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ABSTRACT  
Introduction and aim Cancer is one of the main causes of death worldwide. Tumor diagnosis, 

staging, surveillance, prognosis and access to the response to therapy are critical when it comes 

to plan and analyze the optimal treatment strategies of cancer diseases. 18F-fluorodeoxyglucose 

(18F-FDG) positron emission tomography (PET) imaging has provided some reliable prognostic 

factors in several cancer types, by extracting quantitative measures from the images obtained in 

clinics. The recent addition of digital equipment to the clinical armamentarium of PET leads to 

some concerns regarding inter-device data variability. Consequently, the reproducibility assess-

ment of the tumor features, usually used in clinics and research, extracted from images acquired 

in an analog and new digital PET equipment is of paramount importance for use of multi-scanner 

studies in longitudinal patient’s studies. The aim of this study was to evaluate the inter-equipment 

reliability of a set of 25 lesional features commonly used in clinics and research. 

Material and methods In order to access the features agreement, a dual imaging protocol was 

designed. Whole-body 18F-FDG PET images from 53 oncological patients were acquired, after a 

single 18F-FDG injection, with two devices alternatively: Philips Vereos Digital PET/CT (VE-

REOS with three different reconstruction protocols- digital) and Philips GEMINI TF-16 (GEM-

INI with single standard reconstruction protocol- analog). A nuclear medicine physician identi-

fied 283 18F-FDG avid lesions. Then, all lesions (both equipment) were automatically segmented 

based on a Bayesian classifier optimized to this study. In the total, 25 features (first order statistics 

and geometric features) were computed and compared. The intraclass correlation coefficient 

(ICC) was used as measure of agreement. 

Results A high agreement (ICC > 0.75) was obtained for most of the lesion features pulled out 

from both devices imaging data, for all (GEMINI vs VEREOS) reconstructions. The lesion fea-

tures most frequently used, maximum standardized uptake value, metabolic tumor volume, and 

total lesion glycolysis reached maximum ICC of 0.90, 0.98 and 0.97, respectively. 

Conclusions Under controlled acquisition and reconstruction parameters, most of the features 

studied can be used for research and clinical work, whenever multiple scanner (e.g. VEREOS and 

GEMINI) studies, mainly during longitudinal patient evaluation, are used. 

 

Keywords: Nuclear Medicine, Positron Emission Tomography, Lesions Quantification, Segmen-

tation, Image Processing 
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 RESUMO  
Introdução e objetivo O cancro é uma das principais causas de morte no mundo. O seu diagnós-

tico, estadiamento, vigilância, prognóstico e acesso da resposta à terapia é essencial no planea-

mento e adoção da melhor estratégia de tratamento a seguir. Tomografia por emissão de positrões 

(PET) com 18F-fluordeoxiglicose (18F-FDG) tem demonstrado fornecer fatores de prognóstico fi-

áveis para diferentes tipos de cancro, a partir da extração de medidas quantitativas de imagens 

PET. A recente introdução no mercado de um PET digital traz algumas preocupações quanto à 

variabilidade dos dados entre equipamentos. Consequentemente, um estudo da reprodutibilidade 

das características lesionais frequentemente usadas em investigação e em clínica, extraídas de 

imagens PET de um equipamento analógico e do novo digital, é imprescindível para o uso de 

estudos multi-scanner em avaliações longitudinais de doentes. O objetivo deste estudo é avaliar 

a reprodutibilidade, entre equipamentos, de 25 características lesionais frequentemente usadas na 

clínica e investigação. 

Materiais e métodos Para aceder à concordância das características, um protocolo de dupla aqui-

sição foi implementado na clínica. Foram adquiridas imagens PET de corpo inteiro de 53 doentes 

oncológicos, após uma única injeção de 18F-FDG, em dois equipamentos alternadamente: Philips 

Vereos Digital PET/CT (VEREOS – digital) com três protocolos de reconstrução diferentes e 

Philips GEMINI TF-16 (GEMINI - analógico) com um protocolo de reconstrução padrão. Um 

médico especialista em medicina nuclear identificou 283 lesões ávidas para 18F-FDG. De seguida, 

todas as lesões foram segmentadas automaticamente por um algoritmo de classificação Bayesiana 

otimizado para este estudo. No total, 25 características (baseadas em estatísticas de primeira or-

dem e em geometria) foram calculadas e comparadas. O coeficiente de correlação intraclasse 

(ICC) foi usado para medir a concordância entre os valores das características correspondentes 

extraídas das imagens dos dois equipamentos.  

Resultados Foi obtida uma elevada concordância (ICC > 0.75) entre a maioria das características 

retiradas das imagens dos dois equipamentos, para todas as reconstruções (GEMINI versus VE-

REOS). Para as características lesionais usadas mais frequentemente, valor máximo de captação 

padronizada, volume metabólico tumoral e glicólise total da lesão foi obtido um ICC máximo de 

0,90, 0,98 e 0,97, respetivamente.  

Conclusões Com parâmetros de aquisição e reconstrução controlados, a maioria das característi-

cas estudadas podem ser usadas em investigação e na prática clínica em estudos que envolvam 

aquisições em ambos os equipamentos (VEREOS e GEMINI), em particular na avaliação longi-

tudinal do doente. 

