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Resumo 

 

A falsificação possui um impacto significativo na economia da sociedade, havendo a 

necessidade constante de atualização dos elementos de segurança baseados em dispositivos 

com propriedades opticamente variáveis (OVDs). Estes exibem efeitos óticos que podem mudar 

na presença de estímulos externos (como ângulo de visão ou luz), impossibilitando a sua 

replicação pelos métodos convencionais. 

É possível encontrar na natureza, em animais e plantas, magníficas colorações 

estruturais possíveis devido à interação da luz com as suas estruturas organizacionais à 

nanoescala. O principal objetivo deste trabalho é mimicar essas estruturas iridescentes e 

produzir filmes com coloração estrutural que podem ser usados como OVDs. 

As membranas de celulose nanocristalina (CNCss), produzidas a partir de suspensões 

liotrópicas aquosas, exibem iridescência, reflexão seletiva da luz polarizada circular à esquerda 

e transmissão seletiva da luz polarizada circular à direita. Estas propriedades óticas 

extraordinárias tornam as CNCss favoráveis à produção de sistemas com coloração estrutural. 

No entanto, embora estas características sejam extremamente difíceis de reproduzir por técnicas 

de impressão, as suas membranas tendem a ser quebradiças limitando assim a sua aplicação.  

A alteração da coloração estrutural refletida pelos filmes de celulose nanocristalina, 

produzida por hidrólise ácida, para o comprimento de onda azul é conseguida substituindo o seu 

contra-ião por potássio (CNCs-K), produzindo-se assim uma ampla gama de cores usando 

diferentes proporções de CNCs com o protão como contra-ião (CNCs-H) e CNCs-K. A 

hidroxipropilcelulose (HPC) adicionada em diferentes concentrações, possibilita o ajuste do 

comprimento de onda refletido das membranas compósitas, preservando a sua organização 

estrutural e melhorando sua elasticidade. As membranas obtidas mudam para um acabamento 

matte à medida que a concentração de HPC aumenta. 

Este trabalho expõe o potencial da manipulação de cores usando CNCs-K, bem como 

as suas aplicações em membranas de CNCs-K/HPC, melhorando as propriedades mecânicas e 

mantendo comprimentos de onda refletidos no intervalo da luz visível. Os resultados obtidos 

abrem caminho para o uso de sistemas 100% celulósicos de CNCs/HPC em soluções de 

impressão OVDs. 

 

Palavras-chave: celulose nanocristalina, hidroxipropilcelulose, dispositivos opticamente 

variáveis, troca iónica, membranas compósitas. 
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Abstract 

 

Counterfeiting has a tremendous economic impact in our society leading to a constant 

‘upgrade’ of the security systems based on optically variable devices (OVDs). OVDs exhibits 

various optical effects that can change in the presence of external stimulus (viewing angle or light) 

making them impossible to replicate. 

Magnificent structural coloration found in nature, in animals and plants, is due to 

interaction between light and the nanoscale organization or their structures. The main goal of this 

work is to mimic these iridescent structures and produce films with structural coloration that can 

be used as OVDs. 

Cellulose nanocrystals (CNCss) films produced from aqueous lyotropic suspensions, 

exhibit extraordinary optical properties such as iridescence, selective left circularly polarized light 

reflection and right circularly polarized light transmission. These assets make CNCss suitable to 

produce systems with structural coloration. Although these optical features are extremely difficult 

to reproduce by printing or photocopy techniques the films applications are limited due to their 

physical brittleness. 

In this work a shift to the blue wavelength of the cellulose nanocrystals, obtained by acid 

hydrolysis, is achieved by changing the CNCss counter-ion to potassium and wide range of colors 

were obtained using different ratios of CNCs-H and CNCs-K. Thus, when hydroxypropylcellulose 

(HPC) is added in different concentrations, it was possible to tune the reflected wavelength of the 

composite films, while preserving their structural organization and improving their elasticity. The 

obtained films change to a matte finishing as the concentration of HPC increases. 

This work presents the potential color manipulation using CNCs-K as well as their 

applications in CNCs-K/HPC composite films while improving the mechanical properties of the 

films and maintaining the optical features within the range of the visible spectrum. The results 

obtained paves the way to the use of all-cellulosic composite systems of CNCs/HPC in OVDs 

printing solutions. 

 

Keywords: cellulose nanocrystals, hydroxypropylcellulose, optically variable devices, ion 

exchange, composite films 
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1. Motivation 

Counterfeiting and fraud have a tremendous economic impact in our society, translating 

in financial losses and corruption. It furthermore represents a great threat to the public’s safety, 

through the existence of counterfeit passports (terrorism), forged identity (identity theft), 

pharmaceutical products (health hazards) and even airplane smuggling (safety issues). 

Therefore, optical security devices (OSDs), first introduced in 1980, now existent in personal 

documents and currency, represent one of the most important measures against 

counterfeiting [1]. OSD possess optical properties that shift with the observation plane and the 

majority of them are based on fossil fuel derivatives. Some of these features are printing complex 

images, distinctive typefaces, exclusive colored inks, watermarks, microprinting and unique serial 

numbers, all easily counterfeited [1]. With accessible technology such as copiers, scanners, high-

resolution printers and others, it becomes imperative to continuously produce new features, which 

are required to be complex, economically viable and difficult to replicate. 

As an example of protection features present in currency, Figure 1.1 illustrates the €10 

and €20 banknotes currently in circulation in the European Union where it is possible to observe 

the watermarks throughout the note, with especially significance in the side bar and in the value 

number. 

According to the Bank of England, in 2017 a volume of 473 thousand counterfeit 

banknotes were received, equal to 9.98 million pounds sterling where the majority of this were 

£10 and £20 [2] bank notes. More notes were collected that year than in 2016, with a total of 354 

thousand, equivalent to 7.63 million pounds. In Europe, in 2017, a total of 694 thousand 

counterfeit euro banknotes were seized, and 301 thousand in the first half of 2018 [3].  

The necessity of constant ‘upgrade’ of security features combine with the progress of 

photonic materials research gave rise to the development of new optically variable devices 

(OVDs). OVDs exhibit various optical effects, such as color and appearance changes in the 

presence of external stimulus. For example, they can present color change according to the 

viewing angle, or by variation of pressure or temperature. These properties are impossible to 

replicate in common copiers and scanners.  

OVDs can be holograms, hidden images and iridescent images [4]. These optical variable 

devices possess passive optical properties, perceptible to the naked eye, as well as active optical 

properties, undetectable without the proper equipment or chemicals. 

In reality, we are encountered with many natural structural coloration and patterns 

developed by nature itself, from flower petals, fruits, animal feathers and beetles exoskeleton [5]. 

These structures have been inspiring us for centuries, including antique civilizations. Ancient 

gyptians societies, for example, were fascinated by scarabs which was an iconographic and 

ideological symbol. In point of fact, the Scarabaeidae family includes a huge diversity of species 

with amazing structural coloration, as the stunning green iridescence in Gastrophysa viridula, and 

optical phenomenon which have been drive plenty scientific research. Chrysina gloriosa 

possesses a metallic green coloration that vanishes when observed using a right circular polarizer 

Figure 1.1 €10 and €20 banknotes currently in circulation in the European Union where OSDs can 

be seen (black rectangle). These OSDs present optical color variation dependent of the viewing angle. 
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[6]. These characteristics are possible due the nanoscale organization in their exo-cuticle. As an 

example, Hoplia coerulea is a blue scarab who presents structural coloration, fluorescence 

emission and fluid-induced color and fluorescence change, features originated from a periodic 

porous multilayer [7].  

Cellulose nanocrystals (CNCs) is a nanomaterial with a huge potential to develop 

enhanced performance materials due to their unique properties as availability, biocompatibility, 

biodegradability and nontoxicity. CNCs has the capacity to form cholesteric liquid crystalline 

phases at relatively low concentrations (between 3 w/w% and 7 w/w%) when suspended as 

colloids in water, whose ordering can be retained in a solid film when the suspension dries. These 

films exhibit photonic properties including iridescence and selective reflection of left-handed 

circularly polarized light [8], [9]. 

Hydroxypropylcellulose (HPC) is a water-soluble cellulose ether. It is a highly used 

cellulosic derivative and can be found commercially with different viscosity grades and molecular 

weights. It is used for instance as a binder in pharmaceutical products or thickener in foods and 

presents a plastic behavior. HPC is capable of forming the lyotropic cholesteric crystalline liquid 

phase under certain pressure, temperature, and solvent for instance it will self-assembly into a 

chiral nematic phase between 50–75 w/w% of HPC, when dissolved in water [10] [11]. It was 

found that HPC is capable of transform energy into motion triggered by humidity when prepared 

from liquid crystalline solutions, leading the path to a water responsive HPC films [12].  

The main goal of this dissertation is to develop optical responsive all-cellulosic composite 

films with structural coloration that can potentially be used as OVD, inspired in the optical 

properties of scarabs’ exoskeleton. To mimic these iridescent structures, the CNCss from a 

cholesteric liquid crystalline phase will be produced and used as matrix. In order to improve the 

mechanical properties and the brittleness of the cellulose nanocrystals films HPC will be 

introduction to the polymeric system.  

This work is structured in four main parts. Firstly, a theoretical framework is presented 

with the description of the main concepts and related state-of-the-art. The second chapter 

introduce the materials and procedures executed and the following chapter presents and 

discusses the obtained results. Lastly, the ending chapter includes the research conclusions and 

suggestions for future investigation. 
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2. Introduction 

2.1. Bio Inspiration  

Living organisms tend to morphologically adapt to the environment that surrounds them, 

acquiring complex and multifunctional materials. Structural colors developed by nature are an 

unlimited source of inspiration for developing materials, including in the research field of 

photonics. These colors are originated from complex interactions between light and sophisticated 

micro or nanostructures, and differ considerably from other coloration mechanisms such as 

pigments, dyes, and metals (where the colors are produced by the energy consumption of light) 

[13]. Structural coloration can be found in lepidopterans, beetles, birds, fishes, and plants [13].  

Inspiration to develop complex systems, such as OVDs, can arise from nature. For 

instance, similar structures can be artificially produced using cellulose nanocrystals (CNCss) with 

the advantage of being accessible, economical and more environmentally friendly than the 

materials in current security devices [14][15]. For that reason, efforts have been made to develop 

biomimetic materials to replicate the structural color of plants, butterflies and beetles derived from 

this source [16]. 

 

2.2. Cellulose and cellulose derivatives 

Cellulose, [C6H10O5]n (n = 10,000–15,000 depending on the source material), is the most 

abundant biopolymer on earth and can be found in the skeleton of plants (cell wall), bacteria and 

marine animals such as tunicates [11], [17], [18]. It is a biodegradable and renewable material, 

insoluble in most solvents, resistant and cheap. These characteristics make cellulose one of the 

most studied materials for the replication of natural biomimetism and to develop sustainable 

materials [19].  

Cellulose, or poly(anhydro‐β‐1,4‐glucopyranose), exists in nature as a polydisperse, 

linear, crystalline (polysaccharide) macromolecule of high molecular weight and degree of 

polymerization [18]. The repeating unit of the natural polymeric chain is called cellobiose 

[C12H22O11], illustrated in Figure 2.1, which makes a β‐1,4‐glicosidic bond between two glucose 

units [20] that rotate 180º in relation with one another.  

 

Cellulose is a versatile polymer since it is possible to substitute its hydroxyl (OH) groups, 

by different chemical groups. This explains the wide variety of cellulose derivatives commercially 

available with different properties [21]. Some derivatives, such as hydroxypropylcellulose (HPC) 

and ethyl cellulose (EC) have the capacity to form lyotropic chiral nematic (cholesteric) liquid 

crystals phases [22]. 

Figure 2.1 Representation of cellulose repeating unit, cellobiose. 
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HPC is a highly substituted ether cellulose derivative obtained by replacing hydroxyl 

groups of the C2, C3 and C6 carbons for hydroxypropyl groups. Due to the presence of both 

hydrophobic and hydrophilic groups, it has a lower critical solution temperature than cellulose, 

below 45 ºC [12]. The polymer is soluble in water as well as in polar organic solvents, 

biodegradable, biocompatible and electroneutral, well suited for pharmaceutical and food 

applications as thickeners, emulsifiers and encapsulators [12], [23].  

Hydroxypropylcellulose forms an ordered cholesteric structure in concentrated aqueous 

solutions, between 50 and 75 w/w% of HPC [11], [24] and is capable of forming both thermotropic 

and lyotropic liquid crystalline phases [25].  

Since cellulose is an easily modifiable material, it is possible to expand the range of 

applications by exploring its nano scale high potential. Materials with nanosized structural 

features ranging from 1 to 100 nm are very appealing for a variety of applications (e.g. electronics, 

optics, magnetism, energy storage, and electrochemistry) [9].  

Fernandes et al. produced iridescent sheared transparent cellulose-based films, with 

characteristics similar to those found in petals of tulip “Queen of the Night” [26]. The authors 

succeeded in modulating the mechanical and optical properties of the HPC films by incorporating 

CNCss in the LC precursor solution of HPC/water.  

Bulk cellulose contains highly ordered, crystalline regions along with some disordered 

(amorphous), depending on its source [19]. Using acid hydrolysis, rising the temperature above 

room temperature and adding sources of hydrogen, such as sulfuric acid (H2SO4) and 

hydrochloric acid (HCl), is possible to remove the amorphous areas and obtain cellulose 

nanocrystals (CNCss). The resulting particles, exhibit high specific strength, high Young’s 

modulus, high surface area, and unique liquid crystalline properties, when compared with the 

initial cellulose [19]. CNCss, when dispersed in water, self-assembly to a cholesteric phase 

making them suitable for producing systems with structural color without the need of using a dye 

[18].  

