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Abstract 
The role of microfluidics in liquid biopsy as a more capable solution to address the monitoring of 

cancer progression in patients is gaining increasing attention. One out of the several difficulties in can-

cer monitoring resides with the offset between current cell growth techniques in vitro and the influence 

of the cellular microenvironment in proliferation. One application of microfluidics consists in the use of 

microdroplets to replicate the complex dynamic microenvironment that can accurately describe factual 

3D models of cancer cell growth. The goal of this thesis was to develop a set of microfluidic-based 

tools that would enable the encapsulation, proliferation and monitoring of single cancer cells in micro-

droplets. For this, a set of microfluidic devices made of PDMS for droplet generation and containment 

were developed by photo- and soft-lithography techniques, being tested and optimized to ensure single 

cancer cell encapsulation. After the optimization of the droplet generation parameters in terms of droplet 

size and long-term stability on-chip, the best performance conditions were selected for cell growth ex-

periments.  Different densities of MDA-MB-435S cancer cells were combined with various percentages 

of Matrigel®, an extracellular matrix supplement, to promote cell proliferation. As a result, it was possi-

ble to monitor droplets with cancer cells for a range of 1-20 days. A preliminary observation showed 

signs of cell aggregation, indicating that the tools developed during the thesis have the potential of 

developing 3D cancer spheroids from cancer single cells. 

Keywords: Microfluidics, liquid biopsy, cancer, microdroplets, PDMS, 3D spheroids, cancer single cells. 
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Resumo 
O papel da microfluidica no campo da biopsia líquida começa a ganhar cada vez mais atenção ao 

revelar-se como uma solução mais capaz na monitorização da progressão de cancro em doentes on-

cológicos. O foco das dificuldades mais prementes na monitorização da doença encontra-se na desfa-

sagem entre os métodos convencionais de crescimento celular in vitro e a representação actual da 

influência de microambientes celulares como um modelo 3D. Uma das áreas de especialidade do ramo 

da microfluidica consiste no uso de microdroplets como um meio de recriação de ambientes com-

plexos que possam replicar os modelos actuais de crescimento celular em 3D. O objectivo principal 

desta tese consistiu em desenvolver estruturas de microfluidica que permitissem o encapsulamento, 

a proliferação e a monitorização de células cancerígenas individuais em microdroplets. Para tal, 

um conjunto de dispositivos de microfluidica à base de PDMS para formação e contenção de microdro-

plets foram desenvolvidos recorrendo a técnicas de photolithography e softlithography, sendo posteri-

ormente testados e optimizados para garantir o encapsulamento de células cancerígenas individu-
ais. Depois da optimização dos parâmetros de formação de microdroplets relativos a tamanhos obtidos 

e estabilidade a longo prazo, o conjunto dos melhores parâmetros foi selecionado para experiências de 

crescimento celular. Diferentes densidades celulares de células MDA-MB-435S foram combinadas com 

diferentes percentagens de Matrigel® para acelerar o crescimento celular. Dentro dos resultados obti-

dos na tese, foi possível monitorizar microdroplets até 20 dias após a sua formação e também se veri-

ficaram sinais de agregação de células em microdroplets, reforçando o potencial destas técnicas em 

formar estruturas esferoides 3D a partir de células individuais. 

Palavras-chave: Microfluidica, biopsia líquida, cancro, microdroplets, células cancerígenas individuais, 

PDMS, esferoides 3D,  
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Motivation and Objectives 
Cancer continues to be a leading cause of death worldwide, being second only after cardiovascular 

diseases1. In 2018, about 9.6 million deaths and 18.1 million new cases were recorded2–4, and according 

to some reports, by 2020, it could become the main cause of death worldwide5. Those statistics can be 

attributed to a rapidly increasing aging population and added risks attributed to socioeconomical devel-

opment6. Treating patients with cancer becomes an unfathomable challenge in large part due to two 

major factors: model prediction of spread after the primary tumour starts extruding cells to further organs 

(metastasis)7,8 and increased economic burden on the most advanced stages of cancer treatment9–11. 

At least 90 % of all cancer deaths are attributed to the occurrence of metastasis. One on the main 

pathways by which tumours can expand to distant organs relates to the dissemination of circulating 

tumour cells (CTCs), which are produced from a mature tumour and enter the bloodstream, presumably 

by means of the endothelial-mesenchymal transition (EMT), progressing into distant tissues and organs, 

and eventually causing metastasis.  

Nowadays, the study of single cells is revolutionising the way we approach and understand cancer 

supported by the use of technology for biology12. By using single-cell omics (genomics, tran-

scriptomics and/or metabolomics) it is possible to obtain information at the single-cell level and not only 

averaged data across a bulk population of cells, as in the past. However, it is also important to be able 

to relate the information we obtain from each single cell of interest to its proliferation mechanisms, 

growth dynamics, metabolism and clonal evolution. A continued unsolved challenge is the high-through-

put and controlled generation of cancer models deriving from a single-cell. In this sense, spheroids, 
sphere-shaped aggregates of cells can be used as 3D cancer models, having been reported to accu-

rately mimic the characteristics of in vivo solid tumours with potential for therapeutic screening and drug 

testing13,  

As per bottlenecks and challenges described above, the main goal of this thesis was to explore the 

possibility of the use of microdroplets technology for the encapsulation of cancer single cells for their 

continuous monitoring while proliferation into 3D spheroids. For this, several specific objectives were 

defined as follows:  

1. Fabrication of a set of microfluidic and microdroplets devices for the encapsulation of single 

cancer cells.  

2. Interfacing the microdroplet generation with reservoirs for the incubation of encapsulated cell in 

microfluidic devices.  

3. Optimization of the microfluidic conditions that may result in a robust platform for the single-cell 

derived 3D spheroids proliferation and monitoring.  

4. Pre-testing the developed platforms with cancer cells from lab-grown cancer cell lines.  
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1 Introduction 

1.1 The disease known as Cancer 

Cancer derives from damaged somatic cells in the body14–16 after an accumulation of mutations that can 

be derived from routine processes for example, DNA repair, transcription and replication17–19. Those 

mutations can also be caused by multiple punctual modifications to chromosomal structures or en-

zymes, epigenetic alterations20 or caused by exogenous infections, for example oncoviruses21,22. Can-

cerous cells can start from any point in the body, from specific cells in organs like the heart and kidneys, 

to the bone marrow23–25. Cells in the body engage in the process of division and multiplication, which 

can include several steps. During any of these steps, erroneous mismatches can appear, which can 

sum up to an even greater alteration of the original genotype26–31. The normal path of progression of 

cancer starts when a cell develops an erroneous version of its original genome and starts to produce 

abnormal copies of itself, up to the point where entire tissues are affected7. The worst outcome of the 

disease is the onset of metastasis, where an uncontrolled spread of damaged cells, so-called circulating 

tumour cells (CTCs), spread throughout the body, making use of the circulatory and lymphatic systems 

to travel throughout the body32–34, and seeding secondary tumours in different tissues and organs. When 

the damaged cells start replacing the functional cells in the organs, those organs stop functioning 

properly, eventually leading to death due to multiple organ failure20. About 90% of all cancer related 

deaths are attributed to the occurrence of metastasis35. 

One of the major challenges in cancer is that it is a highly heterogeneous disease at many different 

levels: intra-tumour, inter-tumour and also amongst different patients. The heterogeneity in cancer has 

been defined as one of the hallmarks in cancer8,23,36–42, as well as in metastasis, limiting the accurate 

diagnosis that may enable the identification of the appropriate druggable mutations, eventually resulting 

in poor efficacy of most treatments37,43,44.  

Figure 1 – Composite figure depicting the process of tumour propagation (A) and the different forms how heteroge-
neity can be expressed by multiple phylogenetic trees (B) (Pictures taken from references 34,47).    
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1.2 Circulating Tumour Cells (CTCs) and Liquid Biopsy 

According to several reports, CTCs would have the ability to induce metastasis into distant organs, but 

only in a fractional number of the total produced by the tumour. Discovered in 1869 by Thomas Ash-

worth45, their role in cancer development only came later, when several other studies managed to 

demonstrate the correlation between the number of CTCs present in the bloodstream and the risk of a 

patient developing metastasis46–52. Also, CTC numbers can serve as an estimator of overall rate of 

survival for patients and therapy efficiency. So, a possible logical route in order to augment efficiency in 

the treatment of cancer would be for the detection and analysis of those CTCs. The technique of liquid 

biopsy in particular permits to extract CTCs from a patient’s blood in a facilitated way and without caus-

ing too much trauma to their patients53,54. Unfortunately, CTCs have a low time window of survival, with 

only 0.1 % of CTC being able to survive and only 0.01 % being viable enough to induce metastasis, 

being classified as exceedingly rare cells47,50,55–57.                   

In order to tackle the difficulty in extracting CTCs from whole blood samples for their isolation58, charac-

terisation and analysis, several technologies were developed, involving different techniques such as 

immunomagnetic separation, microfluidic sorting53, gradient centrifugation59 and dielectrophoresis sep-

aration50,60–67.  

The process of metastasis is endowed with significant advantages that allow it to become chaotically 

efficient in confusing the immune system and rendering medical treatments ineffective8,20,42,68. For ex-

ample, enhanced motility and permeation into tissues33, stress-induced plasticity to overcome constrains 

in growth, capability in modulating local microenvironments into more propitious ones for tumour cells 

and the ability to disseminate into distant organs through CTCs48,55. As such, there is still a remarkable 

gap on understanding the functionality of those isolated CTCs, which are a snapshot of the current state 

of the disease.  

1.3 Spheroids and 3D Cancer Models 

Based on past research, researchers became aware of the potential that 3D spheroids, sphere-shaped 

aggregates of cells, hold as a model for emulating how cancer cells form complex structures like those 

Figure 2 – Schematic figure that shows how 
CTCs travel through the body to propagate 
into distant organs (Ref. from article58). 
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found in cancer patients behave69–74. Spheroids can reproduce several features identical to those found 

in tumours, for example, oxygen and nutrient depletion, culture heterogeneity75 and proliferation rates. 

Spheroids are also of interest to understand the efficacy of therapies, since they can emulate the differ-

ent ways cancer cells resist to different drugs and irradiation treatments72 for example, by inducing DNA 

double-strand breaks that can result in further mutations that can make the cells even more resilient, 

generating  chemotherapy-resistant cancer stem cells (CSCs) that can help in maintaining the tumours 

viable and by making their microenvironments less effective for drugs by altering their pH levels to be-

come more acidic76.  They can also potentially generate CTCs of their own57,62l, making spheroids an 

acceptable model to predict cancer mechanisms of propagation.  

However, in the issue of generating spheroid models from single-cell populations, there are two bottle-

neck situations that further complicate things when attempting to postulate a cancer model for CTCs: 

1. The current methods for cell growth heavily rely on 2D-based techniques, for example, hanging 

drop67,77, non-adhesive surfaces78, suspension in microwell plates67,79. They reportedly fail to emu-

late the complexities involving the microenvironment in which tumours grow, in specific, the effect 

of the extracellular matrix in growth75,80–84 , the lack of spatial constrictions85, the metabolic require-

ments to sustain cancer cells for specific long periods of time (temperature, pH, CO2 levels)86 and 

the influence of the immune system in forcing the cells to stablish preferential populations by natural 

selection72. Table 1 enumerates the numerous ways in which 2D and 3D cell cultures differ from 

each other. 

2. CTCs have a very low rate of survival in the bloodstream, a lower rate of ability to induce metastasis 

and even lower rate of isolation from liquid biopsy samples35, so, it becomes extremely difficult to 

obtain enough viable samples for in vitro experiments and in vivo xenografts63,87. 

Table 1 – Table enumerating the differences between 2D and 3D cell cultures88. 

 

Taking both problems in consideration, the best way to study the matter of how single CTCs can initiate 

the metastatic process is to conceive a method of proliferating single cells in 3D-like structures. The 

spheroid structure previously mentioned as a good model for a 3D cell structure can replicate in vivo 

conditions of solid tumours with potential applications for therapeutic purposes42,76. But the production 

Characteristics 2D cell culture 3D cell culture
Morphology Cells grow over a flat surface Formation of spheroids

Cell-cell interaction Limited cell contact, only on 
edges

Interactions similar to in vivo 
conditions

Medium distribution Medium is distributed evenly, 
not like in vivo

Medium gets scarce closer to 
the core of the culture, 

generating an hypoxic core
Expression Differ significantly among cells Models more approximate to 

reality
Differentiation Moderate differentiation Noticeable differentiation

Viability Sensible to cytotoxin More resistant to external 
factors and more viable

Drug sensitivity More responsive to drugs (less 
accurate)

Less responsive to drugs (more 
accurate)

Sub-culture time Up to 1 week Nearly 4 weeks
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of spheroids can be an arduous process, with a lot of variability between spheroid size and phenotypical 

profile73 and can also be difficult to analyse morphology and viability of samples without high-resolution 

technology, like confocal microscopy. A good way to predict cancer growth is to project experiments 

that can obtain high-throughput screening (HTS) results from replications of the same experimental 

conditions74,89. But designing multiple experiments for complex structures like tumours can be too costly 

and may not consider the individual nature of cancer cells in driving the metastatic process, from me-

tabolism requirements, to clonal formation and to proliferation speed. To that end, microfluidic tech-

niques may provide a solution for the low-throughput difficulties associated with spheroid growth and 

proliferation74.  