 

Palavras-chave: Medicina Nuclear, Tomografia por Emissão de Positrões, Quantificação de Le-

sões, Segmentação, Processamento de Imagem. 
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1  INTRODUCTION  

1.1  Tumor 18F-fluorodeoxyglucose avidity 

The 18F-fluorodeoxyglucose (18F-FDG) is a radiopharmaceutical labeled with the radioisotope 

fluorine-18 generated in a cyclotron that produces positrons and has a brief half-life (109.7 min). 

18F-FDG is a glucose analogue and is absorbed via living cells by cell membrane glucose trans-

porters. Then, it is incorporated into the normal glycolytic pathway.  

In great number of tumors, the consumption of glucose increases mostly due to the over-

expression of the facilitated diffusion glucose transporters and augmented hexokinase activity [1]. 

So, these tumor cells are highly metabolic active and favor more inefficient anaerobic pathway 

adding to the already increased glucose demands [2]. These mechanisms together allow tumor 

cells to absorb and retain high levels of 18F-FDG when compared with normal tissues. Its accu-

mulation in tissue is proportional to the quantity of glucose utilization. The uptake of 18F-FDG is 

substantially increased in most tumors as is the case of esophageal, ovarian, stomach, head and 

neck, lung, cervical, colorectal and breast cancers, as well as melanoma and most types of lym-

phoma [3]. It is important to be aware that 18F-FDG will accumulate in areas with high levels of 

metabolism and glycolysis, and not just in tumor cells. Increased uptake is probable to appear in 

sites of hyperactivity, as muscular or nervous, active inflammation, tissue repair, and others. For 

example, kidneys and urinary bladder are common physiologic uptake areas of 18F-FDG since 

they are excretion organs. 

In order to follow the metabolic activity using this radiopharmaceutical, it is required pa-

tient injection. The injection of this biologically important material should fulfill the ALARA 
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principle for minimizing radiation exposure [4]. The injected dose should be the lower possible 

for the patient ensuring a reasonable image quality in which tracer uptake in target structures 

(lesions tissue) are discernible.  

 

1.2 Context and motivation 

Tumor diagnosis, staging, surveillance, prognosis and access to the response to therapy are critical 

when it comes to plan the optimal treatment strategies of malignant diseases. For tumor diagnosis, 

precise tumor location and description of the form, intensity, and heterogeneity may be of para-

mount importance.  

The anatomy and functionality of the human body have been subject of many studies and 

can be mapped in a non-invasive way by positron emission tomography (PET) integrated with X-

ray computed tomography (CT), facilitating malignancies diagnosis, treatment planning and mon-

itoring. In particular, PET molecular imaging reveals biological processes, providing insight into 

tumor metabolism and its effects on tissue function. CT provides valuable anatomic information 

about the tumor and its involvement with adjacent organs and vasculature. The lack of a high 

spatial resolution of PET equipment is compensated with the integration of CT equipment, the 

easiest and highest resolution tomographic modality [5]. The junction of the two brings the best 

of both worlds for Nuclear Medicine (NM).  

Nowadays, analog PET/CT with the radiopharmaceutical 18F-FDG is widely used daily in 

clinics for assessing response to therapy in clinical trials and clinical practice for patients with 

tumors. Recent developments by Philips Healthcare created the first truly digital PET equipment, 

now available in Portugal only at Champalimaud Foundation, the Philips Vereos Digital PET/CT. 

This equipment has higher temporal and spatial resolution than any analog PET/CT commonly 

used in NM clinics. Therefore, additional precision and accuracy are provided by this equipment 

in malignance’s evaluation. Besides the Philips Vereos, a Philips GEMINI TF16 (analog 

PET/CT) is also installed in NM of Champalimaud Foundation. Images from both these scanners 

are going to be used in this study.  

The recent addition of the digital equipment to the clinical armamentarium of PET/CT leads 

to some concerns regarding inter-device variability. Reproducibility or robustness is an indispen-

sable requirement for any quantitative measurement and imaging biomarker. Adequate reproduc-

ibility ensures the capability to produce identical results in the same patient when examined on 

different systems, which are crucial for the clinic management of subjects and for the use of 18F-

FDG PET/CT images within multicenter trials [4]. Thus, a reproducibility study on tumor imaging 

biomarkers (features) involving the two available equipment is imperative.  
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1.3 Objectives and dissertation plan 

The primary objective of the dissertation is the reproducibility assessment of lesion features usu-

ally used in clinics or research, extracted from 18F-FDG PET images (figure 1.1). The features to 

be tested will be computed based on the images acquired by an analog PET/CT -GEMINI- and 

by a digital PET/CT -VEREOS-. If there is a correlation but low agreement between the features 

extracted from the images of both equipment, conversion factors will be estimated. 

The present dissertation has been structured to first cover the current state-of-the-art con-

cerning PET/CT equipment, 18F-FDG as a radiopharmaceutical daily used in nuclear medicine 

and methods to delineate lesion volume used in clinical studies or research. In chapter 2 the rele-

vant theoretical underpinnings of PET and CT essential for the understanding of how the medical 

image is acquired are described. Afterward, in chapter 3, some common segmentation techniques 

and their possible advantages and disadvantages are described.  In chapter 4, the materials and 

methods used for imaging processing and statistical analysis are presented. In the following chap-

ter, the results are accessible, both for the segmentation and features extraction and comparison. 