The CNCs’s size, biocompatibility and resistance enables a large range of applications, 

between material reinforcement as well as pharmaceutical uses. Also, solid films prepared from 

solvent evaporation of aqueous lyotropic cellulose nanocrystals suspensions exhibit extraordinary 

optical properties such as iridescence, selective reflection of left circularly polarized light, and 

transmission of right circularly polarized light [10].  

 

2.3. Liquid Crystals  

Liquid Crystals (LCs), or also called ‘mesomorphic phases’, exhibit intermediate phase 

between solid and liquid [27]. This thermodynamic stable state has the capacity to flow like liquids, 

yet possess optical properties of the solid such as birefringence [28]. LCs are formed by 

anisometric molecules or particles, where one or two dimensions are much greater than the third, 

such as rod-like or disk entities [29]. 

Liquid crystals can be classified, according to its thermodynamic genesis, as 

thermotropic, obtained by changing the temperature, and lyotropic, by varying the solute 

concentration in a specific solvent at constant temperature and pressure. The first ones have 

become strategic materials in modern information display industry, such as LCDs.  while in the 

later they turn out to be significant in living matter, biological and biomedical science [30]. 

The mesophases classification were first defined by G. Friedel, in 1922, based on their 

symmetry, in three main classes: nematic, smectic and cholesteric [27]. 

Nematic (N) is a “layer-less” structure, where the molecules are aligned on average along 

a general direction defined by a unit vector n, called director. The direction of n is arbitrary in 
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space and it is imposed by minor forces, such as the guiding effect of the walls of the 

container [27].  

Cholesteric (Ch), or chiral nematic liquid crystals (N*), are locally very similar to a nematic 

phase. Ch is organized by “pseudo-layers”, where each one has its own director axis that rotates 

a few degrees in relation to the ones immediately below and above it, leading to a helical structure 

[21]. The cholesteric phase is characterized by the distance required for the director to complete 

a full turn of 360º, as showed in Figure 2.2, normally designated by P, the pitch, and its 

handedness [21]. 

According to the de Vries equation, (Equation 1), the helicoidal pitch, P, the average 

refractive index, n, and wavelength 𝜆0 are related [22] if the incident light is perpendicular to the 

helical axis:  

 

𝜆0 = 𝑛𝑃    Equation 1 

If  is the angle between the helix axis and the incident light, and the value of 𝜆0 is in the 

range of the visible region of the electromagnetic spectrum and the same light reaches the Ch 

with an angle () iridescence will appear. The Equation 1 can be expressed by Equation 2,  and 

the wavelength of the reflected light will be dependent on the incident angle and the observed 

color of the cholesteric will change with it [21][22]. 
 

𝜆0 = 𝑛𝑃𝑐𝑜𝑠   Equation 2 

In cholesteric structures, the incident circularly polarized light with the same handedness 

as the cholesteric structure is totally reflected, while opposite handedness is transmitted. 

Meaning, right circularly polarized (RCP) light will be reflected by cholesteric materials with a 

right-handed helix, such as HPC aqueous solutions, while left circularly polarized (LCP) light will 

be reflected by cholesteric materials with a left-handed helix, as is the case with CNCss [22]. 

 

2.4. Bio inspiration from optical responsive structures  

In Nature, there are several examples that present structural coloration with selective 

circularly polarized light reflection due to the structure’s helical arrangement. Cetonia aurata 

(Linnaeus, 1758), with bright green coloration, reflects LCP light due to the left-handed 

organization of the chitin nanorods in the beetles exoskeleton (Figure 2.3 - (a), (b)) [29]. However, 

similar optical phenomenon can be explained by different cholesteric arrangements. For example, 

Figure 2.2 Illustration of the organization of molecules of particles in a cholesteric mesophases, 
where the pitch value represents the distance required for the director to complete a full turn of 360º [82], 
note that the layers do not represent any discontinuity of the medium. 
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both Chrysina resplendens (Boucard, 1875) (scarab, Figure 2.3 - (c)) and Pollia condensate (C. 

B. Clarke) (fruit) display coloration when seen under left and right circular polarizers. Yet, while 

P. condensata creates coexisting cellulose-based left and right handed helicoidal structures, the 

exocuticle of C. resplendens only presents left-handed ones (that tend to confine anisotropic 

layers in between, Figure 2.3 - (d)). Gymnopleurus virens has the ability to reflect (mainly) left 

circularly polarized light and not right circularly polarized light and can show blue, green and red 

iridescence according to the angle view [31]. Different colors are achieved by members of the 

same species solely by thickness variations of the layered chiral structure. 

 

Mouchet et al. analyzed the natural photonic structures of the male Hoplia coerulea 

(Drury, 1773) scarab beetle and their color changes induced by liquids and vapors contacts [7]. 

The beetle appeared to have several optical properties combined in a single entity, such as 

structure coloration, fluid-induced color change, fluorescence emission and fluid-induced 

fluorescence changes [7][32]. The authors considered that such characteristics, when 

synthesized artificially, can be possibly used to develop bioinspired functional photonic materials 

and smart optical coatings. 

These are just some examples that can serve as models to develop bio-inspired materials 

with outstanding optical properties. As described before, is possible to biomimetic these by using 

from cellulose nanocrystals LCs suspensions. Among others, Dumanli et al. [33] produced multi-

coloured cholesteric cellulose films by slow evaporation of CNCs suspensions on polystyrene 

substrates. These films contain multicolored domains and selectively reflected LCP light, as in 

Cetonia aurata. More recently, Zhao et al., developed a scalable printing method and produced 

structurally colored CNCs microfilms arrays [34]. By combining a strong anchoring, of the CNCss 

to the substrate, with an imposed slow evaporation, where the CNCss self-assembly were not 

disrupted by shear or “coffee-ring” effects, the result was a highly-ordered, monodomain structure 

with little to no defects. The authors stated that high surface to volume ratio of the hydrophilicity 

Figure 2.3 Photographs of the beetle C. aurata (a) and C. resplendens (c) beetles seen under 
unpolarized light, left and right circular polarize light, respectively. Scanning electron microscopy (SEM) 
micrograph of a section cut vertically through the cuticle of the C. aurata beetle showing the lamellar 
organization in the exocuticle responsible for its bright coloration Transmission electron microscopy (TEM) 
micrograph of a section cut vertically through the cuticle of the C. resplendens beetle showing two lamellar 
organizations (1 and 3) separated by an anisotropic layer (2). Reprinted from [29], Copyright 2019, with 
permission from Elsevier .  
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of the natural building block allow for a dramatic real-time colorimetric response to changes in 

relative humidity. This optimized procedure leads to a better reflection of LCP light and 

transmission of RCP, similarly to what is observed for the beetles in Figure 2.3 (a) 

Fernandes et al. reported a cellulose-based photonic structure that reflected both RCP 

and LCP light, in a mechanism similar to what is observed in the beetles C. resplendens, that can 

be tuned by temperature variation and the application of an external electric field [35]. Wu et al. 

developed a cellulose nanocrystal-based film with left-handed cholesteric photonic structure that 

mimic the shell of the Chrysina beetle [36]. The CNCss/PEGDA layers in the nanocomposite film 

allows for simultaneous and reversible three-dimensional deformation behavior as well as the 

shift of the Bragg reflection when exposed to a humid environment. This self-assembled photonic 

material could be attractive to be used as optical anti-counterfeiting film, tunable bandpass filters, 

reflectors or polarizers and humidity-responsive sensors. 

 

2.5. CNCss photonic materials  

CNCss lyotropic liquid crystalline behavior was reported by Marchessault et al. [37], in 

1959, and later recognized by Revol [38] as a cholesteric phase. This phase of CNCss 

suspensions occurs at low critical concentrations of nanoparticles, between 3 w/w% and 7 w/w%. 

An important work with respect to the development of photonic materials based on CNCss was 

reported in the late 1990s by Gray and co-workers [39]. Is important to note, that the group of 

Prof Gray greatly contributed to the optimization of CNCss extraction by understanding the 

influence of the parameter within the obtained properties.  

Recently, MacLachlan and co-workers were able to retain the chiral nematic organization 

of the CNCss suspension in mesoporous silica solid films by evaporation-induced self-assembly 

(EISA) [9] and obtained structurally colored glass. With an adapted EISA methodoly, Leng et al. 

obtained highly flexible latex films with tunable structural coloration through CNCss templating 

[40]. The chiral nematic (N*) structure from the organization of CNCss was retained in the latex 

film, even after removing the CNCss with alkali treatment, by leading to the preservation of the 

structural color. The films also exhibited a reversible response to water adsorption and 

dehydration. Gladman et al. inspired by plant architecture, printed composite hydrogel structures 

that are encoded with localized, anisotropic swelling behavior controlled by the alignment of 

cellulose fibrils along prescribed four-dimensional printing pathways [41].  

The manipulation of the structural coloration is mainly attributed to changes of the helical 

pitch of the cholesteric structure. For example, the addition of salt increases the ionic strength of 

the suspension and the electrostatic repulsion between the CNCss is decreased due to the 

surface charge of the CNCss introduced by the sulfate esters. Thus, yielding a contraction of the 

helical pitch, promoting a blue-shifted reflectance [9]. 

In 1996, Dong and Gray revealed that the nature of the counterions also influences other 

properties of the suspensions [42]. Such as their stability, the temperature dependence of the 

phase separation and of the cholesteric pitch value, and the redispersability of dried samples 

made from the suspensions. Cheung et al. studied the influence of the counter ion on the surface 

sulfate esters on the EISA process [43]. In their study, they neutralized acidic CNCss suspensions 

with different hydroxides and discovered that increasing the size of the cation, a blue shift in the 

reflected color was observed while increasing the hydrophobicity of the alkylammonium cations 

led to a red shift of the signal. 

Gilman and co-workers developed all-cellulosic films by assembling the CNCss with a 

minority fraction of high aspect ratio CNCss derived from tunicates (t-CNCss) [44]. These damage 

tolerant optically active materials reported remarkable enhancement of both mechanical 
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properties and flexibility. The films also displayed UV reflecting behavior for contents above 5% 

t- CNCss, which hold potential for protective coatings applications. 

2.6. CNCss composite materials: possible OVDs applications 

CNCs films developed iridescence, selective reflection, unique morphology, a white light 

diffraction pattern and the capacity to act as a reinforcement. These features make CNCs suitable 

for biomimicking materials and be applied as an optically variable device.  

As discussed before, OVDs have extraordinary optical properties, such as iridescence 

that makes them impossible to replicate, an amazing security device and an anti-

counterfeiting measure (on money, credit cards and government-issued identification cards).  

Andrews and co-workers presented an iridescent fluorescent CNCs film with multiple 

potential security features: overt security (iridescence) and covert security (selective circular 

reflection and fluorescence) [45]. Although the produced films covered these three security levels, 

the system evidenced brittleness. Chindawong and Johannsmann used anisotropic ink based on 

cholesteric CNCs fraction dispersed in a latex blend for security printing applications [46]. Giese 

et al. synthesized amino resin-cellulose nanocrystals composites with structural coloration that 

can be manipulated by pressure application [8]. These tunable displaying colors could be 

imprinted into the composite films for security features, pressure sensors, and decoration. In 

recent literature it is possible to find information on pigments prepared by dry grinding iridescent 

CNCs films [34], CNCs doped with active optically response elements [35] or passive elements 

[36]. However, all these systems are based on fossil fuel-based matrices. 

Recently, in 2018, Wang and co-workers produced highly flexible and iridescent CNCs 

films with humidity and pressure-responsive chromism by introducing glycerol as both plasticizer 

and hygroscopic agent [47]. The authors evidenced that the additive results in the enhancement 

of CNCss’ mechanical toughness, making it possible to obtain free-standing iridescent CNCs films 

with tunable structural colors. They succeeded in producing reversible chromism, mimicking the 

properties of the longhorn beetle Tmesisternus isabellae (Vollenhoven, 1871). 

Yao et al. produced large, flexible, and flat photonic composite films with uniform 

structured colors from blue to red by assembling poly(ethylene glycol) (PEG) and CNCs [48]. The 

CNCs/PEG (80/20) composite film demonstrated a reversible and smooth structural color change 

between green and transparent according to an increase and decrease of relative humidity. They 

also shown excellent mechanical and thermal properties.  

Wan et al. presented responsive and flexible photonic papers by mixing waterborne 

polyurethane (WPU) latex particles with aqueous CNCs suspensions [49]. The CNCs/WPU 

composite papers exhibit tunable iridescent colors, by adjusting the helical pitch size with different 

CNCs/WPU ratios, and reversible optical responses to water, wet gas and NaCl solutions. The 

authors were able to develop colorful patterns on the CNCs/WPU photonic paper that can be 

made temporary, durable, or even disguisable.  

MacLachlan and co-workers reported a series of responsive photonic hydrogels prepared 

by self-assembly of cellulose nanocrystals with various hydrogel monomers, including acrylamide 

(AAm), N-isopropylacrylamide (NIPAm), acrylic acid (AAc), 2-hydroxyethylmethacrylate (HEMa), 

polyethylene glycol dimethacrylate (DiPEGMa), and polyethylene glycol methacrylate (PEGMa) 

[50]. These presented tunable colors, respond to various stimuli, and interesting mechanical and 

swelling behavior. It was shown that the hydrogels can be prepared as large, freestanding films 

and can be photopatterned by incorporate latent images. Their findings can be important for 

developing sensors and other chiral optoelectronic devices. 