Figure 3 – Descriptive figure with all of 
the different elements that shape the 
premise of the thesis, with an image de-
picting liquid biopsy characteristics65 (A) 
different spheroid formation techniques86 
(B) and the different steps regarding mi-
crodroplet generation, retention and ob-
servation of cancer spheroid formation 
from illustrative images (C1, D1, E1) to 
real time images (C2, D2, E2). 

 

 

 

1.4 Microfluidics, Microdroplets and Cell Encapsulation 

The first notions about microfluidics came in 1965 by Richard Sweet, upon the discovery of inkjet printing 

techniques. In 1979, Terry et al. demonstrated the potential in microfluidics to produce devices that 

could manipulate fluids on the micro-scale, and in the 90s, several articles revealed the potential in 

microfluidics to handle biological applications90, especially regarding the use of polydimethylsiloxane 

(PDMS) as a material for biological analysis due to its biocompatibility and easy production67,91.  

The control of very small volumes of liquids within microscopic-sized channels, combined with fast pro-

ducing techniques of an affordable nature and the ability to time reactions down to the microsecond or 

up to sets of hours92–94 made the field of microfluidics very valued in industry applications and biology 

research71,95,96. By the start of the 21st century, microfluidics had branched off into several different spe-

cialties within the field, like digital microfluidics, organ-on-a-chip devices97,98, paper-based devices67,99 

and droplet microfluidics42,74,96,100–102. The last subgenre mentioned, also known as segmented flow mi-

crofluidics or microdroplets technology, will be the starting point for the project of this thesis. 

Microdroplet generation is based on the principle of how emulsions are formed102,103. When two immis-

cible fluids with different viscosities meet one another (entering into a laminar flow regime)94, the two 

fluids avoid interacting with each other directly104. By controlling the point of contact of both liquids, it is 

possible to generate droplets105. The typical geometry for the formation of droplets revolves around the 
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flow-focusing geometry microfluidic devices102,105–109, in which the two liquid phases enter through two 

different openings of the channels defined as inlets67,110. One of the inlets is for the dispersive phase 

(phase that will get encapsulated into droplets) and the other inlet is for the continuous phase (phase in 

which the droplets will travel and be contained)111. The two phases encounter each other at a T-shaped 

junction and form droplets upon contact through a “cut” motion104,107,112,113. The droplets then follow the 

flow through a third channel defined as an outlet and exit the microfluidic device67. By controlling the 

flow rate of both liquids and the width of the intersection96,102,109,114, microdroplets can be generated at 

a specific frequency with well-defined sizes at high monodispersity93,104,106,115,116.  

Generated droplets are the perfect isolated environment that allow to control chemical reactions and to 

separate multiple components. A certain number of studies have already dwelled in the encapsulation 

of different types of cells74,117, from bacteria118 to mammalian cells119. The focus on those studies has 

been mostly in distinguishing samples within droplets to produce high-throughput results101,120, but not 

many endeavoured in maintaining their cultures for prolonged periods of time. Surpassing the limitations 

that reside in microdroplet encapsulation would allow to produce a promising tool for cell analysis in 

long-term studies59,93.  

With the situation fully described and taking into account the challenges to overcome in generating CTC 

spheroids based on single-cell derivation models66, the objective of this thesis is to perform a proof-of-

concept high-throughput microdroplet production method for the encapsulation of single cancer single -

cells and promote the formation of 3D-spheroids. The latter can be only realised after testing different 

parameters such as flow rates for continuous and dispersive phase, type of moulds for droplet genera-

tion and contention, type of cancer cells to encapsulate, addition of extracellular matrix-simulating prod-

ucts, incubation and monitoring settings. In theory, the idea of encapsulating cancer cells in micro-

droplets could provide a facilitated and affordable method to isolate cancer cells and monitor their pro-

gression using a microscope, as well as increasing the high-throughput fabrication of 3D spheroids. As 

mentioned before, microdroplet techniques are known for providing high-throughput results, allowing for 

a statistical observation of predominant phenotypes from samples of patients. With such results it would 

be possible to adjust treatments with a higher rate of success, besides providing new insights on the 

understanding on single-cell replication mechanisms and cell malignancy and colonisation potential. 

Figure 4 - Descriptive figure of the layout planned for the duration of the thesis (A) and an illustrative figure which 
shows the end result of all the stages of the thesis coming together into conceiving a method for cell encapsulation 
and monitoring (B). 
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2 Materials and Methods 

Materials: All the chemical haven been purchased from Sigma-Aldrich unless otherwise stated. 

2.1 Fabrication of the PDMS devices used for cell encapsu-
lation and growth monitoring 

For the assembly of the polydimethylsiloxane (PDMS) devices, two specific microfabrication techniques 

were utilized: photolithography and soft lithography121. The application of those techniques is summa-

rized in the following sections. 

2.1.1 Fabrication of the master SU-8 mould on silicon wafer 

The use of the photolithography technique was for the purpose of creating a master SU-8 mould that 

will serve to imprint the microfluidic channels of the PDMS devices, upon the use of soft-lithography for 

replication. 

All processes regarding the fabrication of the SU-8 mould were executed within a class 100 (according 

to the FED STD 209E, in ISO 14644-1 standards is the ISO 5) micro and nanofabrication cleanroom of 

around 700 m2 effective space. 

The first step for the fabrication of the SU-8 mask started with the design of the microfluidic channels on 

a writing program. The software Autodesk® AutoCAD 2019 was utilized to draw the design outlines to 

be replicated on the master, with the completed drawings exhibited on Annex 1. The AutoCAD file was 

processed for the direct writing laser (DWL) machine [DWL 200, Heidelberg Instruments]. The pattern 

of the complete design was inscribed on an acrylic hard mask that would confine the passage of UV-

light during the exposure step of the photolithography process. The SU-8 master mould was deposited 

on top of an 8’’ (20.32 cm) silicon wafer by spin-coating. Approximately 5 mL of SU-8 were poured on 

the centre of the wafer, with the wafer held in the centre of the spin-coater machine. The protocol fol-

lowed for the spin-coating was a 3-step process, starting with 500 rpm for 10 s with a ramp of 5 rpm, 

followed by 1000 rpm for 32 s with a ramp of 1.7 rpm and finishing with 100 rpm for 1 s with a ramp of 

2 rpm, in order to obtain an estimated layer thickness of 80 µm. The wafer was then subjected to a soft-

baking process with 2 different temperatures, using 2 different hot plates. The wafer was placed over 

the first hot plate at 65 °C for 3 min, and then it was moved to the other hot place at 95 °C for 9 min, 

and then removed in order to cool down before UV-light exposure. Using the hard mask fabricated 

beforehand and properly placed in the holder between the light source and the wafer, the wafer was 

irradiated with a 375 mJ cm-2 dose of UV-light for 10.9 s. The exposed wafer was subjected to a post-

exposure 3-step process. The wafer was placed over the first hot plate at 65 °C for 2 min, moved onto 
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the second hot plate at 95 °C for 7 min and placed back to the first hot plate for 2 more min, to generate 

a ramp for the cooldown process. The wafer was then developed, using propylene glycol methyl ether 

acetate (PGMEA) as the developer and isopropyl alcohol (IPA) to wash off the developer from the wafer. 

The development process lasted for 7 min, by submerging the wafer on a glass tub slightly filled with 

the developer while gently stirring it, and after passing the wafer to another glass tub filled with IPA to 

remove the developer from the surface. 

Once the features of the design were clearly visible over the mould, the wafer was then placed in an 

acrylic container and taken to the profilometer (KLA Tencor P-16+ Surface Profiler), to obtain the real 

values of the SU-8 thickness throughout the surface of the wafer. The values were stored in a datasheet 

and the wafer was taken to the microfluidics lab for the soft-lithography process. 

2.1.2 Fabrication of the PDMS devices by soft-lithography 

The soft-lithography process consisted of a pouring-solidify-peeling sequence. First, a PDMS solution 

of about 100 g in total was prepared using a combination of elastomer and curing agent in a 10:1 ratio 

[SYLGARD™ 184 Silicone Elastomer Base + Curing Agent (The Dow Corning Company] and then 

poured over the master mould. “Blank” PDMS moulds were prepared by pouring the remnants of the 

solution over empty Petri dishes (previously cleaned by N2). The filled master and Petri dishes with 

“blank” PDMS were de-gassed on the degasser [Bel-Art Products] by a primary vacuum pump [Agilent 

Technologies, IDP-3 Dry Scroll Vacuum Pump] until no air bubbles could be seen on the surface. Fol-

lowing, they were put in the oven [Heratherm Oven, Thermo Scientific] for a minimum of 1 h at 65 °C, 

until they were completely solid. The solidified PDMS mould over the wafer was removed using a scalpel 

and slowly peeled off by hand motion. With the moulds replicated on the PDMS, a biopsy puncher with 

1 mm diameter for the punch (Kai Medical) was used to open holes in the inlet/outlet zones and the 

replicated PDMS was bounded to the “blank” PDMS through surface activation by resorting to an oxygen 

plasma chamber Plasma Cleaner (PDC-002-CE, Harrick Plasma) with UV-light irradiation. The com-

pleted device with the sealed microfluidic channels was functionalized by injecting Aquapel® into the 

channels with the aid of a 1 mL syringe, a syringe needle (0.76 mm ID, INSTECH) and a piece of low-

density polyethylene (LDPE) Portex™ (Smiths Medical) tubing, following  by the injection of 3M™ 

Novec™ HFE-7500 oil (molecular weight - 414 g mol-1; viscosity – 0.77 cSt; liquid density – 1614 kg m-

3) to remove the Aquapel® from the channels before crystallization could occur. 

2.2 Microdroplet formation 

2.2.1 Cell culture preparation (seeding, proliferation, removal) 

For the growth of cancer cell cultures, a batch of MDA-MB-435 (MDA) cancer cells (ATCC, HTB-129) 

was cultured in Dulbecco’s modified Eagle’s medium (DMEM; Gibco), supplemented with 10 % of fetal 
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bovine serum (FBS, Gibco) to provide growth factors and a dose of penicillin/streptomycin (Corning) to 

prevent contamination in 1 % of the total volume. The complete solution was incubated at 37 °C, with 

CO2 levels at 5 % of the complete composition of the enclosed air.  

To obtain a vial of MDA cells ready for encapsulation, several steps were executed for that purpose. 

First, MDA cells were placed in 5 mL of medium, inside a T25 (25 cm2 surface area) flask, then the T25 

flask was left alone in the incubator until the vial could be considered confluent under optical microscope 

visualization (about 90 % of the total seeding surface covered). The next step was trypsinisation, starting 

with the removal of the starting medium (due to by-product accumulation) and then followed with the 

addition of 0.5 mL of Trypsin for 5 min and placing the flask in the incubator at 37 °C, 20 % of O2 and 5 

% of CO2 to detach the cells from the seeding surface. The process was followed by the addition of 4.5 

mL of the medium described initially, in order to nullify the effects of Trypsin (BioConcept, 100 mL). With 

the cells in a suspended state, the following step was to estimate the number of cells present in the 

solution. For this, about 10 µL of the MDA cell solution was added, along with 10 µL of Trypan Blue 

Solution (Corning, 100 mL). A haemocytometer (Figure 28, Annex 3) was utilized to count the viable 

cells placed on each of the 4 quadrants of its surface.  

The calculations for the estimated number of cells per mL were performed using the following formula: 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛𝑐𝑐𝑛𝑛 𝑐𝑐𝑜𝑜 𝑞𝑞𝑐𝑐𝑞𝑞𝑐𝑐𝑐𝑐𝑛𝑛𝑞𝑞𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

×  𝑐𝑐𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑𝑐𝑐𝑐𝑐 𝑜𝑜𝑞𝑞𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛 × 104 

However, since the density desired is in the order of millions, it is necessary to convert from 104 to 106. 

Once the final value is obtained for 106 cells per mL, adjustments were made to get the correct value 

for cell density that is necessary for the experiments, extracting as much is necessary from the MDA 

cell solution into a 1.5 mL Eppendorf.  

