 

 182 

Study area 183 

 184 

The Atlantic Forest represents one of the five most important biodiversity hotspots on 185 

Earth (Mittermeier et al. 2011). Originally, it covered around 1,500,000 km2, of which 186 

only about 12% (i.e., 194 524 km2) still remains in Brazil, Paraguay and Argentina 187 

(Ribeiro et al. 2009), corresponding to about 100,000 km2 of Brazilian forest remnants 188 

(Tabarelli et al. 2005). Despite having high rates of habitat loss (Teixeira et al. 2009), 189 

which is one of the main factors driving amphibians to extinction (Stuart et al. 2004; 190 

Becker et al. 2007), the Atlantic Forest is the leader biome in amphibian diversity in 191 

Brazil (Haddad et al. 2013), accounting more than 50% of all Brazilian amphibian 192 

species (Haddad et al. 2013). 193 

We focused our study on the Central Corridor of the Brazilian Atlantic Forest, 194 

which comprises about 8% of the total biome area (i.e., 7,913.42 km2), covering 14% of 195 

forest remnants (SOS Mata Atlântica and INPE 2015). Here, we used the term Brazilian 196 

Atlantic Forest to refer to the forest remnants map provided by SOS Mata Atlântica and 197 

INPE (2015).  198 

 199 

Protected networks  200 
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 201 

We examined all the PAs covered by the Central Corridor of the Brazilian Atlantic 202 

Forest, providing information on the political categories and the sizes of each PA, as 203 

well as their associated amphibian species richness and local environmental data. We 204 

separated the PAs into two categories according to the IUCN criteria (IUCN 2018): 205 

strict protection (IUCN categories I–II) and sustainable use (IUCN categories III–VI), 206 

identifying the relative differences in the allocation of protection by each category. We 207 

used national, state and municipal PAs spatial data through the Brazilian Ministry of the 208 

Environment database (MMA 2015). 209 

We assessed the relationships between species richness and their environmental 210 

predictors (i.e., altitude, temperature, precipitation, and forest cover) to evaluate the 211 

effect of environmental variables on the representation of species within the PAs 212 

categories. For this, we performed a permutational multivariate analysis of variance 213 

(PERMANOVA) using 1,000 permutations based on a Euclidean distance matrix, 214 

through the “adonis” function in the R package “vegan” (Oksanen et al. 2013; R Core 215 

Team 2016). 216 

 217 

Species distribution data 218 

 219 

We obtained spatial data of amphibian species through four steps: Firstly, we built a 220 

dataset with all the species distributed in the Atlantic Forest according to Haddad et al. 221 

(2013). Secondly, we included the species occurrences records available through the 222 

Global Biodiversity Information Facility (GBIF: http://www.gbif.org). Thirdly, we 223 

added spatial data for the mapping of species using the IUCN Red List of Threatened 224 

Species database (IUCN 2018). Finally, we selected and filtered out the species that 225 

http://www.gbif.org)/
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only occur in the forest remnants within the limits of distribution of the Central Corridor 226 

of the Brazilian Atlantic Forest, excluding all urban and non-forested areas (SOS Mata 227 

Atlântica and INPE 2015). Hence, we combined vector files based on expert knowledge 228 

of the species' ranges and forest remnant polygons into an overall coverage for species 229 

distribution modelling, through both sources of species presences (Fourcade 2016). 230 

We used ArcGIS 10 software (ESRI 2011) to build presence/absence matrices 231 

from the species distribution data by overlapping a grid system with cells of 0.1 232 

latitude/longitude degrees, creating a matrix with 838 grid cells. A total of 146 233 

amphibian species were spatially represented in this grid system after using the “Spatial 234 

Join” tool available in ArcGIS. We only considered spatial occurrences by those species 235 

in which the distribution data intersected at least one grid cell (i.e., ~ 10 km2). We used 236 

forest remnant data to meet the habitat patch requirements based on visual interpretation 237 

at a scale of 1:50,000, delimiting more than 260,000 forest remnants with a minimum 238 

mapping area of 0.3 km2. Therefore, we considered a species present in a cell if its 239 

spatial range intersected more than 0.3 km2.  To improve coarse species distribution 240 

data, the “Count Overlapping Polygons” ArcGIS toolbox was used to obtain the species 241 

richness at the spatial resolution assessed, removing all duplicate records from the 242 

analyses (i.e., repeated records of a species at the same location). 243 

 244 

Climate models and environmental data 245 

 246 

Given that species occurrence patterns are determined at large-scales by responses of 247 

organisms to different climatic conditions (reflecting the ecological niche; see Soberón 248 