Chen et al. developed a self-healing and responsive chiral photonic film (SCPF) based 

on the co-assembly of boronic ester crosslinked poly(vinyl alcohol)-polyacrylamide with 

CNCss [51]. The reversible covalent bonds of boronic esters groups enables the self-healing of 
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the photonic material, which allows for the construction of patterns and stacked structures as well 

as for anchoring on surfaces. A QR code was printed on paper and covered by a thin film of the 

reported CNCs/polymer composite. It was proven that the QR code was exclusively encoded by 

a cell phone, when right-handed circularly polarized light was used.  
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3. Materials and methods 

3.1. CNCs production 

The preparation of CNCs was based on the experimental method used by Hamad et al. 

[52] with adaptations from Fernandes et al [35]. It was used micronized cellulose (CM500, 

supplied by The Navigator Company, ~500 m particle size), who underwent mechanical 

treatment of defibrillation. Scanning Electron Microscopy (SEM) performed by the company 

presented an average particles length and width dimensions of 359.4 μm and 13.7 m 

respectively. 

The cellulose was hydrolyzed in sulfuric acid (95-98% purity, Sigma-Aldrich) diluted at a 

concentration of 64% w/w, with an acid/solid ratio of 8:1, at 45 ºC, for 25 minutes while under 

continuous mechanical stirring. The cellulose was added to the sulfuric acid and hydrolyzed at a 

medium speed (300 rpm). The resulting suspension was washed with ultrapure water type II (∼10 

times the volume of the acid solution used) to stop the hydrolysis and allowed to settle overnight. 

The process was repited until a pH of approximately 0.70 were reached, the white remaining layer 

was submitted to subsequent wash by centrifugation cycles (at 12 000 rpm for 20 minutes, using 

a Thermo Scientific Heraeus Multifuge X1R Centrifuge Series). The CNCs suspends when the 

pH is between 1.9-3.9 and the supernatant was collected. This suspension was placed into 

cellulose films (Spectrum Spectra/Por® 4 dialysis films) and then dialyzed with ultrapure water 

for a minimum of one month, with daily water changes until the pH remained constant, to ensure 

the elimination of the remaining sulfuric acid and other sub-products of the reaction. 

A CNCs-CM500 suspension with 7 ± 0.6% w/w concentration was obtained by osmotic 

bath with polyethylene glycol (PEG) established by Frka et al. [53]. The initial CNCs suspension 

at 3.4 ± 0.08% w/w was placed in dialysis membrane (Thermo Scientific SnakeSkinTM Dialysis 

Tubing) and dialyzed, for 12 h, in a 15% w/w aqueous PEG solution. The suspension was then 

sonicated with 3 consecutives cycles of 20 min over an ice bath using a Hielscher UP400S 

ultrasonic homogenizer (460 W, 24 kHz, at 0.85 of the cycle and 80% amplitude which 

corresponds to an energy input of 10 kJ g−1).  

The same process, following the method of Fernandes et al. [35], was used for the 

preparation of cellulose microcrystalline (CMC; Avicel® PH-101, ~50 μm particle size, lot 

#BCBJ0229V), derived from cotton and purchased from Sigma-Aldrich. It was used an acid 

concentration of 64% w/w, at 45 ºC for 45 minutes while under continuous mechanical stirring. A 

CNCs-CMC suspension with 3.81 ± 0.08% w/w. concentration was obtained. 

Ultrapure water used in the process was purified using a Millipore Elix Advantage 3 water 

purification system.  

 

3.2. CNCs-CM500 

3.2.1. Liquid crystalline phase as a function of CNCs concentration  

To attain the phase diagram of the lyotropic aqueous suspension of CNCs as a function 

of nanoparticles concentration, the dilution was proceeded using the concentrated suspension of 

7% w/w from micronized CNCs. The resulting concentrations were: 2.5, 3.0, 3.5, 4, 4.5, 5 and 6% 

w/w of CNCs. After homogenization by sonication, these were placed in vial tubes with 1.5 ml 

capacity and allowed to relax for about 3 weeks until no variation in the percentage of anisotropic 

fraction was observed. 
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3.3. CNCs-CMC  

3.3.1. Ion Exchange  

Based on article by Dong and Gray [42], ion-exchange resin (Amberlite® IR120 hydrogen, 

Sigma-Aldrich) and a 20% w/w aqueous potassium chloride solution were used to replace the 

protons of the original CNCs-CMC crystallites (CNCs-H) by potassium (CNCs-K). The same 

procedure with 10% w/w aqueous sodium chloride solution was used to produce CNCs-Na, in 

which the counter-ion of the CNCs chain was replaced by sodium.  

 

3.3.2. Films from drop-casting method: effect of the CNCs’s counterion 

from H+ to K+ 

Films with a dome-like shape were produced from drop-casting method onto a 100 Ω/sq 

Indium Tin Oxide (ITO) coated square glass substrates (15x15x0.7 mm), using different fractions 

of the original CNCs (CNCs-H) and activated CNCs (CNCs-K) to study the color pallet evolution. 

The mixture between the CNCs-H, that originate films with red coloration, and CNCs-K, 

originating films with blue coloration, was performed using ratios of 0:1, 1:3, 1:1, 3:1 and 1:0. The 

glass substrates went through a UVO treatment, where they were exposed to UV light and Ozone 

(O3), using a Novascan PSD-UV in a procedure developed within the research group and the 

droplet allowed to dry at low temperature [54] 

 

3.3.3. CNCs-K/HPC suspension and drop-casted films 

To the aqueous suspension of CNCs-K (~ 3.81% w/w CNCs) HPC was added with 

different molecular weights (Sigma-Aldrich, 𝑀𝑤
̅̅ ̅̅ = 100 000, 300 000, 600 000) in different ratios 

(5% w/w 10% w/w, 20% w/w, 30% w/w, 40% w/w and 50% w/w) and homogenized in an Analog 

Shaker for a week until full dissolution. Droplets of these various mixtures were deposited 

(following the description in sub chapter 2.3.2 in ITO subtracts), the films studied and then chosen 

the most favorable combination to produce films. Part of this suspension was placed in vials tubes 

with 1.5 ml capacity and the presence of the liquid crystalline phase is verified after 4 weeks and 

observed between crossed polarizers.  

CNCs-K/HPC films were produced by the solvent evaporation technique where the 

suspension (with 2 ml of volume) is deposited into polystyrene Petri dishes, with 35 mm diameter, 

under controlled environment, until all the solvent evaporated. The evaporation occurred at ~ 4°C 

for approximately three weeks, thus allowing formation of iridescent films. Replicas of these films 

with 1.5 mL were also produced. Their thicknesses, 70 ± 10 μm, were determined averaging 10 

measurements using the Mitutoyo digital micrometer and are presented at supporting information 

7.e. 

 

3.4. Characterization  

Standard characterizations techniques were performed on the cellulosic samples such as 

Fourier-transformed infrared (FTIR), scanning calorimetry with thermogravimetric analysis (DSC-

TG), x-ray diffraction (XRD), Elemental analysis (EA), polarized opticl microscopy (POM), Atomic 

Force Microscopy (AFM), circular dichroism (CD), test bending, profilometry and general 

photography, and the detailed description can be found, in the supporting information 7.a. 
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4. Results and Discussion  

The main goal of this thesis was to produce iridescence and flexible CNCs/HPC 

composite films, inspired by the optical properties present in the beetles’ exoskeleton, from a 

cellulose nanocrystals lyotropic aqueous suspension. Films obtained from solvent evaporation 

are intended to display selectively reflection of left circularly polarized (LCP) light, within the visible 

range, and responsiveness to external stimuli.  

The present work also studies the production of CNCs from a micronized cellulose 

source, obtained by eucalyptus, instead of the regular commercially available cotton source. 

These later give rise to rice-like nanoparticles, while is expected to obtained needle-like 

nanoparticles with the micronized cellulose source which have a higher aspect ratio. It is known 

that the size of nanoparticles influences the properties of the liquid crystalline phase obtained by 

the self-assembly CNCss [55], [56]. And this source might enable us, when polymers are added 

to this CNCss lyotropic suspension, to obtain films that reflect structural colored with wavelengths 

within the visible range of the electromagnetic spectrum. Indeed Yao et al., presented an example 

of this problem when they tried to use a mixture of CNCss, prepared from cellulose 

microcrystalline (short-length cellulose fiber source, Avicel® PH100) with PEG. The authors 

claimed that they could not obtain composite films with structural coloration within the visible 

range. This problem was overcome when the authors moved to a longer source that enabled a 

better control of particles, its size, and changes in surface charge which consequently differentiate 

the pitch value of the composite suspension [48].  

Firstly, on the following chapter, some structural and chemical properties of the obtained 

products are presented, comparing the raw material to the cellulose nanocrystals of both 

micronized and microcrystalline cellulose sources. The results of the characterization techniques 

include FTIR, XRD diffractograms, elemental analysis, DSC-TGA analysis, POM and AFM.  

The influence of the nanoparticles counter-ion CNCs-H and CNCs-K on the structural 

color palette is also studied by producing films from drop-casting technique with different ratios of 

each suspension. The micro and macro scale characterization of these dome-shaped like films is 

accomplished with photography and POM. The same study was made for the CNCs-K/HPC films 

obtained from drop-casting method using HPC with different percentages in respect with the 

CNCs content and molecular weights.  

The CNCs-K/HPC films produced by solvent evaporation were photographed, its 

thickness measured, characterized using POM, Vis spectrometry, FTIR, XRD and DSC-TG. 

Mechanical testing was also performed to verify whether the films flexibility is enhanced by the 

presence of HPC. 

 

4.1. CNCs Characterization 

4.1.1. CM500 and CNCs-CM500 

Cellulose nanocrystals, from CM500, designated as CNCs-CM500, were produced based 

on the methodology presented by Hamad et al. [52]. The hydrolysis was performed using a 

concentration of 64% w/w diluted sulfuric acid, at 45 ºC, for 25 minutes while under continuous 

mechanical stirring. A yield of 50% ± 0.06 was achieved, which is a much higher value when 

compared to the one presented by the literature (of 22.4% process yield), for bleached softwood 

KRAFT pulp using the same hydrolyses conditions [18]. The divergence in these values, and 

since both sources were somehow fibrillated prior hydrolyses, might rely on the composition of 

the KRAFT pulp, since we do not know the composition of our source (this is, we do not know if 

our KRAFT pulp is mainly derived from Eucalyptus globulus wood or a mixture of different type of 
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woods, as the one used by Hamad is 60% western red cedar and 40% spruce, fir, and pine). The 

different might also be attributed to the differences in the methodology to collect the CNCss from 

the reaction medium. 

Figure 4.1 illustrates the chemical reaction of the cellobiose unit when the cellulose fibers 

undergoes acid hydrolysis.  

Hydrolysis with sulfuric acid results in the introduction of sulfate esters at the surface of 

the cellulose crystallites, leading to added electrostatic stabilization of the suspensions [18]. 

CNCs samples as well as its precursor from a micronized cellulose (CM500) source were 

optically, chemically, morphologically, and structurally characterized in order to assess whether 

the acid hydrolysis reaction carried out resulted in the successfully production of cellulose 

nanocrystals. 

Chemical analysis was done by means of Attenuated Total Reflectance Fourier 

Transform Infrared ATR-FTIR (Figure 4.2) where the black and purple spectra represent the 

CM500 and the CNCs, respectively, where several absorption bands associated with molecular 

vibrations of cellulose bonds stand out. Both spectra display coincident vibration bands, as for 

instance the ones approximately at 3300 cm-1, 2900 cm-1 and 1050 cm-1 represent the O-H 

stretching vibration (indicating the presence of hydrogen bonding in the samples), stretching 

vibrations of C-H and C-O bonds, respectively [57]. The band at 1639.7 cm-1 is associated with 

the vibration of the O-H bond of absorbed water in the cellulose and the vibration band at 890 cm-

1 is associated with a C-O-C stretching effect on the β(1,4) glycosidic bonds (assigned to the 

amorphous region) [58], [59]. CNCs spectra band at approximately 817 cm-1 is attributed to S-O 

bond stretching due to the presence of ester-sulfate groups resulting from the acid hydrolysis 

reaction [60]. This band is nonexistent in the starting material sample (CM500). 

Figure 4.1 Schematic representation of the acid hydrolysis reaction of cellulose using sulfuric acid 
to produce cellulose nanocrystals. 

Figure 4.2 ATR-FTIR spectra of CM500 (black line) and CNCs-CM500 (purple line). Each vertical 
dotted line marks a characteristic absorption band of a cellulose macromolecule binding molecular vibration. 
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The X-Ray Diffraction structural analysis of both CM500 and CNCs (Figure 4.3) allows 

us to assess the type of cellulose allomorph, to infer the crystallinity index of each sample and to 

understand if the structural arrangement is affected by the acid hydrolysis procedure. 

XRD diffractograms of CM500 and CNCs samples display peaks around Bragg angle (2) 

of 15.5º, 16.8º and 22.80º characteristics of the 101, 101̅ and 002 (main peak) crystalline planes, 

respectively [61]. A smother peak of the 040 plane is identified at approximately 34.9º [59], [62]. 
These diffraction characteristics peaks are associated with cellulose type Iβ [63]. The absence of 
strong alteration of all peaks means that the structural arrangement of the cellulose is not affected 
by the performed acid hydrolysis.  

The crystallinity index (CrI) was determined with the empirical method presented by Segal 

et al. [64] and using the equation below. 

𝐶𝑟𝐼 =
𝐼(002)−𝐼𝑎𝑚

𝐼(002)
 × 100    Equation 3 

In the Equation 3, I(002) corresponds to the maximum diffraction intensity of 002 peak, 

with 2θ between 21 ° and 23 °, and Iam corresponds to the diffraction intensity of amorphous 

material, with 2θ between 18 ° and 20 °, where the intensity is minimal. The CrI results are 

presented in Table 1. 