2.2.2 Encapsulation process 

The encapsulation process was initiated by the selection of the PDMS moulds made previously for mi-

crodroplet encapsulation. The continuous and dispersive phases were selected, with the solution of cells 

prepared as described in chapter 2.2.1 and added Matrigel®122 as the dispersive phase (Qcells), and a 

solution of FC-40 + Pico-Surf™ 1 (PS-1, Sphere Fluidics, Ltd.) in 2 % of the total volume as the contin-

uous phase (Qoil). The solutions were then placed inside 1 mL syringes attached to syringe needles (0.5 

mm inner diameter), with the needle tips connected to a portion of LDPE tubing (0.38 mm inner diame-

ter). The syringes were then placed on two separate syringe pumps (New Era Pump Systems) and the 

extensions of the LDPE tubing of the syringes were connected to the two inlets for the continuous and 

dispersive phases. The outlet of the mould responsible for droplet formation was connected to the inlet 

of the mould with the reservoir design for droplet capture by a portion of LDPE tubing and the outlet of 

the mould with the reservoir design was connected to a small plastic Eppendorf of 1 mL. The syringe 
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pumps were programmed for each of the syringes, with defined flow rates of 500 µL hr-1 for the contin-

uous phase, 100 µL hr-1 for the dispersive phase and with both pumps assuming a hydrodynamic radius 

of 4.7 mm. The reasoning for the values of both flow rates was stablished in order to obtain a ratio 

between the continuous and dispersive phases (Qoil/Qcells) of 5. The observation of droplet formation 

was done under an inverted optical microscope (Microfluidics Microscope Nikon ECLIPSE MA200) with 

a 5× objective, with saturation and brightness settings on the maximum level. In order to seal the reser-

voirs, a pair of metal tips was heated with a lighter and put in contact with the portions of LDPE con-

nected to the inlet and outlet, to shut them tight by contracting the channels through heat, without com-

pletely melting them. For the purpose of preserving the reservoirs for several days, an additional process 

was performed, which consisted of placing the reservoirs in a Petri dish, fixating them to the surface 

with glue tape, filling it with Milli-Q (MQ) water until it nearly reaches the top surface of the reservoirs 

and closing the Petri dish with its complimentary lid. 

2.2.3 Calibration of average droplet size and optimization of cell encap-

sulation rates 

After successfully sealing the reservoirs, pictures from the interior of the reservoir were taken, using the 

NIS-Elements F 3.2 software. For picture capture specifications, the images taken were in bright field 

conditions (unless when alterations were made) and saved in .tiff format. Afterwards, the images were 

processed in ImageJ to analyse the average droplet diameter obtained, and the encapsulation rates of 

cancer cells captured in microdroplets. For the average droplet diameter measurements, Milli-Q water 

was used as the dispersive phase, and for the calculation of the number of cells encapsulated per drop-

let, a solution of MDA-MB-435 and DMEM was used as the dispersive phase. These experiments were 

performed in order to discover the optimal values for the ratio between flow rates of the continuous and 

dispersive phases (Qoil/Qcells) that could allow for a balance between a majority of single cell encapsu-

lation and capture of samples with more than 100 droplets per picture. 

2.3 Cell encapsulation 

2.3.1 Experiment outline (solutions and moulds used) 

In preparation for the experiments regarding cell encapsulation and monitoring of growth, several 

moulds were tested, for both droplet generation and storage. The main mould type decided for droplet 

generation was the circular Dean flow mould with a T-section length of channel entry of 80 μm. For 

droplet conservation and long-term observation, the linear reservoir was chosen. For the first set of 

experiments, four different solutions were prepared for the experiments to serve as dispersive phase 

solutions. The composition of solutions for continuous and dispersive phase are as described previously 
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in chapter 2.2.1 for the dispersive phase, with 4 different percentages of Matrigel® added for each so-

lution based on total volume (1 %, 2 %, 4 %, 8 %) and in chapter 2.2.2 for the continuous phase, with 

the flow rates for each solution described in chapter 2.2.2. The cell density for all 4 dispersive phase 

solutions was approximately 2 × 106 cells mL-1. A schematic of the complete representation of the ex-

periments is represented in Figure 5 

 

Figure 5 – Representative layout of the encapsulation process of MDA-MB435 cells using a microdroplet generator 
(circular dean flow) and retention process within the microdroplet reservoir (linear reservoir). 

 

2.3.2 Preparation of the sealed reservoirs for incubation 

After sealing the reservoirs using the method as described in Chapter 2.2.2, the reservoirs were carefully 

placed in a clear plastic box, restrained inside using glue tape, and afterwards, the box was filled with 

Milli-Q water, up until the level of the water nearly reached the top surface of the reservoir. The purpose 

of this procedure is to prevent the diffusion of water and oil through the PDMS, helping to maintain the 

contents of the reservoir stable. A live picture of the preparation process can be seen in Figure 27, 

Annex 3. 

After the reservoirs were properly closed in the plastic box, the box is transported to the cell culture lab 

(CCL), doused with ethanol 70 % to sterilize it and then placed in the incubator, which was assumedly 

normally programmed under the following conditions: 37 °C, 20 % O2 and 5 % CO2. 
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3 Results and Discussion 
This chapter focuses on the overall results regarding every step of the master thesis’ work, from mould 

design to cell encapsulation in microdroplets. Each part of the project encompasses a detailed analysis 

of the aspects that constitute it. The results obtained have been separated into different characteristics 

that can be extrapolated to classify the outcome of the experiment. A schematic of this thought-process 

is represented in Figure 6. 

 

Figure 6 - Representative schematic of the aspects analysed throughout the thesis (before and after the experi-
ments were performed). 

3.1 Master mould optimization 

The fabrication of the master mould was done resorting to previously performed techniques of photoli-

thography done in the clean room. The expected results were based on previous experiments, averag-

ing certain values after several fabrications were done. The protocol described in chapter 2.1.1 of Ma-

terials and Methods was conceived to obtain an expected channel height of 80 µm, even with slight 

variations of exposure or development time. The results of the profilometer revealed a significant reduc-

tion of the height of the channels, ranging from 49.43 to 56.13 µm, which for the sake of simplicity it will 

be considered as an average of 52.5 µm of photoresist thickness across the wafer. (Figure 31, Annex 

4). Figure 7 illustrates the complete layout of the design (Figure 7A), and the three different types of 

designs developed and fabricated. (Figures 7B, 7C and 7D). 
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Figure 7 - Composite figure with all 
of the designs developed during 
the thesis: (A) – Layout of the de-
vices for the hard mask fabrication; 
(B) – Dean flow microdroplet gen-
erator with amplification of the t-
section with 120 µm width be-
tween all channels connecting to 
the cross-section; (C) – Composite 
mould with 80 µm trap size and T-
section width; (D) – Linear reser-
voir with 100 µm width traps, 12 
traps per each of the 17 lines. 

As to the matter of the loss of thickness of the SU-8 photoresist over the mask, the possible causes for 

this may reside with either a soft baking executed too irregularly or an overdeveloped mask from staying 

too long in contact with the PGMEA developer123. At a second due over of the master (due to the first 

one having been broken), several issues were revealed regarding the adherence of the SU-8 2025 

photoresist to the wafer, which may indicate that there might be issues with the current batch of SU-8, 

might have affected the overall stability of the master. It might be required to analyse and possibly 

replace the current batch of SU-8 to prevent similar issues. 

3.2 Device functionality  

As part of the workplan of the thesis, the design and fabrication of a set of moulds was conducted. The 

moulds conceived this thesis were inspired in the designs of the Generation (Gen.) 2 devices (Annex 2) 

designed in previous works. Three types of devices were conceived addressing the following aspects: 

• Circular Dean flow microdroplet generator (Figure 7B): Based on the previous design of the 

Dean flow microdroplet generator used in the Gen. 2 Dean flow devices (Figure 23-A1, Annex 2), 

the central spiral architecture to induce Dean flow to space out cancer cells was repurposed, mod-

ifying the remaining channels to remove the existence of 90° corners that could compromise the 

functionality of the device if something were to block those passages and also by increasing the 

widths of the channels from 80 µm to 120 µm to alleviate the increased pressure of liquids when 

passing through the spiral channels, which could compromise the bonding process of the PDMS to 

the substrate when the flow rates were increased to higher levels112,114; 

• Linear reservoir (Figure 7D): This design was repurposed almost entirely from the original design 

of the Gen. 2 linear reservoirs (Figure 26, Annex 2), only making the channels with 120 µm of width 

and increasing the number of traps per line and the number of straight lines; 

• Combined device (Circular Dean flow + linear reservoir, figure 7C): This device was conceived to 

address the problem with sealing procedures being imperfect at times and also to see if the coales-

cence of microdroplets occurred during the passage from the microdroplet generator to the reservoir 

via LDPE tubing; 
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In order to explore the effect of different sizes of microdroplets in the encapsulation rates of cancer cells, 

the three types of devices were fabricated in 3 different sizes: 80 µm, 100 µm and 120 µm, whether for 

the width of the channels which form the T-section of the circular Dean flow devices or for the width of 

the traps within the linear reservoirs. (Figures 21 and 22 in Annex 1) However, the fabrication of the 

master was only performed at a later stage of the thesis, so for the time being, some of the results were 

obtained by resorting to the previous masters already fabricated in the cleanroom for use in previous 

works (Figures 23-A1 and 23-B1 in Annex 2). The three types of moulds were tested regarding their 

design specifications and how their results hold up when compared to previous versions of designs. The 

microdroplet generator moulds were tested in their capacity to produce samples of monodispersed mi-

crodroplets, the linear reservoirs were tested in their capacity to entrap and retain droplets in the desig-

nated trap locations and the combined mould was only tested as to the practicality of joining the micro-

droplet generator and a reservoir together in the same mould. 

3.2.1 Microdroplet size optimization 

As discussed in several articles, there are several factors which influence the size of microdroplets being 

directly connected to the ratio between the flow rates of the continuous and the dispersive phases, but 

in particular with the flow rate of the continuous phase, which is the one that “slices” through the disper-

sive phase106. But other factors which play a significant role in microdroplet production are the geometry 

of the device, the viscosity of the continuous phase and the velocity with which the two phases travel 

the channels102,108,109,111. Since testing all those parameters would be a time-consuming effort, it was 

decided that the focus of the thesis would be in adjusting the dimensions of the new devices with the 

flow rates of the continuous and the dispersive phases. To that end, several calibration experiments 

were performed to fine-tune the microfluidic devices as to the range of sizes that the produced micro-

droplets could obtain.  

The circular dean flow microdroplet generators were tested in their capacity to produce monodispersed 

microdroplets in samples of at least 100 microdroplets per picture frame. In order to measure monodis-

persity obtained from microdroplet generators, pictures of collected samples were taken, deconstructed 

and analysed. To that end, it is important to explain in detail how microdroplets were analysed in terms 

of monodispersity by size, starting with the process of sealing microdroplets inside the reservoir. First, 

the microdroplet generator was put into a functional state, by adjusting the flow rates of the continuous 

and dispersive phases from the syringe pumps’ control panel. Second, a portion of LDPE tubing was 

cut and connected to the outlet termination, leaving the unconnected end of the tubing free. Third, a few 

minutes were spent waiting for the microdroplets to stabilize as they travel through the severed LDPE 

tubing, followed by extracting a sample of the contents within the tubing and placing it over a glass lens 

to observe if the microdroplets appeared monodispersed under the microscope. Once monodispersity 

was confirmed, the unconnected end of the tubing was placed in the inlet of the reservoir. Fourth, while 
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observing the microdroplets entering the reservoir continuously and after a significant number of micro-

droplets were located inside the reservoir, the ends of the LDPE tubing connected to the inlet and outlet 

of the reservoir were sealed using the method referred in chapter 2.2.2 of the materials and methods 

section (burning tips). Once the reservoir is properly sealed, pictures of microdroplets within the reser-

voir were taken in a matter that at least 100 microdroplets could fit within a picture capture. Fifth, using 

the ImageJ program, the images were processed in a way that outlines the microdroplet surface form 

the rest of the background, using a bandpass filter and then adjusting the threshold until the circular 

shape of the microdroplets was properly accentuated in the resulting picture. To complete the monodis-

persity analysis, the surface area of the microdroplets was measured and registered in an Excel spread-

sheet. A descriptive figure illustrating the entire process can be seen in Figure 8. 

Figure 8 - Illustrative figure of the process regarding analysis of microdroplet monodispersity of the samples. A) 
Observation of microdroplet formation under optical microscopy; B) Picture capture of the microdroplet sample 
under the microscope lens; C) Processed picture of the microdroplets, outlining the circular area; D) Final picture 
isolating the microdroplet which circular outline can be measured accurately. 