2007; Booth et al. 2014), we used ecological niche models (ENMs) to predict the 249 

distribution area of amphibian species. We used the species occurrence matrix and the 250 
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layers of climatic variables, resulting in a suitability matrix, which we used to model 251 

and map the potential distribution of each species evaluated (Loyola et al. 2014). 252 

We used current and future climate data according to the Coupled Model 253 

Intercomparison Project Phase 5 – CMIP5  (http://cmip-pcmdi.llnl.gov), from coupled 254 

Atmosphere-Ocean Global Climate Models (AOGCMs) to develop the spatial range 255 

models. These simulations show a high sensibility to detect potential impacts of land 256 

use changes on climate in human-induced landscapes (Dirmeyer et al. 2010). We 257 

implemented the Model for Interdisciplinary Research on Climate (MIROC5) by 2080 258 

(mean of simulations for 2080-2100), which represents a moderated emission scenario 259 

within an optimistic context (Representative Concentration Pathway – RCP 4.5; Taylor 260 

et al. 2012). This moderate scenario (RCP4.5) incorporates historical emissions 261 

pathways and land cover information to meet potential climate policies (Thomson et al. 262 

2011). We based the model projections on seven independent climatic variables tested 263 

by stepwise multiple regression analyses, using a confidence interval of 95%: 1) annual 264 

mean temperature, 2) temperature seasonality, 3) mean temperature of the warmest and 265 

4) coldest quarters, 5) annual precipitation, and 6) precipitation of the driest and 7) 266 

wettest quarters. We obtained these climatic data through the EcoClimate database 267 

(Lima-Ribeiro et al. 2015) and downscaled them from 0.5 to 0.1 latitude/longitude 268 

degrees for fitting our spatial scale. We also used altitude as an environmental filter to 269 

predict the species richness from the dataset available at WorldClim Global Climate 270 

Data (Hijmans et al. 2005). Given that temperature and humidity are the main climate 271 

components that directly affect the biology of amphibians (Carey and Alexander 2003), 272 

we compared these variables along altitudinal gradients to evaluate which 273 

environmental features are the best predictors of amphibian richness. 274 

http://cmip-pcmdi.llnl.gov/
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We employed the maximum entropy method implemented in the MaxEnt 275 

software (Phillips et al. 2006) to develop the potential distribution map for the forest 276 

remnants associated with all the climatic variables adopted in the future predictions by 277 

2080 (i.e., mean of simulations for 2080-2100). We randomly partitioned presence and 278 

pseudo-absence data for each species into 75% of calibration (i.e., training) and 25% of 279 

evaluation (i.e., tests), repeating this process ten times by cross-validation to avoid over-280 

fitting biases in the least-suitable environmental conditions. We converted the 281 

continuous predictions of suitability into a binary vector of 1/0, finding the threshold 282 

that maximizes sensitivity and specificity values in the receiver-operating characteristic 283 

curves (Phillips et al. 2017) to build each ecological niche model. These curves are 284 

generated by plotting values of the relative frequency of true positive records predicted 285 

by a given model against the values of the relative frequency of pseudo-absence records, 286 

generating the Area Under the Curve (AUC). For this purpose, one-third of the 287 

occurrence records are set aside from modelling as test points (Phillips et al. 2006). 288 

Values of AUC range from 0.5 (i.e., random) for models with no predictive ability to 289 

1.0 for models giving perfect predictions. According to the Swets (1988) classification, 290 

AUC values above 0.9 describe “very good”, 0.8 “good”, and 0.7 “useful” 291 

discrimination abilities. 292 

The main reason behind our choice of the MaxEnt modelling approach was to 293 

look for a straightforward combination of environmental predictors that best explains 294 

the presence‐only species distribution across forest remnants. Using presence-only data, 295 

MaxEnt is considered one of the most efficient methods for habitat suitability modelling 296 

in terms of predictive performance (Elith and Graham 2009; Phillips et al. 2017; Duflot 297 

et al. 2018). This predictive modelling approach has a high analytical power to combine 298 

continuous and categorical environmental variables (Phillips et al. 2006), accounting for 299 
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potential interactions among them (Phillips and Dudik 2008). MaxEnt also has been 300 

considered as less sensitive to sample sizes and layer resolutions when compared with 301 

other habitat suitability models (Merow and Silander 2014; Wisz et al. 2008). In 302 

addition, this multi-attribute approach works in free, user-friendly software that 303 

provides input and output files totally compatible with geographic information system 304 

tools (Phillips et al. 2006).  305 

We assessed the potential current and future distributions of the forest cover 306 

according to the current vegetation remnants map of the Brazilian Atlantic Forest (SOS 307 