Table 1 Crystallinity Index of CM500 and CNCs-CM500 samples determined by the empirical 
method presented Segal et al. [64]. 

Sample CrI (%) 

CM500 83.2 

CNCS-CM500 88.2 

 

The CNCs have a higher crystalline index when compared to the one obtained for CM500, 

which was expected since the acid hydrolysis processes mainly attacked the amorphous regions 

Figure 4.3 XRD diffractograms of CM500 (black line) and CNCs-CM500 (purple line). 
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of the starting material. The CrI values for the CNCs-CM500 samples are approximately similar 

to the ones reported by Hamad et al. [52] (84.6%) for softwood KRAFT pulp using identical 

conditions (64% w/w acid concentration and 45ºC) and the Segal et al. [64] method approach.  

Micronized cellulose samples were diluted in water (0.01% w/w) and let in magnetic 

stirring for 16 hours, before the acid hydrolysis process. From this suspension small droplets were 

deposit on a glass slide and several images were captured (as Figure 4.4) using a polarized 

optical microscope in order to determine the length of the particles. 100 manual measurements 

(supporting information 7.b) were made using ImageJ software to calculate the fibers dimensions. 

The average length of CM500 was 359 ± 212 μm which corresponds to the length referred by the 

CM500 supplier company (359.4 μm). 

In order to assess the size of the obtained CNCs-CM500, the nanoparticles were 

observed by atomic force microscopy (AFM). CNCs-CM500 particles, diluted in water (0.0025% 

w/w), were dimensionally characterized using the AFMs topographic images. The obtained 

images (Figure 4.5) were analyzed with the Gwyddion software and 150 measurements 

(supporting information 7.c, Figure 7.2) of both length and width were taken, following the method 

described by Honorato-Rios et al. [56]. 

Figure 4.4 Example of a POM image of CM500 fibers captured in transmission mode between 
crossed polarizers. 

Figure 4.5 TOP view image 2μmx2μm, of an amplitude scan obtained by AFM of CNCs-CM500 
fibers deposit in mica. 
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It is possible to observe that the CNCss morphology is characterized by agglomerates of 

rice-like structures. The average particle length and width dimensions were 336 ± 92 nm and 9 ± 

3 nm, respectively, which estimates a ratio of 37. Acid hydrolysis process proven to be successful 

and both dimensions are at the nanoscale. 

By thermogravimetric analysis coupled with differential scanning calorimetry (TGA-DSC) 

analysis it was possible to that verify the thermal stability of the produced cellulose nanocrystals 

CNCs-CM500 (purple line) and compare with the starting material (CM500 black lines) (Figure 

4.6). The continuous line represents the mass fraction and the dot lines the DSC progression.  

The first smooth mass drop on both samples, below 120 ºC, is due to the evaporation of 

residual water present in the cellulose fibers. The sample CM500 exhibit an abrupt fall in the TG 

line in the temperature range of 280 to 370 ºC. This fall coincides with a massive endothermic 

reaction peak thus indicating a presence of a first order pyrolysis reaction common observed for 

this material [65].  

From the CNCs thermogravimetric curve (purple lines) it can be seen that their 

degradation starts at lower temperatures, compared with the raw material, and it’s possible to 

identify other two important occurrences. The first mass loss event occurs at approximately 150º 

to 250 °C due to the degradation of regions more accessible to sulfate groups [66]. At 350 ºC, the 

crystalline regions, least affected by the hydrolysis process, decompose. The latest event at about 

400 °C indicates the cellulose oxidation related to the solid decomposition [66]. 

The amount of sulfate groups attached to the cellulose nanocrystals surface can be 

estimate from elemental analysis (EA). Thus, it is possible to assess the amount of sulfate ester 

groups introduced by acid hydrolysis in the anhydro‐glucopyranose (AGP) units. The surface 

charge of the samples are detailed in the following table (Table 2) as well as the predicted values 

for pure cellulose [67].  

Samples from the raw micronized cellulose lack the sulfur element as it has not 

undergone acid hydrolysis.  

Figure 4.6 DSC-TGA analysis of CM500 (black lines) and CNCs-CM500 (purple line). 
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Table 2 C, H, S and estimated Oxygen elemental analysis of the samples CM500 and CNCs-

CM500, as well as the predicted values for pure cellulose. 

Sample 
Carbon 
(w/w%) 

Hydrogen 
(w/w%) 

Sulfur 
(w/w%) 

Oxygen a 
(w/w%) 

–OSO3H/ 
100 

Pure cellulose 
predicted values [67] 

44.44 6.18 - 49.38 - 

CNCs from other 
KRAFT pulp b  

40.78 5.78 0.92 52.52 4.7 

CM500 42.19  5.67 - 52.14 - 

CNCs 42.40 6.20 0.41 50.99 2.09 

a values obtained by mass difference; 

b elemental analysis data for CNCs derived from softwood KRAFT pulp using 64% w/w acid 
concentration at 45 ºC for 25 min [52]. 

 

 

The degree of substitution (DS) of -OSO3H per 100 AGP units (n) was determined using 
the method described by Hamad et al. [52] and applying the equation bellow. 

𝑛 =
100×162.141×𝑆 (%)

3206.6 −80.063×𝑆 (%)
   Equation 4 

In the Equation 4, S (%) corresponds to the sulfur content measured by elemental 

analysis. The value of n for the CNCs-500 is 2.09 of –OSO3H groups per 100 AGP units, which 

is half than those presented by Hamad [52] for the same acid hydrolysis conditions ( -OSO3H/100 

of 4.7). The difference is these values might be related to the reasons presented above for the 

difference in reaction yield.  

The concentrated suspension of CNCs-CM500 (~ 7% w/w CNCs) was diluted to 2.5, 3.0, 

3.5, 4, 4.5, 5 and 6% w/w CNCss concentrations, sonicated and let to rest for 4 weeks. The 

samples were then observed between cross-polarizers as can be seen in Figure 4.7 - (a). If one 

looks at suspension with 2 and 2.5 %w/w of CNCss two distinct phases, within one sample, were 

obtained. The upper isotropic phase, where the nanoparticles with lower sizes are randomly 

arranged, and the birefringent lower phase corresponding to the anisotropic phase. Generically, 

anisotropic phase increases with the increment of CNCss nanoparticles in suspension, as 

expected, however it is not a linear growth. This increase is nonlinear since nanoparticles are 

electrostatically stabilized, and cannot keep a constant ionic strength as the concentration of 

CNCs in the suspension increases, so each suspension has different ionic strength that affects 

the LC phase. [68] [69] 

The anisotropic phase fraction of each suspension is graphically represented in Figure 

4.7 - (b) and is obtained by dividing the height of the anisotropic zone by the suspension total 

height. The phase separation is detected at 2% and 2.5% w/w CNCs. Although the increase of 

the anisotropic phase is proportional with the CNCs concentration, as observed, the suspensions 

above 2.5% w/w concentration have shown to be completely anisotropic.  

CNCs produced from a micronized cellulose source, with larger particles dimensions, was 

intended as a matrix for the addition of HPC so that the CNCs/HPC suspension could be used to 

produce films with iridescence and coloration within the visible spectrum. However, the process 

is time consuming and took four months to acquire CNCs-CM500 liquid crystalline phase, which 

compromised the dissertation time conclusion. For this reason, commercial CNCss (Avicel® PH-

101) were synthesized using the methodology developed by Fernandes et al. [35]. The same 

procedure was executed by C. Gouveia [70] in her dissertation thesis to produce CNCs/HPC 

films. 
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4.1.2. CMC and CNCs-CMC 

Cellulose nanocrystals from microcrystalline cellulose (Avicel® PH-101) (CNCs-CMC) 
were also produced and used in this dissertation. The acid hydrolysis was performed using an 
acid concentration of 64% w/w, at 45 ºC for 45 minutes while under continuous mechanical 
stirring. Therefore both CNCs and its precursor (CMC) were optically, chemically, 
morphologically, and structurally characterized as well. 

Chemical analysis was performed by Attenuated Total Reflectance Fourier Transform 

Infrared spectroscopy and is presented below (Figure 4.8) where the black and purple spectra 

represents the CMC and the CNCs-CMC, respectively. Several absorption bands associated with 

molecular vibrations of cellulose bonds can be observed. 

The coincident bands of both CMC and CNCs around 3338 cm-1, 2900 cm-1 and 1060 

cm-1 represent the O-H, C-H and C-O stretching vibration correspondingly [57]. The absorption 

band at 1638 cm-1 is associated with the vibration of the O-H bond of water absorption in the 

cellulose and 890 cm-1 is associated with a C-O-C stretching effect on the β(1,4) glycosidic bonds 

(assigned to the amorphous region) [58] [59]. CNCs spectrum band at approximately 817 cm-1 is 

attributed to S-O bond stretching due to the presence of sulfate groups resulting from acid 

hydrolysis [60]. This band is nonexistent in the CMC sample.  

The obtained spectra exhibit absorption bands similar to the ones found in the FTIR of 

both CM500 and CNCs-CM500 (Figure 4.2), however the ones associated with S-O bonds are 

slightly more prominent in the CNCs-CMC, probably due to the higher time of the acid hydrolysis 

process. This information can be verified by elemental analysis presented in Table 3, where the 

content of the samples is detailed as well as the predicted values. Samples from the raw 

microcrystalline cellulose lack the sulfur element as it has not undergone acid hydrolysis.  

 

 

Figure 4.7 Photography taken with crossed polarizers (a) and anisotropic volume fraction of CNCs-
CM500 suspension as a function of CNCs concentration (2.5, 3.0, 3.5, 4, 4.5, 5 and 6% w/w) (b). 
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Table 3 C, H, S and estimated Oxygen elemental analysis of the samples CMC and CNCs-CMC, 
as well as the predicted values for pure cellulose. 

Sample 
Carbon 
(w/w%) 

Hydrogen 
(w/w%) 

Sulfur 
(w/w%) 

Oxygen * 
(w/w%) 

–OSO3H/ 
100 

Pure cellulose 
predicted values [67] 

44.44 6.18 - 49.38 - 

CMC 43.51 6.42 - 50.09 - 

CNCs 41.03 6.04 0.95 51.98 4.92 

* values obtained by mass difference 
 

 

The average degree of substitution (𝐷𝑆̅̅ ̅̅ ) of -OSO3H per 100 AGP units (n) was 

determined using the method described by Hamad et al. [52] and applying the Equation 4. The 

value of n is 4.92 –OSO3H groups per 100 AGP for the registered 0.95% sulfur content, which is 

in good agreement to the value presented by Yao et al. (0.90% ± 0.03) using the same starting 

material and similar reaction time of (30 min) [48]. 

XRD diffractograms from CMC (black line) and CNCs-CMC (purple line) samples (Figure 

4.9) display peaks around 2=15º, 16.6º and 22.7º attributed to crystallographic planes of 101, 

101̅ and 002 (which is the main peak and characteristic of the crystalline region), respectively 

[71]. These diffraction characteristics peaks are associated with cellulose type Iβ [63].  

The peak associated with the 040 plane is identified at approximately 34.8º and its 

perceptible to be smother in the CNCs sample. The absence of strong alteration of all peaks 

means the structural arrangement of the cellulose is not affected by the performed acid hydrolysis. 

Figure 4.8 ATR-FTIR spectra of CMC (black line) and CNCs (purple line). Each vertical dotted line 
marks a characteristic absorption band of a cellulose macromolecule binding molecular vibration. 
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The crystallinity index was determined with the empirical method presented by Segal et 
al. [64], using the Equation 3, described above. The CrI results are presented in the Table 4 
bellow. 

Table 4 Crystallinity Index of CMC and CNCs-CMC samples determined by the empirical method 
presented by Segal et al. [64]. 

Sample CrI (%) 

CMC 75.7 

CNCS-CMC 87.8 

 

The CNCs has a higher crystalline index compared to CMC, which was expected since 

acid hydrolysis processes mainly attacked the amorphous zones of the starting material. These 

values are in agreement with the literature for cellulose nanocrystals obtained by acid hydrolysis 

from CMC (Avicel® PH101) [60], [72]. 

CNCs-CMC particles, drop-casted from a suspension in water with a low content of 

nanoparticles (0.01% w/w), were dimensionally characterized using the AFMs topographic 

images. The obtained images (Figure 4.10) were analyzed with Gwyddion software, following the 

methodology presented by Honorato-Rios et al. [56] and 150 measurements of both length and 

width were taken (supporting information d, Figure 7.3).  

The average particle length and width dimensions were determined as 153 ± 34 nm and 

6 ± 2 nm, respectively, which estimates an aspect ratio of approximatively 26. The length values 

are similar, however the width are slightly lower from the ones reported by Fernandes et al. where 

152 ± 65 nm and 17 ± 7 nm of length and width, respectively and aspect ratio of 10 ± 3 were 

obtained [35]. The discrepancy of the width values is related to the difference of the techniques 

used to obtain the particle images, but also the methodology (the measuring) to obtain the 

particles dimensions. 

 

Figure 4.9 XRD diffractograms of CMC (black line) and CNCs (purple line). 
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The thermal stability of both CMC (black lines) and CNCs-CMC (purple lines) from a 
microcrystalline source is analyzed in Figure 4.11. 

The scanning calorimetry with thermographic analysis of CMC and CNCs-CMC have a 

similar behavior when compared to CM500 and CNCs-CM500 samples at Figure 4.6. The 

smooth mass drop, on both samples, bellow 120 ºC is related to moisture evaporation. The CMC 

curve (black line) indicates a first order pyrolysis reaction, with a mass loss of 86.91%, from 300 

ºC to 370 °C [65]. This event is associated with a high mass loss of cellulosic material and its 

Figure 4.10 TOP view image, 2μmx2μm, of an amplitude scan obtained by AFM of CNCs-
CMC fibers deposited in mica. 