Lastly, the discussion and final conclusions are addressed. 
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Figure 1.1: Flowchart representing the necessary steps for achieving the final goal: reproducibility assess-

ment of lesions features usually used in clinics and research extracted from 18F-FDG PET images. After 

images acquisition in both scanners, the lesions are identified by a physician and then automatically seg-

mented. Therefore, the features are computed. Lastly, statistical analysis between the features is completed 

in order to find the reproducible features between equipments. 
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1.4 State-of-the-Art 

NM emerged in the early 20th century due to the need for understanding the physiologic and 

biologic mechanisms of health and disease. An expansion of NM applications both in clinical 

studies and research has occurred since then. Advances in radiopharmaceutical development, in-

strumentation and computer processing led to the implementation of PET for clinical studies, and 

improved treatments with radiopharmaceuticals particularly in cancer patients. 

Later, integrating data processing streams from PET and CT was considered and by 1998, 

the first PET/CT prototype was ready for use. The fusion of molecular/metabolic and anatomi-

cal/morphological information improved the diagnostic accuracy in the identification and char-

acterization of malignancies, assessment of tumor stage, therapeutic response and tumor recur-

rence [6]. PET/CT combines two already excellent modalities [7], [8]. Its main advantages com-

pared to the simple PET system are the possibility to apply image reconstruction methods that 

compensate for the photon attenuation in the tissues and anatomic referencing.  

Nowadays, the majority of PET/CT equipment daily used have PET detectors based on 

photomultiplier tubes (PMT) with the disadvantages of limited photon-to-electron quantum con-

version efficiency, bulkiness, and the relatively high cost of PMTs [9], [10]. To overcome the 

technical limitations, a novel digital photon counter (DPC) PET/CT was recently created and is 

now installed in a few clinics around the world.  Its prototype system showed better image quality 

and diagnostic accuracy compared with the previously used analog PET/CT [11]. In the analog 

equipment, available around 2001, the analog output signal requires off-chip processing. The dig-

ital PET/CT works without analog signal processing because each single photon avalanche diode 

runs as a digital counter that delivers a direct count of the number of scintillation photons per-

ceived.  

In order to advance nuclear medicine research and multicenter studies, the European Asso-

ciation of Nuclear Medicine (EANM) launched EANM research Ltd (EARL) specifications [12]. 

These instructions were created considering analog devices, as GEMINI. Digital PET system has 

improved spatial and temporal resolution and originates activity concentration recovery coeffi-

cients in the NEMA tests above EARL specifications [13], [14]. So, using the standard manufac-

ture reconstruction protocols, VEREOS scanner does not fulfill EARL requirements. In order to 

satisfy these specifications, VEREOS images have to be smoothed [14]. 

To quantify lesions and tumors uptake patterns is essential that the features used are repro-

ducible between scanners. To our knowledge, at the start of this study, there were no reproduci-

bility studies comparing the tumor features extracted from VEREOS and GEMINI devices with 

the radiopharmaceutical 18F-FDG. 



CHAPTER 1:  I N T R O D U C T I O N  

 

6 

To evaluate the features reproducibility, medical image processing and analysis are crucial. 

Medical image analysis became important in the early 1990s, emerging from Artificial Intelli-

gence and Computer Science. In the next years, since the expansion of imaging techniques, there 

was a need to delineate the regions of interest (ROI) of the human body images, in order to quan-

tify the volume of tumors and study their structure. Consequently, studies developing segmenta-

tion algorithms were rapidly released, since the segmentation process is an essential step for tumor 

features extraction. Segmentation subdivides a digital image into sets of voxels, categorizing them 

in biological meaningful labels. Manual segmentation by an expert, slice by slice, is time-

consuming and susceptible to the natural intra and inter-observer variability. So, it is not a good 

solution for large datasets [15] and automatic algorithms may be preferable. Numerous studies 

have used different segmentation methods to define tumor volume by automatic or semi-auto-

matic segmentation techniques [16]–[18]. Several automatic algorithms have been developed, re-

moving bias from the process. Appropriate segmentation methods may differ from imaging mo-

dalities, and accuracy and precision are of great importance. When designing an effective algo-

rithm, the imaging modality, the structures to analyze, the influence of noise and partial volume 

effects should be considered [19]. For example, methods based on thresholding are commonly 

applied due to its simplicity and quickness [20]–[23]. Bayesian approaches have been recently 

developed and exhibit consistent performance and fewer errors when compared with other 

methods [24]. Answering to different problems in nuclear medicine, several algorithms for med-

ical image segmentation were then created over the years. PET/CT segmentation has been applied 

in the lung [25], [26], prostate [27], esophagus [28], brain [29], heart [30], etc. Consequently, the 

accuracy and reproducibility of different algorithms on PET images segmentation must also be 

evaluated.  