Mata Atlântica and INPE 2015), of which we excluded all the areas where there are 308 

currently agriculture, urban zones or settlements, only representing forest remnants 309 

without overlaps on the land use/cover changes. 310 

 311 

Species turnover 312 

 313 

We also applied the maximum entropy method implemented in the MaxEnt software 314 

(Phillips et al. 2006), to determine the species geographic distributions patterns, 315 

following the same climatic variables adopted in the modelling process for the forest 316 

remnants assessed. However, in this case, we employed the modelling strategy at the 317 

community level of “predict first, assemble later” (Overton et al. 2002), where the 318 

ranges of individual species are modelled one at a time as a function of environmental 319 

predictors and then overlapped for obtaining the species richness. We calculated the 320 

species turnover between current and future amphibian species distributions according 321 

to the equation proposed by Thuiller et al. (2005) (1):  322 

 323 

Species Turnover = 100*((G+L)/(S+G))     (1) 324 
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  325 

where “G” refers to the number of species gained, “L” the number of species lost and 326 

“S” the contemporary species richness found in the forest remnants assessed. We 327 

obtained the final maps of species richness for the current and future times, as well as 328 

the species turnover rates through the average of values projected by the MaxEnt model 329 

for each grid cell assessed (i.e., 0.1 latitude/longitude degrees of spatial resolution). 330 

 331 

Probability of connectivity 332 

 333 

We assessed the forest remnants through the probability of connectivity (PC) index 334 

(Saura and Rubio 2010), calculated for the patches of the Central Corridor of the 335 

Brazilian Atlantic Forest under two environmental scenarios (i.e., current and future), 336 

using Conefor 2.6 software (Saura and Torné 2009). The PC is a graph-based habitat 337 

availability metric that quantifies functional connectivity (Saura and Rubio 2010). It is 338 

defined as the probability that two points randomly placed within the landscape fall into 339 

habitat areas that are reachable from each other (interconnected) given a set of “n” 340 

habitat patches and the links (direct connections) among them (Saura and Pascual-341 

Hortal 2007) (2).   342 

 343 

𝑃𝐶 = (∑ ∑ 𝑎1 𝑥 𝑎𝑗  𝑥 𝑝𝑖𝑗
∗ )/𝐴𝐿2  𝑛

𝑖=0
𝑛
𝑖=0 =  𝑃𝐶𝑛𝑢𝑚/𝐴𝐿2     (2) 344 

 345 

where ai and aj are the attributes of patches i and j (i.e., ID and area). AL is the 346 

maximum landscape attribute, which corresponds to the total landscape area (i.e., area 347 

of the study region, comprising both habitat and non-habitat patches). The product 348 

probability of a path is the product of all the values of the probability of direct dispersal 349 
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(Pij) for all the links in that path. Thus, Pij is the maximum product probability of all of 350 

the possible paths between patches i and j, including direct dispersal between the two 351 

patches.  352 

 We performed a prioritization ranking of the landscape elements (i.e., patches) 353 

by their contribution to overall habitat availability and connectivity from the percentage 354 

of the variation in PC (dPCk), achieved by the removal of each patch from the overall 355 

landscape (see Saura and Pascual-Hortal 2007; Saura and Rubio 2010). The dPCk is a 356 

relative measure of the increase in the PC value that resulted from the improvement in 357 

the strength of that link after the implementation of the defragmentation measures 358 

(Saura and Rubio 2010) (3). 359 

    360 

𝑑𝑃𝐶𝑘 = 100 𝑥 (𝑃𝐶 − 𝑃𝐶𝑟𝑒𝑚𝑜𝑣𝑒.𝑘)/𝑃𝐶 = 100 𝑥 (𝑑𝑃𝐶𝑘/𝑃𝐶)     (3) 361 

  362 

where PCremove.k is the index value after removal of the landscape element (i.e., after a 363 

certain habitat patch loss). This measure corresponds to the “link change” analysis mode 364 

implemented in the Conefor 2.6 software (Saura and Torné 2009). For all the 365 

connectivity analyses, we used a mean dispersal distance for amphibians according to 366 

the review conducted by Smith and Green (2005), where an estimative average distance 367 

of 400 m for amphibians, in general, was proposed. Whereas some amphibians can 368 

disperse over distances greater than 400 m (Smith and Green 2005), we also assessed 369 

scenarios with a greater potential for dispersal, using distances of 600 and 800 m. To 370 

assess the ecological connectivity results for the future scenario, we considered only the 371 

areas with an assessed likelihood greater than 50%, considering the potential 372 

distribution areas with a minimum favourable condition for the forest persistence under 373 

the climate change predictions used. 374 
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 375 