Figure 4.11 DSC-TGA analysis of CMC (black lines) and CNCs-CMC (purple line). 
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characterized by a series of degradation reactions, including dehydration, decomposition, and 

depolymerization of the glycosidic units [71]. 

On the CNCs curves (purple lines) the degradation starts at lower temperatures, fact 

probably attributed to smaller fiber dimensions as compared to the original raw material [60]. A 

first mass change, of 39.39%, occurs between 150 ºC to 240 °C and corresponded to the 

degradation of regions more accessible to the sulfate groups. The second mass loss event at 390 

ºC is attributed to the breakdown of the more refractory crystalline fraction, which was less 

susceptible to hydrolysis leading to the formation of carbon-based residues of the samples [71].  

A photograph taken between cross-polarizes of vials with CNCs-CMC suspension with 

different concentrations (2.2%, 2.6%, 3.0%, 3.5%, 3.8%, 4.5%, 5.5%, 6.5% and 8.5% w/w) is 

shown at Figure 4.12 - (a) where the isotropic and anisotropic phases can be observed.  

The anisotropic phase fraction of each suspension is graphically represented in Figure 

4.12 - (b). One can observe that 2.2% w/w of CNCs is completely isotropic while both 6.5% and 

8.5% w/w concentrations are found to be completely anisotropic. As commented before in this 

document, the anisotropic phase increase is not linearly with the increment of CNCss percentage. 

 

The CNCs-CMC were used to produce CNCs/HPC composite films in order to obtain 
iridescent films that reflect structural coloration with wavelengths in the visible range of the 
electromagnetic spectrum. Since CNCs films tend to be brittle it is important to add HPC as a 
reinforcement to improve their mechanical properties.  

 

4.2. CNCs-K/HPC composites 

Based on the work developed by C. Gouveia [70] described in her Master dissertation 

thesis, the produced composite films of CNCs/HPC shown selective left-handed circularly 

polarized light reflection and right-handed circularly polarized light transmission. The observed 

iridescence is due to the structural organization impart by the cholesteric arrangement of the 

precursor suspensions, Figure 4.13. Although the pristine CNCs film exhibited iridescence, only 

the sample with 10% w/w HPC reflected structural coloration in the visible range of the 

electromagnetic spectrum, and the coloration tend to be lost with the increase of HPC in the 

composite system (supplement information 7.e). By SEM images and UV-VIR-NIR spectroscopy 

Figure 4.12 Photography taken with crossed polarizers (a) and anisotropic volume fraction of 
CNCs-CMC suspension as a function of CNCs concentration (b) with 2.2%, 2.6%, 3.0%, 3.5%, 3.8%, 4.5%, 
5.5%, 6.5% and 8.5% w/w concentration. 
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the author was able to show that the cholesteric organization was maintained even on the sample 

with the higher concentration of HPC and was able to determine the pitch value for each sample. 

Nevertheless, determination of the helicity of the CNCs organization was yet to be accessed.  

The Circular Dichroism is a spectroscopy technique that allows to access the rotational 

direction of the polarized light, whether is clockwise (RCP), showing negative values, or 

counterclockwise (LCP) showing positive values. CD analysis of the CNCs/HPC films (Figure 

4.14- (a)) confirms that 0, 10, 20 and 30% w/w HPC concentrations, although colorless, present 

LCP handedness. This technique only analyses wavelengths until 800 nm, for that reason, and 

even thought 40 and 50% w/w HPC indicated positives values, is not conclusive the same LCP 

light direction. Nevertheless, the SEM images of the cross-section obtained for the composite 

films with 40% HPC:CNCs showed a left-handed helicoidal arrangement. 

Resistance to cracking of CNCs/HPC films was verified using bend test procedure in 

which a surface strain was applied to the sample without adding overall tensile load (Figure 4.14 

– (b)) [73]. The strain necessary to induce surface cracking was determined by bending the 

samples over mandrels. Note that the films became exponentially more flexible for concentrations 

above 20% w/w HPC and that the 50% w/w HPC/CNCs composite sample bend without breaking 

for the maximum strain. The error bars indicate the standard errors associated with repetitions.  

Figure 4.13 Photography taken between crossed polarizers of CNCs-CMC/HPC suspension, with 
0, 5, 10, 20, 30, 40 and 50% w/w of HPC concentration in relation to the CNCs content. 

Figure 4.14 Circular dichroism (a) and mandrels bend test (b) results of CNCs/HPC films with 0, 
10, 20, 30, 40, 50 and 100% w/w of HPC. 
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The sonication, performed during the cellulose nanocrystals production, increases the 

suspension cholesteric pitch and leads to a red coloration of the CNCss films after solvent 

evaporation [74], [75]. In addition, increasing the HPC concentration in the CNCs/HPC composite 

system seems to promote the increase of the pitch value of the suspensions. For these reasons, 

the introduction of HPC in the CNCs matrix proved not to be effective to produce iridescent and 

colorful CNCs/HPC composite films, as this addiction induced the wavelength shift to the near-

infrared region of the electromagnetic spectrum.  

Following the article published by Dong and Gray [42] it was used ion-exchange resin 

and a 20% w/w aqueous potassium chloride solution to induce the blue shift of the CNCs 

coloration. Figure 4.15 illustrates the substitution reaction of the hydrogen, present in the sulfate 

groups of the CNCs chain (CNCs-H), by potassium (CNCs-K). The intention was to reduce the 

pitch value of the CNCss suspension so that it could increase, promoted by the addition of HPC, 

and could be maintained within the visible spectrum. The same substitution procedure was used 

with sodium, originating CNCs-Na, for the sake of comparison.  

 

The ICP-AES technique performed to the CNCs-K and CNCs-Na samples, described at 

supporting information 7.a, revealed 77.68 mg/l of potassium and 63.10 ml/l of sodium, 

respectively, which proves the effectiveness of the substitution. Note that this technique is 

expensive and more precise than elemental analysis and that the values obtained by both 

methodologies should not be compared.  

The ion substitution is also visually observed in Figure 4.16, where both CNCs-H and 

CNCs-K films from drop-casting method were produced and studied using POM and profilometry. 

Analyzing the spectrum of CNCs-H its perceptible that the maximum reflected wavelength is at 

640nm (Figure 4.16 – (c)) which correspond to the red color of the visible spectrum (a). Both 

droplet casted films present LCP light reflection and RCP light transmission. After changing its 

counter-ion to potassium (b) a blue shift is induced in the CNCss coloration (CNCs-K, Figure 4.16 

– (b)), to 426 nm (Figure 4.16 – (d)). The color change of these films, for the same suspension 

concentration, happens because the introduction of the counterion influences the critical 

concentration at which the phase separation occurs. I.e, counterion properties such as ion size, 

dissociation constant, hydration number, and hydrophilic/hydrophobic balance will influence the 

interparticle forces (as steric repulsion, electrostatic repulsion, hydration, and hydrophobic 

interactions) responsible for the phase separation [42]. Dong and Gray examined that when 

hydrated inorganic cations bind to the negatively charged particle surface a hydration force would 

be generated between particles and If the repulsive force between particles decreases, the critical 

concentration would increase [42]. 

The films color uniformity can be explained by the nonexistence of the so called coffee-

ring effect, (Figure 4.16 – (e), (f)), confirmed by profilometry (attributed to the UVO treatment 

performed on the substrates and to the lower the solvent evaporation rate). After the substitution 

preceded, the registered pH increased from 1.95 for the CNCs-H, to 4.80 for the CNCs-K, as 

confirmed in the literature by MacLachlan et al. [76].  

  

Figure 4.15 Schematic representation of the ion-exchange effect on the surface charge of the 
cellobiose unit. 



26 

 

DSC-TGA analysis of both CNCs-H (black lines) and CNCs-K (purple lines) (Figure 

4.17), were proceeded to verify whether the ion exchange would affect their degradation process.  

CNCs-H from a microcrystalline cellulose source was already analyzed in this document 
(sub chapter 4.1.2). Its degradation process occurs in two steps, the first at 150 ºC to 240 ºC and 
the second at around 390 ºC. Meaning the CNCs-H degradation is a second order pyrolysis 
reaction [65]. For CNCs-K, the degradation process occurs with only one step that starts at a 
temperature two times higher than the one registered for CNCs-H, at 280 ºC. The ion exchange 
of the CNCs-H to potassium leads to an improvement of thermal properties and the transformation 
of the process to a first order reaction.  

The ion exchange process has proven to be effective promoting the blue shift of the CNCs 

films, as expected, and improving its thermal properties. Dong and Gray proved that the 

suspensions were less temperature dependent when the counter-ion was added. The authors 

Figure 4.16 Photographic images of CNCs-H (a) and CNCs-K (b) drop-casted films observed under 
visible light, left and right circularly polarized light (indicated by the direction of the arrows); the obtained 
visible spectra (c) (d), respectively, were acquired with a spectrophotometer accoupled to the POM and the 
correspondingly profilometry. The scale bar corresponds to 1 mm. 

Figure 4.17 DSC-TGA analysis of CNCs-H and CNCs-K. 
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explained this with the relative insensitivity of ionic and steric interactions of this nanoparticles 

when exposed to temperature [42]. 

In order to study the color potential of both CNCs-H and CNCs-K, positioned at extremes 

of the visible spectrum, films from drop-casted methods with different ratios of each suspension 

were produced. These films with 0:1, 1:3, 1:1, 3:1 and 1:0 ratios of CNCs-K/CNCs-H are 

registered in Figure 4.18, as well as the one obtained with CNCs-Na.  

The films were photographed under visible light using a left circularly polarized (LCP) and 
a right circularly polarized (RCP), as indicated by the direction of the arrows, with a 18º angle. It’s 
perceptible at the macro-scale that starting with the same CNCs content in suspension, different 
counter-ions lead to different final coloration, since CNCs-H give rises to orange films, CNCs-K 
originates totally blue films and the CNCs-Na has a greenish tint. Dong and Gray stablished that 
as the particle size decreases, their excluded volume is reduced, and a higher suspension 
concentration is required to form an ordered phase. Thus, the critical concentration increases with 
the atomic number of the counterions and the tendency to form ordered phase formation is CNCs-
H > CNCs-Na > CNCs-K [42]. 

In addition, a color gradient throughout the different ratios is visibly verified. These results 

were verified at the micro-scale using POM and the reflection spectra of the spectra recorded on 

the center of each film (Figure 4.19). The images and spectra were obtained with circular crossed 

polarization, left circular polarization and right circular polarization, LCP (black line) and RCP 

(blue line) light. 

 

 

 

 

 

Figure 4.18 Photographic images of CNCs-K/CNCs-H films derived drop-casting method from 
different suspensions of: mixtures of CNCs-H and CNCs-K in different ratios 1:0 (a), 1:3 (b), 1:1 (c), 3:1 (d), 
0:1 (e) and CNCs-Na (f), respectively. They were obtained under visible light and left-handed and right-
handed circularly polarized light (indicated by the direction of the arrows). The scale bar corresponds to 1 
mm. 
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By analyzing the macro and micro images it’s possible to verify that all films reflect 
structural coloration with wavelengths within the visible range and that the original CNCs-H (a) 
has a red coloration with a maximum of 640 nm. The substitution of the counter-ion to potassium 
(e) promotes a uniform blue shift throughout the droplet, to a maximum of 426 nm, while the 
substitution to sodium (f) promotes a less uniform coloration between a green and blue shade 
with a maximum at around 470 nm. Having in mind the de Vries equation (Equation 1) and 
considering that the refractive index of CNCs is 1.56 an estimation of the pitch value of the 
helicoidal arrangement at the center of the films can be estimated, as demonstrated by Dumanli 

Figure 4.19 POM images, obtained in reflection mode of drop-casting films from mixtures of CNCs-
K/CNCs-H in different ration, 1:0 (a), 1:3 (b), 1:1 (c), 3:1 (d), 0:1 (e) and Na (f), respectively. They were 
observed with circular cross polarization, left circular polarization and right polarization. The obtained spectra 
was acquired with LCP and RCP and the scale bar corresponds to 50 μm. 
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et al. [33]. Table 5 specifies the maximum wavelength, the estimated pitch and the wavelength 
variation (determined by the full width at half maximum, FWHM) of the spectrum of each drop-
casted film. Note that the films maximum wavelength reflection increases with the CNCs-K 
concentration and that the pitch value is directly proportional to the wavelength. The wavelength 
variation () values are relatively small, between 83 to 149, but higher in the mixtures of the 
suspensions. Although far from an ideal cholesteric organization, where these values should be 
of the order of just some tens nm, the reflected color, within the observed area of the films, are 
well defined. 

The films obtained from the mixture of CNCs-K and CNCs-H with ratios of 1:3 (b), 1:1 (c) 

and 3:1 (d) of CNCs-K shows a color gradient at macro (Figure 4.18) and micro-scale (Figure 

4.19) that is confirmed by the obtained spectra. The mixture between both CNCss with only 25% 

w/w of CNCs-K displays a maximum wavelength reflection of 547 nm, which corresponds to the 

transition from the red original CNCs-H to a greenish coloration. For higher ratios the obtained 

films present a blue coloration in the center, as in the 1:1, and eventually spreads throughout the 

diameter of the film, as in 3:1, until it becomes completely blue, as in the film derived from 100% 

CNCs-K. Thus, the reflected wavelength decreases as the content in CNCs-K in the mixture 

increases. All films show iridescence, selective left-handed circularly polarized light reflection and 

right-handed circularly polarized light transmission. Although the coloration in these films is not 

totally uniform, which might be further controlled with the evaporation conditions, these results 

can be seen as a different methodology to tune structural coloration by combining suspensions 

with CNCs with different counter-ions, maintaining a low viscosity of the suspension. 