Quantitative analysis has shown to be more effective than visual assessment during the 

course of therapy, by distinguishing effective from ineffective treatment earlier [31]. The extrac-

tion of a large number of features from images has become popular under the denomination ra-

diomics [15]. This kind of analysis may provide crucial information about tumor phenotypes. For 

example, tumoral heterogeneity may be useful for prognostic in several tumors [28], [32], [33], 

once malignant tumors are susceptible to be heterogeneous. Several research studies have consid-

ered feature extraction a crucial step to tumor diagnostic and prognostic. For example, Chan et al. 

found that tumor heterogeneity categorized by texture features was superior to traditional PET 

parameters for predicting outcomes in nasopharyngeal carcinoma [34]. Quantitative features may 

serve as image-based biomarkers with the potential to diagnosis and prognosis. For instance, met-

abolic tumor volume (MTV) and total lesion glycolysis (TLG) obtained from 18F-FDG PET/CT 

are valuable for predicting treatment response in some tumors, as lung cancer [35]. So, after a 
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correct segmentation, features associated with tumor intensity and tumor geometry must be ex-

tracted from the images acquired in both scanners and compared using adequate statistics.
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2  POSITRON  EMISSION  TOMOGRAPHY  

AND  X -RAY COMPUTED  TOMOGRAPHY  

2.1 Positron emission tomography principles and concepts 

PET is a biomedical imaging technique that makes available functional information about the 

human body and organs in a non-invasive quantitative assessment. PET bio-functional potential-

ity provides detection of some tumors that are not detected through other techniques. Another 

important application is neuroimaging. For example, PET can help to discriminate Alzheimer 

disease from other neurodegenerative diseases [36]. 

In PET images is possible to determine the amount of the radiopharmaceutical that is pre-

sent in a specific ROI, since the counting rate of the respective reconstructed image is directly 

proportional to the radioactivity concentration. Common PET scanners are constituted by multi-

ple rings of scintillation crystal detectors coupled to PMT, surrounding the patient. 

 Positrons are emitted via β+ decay with continuous kinetic energy distribution. As repre-

sented in equation 2.1, the radioisotope fluorine-18 originates an oxygen atom, a positron (e+) 

and an electron neutrino (). 

F9
18 → O8

18 + e+ +                                                      (2.1)   
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Positrons have a very short time of life and distance range in condensed matter. They trans-

fer rapidly their energy undergoing ionizing events, collision interactions and excitation of mo-

lecular species and eventually thermalize before annihilation with an electron [37]. After positron 

emission from 18F radioisotope, the positron range in the human tissue is about 0.5 mm to 2 mm 

[37]. When positrons have energy sufficiently low, and they meet an electron (positron antiparti-

cle), occurs annihilation, i.e., their mass is converted into radiation energy and two photons ap-

proximately collinear are emitted in opposite directions, as seen in figure 2.1(A). The non-collin-

earity is due to the conservation of linear momentum and energy. Consequentially, an angular 

deviation in the biological tissue of ±0.25º is expected [38].  

 

 

Figure 2.1: (A) β+ particle slowing-down and its annihilation. (B) True coincidence. (C) Random 
coincidence. (D) Scattered event. 
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The image acquisition inside the patient's body requires coincidence detection of both the 

511 keV annihilation gamma rays within a resolving time. So, the PET detection system is 

founded on the two annihilation photons which are released in opposite directions. The fact that 

positrons travel a short distance before its annihilation causes a limitation of PET spatial resolu-

tion.   

In Figure 2.1(B-D), true coincidence and two undesired events are represented. They can 

be perceived by the detectors through the coincidence technique. Scattered event coincidence can 

happen when one of both annihilation photons experiences a Compton interaction inside the body, 

which causes a change in direction and so the event is given by a wrong line of response (LOR). 

Random events are another possibility when two photons from different annihilation phenomena 

are detected as coincident. Random coincidence and Compton scattering lead to image blurring, 

loss in image contrast and degrade the accuracy of the quantitative analysis [39]. 

The spatial resolution of PET equipment is the minimum distance at which two radioactive 

sources can be placed so that they can be distinguishable in the image. The limited spatial reso-

lution of the scintillation crystal is one of the factors that contribute to the degradation of spatial 

resolution, due to crystal dimensions. Another reason is the deviation of the two photons produced 

in the positron-electron annihilation from collinearity. 

The time-of-flight (TOF) PET allows estimating the position of the annihilation events 

through the time difference of two interactions on the two detectors along a LOR. So, the position 

of annihilation is determined by the LOR and by the difference in time arrival of both photons on 

the two coincidence detectors. The TOF resolution depends on some factors, such as the scintil-

lator material. The faster is the scintillation material, the shorter is the time resolution. 

 

2.2 X-ray computed tomography principles and concepts 

CT is one of the most used imaging methods in medicine. Nowadays, CT offers substantial ana-

tomic information about the number, size, and locations of tumors. This technique uses radiation, 

or X-rays, joined with an electronic detector to record a pattern of densities. The X-ray beam 

passing from multiple projections rotates around the patient. An electronic detector array detects 

the X-rays that pass through the patient, measuring their attenuation. The emitter of X-rays rotates 

as the detector, diametrically on the opposite side. This data (attenuation and location) is then 

used to reconstruct a tomographic (3D) image. CT is based on the principle that the density of the 

tissue passed by the X-ray beam is calculated by the attenuation coefficient. 
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Depending on the type of tissue through which the X-rays beam pass, the attenuation tends 

to be different. The higher the attenuation on the tissue, the brighter the tissue appears in the 

images, and the opposite is equally valid. 