The three different microdroplet generators of Gen. 1 (Figure 23-B1, Annex 2), Gen. 2 (23-A1, Annex 

2) and Gen. 3 (Figures 22-A1, 22-A2 and 22-A3, Annex 1) were tested regarding their capacity to pro-

duce large amounts of monodisperse microdroplets. The results of the monodispersity experiments can 

be seen in Figures 9, 10 and 32 (Annex 5), for each of the generations. The results obtained demon-

strated a validity for the third-generation devices to work in tandem with the previous generation devices 

as they encompass a significant range of possible microdroplet sizes, from 51 to 102 µm, and even 

focusing solely on the third-generation generation devices, it would be possible to obtain microdroplets 

with a range from 65 to 102 µm. The increase of the ratio between flow rates has an inverse proportion-

ality relation with the size of microdroplets obtained, as expected from the principles that define how 

flow-focusing devices operate102,111. 
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Figure 9 - Picture capture of the microdroplet samples under an optical microscope, produced by Gen. 3 devices 
with 80 µm (A), 100 µm (B) and 120 µm (C) t-section width, using Milli-Q as the dispersive phase and FC-40 + PS-
1 as the continuous phase, followed by subsequent analysis regarding average size and size dispersion illustrated 
in the histograms placed on the bottom left corner of the pictures, with ratio values between the continuous and 
dispersive phases of 20 (A1, B1, C1), 10 (A2, B2, C2) and 5 (A3, B3, C3). 
 

 
Figure 10 - Graph with the results of the experiments shown in Figure 9 depicting the differences between the 
average microdroplet sizes produced by the three microfluidic microdroplet generators (Gen. 1, Gen. 2 and Gen. 
3) and different flow rate ratio values (Qc/Qd). 

 



Development of microfluidic tools for cancer single cell encapsulation and proliferation in microdroplets 

16 

 

 

3.2.2 Microdroplet linear traps (Linear reservoir) 

The linear reservoirs were analysed regarding the presence of traps in the resulting PDMS moulds 

obtained from soft lithography. Since there could be a chance that the features of the traps were too 

small to be replicated in the master, the three types of linear reservoirs with traps of 80, 100 and 120 

µm were tested to see if the traps were present in the PDMS moulds and if they endured the constant 

passage of microdroplets through direct contact and with different flow rates without deforming. The 

results of the stability of the trap structures can be found in Figure 11. 

Figure 11 – AutoCAD designs and picture cap-
ture of the linear reservoir traps with 80 µm (A), 
100 µm (B) and 120 µm (C) width under optical 
microscopy using Milli-Q as the dispersive 
phase and FC-40 + PS-1 as the continuous 
phase. The pictures represent the behaviour of 
the traps holding the microdroplets in place 
with flow rates specified for the dispersive 
phase and for the continuous phase, with the 
dispersive phase stable at 100 µL h-1 for all ex-
periments and with three values for the contin-
uous phase of 500 µL h-1 (A1, B1, C1), 1000 µL 
h-1 (A2, B2, C2) and 2000 µL h-1 (A3, B3, C3). 

 

Based on the preliminary results shown in Figure 11, the linear reservoir moulds with 80 and 100 µm 

appear functional enough to hold microdroplets in place even after increasing the flow rate of the con-

tinuous phase. As the flow rate of the continuous increases, the microdroplets acquire enough motion 

to squeeze through the opening in the middle of the traps, due to the reduced size of microdroplets and 

increased pressure in the traps59. The results for the linear reservoir moulds with 120 µm traps revealed 

that the microdroplets do not hold in the designated trap zones, which indicated that the traps, although 

with the trap marks distinguished clearly, do not have thickness enough to form rigid trap structures in 

the PDMS moulds. This could be attributed to the design of the traps being too thin to be properly 

developed in the wafer, resulting in their removal by excessive erosion. 

3.3 Durability of microdroplets 

The durability of microdroplets was a major point of focus for the thesis, since the durability was crucial 

to perform long-term testing of cell growth. Several characteristics have been studied, but eventually 

only three were selected to observe which combination would provide the best conditions for micro-

droplets to endure. The type of oil used for the continuous phase (with PS-1 incorporated) and the 

method to proceed with the sealing of the device were altered throughout the thesis to adjust to emerg-

ing adverse factors that appeared. 
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3.3.1 Continuous phase composition 

Two different types of oils were considered for microdroplet generation: HFE 7500 and FC-40, both 

incorporated with the surfactant PS-1 in 1 % of total volume. The first experiments of the thesis relied 

solely on HFE 7500, since the focus on those experiments was in producing monodisperse micro-

droplets. But as the experiments advanced to long-term monitoring of microdroplets in enclosed reser-

voirs, the reservoirs could not impede the infiltration of air through the inlets for more than two days after 

the sealing was executed when using HFE 7500, as demonstrated in Figure 12. 

Faced with the results obtained, the decision was made to attempt to switch from HFE 7500 oil to FC-

40, which has reportedly guaranteed124. Previous articles have demonstrated that the FC-40 oil does 

have the potential of avoiding the infiltration of air into the reservoir93. For the purpose of ensuring that 

no random events are determinant in the success of specific experiments, it was decided that all exper-

iments would be made once and then replicated once to confirm if the results obtained for both are 

similar in nature. 

Based on the results obtained for the use of FC-40 in Figure 13, it was decided that FC-40 would be the 

best choice for the continuous phase to ensure long-term durability of droplets, while maintaining air 

infiltration into the device. 

Figure 12 - Results of the encapsulation 
experiments for microdroplet durability, ob-
tained by optical microscopy, and daily ob-
servation of the closing of the Gen. 1 res-
ervoirs (A), using Milli-Q as the dispersive 
phase and HFE 7500 + PS-1 as the con-
tinuous phase, in three specific regions: 
upper inlet (B), middle (C) and lower inlet 
(D). The pictures for the experiment were 
taken within three time periods: day 0 (B1, 
B2, B3), day 1 (C1, C2, C3) and day 2 (D1, 
D2, D3). 

 

 

Figure 13 - Results of the encapsulation 
experiments for microdroplet durability, ob-
tained by optical microscopy, and weekly 
observation of the closing of the Gen. 1 
reservoirs with pillars spaced 150 µm (A) 
and 100 µm (B) in the middle region of the 
devices (C, D), using Milli-Q as the disper-
sive phase and FC-40 + PS-1 as the con-
tinuous phase. The pictures of the experi-
ment were taken within four time periods: 
day 0 (B1, D1), day 7 (B2, D2), day 14 (B3, 
D3) and day 21 (B4, D4). 
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3.4 Cell encapsulation efficiency 

The process of single cell encapsulation can be seen a random event in time, in which the generation 

of droplets with cells can follow a Bernoulli trial given that during the event of a cell being encapsulated 

into a microdroplet it is implied that it is very unlikely that two cells occupy the same physical space, 

thus single cell encapsulation can be considered as a case of “success”, while empty droplets can be 

classified as “failure”125. However, for this thesis, we consider to be more cases of success for multiple 

cell encapsulations. 

It is possible can summarize the probability of calculating how many cells can be encapsulated in a 

droplet by means of a Poisson distribution formula126 if the number of events takes on discrete values 

Thus, the formula in Equation 1.1. can be used for cell encapsulation rates, based on Poisson distribu-

tion:  

Equation 1.1.125                                             𝑃𝑃(𝑋𝑋c = 𝑘𝑘) =   𝑐𝑐−𝜆𝜆 𝜆𝜆
𝑘𝑘

𝑘𝑘!
 

The random variable, Xc, takes on the form of k, which represents the number of events taking place in 

a given interval, which can be considered by context as the number of cells that can be encapsulated 

in the specified volume of a droplet, and 𝜆𝜆 is the average number of cells encapsulated given a specified 

volume, which can be calculated according to Equation 1.2: 

Equation 1.2.126                                                       𝜆𝜆 =  𝜙𝜙𝜙𝜙
𝜙𝜙𝜙𝜙

 

The variable 𝜙𝜙𝑐𝑐 represents the number of cells in the cell solution and the variable 𝜙𝜙𝑐𝑐 represents the 

number of droplets that can be made with a given volume of solution entering the microfluidic device. 

For the sake of simplicity, the volume for the solution with the cells and for droplet generation will be 1 

mL, so Equation 1.2. can still be simplified into Equations 1.3. and Equation 1.4.: 

 

Equation 1.3.                                             𝜙𝜙𝑐𝑐 =  𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐𝜙𝜙
1 𝑛𝑛𝑚𝑚

 

 

Equation 1.4.                                                      𝜙𝜙𝑐𝑐 =  1 𝑛𝑛𝑚𝑚
4
3𝜋𝜋𝑛𝑛

3 

The cell density is calculated previously during cell culture growth being a known value. The volume of 

a droplet, can be calculated after encapsulating cells in droplets as an average value, using ImageJ as 

described in Figure 8 (chapter 3.2).  

The focus of this thesis resides in observing single cancer cells growing and multiplying within micro-

droplets, so it is preferred that single cell encapsulations take place more frequently than multiple cell 
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encapsulations127. Dean flow architecture attempts to attenuate the occurrence of multiple cell encap-

sulations by “separating” the cells more evenly, by pushing the cells to the outer walls of the microfluidic 

channels as they travel to the T-section59,113,114. And using flow-focusing device principles, the frequency 

with which microdroplets are formed can be controlled by adjusting the flow rate of the continuous phase. 

The main objective for the cell encapsulation experiments was to observe if the Gen. 3 microdroplet 

generator devices can obtain higher cell encapsulation values than those expected by Poisson distribu-

tion. 

Due to constraints in the production of the master designed for this thesis, this part of thesis was done 

resorting to the Gen. 2 Dean flow devices since the Dean flow geometry applied to the channel for the 

dispersive phase was very similar to the Gen. 3 Dean flow devices. An assumption was formulated, in 

which the values for the encapsulation rates between the Gen.2 and Gen. 3 devices were considered 

approximate due to similarities in geometry and channel size. For the cell encapsulation experiments, 

three different cell densities were utilized and three different flow rates for the continuous phase were 

applied, making for a total of 9 cell encapsulation experiments, as depicted in Figure 14 and Table 2, 

which represent an illustration of the setup for the experiments and a matrix for the combination of 

possible experiments. For the 1M (1 million, M = million) cell density solution, MDA-MB-435S (MDA) 

cells were utilized, and for the 2M and 3M experiments, SK-BR-3 cells were utilized. This decision was 

only based on the scarcity of cell cultures, not deliberately. This change presumedly bears no influence 

in encapsulation rates even if the cell solutions had all the same type of cells.  

Table 2 - Matrix of combinations indicating the number of cell encapsulation experiments that were performed and 
the different conditions for each experiment. 

Figure 14 - Experiment layout 
with device placement and solu-
tions utilized (glass slide is 
placed under the microscope for 
image acquisition). 

2000 µL h-1 x 100 µL h-1 at 
1M

2000 µL h-1 x 100 µL h-1 at 
2M

2000 µL h-1 x 100 µL h-1 at 
3M

1000 µL h-1 x 100 µL h-1 at 
1M

1000 µL h-1 x 100 µL h-1 at 
2M

1000 µL h-1 x 100 µL h-1 at 
3M

500 µL h-1 x 100 µL h-1 at 1M 500 µL h-1 x 100 µL h-1 at 2M 500 µL h-1 x 100 µL h-1 at 3M

Cell density values:

1 million cells mL-1 2 million cells mL-1 3 million cells mL-1

Co
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ow
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te
s:
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Dispersive phase flow rate (for all experiments):  100 µL h-1
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The results for the nine cell encapsulation experiments can be found in Annex 7, for Figure 36. A mini-

mum of 100 analysed microdroplets was established for all experiments, and in order to simplify calcu-

lations, any microdroplet with more than 1 cell encapsulated was considered as a multiple cell encap-

sulation event. Figure 15 illustrates the comparison113 of the experimental values obtained with the the-

oretical values calculated using the Poisson distribution formula described in Equation 1.1.. 

 

Figure 15 - Cell encapsulation efficiency results exhibited in 3 different graphs illustrating the comparison between 
the experimental results (cross shapes) and the theoretical calculations (centre-pointed transparent circle shapes) 
for each of the three different cell solutions: 1 × 106 cells mL-1 (A), 2 × 106 cells mL-1 (B) and 3 × 106 cells mL-1 (C). 

The graphs illustrate that no specific combination of the three continuous flow rates with the three cell 

density solutions could generate a population of microdroplets in which single cell encapsulation rates 

could surpass the values predicted by Poisson distribution74,113. The highest value obtained in percent-

age for single cell encapsulation was 11.57 %, for the experiment with the continuous phase flow rate 

at 500 µL h-1 and cell density of 3×106 cells mL-1 for the dispersive phase solution. That experiment also 

registered the lowest empty microdroplet count, at 79.34 %, which indicated that this specific combina-

tion might be the one more indicated to maximize the probabilities of obtaining single cell encapsulation 

events in further experiments93. 

3.5 Cell growth proliferation in microdroplets 

The experiments for cell encapsulation and monitoring were performed for several days, under different 

conditions. A summary of each experiment was included in sub-sections of this chapter for further ap-

preciation. 