Nevertheless, the obtained films are still very brittle, but this study give us a CNCs suspension 

derived from CMC (Avicel® PH101) that allow to obtain iridescent films with the lower pitch value 

derived from LC suspensions with low content of CNCss. 

Table 5 Maximum wavelength peak determined from spectra maximum reflectivity value, the 

cholesteric pitch value using the de Vries expression and the  wavelength variation (FWHM value, related 
to the spectral width) determined from each spectrum. Films by drop-casting method of CNCs-H, CNCs-K, 
CNCs-Na and different ratios of 1:3, 1:1 and 3:1 from the CNCs-K/CNCs-H mixtures. Data acquired from 
Figure 4.19. 

Films MAX (nm) 
Estimated pitch 

value (nm) 
 (FWHM) 

CNCS-H 640 410 110 

1:3 547 351 133 

1:1 454 291 117 

3:1 426 273 149 

CNCS-K 426 273 110 

CNCs-Na 470 301 83 

 

It is important to use hydroxypropylcellulose as a reinforcement to compensate the 

brittleness of the systems by increasing the flexibility while maintaining the optical characteristics 

of the CNCs films. HPC with an average molecular weight of 80000 was tested in order to improve 

the mechanical properties of the films produced by Gouveia, and the bending tests demonstrate 

that the addition of HPC in different ratios allowed the obtained films to be bend without breaking, 

as shown in Figure 4.14. However, this film did not present iridescence since an increase in the 

suspension pitch value was obtained which gave rise to a maximum reflection to wavelengths in 

the near-infra-red region.  

HPC with average molecular weights of 100 000, 300 000 and 600 000 were added to 

the CNCs-K suspension in different percentages, 5, 10, 20, 30, 40 and 50% w/w of HCP in relation 

to the CNCs-K content. The mixtures were sonicated for a few seconds to ensure that the mixture 
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is homogenized and let in an Analog Shaker for a few days until full dissolution. Films of each 

suspension were produced, by slow evaporation of the solvent from droplets, and photographed 

as can be seen in Figure 4.20. 

 

Although films of 𝑀𝑤
̅̅ ̅̅  100 000 seem more flexible, than the ones obtained from mixtures 

with the HPC with 𝑀𝑤
̅̅ ̅̅  80 000, the improvements were not significant, so only films from the 

mixtures of 5, 10, 20 and 30% w/w HPC were produced for color comparison reasons. The films 

obtained from the mixture of HPC with 𝑀𝑤
̅̅ ̅̅  of 300 000 show a color evolution as the percentage 

of HPC increases, starting with a blue iridescence (at 5% w/w) until the color appears only in the 

center with a red coloration (at 50% w/w). In the samples derived from HPC with an 𝑀𝑤
̅̅ ̅̅  of 600 000 

the color evolution is quicker, starting with a blue coloration in the center of the 5% w/w HPC 

droplet and fading close to 40% w/w of HPC, where due to the lack of structural coloration at the 

periphery one can assume that the helicoidal pitch of the structure is in the order of magnitude of 

the wavelength of the near-infrared. Films obtained from mixtures with the higher molecular 

weight became blurred, without shimmer, to values above 20% w/w of HPC and appeared to have 

present particles aggregate. 

The CNCs-K/HPC composite films were analyzed with Vis spectroscopy in reflection 

mode and their spectra were acquired at the center of the film (Supporting information 7.f, Figure 

7.5, Figure 7.6, Figure 7.7). Figure 4.21 (a-c) illustrates the maximum wavelength obtained for 

each film (black line) as the function of content of HPC in the sample, for each composite system. 

In these graphs are also plotted the wavelength variation determined as the full width at half 

maximum (FWHM) (blue line) as a function of the HPC content. One can see that the increment 

of HPC content gave rises to an increase in the reflected wavelength and is more noticeable in 

the sample of HPC with 𝑀𝑤
̅̅ ̅̅  of 600 000. In this later composite system, the film with 30% w/w of 

HPC presents, more than 70% of area with structural coloration and a further increase in HPC 

lead to a loss in visible coloration. From the same figure one can also see that the wavelength 

variation is larger than that observed for the other composite systems. This might imply the 

existence of a large number of domains with different colors, that are translated in helical 

structures with different pitch values. Combining this with the poor dispersibility observed 

Figure 4.20 Photographic images of CNCs-K/HPC films derived from mixtures of LC CNCs-K 
aqueous (3.81% w/w) suspensions with different percentages of HPC (5, 10, 20, 30, 40 and 50% w/w, 
relative to CNCs content) and different average molecular weights (100 000, 300 000 and 600 000), taken 
under visible light. The scale bar corresponds to 1mm. 
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macroscopically we decided to not continue with the use of the HPC with such a high molecular 

weight. Although composite systems derived from the HPC present similar response to the 

increase of HPC content, samples with 30% w/w of HPC became more matte, less brilliant, when 

compared with the ones obtained with the system with HPC with 𝑀𝑤
̅̅ ̅̅  of 300 000. 

 

The suspensions with CNCss concentrations capable of forming liquid crystal phase 
present tactoids when observed by POM under crossed polarizers. Tactoids are ellipsoidal 
shaped anisotropic droplets with parallel birefringent bands that appear in isotropic dispersions 
[77]. As the concentration of CNCs suspensions is increased, bigger tactoids with more periodic 
bands tend to appear. After depositing the films, obtained from the drop-casting method, the water 
from the suspensions evaporates and the tactoids have time to grow by a coalescence 
mechanism (where smaller tactoids fuse to form larger tactoids). Due to the gelation state, the 
solid film retains the cholesteric organization and some of the tactoids orientate perpendicular to 
the cross section, which can be observed, forming fingerprints patterns [38], [77]. 

The cholesteric structure in the CNCs-K/HPC films can be confirmed by the presence of 

fingerprints, observed in Figure 4.22. 

 

 

Figure 4.21 Wavelength evolution of CNCs-K/HPC droplets as a function of HPC content, with 
average molecular weight of 100 000 (a), 300 000 (b) and 600 000 (c). The black line represents the 
maximum wavelength determined at the center of the film, and the blue line represents the wavelength 
variation (FWHM of reflection spectrum). 
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Considering the addition of HPC in the color evolution and appearance, it was decided to 

proceed with the study of the composites system with HPC with 𝑀𝑤
̅̅ ̅̅  300 000. The films were 

photographed, a 18º angle, under visible light (first row of photographs), using a left-handed 

circular polarizer (LCP) and with a right circular polarizer (RCP), as indicated by the direction of 

the arrows (Figure 4.23). The profilometry technique was also performed to the CNCs-K/HPC 

films in order to obtain their topographic profile, Figure 4.24. 

 

Figure 4.22 POM images of CNCs-K/HPC films textures obtained in transmission mode from 10% 

w/w HPC (𝑀𝑤
̅̅ ̅̅̅ =300 000) (a), 50% w/w HPC (𝑀𝑤

̅̅ ̅̅̅ =300 000) (b), 10% w/w HPC (𝑀𝑤
̅̅ ̅̅̅ =600 000) (c) and 40% 

w/w HPC (𝑀𝑤
̅̅ ̅̅̅ =600 000) (d). The scale bar corresponds to 20 μm. 

Figure 4.23 Photographic images of CNCs-K/HPC 𝑀𝑤̅̅ ̅̅ = 300 000 films with different percentages, 

5% (a), 10% (b), 20% (c), 30% (d) 40% (e) and 50% (f) w/w of HPC, respectively. They were observed under 
visible light and using the left- and right-handed circular polarizer. The scale bar corresponds to 1 mm. 
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It’s noticeable on a macroscopic scale that the films present selective left circularly 

polarized light reflection and right circularly polarized light transmission. By analyzing Figure 4.24 

one can conclude that the coffee stain effect is faded in all CNCs-K/HPC films due to the UVO 

treatment performed on the subtract, and the slow evaporation of the solvent.  

Figure 4.23 also shows the presence of a color gradient within each film, not observed 

in the pristine CNCs, which tends to increase with the HPC concentration. Starting with the sample 

with 5% w/w HPC (a), that presents a large blue structural coloration, this region tends to be 

reduced and becoming gradually smaller when the percentage of HPC is increased. By contrast, 

the regions with yellowish/greenish and red color tends to increase. The perimeter of the colored 

areas tends to decrease from 30% w/w HPC (d), from which a colorless zone begins to appear 

on the outer edge of the film, leading to 50% w/w HPC (f), with only a red coloration area in the 

center. The presence of HPC in the suspensions seems to induce a separation of cholesteric 

domains with different pitch values within the films. This might be related with the increase of 

viscosity as the HPC concentration rises, however further studies should be performed in order 

to understand this effect.  

The change in maximum reflected wavelength can be verified at the micro-scale using 

POM and the characteristic wavelengths determined at the center of each film (Figure 4.25). The 

films were observed with left- (black line) and right-handed (blue line) circular polarization. By 

analyzing these POM images, it is possible to confirm that at the center of all the films strong 

coloration with wavelength within the visible range are obtained. The addition of HPC promoted 

the gradual increase of the wavelength, with a red-shift transition from 434 nm, for 5% w/w HPC 

(a), to 630 nm, for 50% w/w HPC (f). The 10% w/w HPC (b), shows a blue coloration in the center, 

that transitions to a greenish coloration in the samples with 20% (c) and 30% (d) w/w HPC. The 

40% w/w HPC (e) appeared to have a green coloration with yellow and red notes and 50% w/w 

HPC (f) displayed a uniform red coloration. 

Figure 4.24 Profilometry scan across the diameter of the CNCs-K/HPC 𝑀𝑤̅̅ ̅̅ = 300 000 films with 

different percentages, 5% (a), 10% (b), 20% (c), 30% (d) 40% (e) and 50% (f) w/w of HPC, respectively. 
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Table 6 specifies the wavelength peak, the estimated pitch values (from Equation 1) and 

wavelength variation (by the FWHM of each spectrum) of each drop-casted film. 

 

 

Figure 4.25 POM images, obtained in reflection mode of drop-casting films from mixtures of CNCs-

K/HPC 𝑀𝑤̅̅ ̅̅  = 300 000 in different percentages, 5% (a), 10% (b), 20% (c), 30% (d) 40% (e) and 50% (f) w/w 

of HPC, respectively. They were observed with circular cross polarization, left circular polarization and right 
circular polarization. The obtained spectra were acquired under LCP and RCP light and the scale bar 
corresponds to 50 μm. 
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Table 6 Maximum wavelength peak determined from spectra maximum reflectivity value, the 

cholesteric pitch value using the de Vries expression and the  wavelength variation (FWHM value, related 
to the spectral width) determined from each spectrum, of the CNCs-K/HPC films by drop-casting method 
with different concentrations (5, 10, 20, 30, 40, 50% w/w HPC). Data acquired from Figure 4.25. 

w/w of HPC MAX (nm) 
Estimated pitch 

value (nm) 
 (FWHM) 

5% 434 278 433 

10% 441 283 441 

20% 466 299 475 

30% 474 304 465 

40% 496 318 496 

50% 630 404 629 

4.3. CNCs-K/HPC films  

Based on the POM and Vis-spectroscopy results and CNCs-K/HPC films photographs, it 

was found that it would be possible to produce films with structural coloration with maximum 

wavelength reflection within the visible range of the electromagnetic spectrum, between blue and 

red. At the same time, 100% HPC (3% in water) films with different molecular weights were 

produced by the solvent evaporation process. By handling the 80 000 and 300 000 molecular 

weight films, it was noticed that these latter were more flexible than those of lower molecular 

weight. Thus, by adding HPC with 𝑀𝑤
̅̅ ̅̅  = 300 000, it is expected to obtain CNCs-K/HPC composite 

films with better optical and mechanical properties that the ones previously produced by Gouveia. 

Films with 3.5 cm diameter were produced by solvent casting from a polystyrene petri 

dishes using 2 ml of CNCs-K/HPC suspension, CNCs (a), CNCs-K (b), 10% (c), 20% (d), 30% 

(e), 40% (f) and 50% (g) w/w of HPC. Photography’s were taken and can be observed in Figure 

4.26. The films with about 120 ± 10 μm (supporting information 7.g) of thickness were 

photographed under visible light using a left circular polarizer (LCP) and a right circular polarizer 

(RCP), as indicated by the direction of the arrows.  

It’s evident by the photographic register that the films exhibited iridescence, selective left-

handed circularly polarized light reflection, with the observation of a strong bright coloration and 

right-handed circularly polarized light transmission, where the films became almost colorless. 

Figure 4.26 Photographic images of CNCs-H (a), CNCs-K (b), 10% (c), 20% (d), 30% (e), 40% (f) 

and 50% (g) w/w of HPC films, respectively. They were observed under visible light and using the left and 
right circular polarizers. The scale bar corresponds to 1cm. 
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Although the optical response of these CNCs-K/HPC composite systems was better than the 

ones observed for the droplet-method films, obtained by 10 μl droplet evaporation, a uniform 

coloration throughout the entire film was not achieved. It is noteworthy that all films presented a 

blue outer ring, probably due to the evaporation rate process. For concentrations above 30% w/w 

HPC concentrations the obtained films exhibited a brightness decrease, as the shining 

appearance tends to fade, and from 40% w/w of HPC the films presented a matte finish. 