 

2.3 Positron emission tomography-computed tomography 

PET/CT imaging combines molecular-metabolic precision of PET with anatomic details of CT, 

constituting a reliable tool in diagnostic oncology, tumor staging, and treatment monitoring and 

planning. This equipment also allows acquisition of PET only and CT only images. CT may also 

be used to quantify tumor sizes and tumor involvement with vital organs and vasculature. PET 

image provides additional data on the biological or metabolic heterogeneity of tumors, as hypoxic 

regions within a tumor, apoptosis, and necrosis [40].  

Several PET/CT equipment with similar characteristics exist and are used in the clinical 

environment, mostly analog PET/CT. Digital PET/CT is very recent and is equipped with DPC, 

an innovative scintillation detector. Analog PET/CT uses conventional photomultipliers coupled 

with crystal scintillators. Digital PET/CT inserts an array of silicon photomultipliers (SiPM) in-

stead of the conventional analog photomultipliers. These digital detectors present high-perfor-

mance without the need for noise-sensitive off-chip analog to digital conversion [41]–[43]. The 

recent Philips Vereos Digital PET/CT equipment has better TOF resolution than the analog one, 

which also contributes to improve the spatial resolution. Thus, digital PET/CT affords better im-

age quality, diagnostic confidence, as well as accuracy, compared with analog PET/CT [11]. 
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3  IMAGE SEGMENTATION  

Segmentation process divides an image into non-overlapping regions. Typically, a correct seg-

mentation must group pixels in the same region if they have a similar gray level, color, texture, 

brightness or contrast [44]. This process aims to study anatomical or functional structure, identify 

ROI helping in the location of the tumor, lesion, and other abnormalities, measure tissue volume 

and help in treatment planning. Assuming that the domain of the medical image is given by Ω, 

the segmentation process should discover the sets Si ⊂ Ω (i ≤ k, where k is the number of classes). 

Consequently, the sets that make up the segmentation must verify equation 3.1, 

Ω =  ⋃𝑆𝑖

𝑘

𝑖=1

 

where Si ∩ Sj =  for i ≠ j  [45]. A segmentation process identifies Si sets that correspond to 

dissimilar anatomical or functional structures or ROI in the medical image. Segmentation can be 

applied through a manual, semi-automatic or automatic process. 

The labeling process gives a meaningful classification to every category individually. Ba-

sically, it maps the numerical index i of Si to an anatomical or functional term. Reliable algorithms 

are mandatory for the delineation of a ROI. According to algorithms principal methodologies, 

there are three general classifications: based on thresholds, gradients, clustering, and deformable 

models, for instance [19]. 

 

3.1 Algorithms based on thresholds 

Threshold-based segmentation methods ensure that the tumor or organs with interest are distin-

guished based on image intensity. This method is one of the simplest and fastest, founded on the 
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supposition that the regions of interest have different grey levels than the surrounding regions. 

The threshold is an intensity value that splits the desired classes. So, a binary segmentation divides 

intensities into "background" (classified as 0) for the pixels with intensities less than the threshold 

(for instance), and "foreground" (classified as 1) for the pixels with intensities greater than or 

equal to the threshold. The following equation 3.2 describes the method for a binary segmentation 

of a 2D image, 

𝑔(𝑥, 𝑦) = {
background if 𝑓(𝑥, 𝑦) < 𝑇

foreground if 𝑓(𝑥, 𝑦) ≥ 𝑇
                               (3.2) 

where 𝑓(𝑥, 𝑦) is the pixel intensity in the (𝑥, 𝑦) position and 𝑇 is the defined threshold value. For 

multiclass segmentation, several thresholds must be defined. Threshold values may be found, for 

instance, in the histogram images, with the diverse peaks and valleys that enable the division of 

the images into different regions. In figure 3.1 three obvious thresholds at the valleys of the his-

togram are shown, which may be used to divide the image into two or three classes. 

 

 

Thresholds used in these algorithms can be designated manually or automatically. The first 

way requires a trial experiment and a priori information to discover the correct values. A number 

of groups have used fixed threshold values derived from phantom validation work (generally be-

tween 50% and 80% of maximum local activity concentration value) [46], [47]. For example, 

Paulino et al [48] used a threshold of 50% in head and neck tumors. Automatic selection collects 

the image information to find the adaptative threshold values automatically. One of the techniques 

that have been developed is the Otsu's method [49], in which an initial guess of the threshold 

values is made, and then maximizes de separation between different threshold classes. 

Figure 3.1: Histogram showing three apparent classes. 
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3.2 Algorithms based on gradients 

Gradient based segmentation algorithms start by the computation of the gradient image. Then, 

different segmentation techniques can be used on these images, namely the threshold based. In 

the borders of the organs and tumors, an accentuated transition of the grey level (or uptake in the 

PET images) is commonly observed. Thus, threshold techniques on gradient images may allow 

detecting the edges of the structures of interest. This leads to a common classification of the seg-

mentation algorithms in edge-based or region-based [19].  