Table 3 contains a layout of the type of microdroplet generators and reservoirs used for droplet and cell 

incubation, the contents of the dispersive phase (cell density) and the flow rates used for each experi-

ment within the complete set for each round. Each experiment was performed in replicates, filling 2 

reservoirs each, to ensure a higher rate of success. A more detailed report of this chapter was placed 

in Annex 9 due to limitations in the total number of pages available, with emphasis in number of reser-

voirs sealed, how many were considered for analysis and considerations in distinguishing cancer cells 

in optical microscopy. 
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Table 3 - Layout of the performed sets of experiments for cell encapsulation and subsequent monitoring (yellow 
cells stand for deliberate modification to those factors for set to set; orange cells stand for modifications that were 
made on the spot due to unexpected complications). 

Set Device % MG Cell density 
(cells mL-1) 

Flow rates  

(Qcont. ×  Qdisp.) * 
Days 

1 
Gen. 3 Dean flow microdroplet generator 
(80 µm width); 

Gen. 3 Linear reservoir (80, 100 µm); 
1, 2, 4, 8 2 × 106 500 x 100 µL h-1 4-7 

2 
Gen. 3 Dean flow microdroplet generator 
(80 µm width); 

Gen. 3 Linear reservoir (80, 100 µm); 
4 

1 × 106 

3 × 106 

5 × 106 

500 x 100 µL h-1 2-4 

3 

Gen. 3 Dean flow microdroplet generator 
(80 µm width); 

Gen. 1 Open-spaced reservoir with traps 
(60, 80, 100 µm); 

1, 2, 4, 8 2 × 106 500 x 100 µL h-1 6-9 

4 

Gen. 1 Flow focusing microdroplet gener-
ator (100 µm width); 

Gen. 1 Open-spaced reservoir with traps 
(60, 80, 100 µm diameter), glass and 
PDMS bottom layer  

1, 2, 4, 8 2 × 106 1000 x 100 µL h-1 5 

5 

Gen. 1 Flow focusing microdroplet gener-
ator (100 µm width); 

Gen. 1 Open-spaced reservoir with traps 
(60, 80, 100 µm), functionalized and non-
functionalized; 

2, 4, 8 1 × 106 1000 x 100 µL h-1 9-13 

*Qcont. – Continuous phase flow rate; Qdisp. – Dispersive phase flow rate; MG: Matrigel® 

3.5.1 Results of the 1st set 

Microdroplets were counted individually as regarding to their contents and their diameter, in order to 

sort them according to the number of cells they hold and compare them theoretically to the expected 

values under Poisson’s distribution, depending on the values obtained for the average diameter of the 

microdroplets counted. The reservoirs were monitored for several days, even after all microdroplets had 

collapsed or evaporated, so the last image available for each reservoir represents a “blank” reservoir 

with no discernible parameter to analyse, and so those pictures will not present any tables to describe 

their contents. 

For this chapter, a few images were selected along with close-ups of specific zones of the reservoirs to 

identify certain microdroplets that appear to have not just MDA cells encapsulated within, but also in a 

state of activity that may suggest an attempt of division and multiplication. 
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Table 4 – Layout of the 1st set of experiments executed for cell encapsulation and subsequent monitoring (after 
execution).  

Condition Device Reservoir  Dispersive phase 

Cell den-
sity 

(cells mL 
-1) 

Flow rates  

(Qcont. ×  Qdisp.) * 

1 

Gen. 3 
Dean 
flow 

80 µm 

Gen. 3 Linear reser-
voirs 100 µm 

MDA-MB-435 cells + 
DMEM + 1 % Matrigel® 

2 × 106  500 x 100 µL h-1 

2 Gen. 3 Linear reser-
voirs 100 µm 

MDA-MB-435 cells + 
DMEM + 2 % Matrigel® 

3 Gen. 3 Linear reser-
voirs 80 µm 

MDA-MB-435 cells + 
DMEM + 4 % Matrigel® 

4 Gen. 3 Linear reser-
voirs 80 µm 

MDA-MB-435 cells + 
DMEM + 8 % Matrigel® 

*Qcont. – Continuous phase flow rate; Qdisp. – Dispersive phase flow rate; 

The first noticeable result consists in the feasibility of encapsulating droplets with any of the four different 

percentages of Matrigel®, indicated that the current method of adding Matrigel® to the dispersive phase 

appears to be functional enough to apply to further studies. To the best of our knowledge74,119, this is 

the first the first time that microdroplets containing Matrigel® were generated with Matrigel® in direct 

contact with the interface of the microdroplets, being a step forward towards the proliferation of cells in 

droplets, and even towards cell to cell interaction mechanism at a local and restricted level.  

Most of the results obtained 63 h after sealing the reservoirs was underwhelming, having most reservoirs 

suffered from air infiltration, low microdroplet formation and mass collapse of microdroplets throughout 

the channels107. The original purpose of retaining the droplets in the traps has proven unsuccessful, 

since the entrance of air pushes the contents of the channels to either direction, dragging the droplets 

to either of the inlets, depending from which inlet the air seems to be entering from. One possibility as 

to the incapacity of retaining the microdroplets in the same place may have to do with the way the 

reservoirs are placed in the plastic boxes as described in chapter 2.3.2. The box with the reservoirs had 

to be carried by hand to the CCL, and even assuming the utmost care in the transportation, the micro-

droplets could have moved by the slightest tilt of the hand, since the contents after sealed are governed 

by small variations in the pressure of the channels103.  

The only noticeable results appear with the reservoirs that have 4 % and 8 % of Matrigel® in the consti-

tution of the dispersive phase. The air infiltration appears to be slower in reservoirs with 4 % and 8 % 

Matrigel®, which became a factor to be considered in further sets of experiments. As for the loss of 

monodispersity, numerous actors may have contributed to it, but most importantly was the accumulation 

of fibres throughout the channel, especially in the first traps where the microdroplets entered through, 

causing droplet splitting.  



Development of microfluidic tools for cancer single cell encapsulation and proliferation in microdroplets 

23 

 

 

 

Figure 16 – Close-up pictures of microdroplets with cells encapsulated in Reservoir 1 with 4 % Matrigel® (A1, B1, 
C1, D1) from two instances in time: at the moment of sealing (A2, C2) and 14h after sealing (B2, D2). 

In Reservoir 1 of condition 3, there were two instances in which the linear reservoirs managed to keep 

at least 1 microdroplet in the traps, allowing for a long-term observation from the moment they were 

encapsulated up to 14h, as illustrated in Figure 16. 

Based on the results of the first set of experiments in Annex 7, the experiments with 4 % and 8 % 

Matrigel® appear to last longer than most, so both these values for Matrigel® percentage in the disper-

sive phase solution will be kept under consideration. 

3.5.2 Results of the 2nd set 

Table 5 – Layout of the 2nd set of experiments executed for cell encapsulation and subsequent monitoring. 

*Qcont. – Continuous phase flow rate; Qdisp. – Dispersive phase flow rate. 

 

Condition Device Reservoir Dispersive 
phase 

Cell density  

(cells mL -1) 

Flow rates  

(Qcont. ×  Qdisp.) * 

1 
Gen. 3 

Dean flow 

80 µm 

Gen. 3 Linear reser-
voir 80 µm, 17 rows 

MDA-MB-435 
cells + DMEM + 
4 % Matrigel® 

1 × 106  

500 x 100 µL h-1 2 Gen. 3 Linear reser-
voir 100 µm, 17 rows 3 × 106  

3 Gen. 3 Linear reser-
voir 80 µm, 17 rows 5 × 106  
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For the 2nd set of experiments, the focus of the experiments was to study the effects of how the increase 

in cell density would affect the overall process for cell encapsulation and observation of potential prolif-

eration: encapsulation rates, comparison with the theoretical values based on Poisson distribution, mi-

crodroplet stability and evidence of growth within microdroplets with 1 cell or more. Initially the 2nd set 

was planned to have a durability of at least 1 week, but the reservoirs showed signs of air infiltration on 

day 1, so aspects such as microdroplet stability and cell growth were discarded, and the analysis of this 

set was then refocused on the encapsulation rates, average sizes for microdroplets and theoretical vs 

practical comparison. After extrapolating results from the 1st set of experiments, it was observed that 

the experiments with 4 % Matrigel® held the highest stability for microdroplets. Based on that observa-

tion, it was decided that the Matrigel® percentage for all experiments of the 2nd set would be set at 4 %. 

Analysing the results obtained for Set 2, the experiments from Conditions 1 and 3 presented more visibly 

impressive results, but while microdroplets made from solutions with 5 × 106 cells mL-1 had higher counts 

of producing more multicellular microdroplets (more than 5 cells per microdroplets), the results from 

Condition 1 showed that the experimental results obtained were closer to surpass Poisson distribution 

rates in single cell encapsulation than in the other experiments for Conditions 2 and 3. However, it was 

decided to remain using cell density values of 2 × 106 cells mL-1 for all other sets of experiments to limit 

the appearance of empty microdroplets. 

3.5.3 Results of the 3rd set  

Unfortunately, at the start of the 3rd set of experiments, the wafer with the Gen. 3 devices (Annex 1) had 

been compromised, forcing for the use of Gen. 1 reservoirs (Annex 2) to make up for the lack of available 

Gen. 2 and Gen. 3 reservoirs at the lab. However, there were still some Gen. 3 Dean flow droplet gen-

erators that still worked, so for the time being those would be the designated droplet generators. 

Table 6 - Layout of the 3rd set of experiments executed for cell encapsulation and subsequent monitoring. 

Condition Device Reservoir Dispersive phase 

Cell 
density  

(cells 
mL -1) 

Flow rates  

(Qcont. ×  Qdisp.) * 

1 

Gen. 3 
Dean flow 

80 µm 

Gen. 1 Trap reser-
voirs (80, 100, 120 

µm) 

MDA-MB-435 cells + 
DMEM + 1 % Matrigel® 

2 × 106  500 x 100 µL h-1 
2 MDA-MB-435 cells + 

DMEM + 2 % Matrigel® 

3 MDA-MB-435 cells + 
DMEM + 4 % Matrigel® 

4 MDA-MB-435 cells + 
DMEM + 8 % Matrigel® 

*Qcont. – Continuous phase flow rate; Qdisp. – Dispersive phase flow rate. 
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The results of this set of experiments centred around 2 specific occurrences: great loss of visibility of 

the microdroplet contents 131 h after sealing and apparent signs of cell aggregation. As noticed by 

previous experiments from Sets 1 and 2, the viewing conditions tend to become aggravated after a few 

hours in the incubator. A possible cause for this may be the diffusion of water through the PDMS. Despite 

these difficulties, at the end of this set of experiments, two experiments produced noticeable results: 

Reservoir 2 with 2 % Matrigel® and Reservoir 2 with 4 % Matrigel®. Figure 17 exhibits close-ups of 

microdroplets with cells from the reservoirs, in order to present a concrete notion of their stability 

throughout time periods and alterations in their contents. 

 

The results obtained demonstrate that the microdroplets can withstand long periods of time without 

collapsing or merging into bigger microdroplets. When microdroplets start incorporating too many cells, 

those cells have to pack further into the microdroplet, making them harder to count by means of a 

microscope without confocal lens for multiple plane observation. As it can be noticed, from the 131 h 

pictures after some time the contents of the microdroplets become difficult to discern due to the pres-

ence of “haze”, having to modify the pictures using specific software. During the experiments, an idea 

was explored as to the use of glass as a bottom layer material for the reservoirs, in the hopes in increas-

ing the visibility after several days, which was adopted in the next set of experiments.  

3.5.4 Results of the 4th set 

For the 4th set of experiments, two different types of bottom layer were used to form the reservoirs: 
PDMS and glass. The objective for this experiment was to observe if there would be notorious differ-

ences in the visualization of droplets after several hours had passed. Another factor that was to be 

analysed was the frequency of air infiltration with different layers, to see if there is an offset in each one 

of the two materials up for consideration128. Assumedly, since the droplet generator device had to be 

switched by another with a larger T-section (due to the unexpected unavailability of the mould with Gen.3 

devices), it would be expected the average size of droplets to be bigger than the average sizes obtained 

in previous tests. However, as the focus of this set was in assessing viewing issues, the circumstance 

MG/Time 0 h 41 h 131 h 187 h

2 %, 
reservoir 2

4 %, 
reservoir 2

A1 A2 A3 A4

B1 B2 B3 B4

100 µm 100 µm 100 µm 100 µm

100 µm 100 µm 100 µm 100 µm

Figure 17 - Close-up of microdroplets from results of the Set 3 of experiments with the longest time elapsed, with 
pictures from different times regarding sealing procedures: at the moment of sealing (A1, B1), 41 h later (A2, B2), 
131 h later (A3, B3) and 187 h later (A4, B4). 
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of bigger droplet size will not be brought forth for discussion. One particular trick was used in an attempt 

to improve visibility of the reservoirs in subsequent observations after the sealing of the reservoirs. While 

adjusting the bright/dark filed settings of the microscope, the valve was placed in between the switch 

from bright to dark, permitting the accentuation of the features of the microdroplets to overcome the 

“haze” that appears after a few hours in the incubator. Out of all the experiments made, four of the 

reservoirs had very interesting results in terms of microdroplet stability, having the close-ups of those 

results exhibited in Figure 18. 