Landscape resistance models 376 

 377 

We performed a landscape resistance approach to calculate the functional connectivity 378 

between the forest remnants expressed as least-cost paths. To compare the sensitivity of 379 

dPC models within the landscape, we used a resistance surface based on the landscape 380 

heterogeneity with isolation-by-resistance (IBR), following the model proposed by 381 

McRae (2006). We also assessed null models through isolation by Euclidean distance 382 

(IBD), and isolation by Euclidean 3D distance with elevation data (IB3D), both of which 383 

did not consider the influence of landscape heterogeneity. IBD and IB3D represent 384 

landscape-free models and consider a maximum conductance for different land use types, 385 

while IBR is strongly based on landscape heterogeneity. We estimated the resistance 386 

values on the potential amphibian dispersal across the land use types within the landscape 387 

matrix, according to a systematic mapping of land use at a 1:250,000 scale, provided by 388 

the Brazilian Institute of Geography and Statistics (IBGE 2014).  389 

We considered a conceptual framework for scoring the matrix permeability (cost 390 

surface) associated with landscape features based on empirical data and expert opinion 391 

(e.g., Ray et al. 2002; Joly et al. 2003; Semlitsch et al. 2008; Janin et al. 2009; Popescu 392 

and Hunter 2011) to determine the resistance values assigned to each land use type. 393 

Thus, we followed a rank-based criterion to reflect the relative order of landscape 394 

conductance for amphibian ecological connectivity (e.g., Gibbs et al. 2005; Grant 2005; 395 

Patrick 2006; Semlitsch et al. 2008; Popescu and Hunter 2011; Decout et al. 2012). We 396 

used 27 detailed land use classes to generate our land cover input file, assuming 397 

different resistance values to each land use type (Table S1). We estimated null 398 

conductance values to each land use type for evaluating the extent to which the results 399 



 

17 

 

were influenced by the magnitude of these values, where a low conductance value 400 

indicates a high resistance to dispersal. Considering the current landscape heterogeneity, 401 

we examined the relationship between landscape resistance distances (IBD, IB3D and 402 

IBR) and ecological connectivity under present and future climate conditions (dPC 403 

present and dPC future). For this, we used Mantel tests to account for statistical 404 

significance in pairwise comparisons. We performed the Mantel tests through 200,000 405 

permutations in the PASSaGE 2 software (Rosenberg and Anderson 2011). We used 406 

Circuitscape 2.2 software (McRae 2006) to generate the pairwise matrices of landscape 407 

resistance and to produce the cumulative land conductance maps based on circuit 408 

theory.   409 

 410 

Spatial prioritization framework 411 

 412 

Finally, we selected the most suitable habitats defining different representation targets 413 

based on four methodological steps (i.e. forest modelling, species modelling, probability 414 

of connectivity and landscape resistance models) (Fig. 1). Combining these targets into 415 

a landscape modelling approach, we designed a spatial representation to select priority 416 

areas for conservation, which might work as a suitability surface for ecological 417 

connectivity in the Central Corridor of the Brazilian Atlantic Forest. Therefore, this 418 

approach favoured the selection of habitats less disturbed by human-induced actions for 419 

improved conservation outcomes. 420 

 421 

Results 422 

  423 
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We showed that 110 PAs are covered by the Central Corridor of the Brazilian Atlantic 424 

Forest (i.e. 70% of sustainable use and 30% of strict protection), which comprise to  425 

6,607.98 km2 and correspond to only 8% of the total corridor area (Fig. 2a). 426 

Considering the 146 amphibian species distributed in the forest remnants assessed (Fig. 427 

2b), only 20% are distributed within the current PAs network. According to the 428 

PERMANOVA, when we compared species richness and PA categories with all the 429 

environmental variables together, we found direct relations with precipitation, 430 

temperature, evapotranspiration and forest cover (Table 1), where precipitation was the 431 

variable most associated with the amphibian species richness in the Central Corridor of 432 

the Brazilian Atlantic Forest. According to the stepwise multiple regression analyses, 433 

there was no correlation among any of the climate variables (R2= 0.26; F= 92.57; P= 434 

0.078). The potential distribution of the forest remnants for the future scenario showed 435 

an average AUC value of 0.86, which indicated a good predictive ability by the dataset 436 

provided (Fig. 3a). The climate change models predicted a reduction of 75% in the 437 

probability of occurrence of the Atlantic Forest remnants in the central region of the 438 

Central Corridor. The northern and southern edges of the Central Corridor, as well as 439 

high altitude areas, showed the higher probability of forest occurrence. On the species 440 

distribution models under climate change, we predicted a high amphibian turnover rate, 441 

given that more than 50% of the grid cells had species turnover ratios greater than 0.7 442 