In edge-based algorithms, threshold values are associated with the edge information, and 

consequentially pixels are classified as edge or non-edge taking into account the filter output (a 

gradient filter). Pixels that are not divided by an edge are assigned to the same category. Laplacian 

edge detection belongs to this type of algorithms [50]. This method applies the second spatial 

derivative information of the voxel’s intensity. Canny and Sobel edge detection are often applied 

[19], [51]. The first makes use of the gradient magnitude, discover the possible edge pixels and 

overpowers them with non-maximal suppression and hysteresis thresholding. Sobel filters iden-

tify and extract borders with gradient operators. 

 

3.3 Algorithms based regions homogeneity 

Region-based algorithms are based on the principle of homogeneity i.e., operate by grouping 

neighbors’ pixels that have similar image features of interest (as intensity, for instance) and split-

ting them from the ones with dissimilar values. A boundary is formed from the differences be-

tween these two regions. Region growing algorithms are typical examples of this type, and inte-

grates the use of seed points, manually selected by an operator or automatically set using another 

algorithm. Then, the neighboring pixels of the seeds with similar properties, within the threshold, 

are merged together. Seeded region growing process aims to enlarge a seed region through the 

integration of unallocated neighbor pixels with the minimum intensity difference comparatively 

to the seeded region. In order to remove the dependence on original seeds defined by the operator, 

a priori knowledge and statistics can be combined into the algorithms [52], [53]. The norms to 

decide the pixel connectivity implemented to determine neighbors depend on the algorithm used. 

 

3.4 Algorithms based on clustering techniques 

Clustering algorithms try to group the pixels into classes based on an adequate rule. Unsupervised 

methods do not use training data, they rely only on the image to be segmented [54]. Frequently, 
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these methods do not consider the spatial information, and therefore they are sensitive to noise 

and intensity inhomogeneities. 

Three clustering algorithms will be explained in this section: K-means, the fuzzy C-means, 

and Bayesian based method. 

K-means algorithms or also called CM algorithms [19] assign the unlabeled pixels to the 

nearest clusters, in which the measure of "distance" is the pixel intensity. Usually, it labels the 

pixels so that the within-cluster variance is minimized. The process is iterative, i.e., after a round, 

a new one starts, and the pixels may be reclassified until no improvement is achieved. Every time 

a pixel is reclassified, the centroid of each class (the average of the intensity of the pixels belong-

ing to that cluster) needs to be updated. K is the number of clusters in which the image was 

divided.  

The fuzzy C-means (FCM) algorithm permits soft segmentation based on fuzzy set theory. 

It generalizes k-means algorithm. As k-means, the FCM technique groups similar data in the same 

clusters based on the minimization of the within-cluster variance [55]. It computes the degree of 

belonging to each class, and do not classify the pixel into a static cluster as K-means. 

Bayesian automatic algorithms allow noise modeling. Thus, when compared with other 

segmentation algorithms, they are less sensitive to noise due to their statistical modeling. In the 

image segmentation process, these algorithms provide an unsupervised estimation of the essential 

parameters which limit the classes selection in the image by the user.  

 The Bayesian method is an unsupervised classifier based on Bayes probability formula, 

represented in equation 3.3, 

 

𝑃(𝐶𝑘|𝑥) =  
𝑃(𝑥|𝐶𝑘) 𝑃(𝐶𝑘)

𝑃(𝑥)
  , 𝑃(𝑥) ≠ 0 

 

where 𝑃(𝐶𝑘|𝑥) is the posterior probability of the gray value 𝑥 belong to the class 𝐶𝑘 , 𝑃(𝑥|𝐶𝑘) is 

the likelihood of 𝑥 inside the class 𝐶𝑘 , 𝑃(𝐶𝑘) is the prior probability of class 𝐶𝑘  and 𝑃(𝑥) is 

probability of 𝑥. Each 𝑥 is classified as belonging to class 𝐶𝑘  if 𝑃(𝐶𝑘|𝑥) is highest between all 

other classes. The classification result is independent of 𝑃(𝑥), because this value is constant for 

each 𝑥. 

An example of an algorithm based on the Bayesian method is the fuzzy locally adaptive 

Bayesian (FLAB) segmentation. This approach has revealed better performance, principally for 

smaller objects, when compared with the threshold methods and FCM algorithms [24]. While the 

(3.3) 

 

(3.3) 
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Bayesian part of the algorithm measures the uncertainty of the classification, assuming that each 

voxel is identified but the observed data is noisy, the fuzzy part measures the imprecision of each 

voxel classification, with the hypothesis being that the respective voxel may coexist in two ho-

mogeneous (or "hard") classes [24]. In this method, instead of the standard implementation with 

a finite number of hard classes, a finite number of fuzzy levels in combination with two hard 

classes is implemented [56].  