Table 7 – Layout of the 4th set of experiments executed for cell encapsulation and subsequent monitoring. 

Condition Microdroplet 
generator Reservoir Dispersive 

phase 

Cell den-
sity  

(cells mL -
1) 

Flow rates  

(Qcont. ×  Qdisp.)* 

1 

Gen. 1 Flow-
Focusing de-
vice, 100 µm 

width 

 

Gen. 1 Trap reser-
voirs (80, 100, 120 
µm), Glass Layer 

MDA-MB-
435 cells + 
DMEM + 1 

% Matrigel® 

2 × 106  1000 x 100 µL h-1 

2 
Gen. 1 Trap reser-
voirs (80, 100, 120 
µm), PDMS layer 

MDA-MB-
435 cells + 
DMEM + 1 

% Matrigel® 

3 
Gen. 1 Trap reser-
voirs (80, 100, 120 
µm), Glass Layer 

MDA-MB-
435 cells + 
DMEM + 2 

% Matrigel® 

4 
Gen. 1 Trap reser-
voirs (80, 100, 120 
µm), PDMS Layer 

MDA-MB-
435 cells + 
DMEM + 2 

% Matrigel® 

5 
Gen. 1 Trap reser-
voirs (80, 100, 120 
µm), Glass Layer 

MDA-MB-
435 cells + 
DMEM + 4 

% Matrigel® 

6 
Gen. 1 Trap reser-
voirs (80, 100, 120 
µm), PDMS Layer 

MDA-MB-
435 cells + 
DMEM + 4 

% Matrigel® 

7 
Gen. 1 Trap reser-
voirs (80, 100, 120 
µm), Glass Layer 

MDA-MB-
435 cells + 
DMEM + 8 

% Matrigel® 

8 
Gen. 1 Trap reser-
voirs (80, 100, 120 
µm), PDMS Layer 

MDA-MB-
435 cells + 
DMEM + 8 

% Matrigel® 

*Qcont. – Continuous phase flow rate; Qdisp. – Dispersive phase flow rate 
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Figure 18 - Experimental results of the 4th set for the four of the reservoirs with the longest longevity per each of the 
four categories regarding Matrigel® percentage. Pictures at different times regarding sealing procedures: at the 
moment of sealing (A1, B1, C1, D1), 42 h later (A2, B2, C2, D2), 66 h later (A3, B3, C3, D3), 87 h later (A4, B4, C4, 
D4) and 360 h later (A5, B5, C5, D5). 

Based on the qualitative analysis of all the experiments from this set, the reservoirs with the bottom 

layer of glass tend to suffer from air infiltration faster than those done with a PDMS layer, but in terms 

of visibility, glass layers provide better visibility for longer time. However, it is worth noting that the visi-

bility appears to be adequate for all types of reservoirs with the new microscope set up suing dark filed 

mode, indicating that the adjustment in the bright/dark field settings appears to be effective to allow a 

proper analysis of the contents in microdroplets. Since there is a preference in maintaining the micro-

droplets stable for longer periods of time, it was decided to continue using PDMS as a bottom layer 

material rather than glass. 

3.5.5 Results of the 5th set 

The final set of experiments was conceived in order to analyse if the current batch of Aquapel® was 

compromised, due to repeated events of microdroplet collapse throughout all the sets of experiments. 

Due to the low remarks seen in the previous sets, the use of solutions with 1 % Matrigel® for the dis-

persive phase was discontinued, resorting only to 2 %, 4 % and 8 % solutions for this set. Due to con-

straints in time, the only parameters subject to analysis in this set were the average droplet size and the 

overall stability throughout several days. 

The results of the 5th set are presented in Figures 19 and 20, with close-ups of the microdroplets placed 

in. 

MG/Time 0 h 42 h 66 h 87 h 360 h

1 %, 
PDMS 1

2 %, 
Glass 1

4 %, 
Glass 1

8 %, 
PDMS 2

A1 A2 A3 A4 A5

B1 B2 B3 B4 B5

C1 C2 C3 C4 C5

D1 D2 D3 D4 D5

100 µm100 µm100 µm100 µm100 µm

100 µm100 µm100 µm100 µm100 µm

100 µm100 µm100 µm100 µm100 µm

100 µm100 µm100 µm100 µm100 µm
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Table 8 - Layout of the 5th set of experiments executed for cell encapsulation and subsequent monitoring. 

Condition Microdroplet 
generator Reservoir Dispersive 

phase 
Cell density  

(cells mL -1) 

Flow rates  

(Qcont. ×  Qdisp.)* 

1 

Gen. 1 Flow-
Focusing de-
vice, 100 µm 

width 

 

Gen. 1 Trap reser-
voirs (80, 100, 120 
µm), functionalized 

MDA-MB-435 
cells + DMEM 
+ 2 % Matri-

gel® 

1 × 106  1000 x 100 µL h-1 

2 
Gen. 1 Trap reser-
voirs (80, 100, 120 

µm), non-functional-
ized 

MDA-MB-435 
cells + DMEM 
+ 2 % Matri-

gel® 

3 
Gen. 1 Trap reser-
voirs (80, 100, 120 
µm), functionalized 

MDA-MB-435 
cells + DMEM 
+ 4 % Matri-

gel® 

4 
Gen. 1 Trap reser-
voirs (80, 100, 120 

µm), non-functional-
ized 

MDA-MB-435 
cells + DMEM 
+ 4 % Matri-

gel® 

5 
Gen. 1 Trap reser-
voirs (80, 100, 120 
µm), functionalized 

MDA-MB-435 
cells + DMEM 
+ 8 % Matri-

gel® 

6 
Gen. 1 Trap reser-
voirs (80, 100, 120 

µm), non-functional-
ized 

MDA-MB-435 
cells + DMEM 
+ 8 % Matri-

gel® 

*Qcont. – Continuous phase flow rate; Qdisp. – Dispersive phase flow rate; 

Figure 19 - Set 5 experimental results for the non-functionalized reservoirs with the longest longevity per each of 
the 3 categories regarding Matrigel® percentage. The pictures depict different times regarding sealing proce-
dures: 6h after sealing (A1, B1, C1), 36 h later (A2, B2, C2), 61 h later (A3, B3, C3), 80 h later (A4, B4, C4) and 
127 h later (A5, B5, C5). 

MG/Time 6 h 36 h 61 h 80 h 127 h

2 %, 
reservoir 1

4 %, 
reservoir 1

8 %, 
reservoir 1

A1

B1

C1

A2

B2

C2

A3

B3

C3

A4

B4

C4

A5

B5

C5

100 µm 100 µm 100 µm 100 µm 100 µm

100 µm 100 µm 100 µm 100 µm 100 µm

100 µm 100 µm 100 µm 100 µm 100 µm
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Figure 20 - Set 5 experimental results for the functionalized reservoirs with the longest longevity per each of the 3 
categories regarding Matrigel® percentage. The pictures depict different times regarding sealing procedures: 6h 
after sealing (A1, B1, C1), 36 h later (A2, B2, C2), 61 h later (A3, B3, C3), 80 h later (A4, B4, C4) and 127 h later 
(A5, B5, C5). 

The results in Figures 19 and 20 showed that the microdroplets maintained an acceptable stability for 

up to 5 days between the two types of reservoir treatments, which indicated that the Aquapel® might 

not be the cause of the instability that leads to the collapses. 

3.5.6 Remarks about single-cell growth in microdroplets 

The method for cell culture preparation used throughout this thesis was developed through multiple 

protocols between different articles regarding cell growth, with the compilation of all the important as-

pects summarized in Table 9 and with all the aspects in Table 10 in Annex 8.  

Table 9 is a compilation of different cell growth protocols in several articles for microfluidic purposes or 

for low counts of starting numbers of cells, in an attempt to study which would be the best approach to 

permit the growth of cells in microdroplets in an isolating setting for long durability. The table is split into 

different factors between each articles: cell line used, starting number of cells, seeding method (96-well 

plates, plate culture, droplets, etc.), culture media, extracellular matrix surrogate (Regular cell culture 

media, hydrogel), volume available for cultures, incubating conditions, time given to grow and growth 

dynamics (how fast they grow). Between most of the articles, the use of an additional reagent to simulate 

the effects of the extracellular matrix was considered significantly important in promoting cell growth 

when intending to reduce the expected elapsed time for cell growth. The use of Matrigel® was put under 

consideration, since the other reagents were adjusted for the specific conditions in which the experi-

ments were performed and Matrigel® did not require too much preparation to be implemented in the cell 

cultures77,119. 

 

 

MG/Time 6 h 36 h 61 h 80 h 127 h

2 %, 
reservoir 1

4 %, 
reservoir 1

8 %, 
reservoir 1

A1

B1

C1 C2

B3

C3

B4

C4

A1 A2 A3 A4 A5

B1 B2 B3 B4 B5

C1 C2 C3 C4 C5

100 µm 100 µm 100 µm 100 µm 100 µm

100 µm 100 µm 100 µm 100 µm 100 µm

100 µm 100 µm 100 µm 100 µm 100 µm
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Table 9 – Compiled table with the different articles which served as base for the cell culture developed for the thesis 
and the most significant parameters. 

Method  Starting n cells Cell type Days of culture Ref. 

96-well plates 3000000 MDA-MB-435 S/SK-BR-3 24h 83 

Hanging drop 10000 MCF-7 3 days 77 

48-well plates 100000 MDA-MB-231 6 days 84 

96-well plates 5000 MDA-MB-231 24h + 48h 81 

Hanging drop 4000 MV3-melanoma 24h 72 

Droplet encapsulation, with a dis-
tinct barrier between the bead and 
the spheroid medium 

1 or more cells, cannot 
specify because the project 
did not try to ensure single 
cell encapsulation 

MCF-7 Not specified, stab-
lishes timelines based 
on core components, 
from 2 to 4 days 

119 

Aseptically cultured in T-25 cell 
culture flasks/multi-well cell culture 
plates 

300000 MCF-7 and MDA-MB-231 4 days (24h + 24h + 
48h) 

129 

96-well plates 5000 primary cells, or 1000-
2000 intermediary cells 

Head and Neck squamous cell carci-
noma (HNSCC) extracted from patients 

7-10 days 130 

48 or 96-well plates 1000000-5000000 Peripheral blood mononuclear cells 
(PoBMC) 

7 days, re-supplied 
with media each 3 
days 

131 

100-mm Petri Dishes Not specified Human prostate cancer cell lines PC3 
and LnCAP, human breast cancer cell 
lines MDA‐MB‐231 and MCF-7, and 
lung cancer cell line H460 

Over 7 days 69 

96-well standard microplates, 96F 
non-adherent microplates, sphe-
roid microplates and specialized 
microwell formats 

Not specified Head neck cancer cells extracted from 
patients 

Estimated time of 7 
days 

24 

Regarding the duration of droplets obtained throughout this thesis, it was quite possible to obtain dura-

tions up to 21 days, which is a significant step forward when comparing to some noticeable values, from 

8 to 14 days obtained in different reports in literature119,124. Also, considering that the droplets were 

sealed in very tight structures from the reservoirs, it is noteworthy to consider that this thesis permitted 

to extend the limits of understanding regarding the special limitations that droplets can endure without 

collapsing entirely for long periods of time. 

Based on the results obtained throughout this thesis, the current methods for preparing cell culture for 

growth into 3D spheroids within microdroplets are adequate to obtain cell encapsulation in microdroplets 

and to promote signs of growth through cell aggregation.  As to this date, this thesis was the first attempt 

ever towards the proliferation of single cancer cells into spheroids in microdroplets, and assuming that 

the preparation of the dispersive phase solutions was as simplified as possible, given enough prepara-

tion it is believed that this line of thinking of growing spheroids in droplets, is indeed possible. We believe 

that before we can achieve that overarching aim, a very controlled protocol and technology must be 

optimized, to which this thesis has remarkably contributed forward. 
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4 Conclusions and Future Perspectives 
During this thesis, I have developed a methodology that may be applied to the growth of single-cells 

and their proliferation into spheroids. Despite not having achieved the overarching aim of single-cell 

proliferation in droplets, several meaningful contributions towards that goal were made:  

• A set of microfluidic devices that allow the high-throughput encapsulation and monitoring of 

cells in droplets was designed and fabricated.  

• The most appropriate parameters for single-cell proliferation and long-term incubation have 

been narrowed down by: fabricating, optimising and testing nearly 80 reservoirs and 50 droplet 

generators, etc; establishing a matrix of over 25 different conditions by varying key parameters; 

acquiring and analysing over 1000 images and over 15000 droplets (pictures in Annex 9 can 

give an impression of the amount of effort that it took to build the results from all reservoirs 

made, across several days). 