(Fig. 3b). However, these expected changes in species composition tend to be greater on 443 

the northern edge than the southern edge of the Central Corridor.  444 

Considering a dispersal distance of 400 m, our analyses of connectivity showed 445 

that the Central Corridor of the Brazilian Atlantic Forest does not guarantee good 446 

connectivity among the fragments, with an average dPC value of 8.43. When we 447 

assessed the dispersal distances of 600 and 800 m, the average dPC was the same than 448 
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that observed with a 400 m distance. However, our results showed higher connectivity 449 

areas in the northeastern region of the Central Corridor of the Brazilian Atlantic Forest, 450 

mainly in the southern Bahia region (Fig. 4). We found that 95% of the values pointed 451 

out by the connectivity index were directed to the sustainable use areas, only of which 452 

5% are classified as integral protection areas (Table S2) 453 

 For the current scenario, we only found 10 PAs with high connectivity (dPC > 454 

60.0), although 71 had very low values (dPC < 1.0). This situation can be aggravated 455 

considering the climate model results for the future (2080-2100), which showed a high 456 

probability of forest remnants retraction in the evaluated region. This represents 74% of 457 

connectivity loss in a total of 4,889.90 km2 of Atlantic Forest areas (Fig. 4). According 458 

to these future predictions, we estimated that 83 PAs would be without any ecological 459 

connectivity by the years 2080-2100 (dPC < 0.0), while only six PAs will remain with 460 

dPC higher than 1.0, which correspond to a plausible conservation attribute in terms of 461 

interpatch connectivity and habitat suitability. RPPN Renascer, RPPN Refúgio do 462 

Guigó I and II, and RPPN Boa União, in the Bahia state, and RPPN Mata da Serra, APA 463 

Serra da Vargem Alegre, and Parque Estadual do Forno Grande, in the Espírito Santo 464 

state represented the PAs with a better expected connectivity under climate change.   465 

Circuit theory current flow maps predicted a high likelihood of connectivity in 466 

the central portion of our study area (i.e., in southern Bahia) for the current scenario 467 

(Fig. 5). The landscape surface was represented by a general pattern of low-conductance 468 

areas (i.e., low potential for amphibian dispersal), yet with some well-connected areas 469 

showing low resistance for species moving between patches. These well-connected 470 

areas (i.e., with high-conductance) can be potential amphibian biodiversity corridors, 471 

which would connect the Monte Pascoal, Pau Brasil and Serra das Lontras PAs, located 472 

in the southern Bahia region. Landscape resistance models that incorporated absolute 473 
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dispersal barriers resulted in significant correlations when compared with those based 474 

on landscape-free models (i.e., null resistances). The Mantel tests showed significantly 475 

different relationships between dPC values (present and future) and resistance distances 476 

(IBD, IB3D and IBR) (Table 2), indicating the sensitivity of the functional connectivity 477 

models within the landscape. 478 

 479 

Discussion 480 

 481 

Habitat suitability assessment 482 

 483 

Considering the effectiveness of habitat suitability models of our landscape planning, 484 

we highlight the southern Bahia region and the Espírito Santo state with the best 485 

ecological distances between forest remnants (i.e., high-conductance areas with low 486 

resistance values). The use of resistance surfaces in landscape ecology incorporate 487 

multiple pathways that rely on the habitat quality for identifying important landscape 488 

elements connecting suitable environments for conservation (McRae et al. 2008; Zeller 489 

et al. 2012). Interactions between habitat suitability and species dispersal movements 490 

can be crucial for functional connectivity strategies in landscape change (Hodgson et al. 491 

2009; Doerr et al. 2011). Therefore, given the landscape resistance surface and the 492 

connectivity metrics used as an aid for our amphibian conservation approach, we 493 

suggest some potential ecological corridors under current and future conditions. 494 

 Based on shifts in geographic ranges and climatically suitable habitats, our 495 

results reveal that the areas with high turnover rates are not the same areas with high 496 

occurrence probability of forest remnants under climate change. The selection of critical 497 

habitats for amphibian conservation under climate change is important for making 498 
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effective management decisions (Guisan et al. 2013). Forecasting approaches in spatial 499 

planning suggest that regions with high species turnover rates are expected to have more 500 

restricted-range species than regions with low species turnover rates (Diniz-Filho et al. 501 

2009). Areas with high turnover rates can be associated to areas with low species 502 

richness under the current climate (Duan et al. 2016), which in the case of the Atlantic 503 

Forest may be represented by higher altitude areas. Moreover, low turnover rates in high 504 

altitude areas can strengthen mountainous regions as potential climatic refuges 505 

(Carnaval et al. 2009; Randin et al. 2009; Araújo et al. 2011; Lourenço-de-Moraes et al. 506 