 

 

3.5 Algorithms based on deformable models 

Deformable models have been extensively used in medical image segmentation. These algorithms 

define the boundaries of the ROI by applying closed parametric curves, or surfaces that deform 

under the influence of external and internal forces [57]. A closed curve or surface near the chosen 

boundary should be introduced in an image. Then, the external forces resulted from the image 

drive the curve to the desired contour of the region. The internal forces effort to keep the defor-

mation smooth. Figure 3.2(A) demonstrates an example of applying an active contour in the blad-

der, initialized as a circle. In figure 3.2(B), the active contour is permitted to deform to the inner 

boundary of the bladder. 

Figure 3.2: Extraction of the inner wall of the bladder from 18F-FDG PET image using deformable models. 

Example created using ITK-SNAP software. 
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4  MATERIALS AND METHODS  

4.1 Dataset  

The dataset used in this study is composed by 53 oncological patients who underwent double 

whole-body PET/CT, a scan on the Philips Vereos Digital and the other on Philips GEMINI TF 

(Philips Medical Systems). Only patients with lesions were included. Patients characteristics are 

registered in table 4.1. 

The study was realized at NM department of the Champalimaud Clinical Centre (CCC) 

between December 2018 and February 2019. All patients gave written informed consent. To en-

sure confidentiality, patients' data were de-identified. This observational and cross-sectional re-

search study was approved by the Ethics Committee of the CCC.  

 

Table 4.1: Patients characteristics included in the final dataset.  

Characteristic  

Sex (M/F) 24 / 29 

Age (years)* 65 ± 10 

Height (cm)* 165 ± 10 

Weight (kg)* 73 ± 16 

Body mass index (kg/m2)* 26.7 ± 4.6 

*Data presented as mean ± standard deviation. 

4 

 
 

4 

 

C
h

a
p

t
e

r
 

 C
h

a
p

t
e

r
 



CHAPTER 4: MATERIALS AND METHODS 

 

20 

4.2 Image acquisition and reconstruction 

For the dual imaging protocol, all the patients included underwent a single intravenous injection 

of 245 ± 55 MBq of 18F-FDG (in average 3.4 MBq/kg).  

The first acquisition started approximately 70 ± 15 min post-injection and the second scan 

approximately 40  22 min after the beginning of the first. On average, the VEREOS time acqui-

sition post-injection was 63 min and 104 min, respectively for the first and second scan. In GEM-

INI, the acquisition time post-injection was for the first scan 74 min and for the second 113 min. 

Twenty-six patients performed the first image acquisition on the digital PET/CT device, and 

twenty-seven on the analog device.  

The time difference between the acquisitions was the shortest possible based on the con-

straints of the clinical department as throughput requirements and external workflow factors. The 

time difference presented includes the time period of the first scan, patient exit from the equip-

ment and preparation for the next acquisition.  

The data were acquired with an acquisition time of 70 sec/bed position on both scanners. 

The total acquisition time depends on the size of each subject and the effective axial field of view 

(AFOV) of the scanners, so it was different from patient to patient and scanner to scanner. Then, 

image reconstruction was applied with default/equivalent clinical parameters, which means that 

none of the scanners were used at its maximum capability. Table 4.2 summarizes the main pa-

rameters of GEMINI and VEREOS images reconstruction. PET images were reconstructed with 

a 3D ordered subset expectation maximization (OSEM) algorithm, with 3 iterations and 33 sub-

sets on GEMINI and with 3 iterations and 15 subsets on VEREOS. In both cases, an isotropic 

voxel size of 4 mm was set. The existence of a relaxation factor of 0.7 in the reconstruction of the 

GEMINI images (in VEREOS is 1.0) compensates for the difference in the number of subsets by 

controlling image smoothing.  

Three datasets of images from the VEREOS were built: the original (as obtained from the 

standard reconstruction algorithm) and another two after smoothing the original VEREOS images 

with two different Gaussian filters. Although the smoothing represents a downgrade of the im-

ages, it is necessary in order to VEREOS images meet the requirements necessary to satisfy the 

EARL standards. To do so, it is recommended by Philips Healthcare to use a 3D Gaussian smooth-

ing filter with a full width at half maximum (FWHM) of 5 mm in the images from VEREOS [58]. 

However, Koopman et al [14] found that to satisfy EARL standards applying the same recon-

struction parameters as we used and a Gaussian smoothing filter with 2 to 4 mm FWHM is the 

better option. Thus, we built two new datasets of smoothed images from the VEREOS after com-

puting two Gaussian filters, one with 3 mm and the other with 5 mm FWHM. Consequently, the 

lesion features extracted from the GEMINI images were compared with the lesion features 
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extracted from the three datasets of VEREOS images. The standard reconstruction used to obtain 

the GEMINI images already fulfill EARL specifications.  

 

Table 4.2: VEREOS and GEMINI reconstruction parameters. 

Parameter GEMINI VEREOS 

              PET   

Volume of each voxel 4×4×4 mm3 4×4×4 mm3 

3D algorithm OSEM OSEM 

Iterations 3 3 

Subsets 33 15 

Relax factor 0.7 1.0 

Post-reconstruction filter (FWHM) None None, 3 mm and 5 mm 

              CT   

Attenuation Correction Yes Yes 

 

 

4.3 Images preparation 

After all the images were de-identified, the respective DICOM (Digital Imaging and Communi-

cations in Medicine) files were converted to the NIFTI (Neuroimaging Informatics Technology 

Initiative) format using an in-house built program, created in C++ language. This was applied for 

all CT and PET images of each patient. Besides that, in the PET images, the program uses the 

DICOM information to calculate the standardized uptake value (SUV) conversion factors and, 

afterward, it converts the image values from tissue radioactivity concentration to SUV (robust 

PET quantifier). The SUV is used to calculate quantitative measurements of tumor uptake since 

it has enhanced or replaced qualitative interpretation [59]. 