• It is possible to encapsulate cancer single-cells in microdroplets with Matrigel® supplement.  

• Cancer cells can be incubated in droplets and in microfluidic reservoirs up to 21 days.  

The prospect of using microdroplets as a means of an observation platform for cell growth is indeed a 

noticeable achievement that could pave the way for an easy method to study the events that lead to the 

heterogeneity that cancer cells possess, how to predict the most probable outcome within a plethora of 

different phenotypes, etc. However, throughout the course of this thesis, it became apparent that in 

order to implement this concept into practice, extensive experimentation will be required into developing 

a cell growth protocol that could work with any given number of cells. A hypothesis for the lack of ap-

parent cell growth might involve the buoyancy effect that the cells are subjected when encapsulated in 

the microdroplets, which might discourage their growth if there is not a stable condition that promotes 

cohesion between cells. This method is still in its initial stages and might require significant resources 

to generate the perfect combination that can best emulate the microenvironment in which cancer cells 

proliferate. 

The notion of utilizing microdroplets as a means of growing single cells into spheroids does confer sig-

nificant advantages to conventional methods of growing cells in lab, like allowing individual analysis of 

each spheroid without having to filter them previously and obtaining high-throughput results that can be 

analysed for statistics. However, considering the other issues that occurred during the thesis, this tech-

nique requires contributions from the different fields of science to solve the most pressing issues re-

garding the sealing process, the longevity of microdroplets in solution and the control of the encapsula-

tion rates. 

Ideally, this process must be optimized for single cell encapsulation if it is to be used for the generation 

of complex 3D structures like spheroids from CTCs, since CTCs have a low rate of survivability. To that 
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end, the best way to achieve that would be optimizing the cancer cell growth methods from which this 

thesis was based upon. 

The field of microfluidics has already proven that the potential to simulate the in vivo conditions that 

better reflect the actual behaviour of tumours exists, and in a very efficient way. All that is missing is the 

necessary effort to develop smart strategies to deal with the reduced number of cells, but with the work 

of this thesis, it was proven that the cells can withstand the isolated environment of a microdroplet 

without dying and can induce aggregation (although not by single cell encapsulation), which can serve 

as evidence about the potential for this technique in creating spheroids. 

The impact of the technology developed during this thesis and its future advances would be two-fold: 

understanding mechanisms behind metastasis at the molecular and cellular level, and developing novel 

technologies for the development of 3D cultures and spheroids for therapy screening. Altogether, de-

spite this work being on its very first stages, I hope it will have a future impact on the society in terms of 

a more personalised medicine, decrease on animal use for drug testing, better prognosis and more 

controlled diagnosis, as well as prevention through prediction of potential proliferation patterns of single-

cells related to their genotype and phenotype. 
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Annex 1 – Master mould designs (Gen. 3) 

 

Figure 21 - AutoCAD designs of the Gen. 3 reservoirs: 80 µm circular traps, with 17 (A1) and 9 (A2) rows, 100 µm 
circular traps, with 17 (B1) and 9 (B2) rows and 120 µm circular traps, with 17 (C1) and  

 

Figure 22 - AutoCAD designs of the Gen. 3 droplet generators: 80 µm width T-section (A1), 100 µm width T-section 
(A2) and 120 µm width T-section (A3). AutoCAD designs of the Gen. 3 combined mould devices: 80 µm width T-
section and trap size with 17 rows (B1) and 9 rows (B2), 100 µm width T-section and trap size with 17 rows (C1) 
and 9 rows (C2) and 120 µm width T-section and trap size with 17 rows (D1) and 9 rows (D2), having each row 12 
traps in line. 
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Annex 2 – Gen. 1 and Gen. 2 devices 

 

Figure 23 – Gen. 2 AutoCAD designs of the Dean flow droplet generator (A1) with 80 µm width T-section (A2) and 
Gen. 1 AutoCAD designs of the flow-focusing droplet generator (B1) with 100 µm width T-section (B2) 

 

 

Figure 24 - Gen. 1 AutoCAD designs of trap reservoirs with trap widths of 60 µm (A1), 80 µm (B1) and 120 µm (C1), 
also with amplifications of the spacing of the traps for the 60 µm (A2), 80 µm (B2) and 120 µm (C2) trap reservoirs. 
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Figure 25 - Gen. 1 AutoCAD design of 25 µm diameter pillar reservoirs with spacing between pillars of 150 µm (A1), 
100 µm (B1) and 80 µm (C1). 

 

 

Figure 26 - AutoCAD Gen.2 linear reservoirs design. 
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Annex 3 – Live pictures depicting actual experi-
mental conditions 

 

Figure 27 - Illustrative figure that represents the conditions of the device after the preparation process for the incu-
bator, with open lid (A1) for extraction and placement of the reservoir and closed lid (A2) for placement in incubator. 

 

 

 

Figure 28 - Image of the hemocytometer used for cell count. 

 

 

Figure 29 – Comparative picture of the size of the devices to a 2€ coin. 
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Figure 30 – Image depicting the actual aspect of the cell encapsulation experiments.
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Annex 4 – Profilometer results 

 

Figure 31 - Results of the profilometer readings for each section of the wafer (A): (B) - Top left; (C) - Top right; (D) 
- Bottom left; (E) – Bottom right. 
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Annex 5 – Average droplet size calibration re-
sults (Gen. 1 and Gen. 2) 

 

Figure 32 - Picture capture of the microdroplet samples produced by Gen. 1 (A) and Gen. 2 (B) using Milli-Q as the 
dispersive phase and FC-40 + Pico-Surf™ 1 (PS-1) as the continuous phase, followed with a subsequent analysis 
regarding average size, and size dispersion with different ratio values between the continuous and dispersive 
phases of 25 (A1), 20 (B1), 10 (A2, B2), 5 (A3, B3) and 2.5 (A4). 
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Annex 6 – Different types of sealing method re-
sults 

• In the initial stages of the thesis, using the burning tips technique for sealing the reservoirs was 

not efficient, having several experiments compromised after 2 days. To that end, a new method 

of sealing was researched, eventually deciding on a method that takes advantage of the inher-

ent abilities of the liquid cross-linked PDMS to solidify at room temperature. The idea consisted 

in pouring liquid cross-linked PDMS onto the opening at the inlets of the reservoirs, after remov-

ing the LDPE tubing entirely from the inlets. For this method to work, the liquid PDMS had to be 

degassed previously and poured almost immediately over the inlets. Figure 15 represents the 

first experiment using this method with HFE 7500 + PS-1 as the continuous phase. Figure 16 

represents a second experiment using this method and the burning tips technique in two differ-

ent reservoirs for comparison, with FC-40 + PS-1 as the continuous phase. 

• The results from Figure 15 appear to confirm that the introduction of FC-40 as the continuous 

phase helps in limiting the entrance of air in the devices through the inlets. However, based on 

the contradictory results shown in Figure 16, the sealing method by solidifying PDMS in the 

inlets does not appear to be as efficient as predicted, so, that technique will have to be studied 

more before it can be used for further experiments132. Also, the technique involving the “burned 

tips” appears to require more hands-on experience by the user to be properly efficient. 

• Based on all the previous results for the sealing experiments, the best combination of experi-

mental settings that may augment the stability of microdroplets for long-term observation reside 

with the continuous use of FC-40 as the continuous phase and, while the sealing method still 

depends on the skill of the user, the method of the “burning tips” may remain the most facile 

way of sealing the reservoirs immediately. However, as the images can demonstrate, with the 

passage of days, the evaporation of liquid and subsequent diffusion into the PDMS material 

starts to produce “haze”, which complicated the observation of microdroplets for long periods of 

time. To that end, it may be required to study the possibility of changing the bottom layer of the 

device.  
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Figure 33 - Results of the encapsulation and weekly observation of the closing of the Gen. 1 reservoirs with 100 
µm traps (A), using Milli-Q as the dispersive phase and HFE 7500 + PS-1 as the continuous phase, in three specific 
regions: upper inlet (B), middle (C) and lower inlet (D). The pictures of the experiment were taken within four time 
periods: day 1 (B1, C1, D1), day 7 (B2, C2, D2), day 15 (B3, C3, D3) and day 21 (B4, C4, D4). 

 

Figure 34 - Results of the encapsulation and daily observation of the closing of the two Gen. 1 reservoirs with 60 
µm traps (A) for the comparison experiment between the two sealing methods of “burning tips” (A1) and “liquid 
PDMS pouring” (A2) in three specific regions: upper inlet (B), middle (C) and lower inlet (D). The pictures of the 
experiment were taken within three time periods: day 1 (B1-B6), day 7 (C1-C6) and day 15 (D1-D6). The continuous 
phase used was FC-40 + PS-1 and the dispersive phase used was Milli-Q.    
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• An alternative method of sealing the devices and ensuring the flow of the liquid passing through 

the channels was formulated, using the inherent property of gasses in expanding and contract-

ing based on the room temperature133,134. A figure exemplifying a possible setup of that method 

is illustrated in Figure 31, Annex 6. Initial results indicated that, while the liquid was kept in 

motion within the reservoir, the trajectory was never in the same direction, making the micro-

droplets avoid the traps. The alternative method had to be abandoned due to an abundance of 

complications.  

 

Figure 35 - Illustration of the alternative sealing method. The idea consisted in a difference of height between the 
liquid in both bottles (which was FC-40) being pushed through the channel without external assistance, with the 
inlet being connected to the bottle with the least liquid and the outlet connected to the bottles with the most liquid, 
as measured by the blue marks on the bottles. The red marks indicated the height at which the LDPE tubing was 
put which was the same height for both bottles, in order to balance out the pressure exercised on the liquid entering 
the tubing. 
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Annex 7 – Pictures of samples for the cell en-
capsulation experiment 

 

Figure 36 – Pictures used to extrapolate the values of the encapsulation rates for the experiment in Chapter 3.4. 
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Annex 8 – Table for the design of the cell cul-
ture conditions in microdroplets 
Table 10 - Complete table off the articles used to develop the cell culture method used. 

Reference Cell line 
Stating 
n cells 

Method Culture media Matrix 
Vol-
ume 

Incu-
bating 
condi-
tions 

Time 
to 

grow 

Growth 
dynam-

ics 

83 MDA-MB-435 S/SK-BR-3 3000000 
96-well 

plates 

RPMI-1640 sup-

plemented with 

10% FCS and 2 

mM L-Glutamine 

2,5% rBM 
200 

μL 

37 ºC 

7% 

CO2 

24h 

Within 

24h (not 

specified 

if they did 

intermedi-

ate obser-

vations) 

77 MCF-7 10000 
Hanging 

drop 

DMEM with high 

glucose and 25% 

methocel and 10 

% FCS 

1% Matrigel 
20 μL 

each 

37 ºC 

5% 

CO2 

3 

days 

3 days to 

obtain re-

sults, plus 

6h to ana-

lyse mor-

phology 

and 48h 

for 

colapse 

84 MDA-MB-231 100000 
48-well 

plates 

DMEM with 10 % 

FBS and 1% 

Penicillin/Strepto-

mycin 

Col-Tgel (de-

fined by 

droplet size) 

20 μL 

for 

40000 

cells 

37 ºC 
6 

days 

Observa-

tions per-

formed at 

day 0, 2 

,4 and 6 

81 MDA-MB-231 5000 
96-well 

plates 

10 ml DMEM, 

then added 

0.75% agarose 

Collagen 

type I Gel 

dilluted to 2.4 

mg/ml in 

PBS contain-

ing 1xDMEM, 

44 mM Na-

HCO3, 0.1 M 

Hepes 

20 μL 

37 ºC 

5% 

CO2 

24h + 

48h 

24h for 

aggre-

gates, 48 

h for 

spheroids 

72 MV3-melanoma 4000 
hanging 

drop 

DMEM, supple-

mented with 10% 

FCS, penicillin 

100 U/ml and 

streptomycin 

100mg/ml, L-glu-

tamine 2 mM, 

and sodium py-

ruvate 1 mM 

Methylcellu-

lose with 

concentration 

of 4.8 mg/ml 

and diluted 

bovine der-

mis collagen 

I solution 

with a final 

concentration 

of 10 mg/ml, 

for a cell con-

centration of 

1.67 x 10^5 

cells/ml 

30 μL 

37 ºC 

5% 

CO2 

24h 

24h to 

form 

sphe-

roids, with 

an ex-

tended in-

cubation 

period for 

30h as 

optional, 

and 24h 

after 

spheroid 

formation, 

the sphe-
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roids de-

velopped 

hypoxia 

119 MCF-7 

1 or 

more 

cells, 

cannot 

specify 

because 

the pro-

ject did 

not try to 

ensure 

single 

cell en-

capsula-

tion 

Droplet en-

capsula-

tion, with a 

distinct bar-

rier be-

tween the 

bead and 

the sphe-

roid me-

dium 

RPMI media with 

10% FBS and 

1% penicil-

lin/streptomycin 

100 μL of 

collagen I at 

a concentra-

tion of 9.21 

mg/ml, 200 

μL of Mat-

rigelVR was 

added and 

mixed with 

the collagen, 

5 μL Na-

HCO3 to 

reach pH 

7.3–7.5. 50 

μL of MCF-7 

cells in PBS 

and 250 μL 

of 2% Ma-

nucol LKX al-

ginate 

126 

pL, af-

ter 

calcu-

lating 

vol-

ume 

from 

311.6

8 μm 

37 ºC 

5% 

CO2 

Not 

speci-

fied, 

stab-

lishes 

time-

lines 

based 

on 

core 

com-

po-

nents, 

from 

2 to 4 

days 

Follows a 

linear 

trend with 

alginate, 

but starts 

to in-

crease 

with addi-

tion on 

collagen 

and Mat-

rigel, up 

to 1.5x 

the origi-

nal ratio 

of prolifer-

ation 

129 MCF-7 and MDA-MB-231 300000 

Aseptically 

cultured in 

T-25 cell 

culture 

flasks/multi

-well cell 

culture 

plates 

Hi-Gluta XL™ 

Dulbecco's Modi-

fied Eagle's Me-

dium (DMEM) 