2019).   507 

The use of MaxEnt as a single modelling algorithm for ecological approaches 508 

also has some concerns regarding data acquisition and analysis, which should include 509 

the full environmental range of the species (Elith et al. 2011). One of the main 510 

limitations of this presence-only modelling seems to be a biased approach for species–511 

habitat relationships, given the unknown sampling effort intensity (Elith et al. 2011). 512 

Addressing possible sampling limitations by combining local field records with 513 

environmental layers is a promising strategy to improve the relevancy of habitat 514 

suitability models for effective landscape planning (Maréchaux et al. 2017). Possible 515 

solutions to avoid this sample selection bias can be corrected by adding a mask as an 516 

explanatory variable or by discarding some of the presence points in oversampled areas 517 

(Phillips et al. 2009; Radosavljevic and Anderson 2014; Stevenson-Holt et al. 2014). 518 

Another limitation of our habitat suitability models is that climate datasets needed for 519 

this modelling approach are not always available, and some of them need to be 520 

downscaled for fitting our spatial scale (see Lima-Ribeiro et al. 2015). Therefore, we 521 

assume that our climatic projections capture only part of the climate variability changes 522 

associated with the habitat suitability models. However, downscaling climate 523 
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projections is a widely used technique for exploring the regional and local-scale 524 

responses to global climate change for simulating low-resolution climate models 525 

(Hewitson and Crane 2006; Cabral et al. 2016). Given the on-going challenges to the 526 

future development of climate downscaling, data scarcity and scale issues need to 527 

diminish the overestimation of suitable habitats for future species distributions by 528 

better-capturing landscape heterogeneity (Tabor and Williams 2010). 529 

 530 

Challenges and opportunities for the Central Corridor of the Brazilian Atlantic 531 

Forest  532 

 533 

Our findings show that the proportion of forest fragments with good connectivity is very 534 

low along the Central Corridor of the Brazilian Atlantic Forest, which consequently 535 

may reduce the flow of species among the fragments and significantly restricts the 536 

functional role of this ecological corridor. Using expert knowledge to distinguish 537 

species records can be a practical way of improving conservation-relevant decisions 538 

even with a paucity of biodiversity data (Akçakaya et al. 2018). We focus on an 539 

approach for allowing decision-makers to make the best use of the available data at a 540 

local scale, considering the extent to which such decisions might affect conservation 541 

outcomes at broad scales. The complementary use of species range maps with 542 

occurrence data is a promising route for advancing efforts to local-scale conservation 543 

decisions, supporting our species distribution data (Maréchaux et al. 2017). Such 544 

approaches for improving decision-making effectiveness are even more urgent in 545 

species-rich regions, where conservation strategies should ensure the lack of 546 

biodiversity data (Maréchaux et al. 2017; Lourenço-de-Moraes et al. 2019). In this 547 

context, we suggest that the forest fragments located in the coastal parts of the southern 548 
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Bahia region and the Espírito Santo state deserve special attention in conservation plans 549 

because they hold the highest proportion of ecological connectivity along the Central 550 

Corridor of the Brazilian Atlantic Forest.  551 

Our proposal of special attention to southern Bahia is reinforced due to their 552 

resistance surface values within a landscape matrix composed by shaded cocoa 553 

plantations (i.e., “cabrucas”), as indicated by Pardini et al. (2009). This agroforestry 554 

system has allowed the conservation of large numbers of native plant species, besides 555 

hosting typical mature forest fauna species (Pardini et al. 2009). Many amphibian 556 

species use the bromeliads that are in the “cabrucas” system during their entire life cycle 557 

and others only as diurnal shelter (Ferreira et al. 2016). Given their forest-like structure, 558 

shaded cocoa plantations of the Forest remnants from southern Bahia perform a 559 

fundamental role in maintaining connectivity between forest fragments (Sperber et al. 560 

2004; Delabie et al. 2007; Faria and Baumgarten 2007). Our results, integrating graph-561 

based connectivity metrics into forecast models, indicate that this region has a high 562 

probability of forest occurrence in a climate change scenario, which suggests 563 

climatically suitable habitats and potential ecological corridors.  564 

Forest remnants management is critical to ensure the persistence of species, but 565 

dynamic threats such as land use change and climate change can directly reduce the 566 

effectiveness of PAs planned under a static approach (Faleiro et al. 2013). Due to 567 

developing technologies in remote sensing, there are several approaches to improve how 568 

we assess and monitor forest remnants through a variety of spatial and temporal scales 569 

(Tehrany et al. 2017). In this context, there is an urgent need to incorporate species 570 

range shifts in spatial conservation plans to ensure their effectiveness in the future 571 

(Hannah 2010). We recommend that the design of new conservation plans in the Central 572 