The CNCs film ( Figure 4.26-(a)) exhibits a bright iridescent red coloration while the blue 

CNCs-K (b) is the only membrane with a uniform coloration. These optical characteristics were 

similar to the ones presented by the films derived from droplets with the same suspensions. The 

10% w/w HPC (c) film shown a predominant green iridescent coloration that becomes reddish in 

the 20% w/w HPC (d) film. Films with 30% (e), 40% (f) and 50% w/w HPC (g) revealed color 

variation in three distinct areas, the red center, that tends to become gradually wider when the 

HPC percentages increases, a blue periphery and a green area in between. The structural 

coloration of the center of the films were confirmed using POM reflection images. These were 

observed under visible light, left-handed circular polarization and right-handed circular 

polarization and its characteristic wavelengths determined by spectroscopy (Figure 4.27). The 

LCP spectra were used to determinate the maximum wavelength peak, and the wavelength 

variation (by the FWHM value) and the estimated pitch value, using the Vries equation (Equation 

1) for each film, which is specified at Table 7. 

Table 7 Maximum wavelength peak determined from spectra maximum reflectivity value, the 

cholesteric pitch value using the de Vries expression and the  wavelength variation (FWHM value, related 
to the spectral width) determined from each spectrum, of the CNCs-K/HPC composite films (CNCs-H, CNCs-
K, and 10, 20, 30, 40, 50% w/w HPC concentrations ). Data acquired from Figure 4.27. 

Samples MAX (nm) 
Estimated pitch 

value (nm) 
 (FWHM) 

CNCS-H 665 426 230 

CNCS-K 426 273 116 

10% w/w HPC 544 349 172 

20% w/w HPC 554 355 168 

30% w/w HPC 621 398 179 

40% w/w HPC 686 440 194 

50% w/w HPC 742 476 234 

 

Based on Figure 4.27, its noticeable that all CNCs-K/HPC composite films present 

structural coloration within the visible range of the electromagnetic spectrum and that the 

maximum wavelength tends to increase with the addition of HPC, also perceptible at Table 7, as 

already verified in the films obtained from droplets. For that reason, 10% w/w of HPC film (Figure 

4.25- (c)) evident a green coloration, with 544 nm, where its starts to appear a yellow tint for the 

20% w/w HPC (d) film, with a maximum of 554 nm and a 355 nm pitch value. The film with 30% 

w/w of HPC (e), with a maximum wavelength value of 621 nm presents a 398 nm pitch, is 

completely red. The 40% (f) and 50% (g) w/w of HPC films present a maximum wavelength of 

686 nm and 742 nm respectively, showing a trend to an increase of wavelength towards the near-

infrared region of the electromagnetic spectrum. Note that the CNCs-H film presents a higher 

number of multicolored domains and the highest value of wavelength variation of 230 nm, twice 

the value of CNCs-K and reflects a strong coloration in the red wavelength, with 665 nm, while 

CNCs-K has a well-defined peak, with 116 nm of  and a maximum wavelength in the blue visible 

range, with 426 nm. 
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Figure 4.27 POM images, obtained in reflection mode of CNCs (a), CNCs-K (b) and different 

percentages of 10% (c), 20% (d), 30% (e), 40% (f) and 50% (g) w/w of HPC, respectively. They were 
observed with visible light, left circular polarization and right circular polarization. The obtained spectra were 
acquired with LCP and RCP and the scale bar corresponds to 50 μm. 
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The FTIR spectra of CNCs, CNCs-K, HPC and CNCs-K/HPC system with 300 000 

molecular weight are presented in Figure 4.28. It is evident that the CNCs and CNCs-K are 

identical which indicates that the ion exchange does not interfere with the absorbance of the 

characteristic bonds of cellulose. Also, the difference between the CNCs and the HPC spectra 

are not significant since hydroxypropylcellulose is derived from cellulose with addition of 2-

hydroxypropyl groups [78], therefore, it has similar characteristics chemical bonds. Note that 

these have common bands such as O-H, C-H and C-O at around, 3330 cm-1, 2900 cm-1 and 1069 

cm-1, respectively [79]. For that reason, the films with 20% and 50% w/w of HPC are very similar 

as well, nevertheless the C-H and C-O bonds become more pronounced with the increased of 

HPC percentages.  

XRD diffractograms of CNCs-K and 20%, 50% and 100% w/w of HPC with 300 000 
molecular weight are presented in Figure 4.29. The first displays the characteristic peaks of 

cellulose nanocrystals with peaks at 2=15º, 16.6º and 22.7º attributed to crystallographic planes 

of 101, 101̅ and 002 (which is the main peak and characteristic of the crystalline region), 

respectively [71]. The hydroxypropylcellulose film exhibit a peak at 2=8º corresponding to the 

HPC crystallographic plane 100 and another at 2= 20,3º which is a slightly oriented amorphous 

halo [80]. The presence of the HPC as a reinforcement in the CNCs-K/HPC composite films is 
proven by the appearance of these characteristics’ peaks in the 20% and 50% w/w HPC, where 
the 100 plane is most evident for the higher concentration. 

Figure 4.28 FTIR spectra of CNCs-K/HPC (𝑀𝑤̅̅ ̅̅ = 300 000) films of CNCs, CNCs-K, 20%, 50% and 

100% w/w of HPC, respectively. 
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Thermal stability is of critical importance for optical materials, since oxidation will 

influence the inherent colors and water absorption capacity [48]. For that reason, 

thermogravimetric analysis of CNCs, 50% and 100% w/w HPC were accomplished to verify the 

stability acquired by the composite films when hydroxypropylcellulose is used as reinforcement 

of the CNCs-K matrix (Figure 4.30). 

As demonstrated before, the ion exchange of the protonated CNCs from H+ to K+ leads 

to a first order reaction, Figure 4.17. The degradation process of the CNCs-K, Figure 4.30 red 

line, displays a mass change of 45.95% between 270 ºC to 320 ºC. In the HPC film (black line), 

the degradation process occurs also in one single stage and starts at a higher temperatures, at 

300 ºC, with a mass drop of 92.69%. It appears to have an endothermic peak at 378 ºC. The film 

with 50% w/w of HPC, represented by the purple line, is a first order degradation reaction where 

Figure 4.30 DSC-TGA analysis of CNCs-K, 50% and 100% w/w of HPC films (red, purple and black 
lines respectively). 

Figure 4.29 XRD diffractograms of CNCs-K/HPC (𝑀𝑤̅̅ ̅̅ = 300 000) films with 0%, 20%, 50% and 

100% w/w of HPC, respectively. 
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only one massive drop appears, between the ones registered for CNCs-K and HPC diffractogram, 

this is between 290 ºC and 335 ºC, with an 82.46% mass variation. Meaning that the introduction 

of hydroxypropylcellulose in the composite system causes an improvement in the mass 

degradation making the CNCs-K/HPC composite films more thermally stable [23]. 

 

4.4. CNCs-K/HPC films mechanical tests  

Although the flexibility of the films were visibly enhanced while handling the films, it is 

important to quantify the mechanical improvements when hydroxypropylcellulose was added as 

a reinforcement in the CNCs-K matrix. Several experiences were done in order to attain such 

results however, numerous problems were encountered during mechanical testing. In the first 

tries the film slip from the equipment clamps. In order to overcome this problem CNCs-K/HPC 

films were placed between two acetate frames, where each one contained double-sided adhesive 

tape to bond both frames and the film.  

It was noted that when closing the clamps, the film slip due to the glide of the tape, or one 

end of the film was dragged and did not break, Figure 4.31 (a) and (b), respectively. So, mounting 

the sample in the equipment was a great problem and the best results were obtained when the 

test was performed without frames. Although we could obtain some data the samples always 

broke exactly on the equipment clamps. These results induce a lot of uncertainty as to whether 

the break was due to the test itself or due to the force exerted by the grips, Figure 4.31 (c). The 

images of some of these tests are presented below, Figure 4.31. Due to the lack of time no other 

methodology was tested. 

 

 

 
  

Figure 4.31 Images taken after the mechanical test procedure with frame, (a) and (b), and without 
frame (c) using the 50% w/w of HPC concentration. 
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5. Conclusion and future perspectives  

The main goal of this work was to produce cellulose nanocrystalline composite films with 

the addition of hydroxypropylcellulose, as a reinforcement, in order to improve the flexibility of 

CNCs films while maintaining their typical structural coloration, when obtained from a lyotropic 

aqueous diluted CNCs suspension. 

CM500 from a eucalyptus source with particles lengths of 359 ± 212 μm, measured using 

POM, went through an acid hydrolysis process with a 50% yield and originated needle-like 

particles with average particle length and width dimensions of 336 ± 92 nm and 9 ± 3 nm, 

respectively, with an aspect ratio of 37 ratio. The crystalline index, measured using the empirical 

Segal method from XRD data, was registered as 88.2%, which corresponds to a 5% increase 

compared with the raw material (CM500). The degree of substitution was calculated as 2.09 -

OSO3H groups per 100 AGP units using elemental analysis. The separation between isotropic to 

anisotropic phase of this CNCs when suspended in water was found to occur between 2% and 

2.5% w/w of CNCs content. CNCs-CM500 hold great potential, due to their high aspect ratio, to 

produce CNCs/HPC composites films with iridescence and visible coloration. However, the 

process was time-consuming and impossible to carry out further studies in this dissertation time. 

In parallel, studies using CNCs-CMC were performed in order to understand the effect of 

the counter-ion in the CNCs coloration pallet as well as its introduction in the CNCs-K/HPC 

composite system. For that reason, the protons present on ester sulfate groups were substituted 

to potassium and sodium and suspensions with 0:1, 1:3, 1:1, 3:1 and 1:0 ratios of CNCs-K/CNCs-

H were produced. Droplets were deposited on a pre-treated substrate with UVO treatment, by 

drop-casting method, to create a hydrophobic zone and promote the planar anchoring of the 

CNCs suspension. It was confirmed that the substitutions enabled the blue shift of the CNCss 

coloration, using POM, and that CNCs-K is thermally more stable than the protonated CNCs, 

proven by DSC-TGA analysis. The different ratios shown a gradual wavelength evolution from 

red to blue and all droplets exhibited iridescence, selective left circularly polarized light reflection 

and right circularly polarized light transmission. 

To improve the mechanical properties of the brittle CNCs films, hydroxypropylcellulose 

(𝑀𝑤
̅̅ ̅̅ = 300 000) was added to the CNCs-K suspension in different percentages, 5%, 10%, 20%, 

30%, 40%, 50% w/w of HPC. Films with these suspensions were obtained by the solvent 

evaporation technique. It was proven that the addition of HPC increases the wavelength leading 

to the infrared spectrum, however POM images proved that the films presented coloration in the 

visible range even for the higher concentration. CNCs-K, with a blue coloration, proved to be a 

great starting point for the addition of HPC to the system, preserving wavelength from passing to 

infrared. The color evolution was gradual, and the increase of the pitch value was proportional to 

the addition of hydroxypropylcellulose, having been obtained films with blue, green and red 

coloration. These composite films although presenting structural coloration lose its brilliance 

above 30% w/w HPC transitioning to a matte finish.  

In conclusion, it was possible to control the color pallet of the films of CNCss with ion 

exchange and mimic the nanostructures present in nature, as an example of the Cetonia aurata 

beetle, since the CNCs-K/HPC films also displayed LCP light reflection and RCP light 

transmission using 100% cellulosic products.  

An enhanced of the mechanical properties seems to be achieved with addition of 

plasticizer polymer, HPC with 300 000 molecular weight, since the films are less brittle (however 

mechanical testing should be done to confirm this observation) without compromising the 

structural coloration. 

In the future, it would be interesting to produce CNCs/HPC composite systems obtained 

from eucalyptus (Micronized Cellulose) and study the films color evolution potential. It is attractive 
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to try different times for the acid hydrolysis to examine its influence in the yield, liquid crystalline 

phase separation and coloration. These colored CNCs-K/HPC films have potential to be used in 

inkjet or other printing methods and tested in different substrates. They can also be used as ink 

and so it is noteworthy to study and control the viscosity and rheology of the mixtures. Therefore, 

in order to continue this study, draw more conclusions and improve the product, I propose the 

following tests: 

• Study the organization at the nanoscale, with SEM or TEM techniques; 

• Study the influence of HPC addition on the suspension properties by, for instance, 

rheology; 

• Determine the ionic strength of the different suspensions by DLS, zeta potential stability 

and see if the presence of HPC affects their stability; 

• Determine the film’s mechanical properties; 

• Determine the composite mixtures rheological properties; 

• Determine the brightness and opacity of films; 

In the long run it would be interesting to study the possible addition of a fluorescent 

element in order to mimic the multiple structural characteristics of the Hoplia coerulea beetle, thus 

produce a cellulose-based OVD with several safety levels. 
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7. Supporting information  

a. Characterization 

Characterization via Fourier Transform Infrared (FTIR) spectroscopy was obtained using 

a PerkinElmer Spectrum Two spectrometer equipped with a universal attenuated total reflectance 

ATR element (Perkin Elmer Ltd, Bucks, UK). Spectra were acquired at room temperature, with 

data between 4000 to 400 cm-1 with a 4 cm-1 resolution.  

X-Ray diffraction (XRD) spectra were acquired using a PANalytical X’pert PRO model 

diffractometer with Bragg-Brentano (θ/2θ coupled) geometry with CuK (λ = 1.5406 Å) radiation at 

45 KV and 40 mA. The XRD patterns were obtained with a scanning step of 2θ=0.033°, from 5º 

to 40° C. 

Thermogravimetric analysis coupled with Scanning calorimetry with (TGA-DSC) was 

performed using a STA 449 F3 Jupiter® simultaneous thermal analyzer. Each sample was heated 

at a heating rate of 10 ºC/min from 25 to 900 ºC, in an inert nitrogen atmosphere.  