(High Glucose), 

supplemented 

with 10% fetal 

bovine serum, 

50 units/mL peni-

cillin, and 

50 μg/mL strepto-

mycin 

Cultured onto 

1.2% aga-

rose-coated 

96-well 

plates 

Not 

speci-

fied 

Not 

speci-

fied 

4 

days 

(24h 

+ 24h 

+ 

48h) 

24h for 

seeding, 

plus 24h 

for culture 

and 48h 

for sphe-

roid for-

mation 

130 
Head and Neck squamous 

cell carcinoma (HNSCC) ex-

tracted from patients 

5000 pri-

mary 

cells, or 

1000-

2000 in-

termedi-

ary cells 

96-well 

plates 

equal parts 

DMEM and air-

way epithelial cell 

medium (BEGM), 

10% fetal bovine 

serum,1% peni-

cillin/streptomy-

cin, 1% sodium 

pyruvate, 1% 

non-essential 

amino acids, 1% 

L-glutamin 

Not specified 

300-

400 

μL 

37 ºC 

5% 

CO2 

7-10 

days 

Change 

media 

every 

24h, until 

spheroid 

growth is 

confirmed 

131 Peripheral blood mononu-

clear cells (PoBMC) 

1000000

-

5000000 

48 or 96-

well plates 

RPMI 1640,10% 

medium 199, 

10% fetal calf se-

rum, 2% antibi-

otic-anti-mycotic 

mix 

10 μg/ml fi-

bronectin, 

10μg/ml adi-

ponectin, 

0.5μg/ml 

MCSF  or  

50%  Mat-

rigel 

Not 

speci-

fied 

Starts 

at 37 

ºC 7% 

CO2, 

but af-

ter the 

clus-

ters 

are 

formed

, they 

are 

cryo-

geni-

cally 

7 

days, 

re-

sup-

plied 

with 

media 

each 

3 

days 

Cell clus-

ters ap-

pear after 

7 days, 

but they 

are left to 

grow for 

21 days 
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pre-

served 

at -

80ºC 

69 

Human prostate cancer cell 

lines PC3 and LnCAP, hu-

man breast cancer cell lines 

MDA‐MB‐231 and MCF-7, 

and lung cancer cell line 

H460 

Not 

specified 

100-mm 

Petri 

Dishes 

PC3 and LnCAP 

cells were grown 

in (RPMI‐1640) 

culture medium 

(2 mM glutamine, 

+sodi-

umpyruvate) sup-

plemented with 

10% fetalbovine 

serum. MCF‐7 

and MDA‐MB‐

231 cells were 

grown in (DMEM) 

high glucose 

(4500 mg/L glu-

cose; 4 mM glu-

tamine, + sodium 

pyruvate) supple-

mented with 10% 

FBS. H460 cells 

were grown in 

RPMI‐1640 cul-

ture medium sup-

plemented with 

5% FBS. All me-

dia were supple-

mented with 100 

U/ml penicillin 

and 100 mg/ml 

streptomycin. 

Media used 

in each cell 

line in a 100-

mm Petri 

dish coated 

with Poly-

HEMA, each 

with 15 mL of 

each media 

15 mL 

37 ºC 

5% 

CO2 

Over 

7 

days 

Complete 

media is 

replaced 

twice a 

week for 

mainte-

nance 

24 Head neck cancer cells ex-

tracted from patients 

Not 

specified 

96-well 

standard 

micro-

plates, 96F 

non-adher-

ent micro-

plates, 

spheroid 

microplates 

and spe-

cialized mi-

crowell for-

mats 

DMEM/F12 with 

additives; 50 

ng/mL EGF, 5% 

v/v R-spondin 1, 

10% v/v Noggin, 

10 ng/mL 

FGF10, 1 ng/ml 

FGF2, 10 nM 

Nicotinamide, 0.5 

μM A83–01, 10 

μM SB202190, 

10 μM Y-27632, 

1X B27 Additive, 

1.25 mM N-Ace-

tyl-L-cysteine, 2 

nM Glutamax, 10 

mM HEPES, 

1:100 v/v Pri-

mocin 

Happy Cell 

hydrogel with 

the media 

previously 

mentioned 

10 mL 

37 ºC 

2% O2, 

5% 

CO2 

Esti-

mate

d time 

of 7 

days 

Not speci-

fied 
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Annex 9 – Summary of the experiments and ex-
amples of compilations of pictures into reser-
voirs 
For the duration of the thesis, during the cell encapsulation and monitoring stage, a total of 46 reservoirs 

were filled and sealed, based on the number of sets, the defining characteristic for observation in each 

set, how many variations of that characteristic existed to test in each set and the existence of one replica 

per each reservoir made. Table 11 contains a count of the total number of reservoirs per each set and 

how many were considered stable enough for further analysis. 

Table 11 – Summary of the total number of filled reservoirs per each set and the number of sets viable for detailed 
analysis. 

Sets Number of reservoirs prepared Number of reservoirs viable after preparation 

1 7 7 

2 3 3 

3 8 8 

4 16 15 

5 12 9 

 

Since the only characterization technique available was optical microscopy, is was not possible to con-

firm the contents of the microdroplets, mainly regarding the presence of Matrigel® within the micro-

droplets and if the cellular-shaped figures that appear inside the microdroplets are indeed the cancer 

cells that were placed in the dispersive phase solution. Air bubbles tend to be formed due to incomplete 

removal of air from the syringes, and they can be confused for cells if they have a similar size. One way 

to distinguish cell from air bubbles resided in their difference in optical properties regarding light refrac-

tion and diffraction. Using dark field visualization settings, it was possible to see which cell-shaped ob-

jects could allow the passage of light without significant deviation, allowing to remove air bubbles from 

total cell count as false positives.  

Below are three examples of complete collages of pictures to illustrate the process of monitorization 

from day 0 to the final observation available (Figures 37 and 38) and to demonstrate the differences 

between the theoretical counting and the experimental counting when dealing with high numbers of 

microdroplets (Figure 39, Tables 15, 16 and 17). 
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Figure 37 - Collage of 23 optical microscope pictures of a sealed PDMS wide reservoir with microdroplets encap-
sulated with MDA-MB-435 cells, with a cell density of 2 × 106 cells mL-1, 8 % Matrigel concentration and PDMS 
bottom layer, monitored right after microdroplet generation, from the 4th set of experiments. 

 

 

Table 12 - Values obtained for diameter estimates about average, standard deviation, maximum and minimum from 
analysing the counted number of microdroplets in the picture captions from reservoir 2 with PDMS bottom layer 
right after sealing the reservoir. 

Number of 
microdroplets 

counted 

Diameter av-
erage (µm) 

Diameter Stand-
ard Deviation 

(µm) 

Diameter (Max) 
(µm) 

Diameter (Min) 
(µm) 

375 113.94 15.41 181.55 89.45 

 

 

Table 13 - Calculation of the theoretical results for cell encapsulation in microdroplets, depending on the estimated 
cell density and the average diameter calculated previously. 

 

 

 

Theoretical values (375 microdroplets) 

Diameter av-
erage (µm): 

113.94 

Empty 
micro-

droplets 

Nº of mi-
cro-

droplets 
with 1 

cell 

Nº of mi-
cro-

droplets 
with 2 
cells 

 

Nº of 
micro-

droplets 
with 3 
cells 

 

Nº of 
micro-

droplets 
with 4 
cells 

 

Nº of 
micro-

droplets 
with 5 
cells 

 

Nº of mi-
cro-

droplets 
with 6 or 

more 
cells 

80 123 96 49 19 6 2 
Ratio (%) 21.25 32.91 25.49 13.16 5.10 1.58 0.52 



Development of microfluidic tools for cancer single cell encapsulation and proliferation in microdroplets 

56 

Table 14 – Results from counting the contents of each microdroplet present in reservoir 2 with PDMS bottom layer 
right after sealing the reservoir, with the ratio calculated for each partition of the microdroplets when comparing to 
the total of microdroplets counted. 

 

 

 

 

Figure 38 - Collage of 23 microscope pictures of a sealed PDMS wide reservoir with microdroplets encapsulated 
with MDA-MB-435 cells, with a cell density of 2 × 106 cells mL-1, 8 % Matrigel concentration and PDMS bottom 
layer, monitored 360 h after microdroplet generation, from the 4th set of experiments. 

 

 

 

 

 

 

 

 

Experimental values 

Number of 
micro-

droplets 
counted: 

375 

Empty 
micro-

droplets 

Nº of mi-
cro-

droplets 
with 1 

cell 

Nº of mi-
cro-

droplets 
with 2 
cells 

 

Nº of 
micro-

droplets 
with 3 
cells 

 

Nº of 
micro-

droplets 
with 4 
cells 

 

Nº of 
micro-

droplets 
with 5 
cells 

 

Nº of mi-
cro-

droplets 
with 6 or 

more 
cells 

76 59 63 32 26 8 111 
Ratio (%) 20.27 15.73 16.80 8.53 6.93 2.13 29.60 
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Figure 39 - Collage of 30 microscope pictures of a sealed PDMS linear reservoir with microdroplets encapsulated 
with MDA-MB-435 cells, with a cell density of 1 × 106 cells mL-1 and 4 % Matrigel concentration, monitored right 
after microdroplet generation, from the 2nd set of experiments. 

 

 

Table 15 - Values obtained for diameter estimates about average, standard deviation, maximum and minimum from 
analysing the counted number of microdroplets in the picture captions from reservoir 1 with 1 × 106 cells mL-1 cell 
density  right after sealing the reservoir. 

Number of micro-
droplets counted 

Diameter av-
erage (µm) 

Diameter Stand-
ard Deviation 

(µm) 

Diameter (Max) 
(µm) 

Diameter (Min) 
(µm) 

726 55.59 12.81 101.77 37.55 
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Table 16 - Calculation of the theoretical results for cell encapsulation in microdroplets, depending on the estimated 
cell density and the average diameter calculated previously. 

 

 

 

Table 17 – Results from counting the contents of each microdroplet present in reservoir 1 with 1 × 106 cells mL-1 
cell density right after sealing the reservoir, with the ratio calculated for each partition of the microdroplets when 
comparing to the total of microdroplets counted. 

 

 

 

 

 

 

 

Theoretical values (726 microdroplets) 

Diameter av-
erage (µm): 

55.59 

Empty 
micro-

droplets 

Nº of mi-
cro-

droplets 
with 1 

cell 

Nº of mi-
cro-

droplets 
with 2 
cells 

 

Nº of 
micro-

droplets 
with 3 
cells 

 

Nº of 
micro-

droplets 
with 4 
cells 

 

Nº of 
micro-

droplets 
with 5 
cells 

 

Nº of mi-
cro-

droplets 
with 6 or 

more 
cells 

664 60 3 0 0 0 0 
Ratio (%) 91.40 8.22 0.37 0.01 0.00 0.00 0.00 

Experimental values 

Number of 
micro-

droplets 
counted: 

726 

Empty 
micro-

droplets 

Nº of mi-
cro-

droplets 
with 1 

cell 

Nº of mi-
cro-

droplets 
with 2 
cells 

 

Nº of 
micro-

droplets 
with 3 
cells 

 

Nº of 
micro-

droplets 
with 4 
cells 

 

Nº of 
micro-

droplets 
with 5 
cells 

 

Nº of mi-
cro-

droplets 
with 6 or 

more 
cells 

650 56 10 3 4 2 1 
Ratio (%) 89.53 7.71 1.38 0.41 0.55 0.28 0.14 
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