Corridor of the Brazilian Atlantic Forest must attempt to re-establish ecological 573 
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connectivity between the remaining fragments and the higher altitude areas. This 574 

recommendation may represent an alternative mechanism to mitigate potential impacts 575 

related to climate change and land use change in the Atlantic Forest Hotspot. 576 

Corroborating our findings, other amphibian studies in the Atlantic Forest have also 577 

warned about the need to invest in PAs near high altitude areas (Lemes and Loyola 578 

2013; Loyola et al. 2014; Lourenço-de-Moraes et al. 2019), mainly in the southern 579 

Bahia region (Carnaval et al. 2009), which retain high humidity provided by well-580 

preserved forest cover. Climate threats to amphibian biodiversity have often been 581 

related to their high humidity dependence (Hopkins 2007), where moisture conditions 582 

are associated with microhabitats, rainfall regimes and terrestrial water balance, limiting 583 

the species' dispersal abilities (Early and Sax 2011). Dispersal limitation is a critical 584 

determinant of amphibian geographical ranges, assuming a general metapopulation 585 

structure related to habitat patch isolation (Smith and Green 2005). Our predictions on 586 

the environmental variables for amphibian species richness in the Atlantic Forest are 587 

dependent on their limited dispersal patterns. Therefore, dispersal capability might 588 

severely limit the ability of species to track suitable climatic conditions geographically 589 

(Massot et al. 2008; Early and Sax 2011). The use of various environmental variables 590 

has been demonstrated as an efficient strategy to reach outcomes closer to reality, being 591 

one of the keys to understanding how communities can respond to climatic factors 592 

(Araújo and New 2007; Marmion et al. 2009).  593 

 594 

Implications for conservation planning under climate change  595 

 596 

Our findings show that potential impacts of climatic changes should occur in almost the 597 

entire Central Corridor of the Brazilian Atlantic Forest, which could affect the 598 
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ecological connectivity of the whole biome. We suggest that the PAs with the better-599 

expected connectivity under climate change need critical attention in future 600 

conservation plans (e.g., RPPN Renascer, RPPN Refúgio do Guigó I and II, and RPPN 601 

Boa União, in the Bahia state, and RPPN Mata da Serra, APA Serra da Vargem Alegre, 602 

and Parque Estadual do Forno Grande, in the Espírito Santo state). In this context, these 603 

mitigations can be useful to avoid potential extinction process expected for the 604 

amphibians from the Central Corridor of the Brazilian Atlantic Forest PAs. 605 

Amphibian species from Atlantic Forest PAs are more threatened with 606 

extinction than in other Brazilian protected networks (Campos et al. 2016). This 607 

phenomenon happens mainly because the Southeast Region of Brazil is the economic 608 

core of the country, with highly fragmented forest remnants (Ribeiro et al. 2009), with a 609 

high human population density, and the presence of mining and logging activities 610 

(Lemes et al. 2014). Atlantic Forest reserves close to urban ecosystems are also failing 611 

to protect amphibian species (Lourenço-de-Moraes et al. 2018). Our approach does not 612 

specifically estimate a quantitative species extinction risk but shows evidence of a 613 

potential regional extinction within limited dispersal models. We highlight that many 614 

PAs will become less effective in future scenarios, which can dramatically affect the 615 

diversity and distribution of the amphibian species that occur in the forest remnants 616 

assessed.  617 

Conserving biodiversity under climate change comes out as a challenge for 618 

conservation scientists. For being a dynamic system, controlling all the climatic 619 

variables and synergies related to environmental conditions and its consequences is a 620 

huge task. If the rates of climate change overtake the response potential of biological 621 

systems to ecological connectivity and its impacts on ecosystem functioning, effects on 622 

community structure and species distributions can be irreversible. Therefore, enhanced 623 
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conservation efforts of forest management will play a critical role for mitigating effects 624 

of environmental change. In some human-modified landscapes characterized by 625 

secondary forest, environmental heterogeneity can be maintained and even increased, 626 

thus contributing to the community structure (Tscharntke et al. 2012). A recent meta-627 

analysis showed that ecological restoration success can be higher for natural 628 

regeneration than for active restoration in tropical forests (Crouzeilles et al. 2017). In 629 

this context, our research highlights the importance of maintaining the mosaic of forest 630 

remnants and the landscape heterogeneity in the Central Corridor of the Brazilian 631 