Elemental analysis (EA) was performed using a Thermo-Finnigan-CE Instruments Flash 

EA 1112 CHNS series model element analyzer, based on the combustion method of vanadium 

pentoxide catalyzed material.  

ICP-AES technique was performed by digesting 2.7 mg of the CNCs-K and CNCs-Na in 

500 μl of nitric acid (p.a.). The process was carried out at 60 ° to 70 ° C for 1 hour or until complete 

dissolution. 

In order to determine the average length and diameter dimensions of the produced CNCs, 

Atomic Force Microscopy (AFM) data acquired using an Asylum Re-search MFP-3D tapping 

mode system with commercial silicon probes (scanning frequency of 300 kHz, k=26 N/m). The 

analyzed CNCs particles were prepared by depositing 1 μl droplets of an extremely diluted CNCs 

suspension in water onto a mica substrate (Muscovite Mica, V-5 from Electron Microscopy 

Sciences). Just prior to deposition, the suspension was sonicated in an ice bath with a Hielscher 

UP400S ultrasonic tip (460 W, 24 kHz, 0.85 cycle and 80% amplitude) for two consecutive 20 

minute periods. AFM images were analyzed with Gwyddion software (version 2.50, 

http://gwyddion.net) and the process consisted of 150 manual measurements of CNCs particles 

length and width. 

Polarized Optical Microscopy (POM) images were obtained using a polarized optical 

microscope (Olympus BX-51) connected to a cold light source (Olympus KL2500). An equipped 

camera (Olympus DP73) and Olympus Stream Basic 1.9 software were used for image capture. 

Reflectance spectrometry analysis of the produced CNCs films was measured with a Sarspec 

spectrometer (using the software LightScan 1.1.17, in Sense+ mode)  

Photographs taken from the films were captured with the Canon EOS 550D camera 

coupled to an EF-S60 mm macro lens under visible radiation and using left and right circular 

rotation polarizers or cross polarizers. 

Circular dichroism (CD) experiments were performed using an Applied Photophysics 

Chirascan™ CD spectrometer. The scanned wavelengths ranged from 200 and 800 nm, with a 

bandwidth of 1 nm and scanning rate of 200 nm/s.  

Bend-testing of the CNCs/HPC films were conducted using cylindrical mandrels 

apparatus with a semi-suspended pliable platform (BRAIVE Instruments), and a set of mandrels 

varying in diameter. A total of 10 mandrels were used, ranging in diameter from 25 to 2 mm. 

Briefly, within 1 second, each film was folded to 180° to form an inverted “U” (Figure 7.1) shaped 

angle over the mandrel, maintaining close contact with it [81] The shape was maintained for 2 

seconds before release. Each sample was bend-tested using successively smaller mandrels, with 

http://gwyddion.net/
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the sample being inspected after being bent around each mandrel. The bend procedure was 

continued until cracks were visible or until the sample did not experience any cracking with the 

smallest mandrel, in which case the sample was recorded as having not cracked (NC).  

Profilometry was used to map the surface of solid CNCs films derived from droplets using 

a KLA Tencor D-600 stylus profilometer. Scanning speed was 0.05 mm/s, while stylus weight 

applied was 2 mg. 

 

 

b. POM measurements of CM500 fibers length  

 

Table 8 POM measurements of CM500 fibers length. 

 Measurements 

C
M

5
0

0
 F

ib
e

rs
 L

e
n

g
th

 (
μ

m
) 

170.368 551.752 228.571 229.198 692.912 49.762 373.623 591.939 117.855 150.111 637.486 

194.53 194.706 255.687 143.542 817.056 373.623 315.231 190.313 462.316 694.644 372.814 

406.185 229.014 117.539 266.64 400.272 315.231 172.756 105.787 205.116 263.123 173.069 

679.837 259.251 437.567 331.985 745.671 172.756 153.764 132.628 242.842 740.447 357.429 

244.136 130.953 851.085 65.41 573.693 153.764 533.698 148.746 181.789 225.572 437.657 

268.646 340.068 195.197 297.37 586.808 533.698 434.104 224.104 189.349 235.338 334.173 

387.015 405.201 199.588 439.817 279.307 434.104 774.966 611.462 509.887 230.893 465.48 

300.605 950.223 183.473 465.17 90.835 774.966 115.515 168.874 90.767 284.702 656.333 

299.919 180.894 532.414 143.916 572.343 115.515 673.846 494.264 727.81 563.478 650.605 

503.26 134.56 794.761 168.8 49.762 673.846 342.406 225.925 77.383 459.795 494.52 

 

 

 

 

 

Figure 7.1 Schematic representation of the bend-test configuration showing a sample bent around a 
mandrel. 
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c. AFM Measurements of CNCs-CM500 fibers length and 

width  

 

Table 9 AFM Measurements of CNCs-CM500 fibers length and width. 

 CNCs – CM500 Measurements 

L
e

n
g

th
 (

n
m

) 

598.27 397.46 461.99 206.61 330.09 332.13 266.46 326.37 287.79 428.63 

311.84 470.06 483.73 213.17 455.97 216.08 285.12 276.61 183.47 359.01 

304.47 502.20 403.94 338.15 417.75 354.80 343.42 486.10 241.33 306.54 

283.58 394.38 288.22 343.89 438.24 326.90 291.68 427.77 209.17 400.27 

436.18 256.27 389.36 299.84 348.47 324.28 327.06 381.99 399.30 231.44 

323.75 379.05 273.45 203.85 557.41 339.16 388.35 212.10 238.33 430.04 

149.07 343.42 371.25 324.72 274.42 262.92 253.85 279.21 284.70 526.42 

271.82 197.54 344.30 239.68 268.86 550.36 259.88 274.66 441.43 371.36 

395.78 500.00 375.90 265.14 315.98 247.96 279.48 351.53 285.01 240.20 

373.28 238.27 327.01 212.54 364.01 232.47 289.26 257.19 239.18 282.92 

381.34 551.62 310.43 423.63 403.19 301.12 289.52 219.12 272.04 282.54 

469.19 310.43 284.06 185.42 203.04 537.64 301.12 485.26 238.51 268.83 

476.25 313.47 376.48 584.61 260.60 317.19 269.44 415.65 312.73 321.74 

495.08 330.51 435.69 383.43 236.55 281.76 273.45 434.27 316.90 393.55 

496.72 291.04 247.28 458.21 278.86 292.19 399.44 281.80 300.24 428.63 

W
id

th
 (

n
m

) 

5.352 2.253 7.356 7.075 7.752 9.59 10.33 12.27 8.631 18.25 

7.34 5.865 10.57 9.158 6.275 7.79 10.05 10.56 8.234 21.21 

7.466 8.278 4.433 8.149 8.123 7.205 13.77 8.075 6.946 14.94 

7.048 6.391 8.56 10.07 9.3 4.615 15.88 13.68 8.264 13.73 

10.24 6.927 8.635 9.333 10.47 8.777 9.317 9.6 7.469 16.96 

4.526 9.941 9.288 8.46 10.24 1.261 10.06 8.675 5.041 9.049 

7.365 7.826 7.318 3.677 7.375 4.084 10.32 12.79 9.129 10.68 

6.06 5.013 7.854 8.109 7.32 6.453 10.36 12.73 7.19 12.43 

3.316 5.908 10.86 10.68 7.324 5.475 9.214 9.953 7.958 20.44 

8.963 6.25 11.01 9.575 7.572 4.23 11.13 9.498 10.75 11.89 

6.676 6.191 11 8.158 4.966 5.661 12.42 9.12 13.49 9.22 

9.029 10.24 9.816 8.183 9.429 4.549 8.356 8.557 14.59 6.984 

5.679 6.753 6.547 11.33 5.473 2.695 6.91 9.138 10.63 10.59 

7.697 8.052 11.26 10.74 7.901 1.668 6.662 10.11 9.343 11.3 

7.039 7.088 12.33 7.941 5.633 11.22 14.81 8.949 12.87 18.25 

 

 

 

 

 

 



52 

 

 

 

 

 

 

d. AFM Measurements of CNCs-CMC fibers length and width  

 

 

 

 

 

 

Figure 7.2 CNCs-CM500 histograms representing particles length and diameter distribution. 

 
 

 

Figure 7.3 CNCs-CMC histograms representing particles length and diameter distribution. 

 



53 

 

 

Table 10 AFM Measurements of CNCs-CMC fibers length and width. 

 CNCs – CM500 Measurements 

L
e

n
g

th
 (

n
m

) 

115.92 168.65 173.33 121.71 114.18 117.14 146.25 185.57 165.25 139.10 

244.58 109.09 185.78 164.28 137.72 137.04 161.56 140.90 177.28 133.53 

295.67 169.21 155.88 110.71 209.58 108.44 156.08 131.08 163.96 144.51 

180.06 210.65 178.75 150.76 152.72 154.60 205.58 140.05 198.06 162.00 

192.54 150.56 184.99 106.79 144.14 116.03 240.15 152.52 180.75 127.93 

148.98 149.07 122.14 114.06 126.43 171.89 169.91 206.61 166.67 181.94 

131.38 143.31 174.42 154.91 156.20 103.93 137.17 107.41 149.31 142.28 

179.98 138.87 126.57 162.63 143.03 161.56 186.00 129.34 101.68 162.98 

249.69 136.00 147.91 123.98 171.96 170.72 165.23 126.39 164.93 138.20 

134.06 158.34 148.75 150.29 161.86 235.95 110.83 164.53 148.00 164.09 

161.48 220.74 164.18 241.07 134.72 122.29 154.57 120.09 168.65 170.62 

208.22 168.63 135.87 127.51 165.17 215.32 138.01 164.53 106.79 153.21 

163.85 141.31 133.83 141.91 118.27 148.98 143.77 156.08 132.73 134.06 

123.91 152.05 104.44 167.49 125.44 185.59 202.60 130.13 185.21 125.58 

159.12 179.98 115.69 105.33 140.62 182.12 128.24 199.27 123.59 105.33 

W
id

th
 (

n
m

) 

6.10 5.10 4.41 5.36 4.63 5.83 5.37 5.60 6.36 4.16 

6.22 4.53 5.45 5.46 3.94 4.54 4.70 4.87 5.36 4.88 

4.27 5.67 5.22 3.03 5.61 5.99 4.68 4.14 6.47 7.84 

7.12 6.50 3.99 4.00 6.00 3.99 5.04 7.58 4.89 6.33 

8.71 5.47 5.03 4.56 6.33 3.36 6.99 4.12 4.89 5.95 

5.79 5.59 4.23 3.08 4.25 5.15 5.01 6.71 5.41 8.50 

5.38 5.19 4.41 3.41 4.78 6.05 5.53 4.84 4.78 10.21 

4.87 4.37 5.40 4.70 6.13 5.79 5.39 5.02 6.60 7.14 

5.60 4.01 4.61 4.05 4.96 4.85 4.98 5.09 5.10 8.42 

6.16 5.66 3.32 5.19 3.88 3.87 6.74 4.36 6.13 10.31 

5.83 6.73 3.60 5.72 3.60 6.32 4.67 4.71 6.41 7.37 

5.45 3.59 4.80 5.82 4.36 3.47 4.37 7.45 5.05 7.64 

6.04 3.92 3.60 5.04 3.38 5.28 5.38 5.26 5.02 9.01 

6.10 5.66 4.21 5.69 4.18 5.78 4.24 6.57 5.09 8.70 

5.78 3.70 3.46 4.91 5.47 4.62 5.53 5.19 5.29 9.95 
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e. CNCs/HPC composite films  

 

Figure 7.4 Photography taken with LCP polarizers (a) to (f), SEM (g) to (l) and POM (m) to (r) 
of CNCs/HPC films, with 0, 10, 20, 30, 40, 50% w/w HPC concentration. Scales: 5 mm for (a) to (f), 
500 nm for (g) to (i) and 100 μm POM images. 
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f. CNCs-K/HPC films (𝑴𝒘
̅̅ ̅̅ ̅= 100 000, 300 000 and 600 000), 

Photographs under visible light and left-handed and right-

handed circularly polarized light and spectra analyzes  

 

 

 

 

 

 

 

Figure 7.5 Photographic images of CNCs-K/HPC composite films, using different percentages 5% 

(a), 10% (b), 20% (c) and 30% (d) w/w of HPC 𝑀𝑤̅̅ ̅̅ = 100 000, respectively, observed under visible light, left 

and right circular polarize light (indicated by the direction of the arrows); the obtained Vis spectra respectively 
was acquired with a spectrophotometer accoupled to the POM and the correspondingly profilometry. The 
scale bar corresponds to 1mm. 
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Figure 7.6 Photographic images of CNCs-K/HPC composite films, using different percentages 5% 

(a), 10% (b), 20% (c), 30% (d), 40% (e) and 50% (f) w/w of HPC 𝑀𝑤̅̅ ̅̅ = 300 000, respectively, observed under 

visible light, left and right circular polarize light (indicated by the direction of the arrows); the obtained Vis 
spectra respectively was acquired with a spectrophotometer accoupled to the POM and the correspondingly 
profilometry. The scale bar corresponds to 1mm. 
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Figure 7.7 Photographic images of CNCs-K/HPC composite films, using different percentages 5% 

(a), 10% (b), 20% (c), 30% (d), 40% (e) and 50% (f) w/w of HPC 𝑀𝑤̅̅ ̅̅ = 600 000, respectively, observed under 

visible light, left and right circular polarize light (indicated by the direction of the arrows); the obtained Vis 
spectra respectively was acquired with a spectrophotometer accoupled to the POM and the correspondingly 
profilometry. The scale bar corresponds to 1mm. 
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g. Thickness measurements of the CNCs-K/HPC films  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 11 Thickness measurements of the CNCs-K/HPC films 
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