Atlantic Forest, providing dynamic tools to prioritize conservation investment for 632 

ecological connectivity assessments. 633 

 Practical strategies should be sensible for species adaptation, impact mitigation, 634 

and must prioritize the protection and connectivity of heterogeneous landscapes to 635 

improve conservation management (Richardson and Whittaker 2010). In the particular 636 

case of the Atlantic Forest, the response of amphibians to anticipated declines depends 637 

on local climatic conditions (Lourenço-de-Moraes et al. 2019). Regarding adaptation to 638 

climate change, we show that species tend to use potential corridors in high altitude 639 

areas with better-preserved forest cover. Our research highlights that integrating the 640 

amphibian-climate refuges in the well-connected areas is essential for spatial decision-641 

making in the Atlantic Forest hotspot, which can reduce extinction risk and avoid 642 

species loss. This work has advanced knowledge of the analytical methods that can be 643 

used to incorporate landscape paths with low resistance into potentially connected areas 644 

for amphibian conservation in the Central Corridor of the Brazilian Atlantic Forest. The 645 

methodological approach proposed here is not only amphibian-specific but can also be 646 

used in conservation plans for other taxonomic groups. This innovative approach has 647 
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sought to move forward the knowledge on ecological connectivity of endangered forest 648 

remnants and supports conservation actions in the face of climate change.   649 
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Tables 1148 

 1149 

Table 1. Results from the PERMANOVA on the species richness and PA categories by 1150 

the variables altitude, temperature, precipitation and forest cover in the Central Corridor 1151 

of the Brazilian Atlantic Forest. 1152 

Environmental Variables df F 

model 

R2 P value 

Altitude 1 21.27 0.06 0.98 

Temperature 1 43.70 0.14 0.00* 

Precipitation 1 130.71 0.42 0.00* 

Forest cover 1 27.88 0.09 0.02* 

Residuals 105 – 0.29 – 

Total 109 – 1.00 – 

*Significant values 1153 

 1154 
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 1156 

 1157 

 1158 

 1159 

 1160 

 1161 

 1162 

 1163 

 1164 
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 1166 

 1167 

 1168 

 1169 

 1170 

Table 2. Statistical significance for Mantel test between dPC values (Present and Future) 1171 

and resistance distances (IBD, IB3D and IBR) for calculating the landscape connectivity 1172 

between forest remnants in the in the Central Corridor of the Brazilian Atlantic Forest. 1173 

IBD: null model through isolation by Euclidean distance; IB3D: null model through 1174 

isolation by Euclidean 3D distance with elevation data; IBR: resistance model through 1175 

isolation-by-resistance between patches based on landscape heterogeneity. 1176 

Matrix Mantel r P-value 

dPC Present-IBD 0.01091 0.00000 

dPC Present-IB3D 0.01055 0.00000 

dPC Present-IBR 0.00962 0.00000 

dPC Future-IBD 0.00316 0.03253 

dPC Future-IB3D 0.00295 0.04637 

dPC Future-IBR 0.00310 0.03871 

All tested pairs for dPC-Present and dPC-Future are significant (p > 0.05). 1177 
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 1194 

Figures 1195 

 1196 

Fig. 1.  Schematic representation of the methodological steps used in the landscape 1197 

modelling approach for amphibian conservation in the Central Corridor of the Brazilian 1198 

Atlantic Forest, Brazil. Forest modelling (A), Species modelling (B), Probability of 1199 

connectivity (C) and Landscape resistance models (D).  1200 
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 1201 

 1202 

Fig. 2.  Location of the Central Corridor of the Brazilian Atlantic Forest, in eastern 1203 

Brazil, representing their Protected Areas and Forest Remnants. BA: Bahia state; MG: 1204 

Minas Gerais state; ES: Espírito Santo state; RJ: Rio de Janeiro state (A). Species 1205 

Richness per grid cell with summary statistic values such as Maximum, Mean, Standard 1206 

Deviation and Minimum (B).  1207 
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 1209 

Fig. 3. Probability of forest cover according to the MaxEnt model (A), and amphibian 1210 

species turnover rate (B), under climate change in the Central Corridor of the Brazilian 1211 

Atlantic Forest. 1212 
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 1214 

Fig. 4. Potential amphibian ecological connectivity under dPC models for current (A), 1215 

and future (B) scenarios, across the forest remnants in the Central Corridor of the 1216 

Brazilian Atlantic Forest with altitudinal representation. 1217 
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 1219 

  Fig. 5. Maps of landscape resistance models for amphibian ecological connectivity 1220 

between forest remnants in the Central Corridor of the Brazilian Atlantic Forest. Null 1221 

model for isolation-by-distance – IBD/IB3D (A), landscape model for isolation-by-1222 

resistance – IBR (B); landscape model for IBR showing the distribution of forest 1223 

remnants with a frame in the highest conductance areas (C); zoom in the frame with 1224 

high-conductance areas showing the potential landscape connectivity between patches 1225 

with low resistance surface (D).   1226 
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