The SUV is calculated simply as a ratio of the tissue concentration (in Bq/ml) at the time 

of the acquisition, 𝐶𝑃𝐸𝑇 , and the injected activity (in Bq) divided by the body weight (in g), as it 

is represented in equation 4.1. 

 

𝑆𝑈𝑉 =
𝐶𝑃𝐸𝑇

𝐼𝑛𝑗𝑒𝑐𝑡𝑒𝑑 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦

𝑊𝑒𝑖𝑔ℎ𝑡

                                                 (4.1) 
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4.4 Lesions identification 

For lesions identification, the images were prepared in 3D Slicer 4.10.0 software platform 

(https://www.slicer.org) [60] for three-dimensional visualization, as it is shown in figure 4.1. Us-

ing this software, the identification and annotation of all lesions, by an experienced nuclear med-

icine physician, was accomplished. The annotation of each lesion was done first on the VEREOS 

data, in which the nuclear medicine physician was unaware of the image source.  

 

 

 

The annotation of the lesion to be used in the study was done by delineating the lesion 

ensuring that the surrounding background was included, as it is represented in figure 4.2 for a 

liver and uterus lesion (example not included in the dataset). For each subject, a mask was created, 

and for each lesion identified, a ROI surrounding the lesion was drawn with a different label 

number. After all lesions being annotated, the mask created was saved in the NIFTI format as the 

original PET.  

Figure 4.1: Representative axial, coronal and sagittal slices of a PET/CT image of the same patient in the 

software 3D Slicer. The color map used is similar to the one used in the Nuclear Medicine Department 

daily. 

https://www.slicer.org/
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 When the identification and delineation of the lesions in the images acquired in the VE-

REOS were finished, all annotations were transposed to GEMINI data. If a lesion was identified 

in VEREOS image but it was not visible in the respective GEMINI image, the lesion was not 

included in the study (exclusion criteria). 

 

4.5 Automatic segmentation 

Manual segmentation of all lesions present in the images by the nuclear medicine physician would 

be the best scenario, but this task is impracticable due to the number of hours the physician would 

have to be available. Consequently, an automatic segmentation program was implemented to 

make this task feasible.  

From the segmentation methods presented in Chapter 3, it was implemented one based on 

thresholds, and two based on the clustering techniques: K-means and Bayesian segmentation. The 

Figure 4.2: Delineation process of two lesions in one subject. A mask was created, and for the two lesions, 

located in liver and uterus, it was drawn a ROI, containing the surrounding background. Each ROI was 
labeled with a different number. The uterus lesion is contained in the label number 1 (yellow) and the one 

located in liver in the label number 2 (red). 
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techniques for the segmentation were implemented in C++ language using a free open-source 

library insight toolkit (ITK) (https://itk.org) [61], [62]. 

The automatic segmentation is applied to the PET images, in the local of each ROI previ-

ously delineated by the physician, and not in the entire whole-body image. For each patient, each 

lesion identified by the physician is segmented independently from the other possible lesion that 

the patient may have. 

 

4.5.1 Threshold 

As the algorithms based on thresholds are commonly used in medical images [20]–[23], this 

method was implemented. In this study, it was considered as belonging to the lesion the voxels 

with an SUV value higher than the chosen threshold. In this case, two thresholds were tested: 

50% and 80% of maximum SUV presented in the region delineated by the physician [46], [47]. 

Thus, two different segmentations were performed using this technique. 

 

4.5.2 K-Means 

In this method, the voxels are assigned to the nearest cluster depending on the distance between 

the voxel intensity and the cluster centroid. When implementing the K-means method, an initial-

ization is necessary (initial centroids of each class). In our implementation, the initial centroids 

were calculated based on the percentiles of the SUV distribution in the delineated region. Equa-

tion 4.2 shows how the percentiles are calculated, in which 𝑘 is the number of clusters (classes) 

selected by the user, and 𝑖 the incrementing values in the interval [0, 𝑘 − 1],  

 

𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑖 = 𝑆𝑈𝑉 𝑤𝑖𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙 (
1

2𝑘
+ 𝑖

1

𝑘
)                        (4.2) 

 

After specifying the initialization, the algorithm uses the K-means statistical classifier in 

order to attribute a label to every voxel in the ROI to segment. The output of the K-mean classifier 

is a label map with pixel values indicating the classes they belong to. Pixels with an intensity 

equal to 0 belong to the first class, with intensity 1 belong to the second class and so on. 

Although only two classes need to be defined (lesion and not lesion), in our implemented 

algorithm more classes can be specified. In these cases, after the initial multiclass segmentation, 

groups of classes need to be merged in order to obtain just two classes. The optimal criteria for 

the initial number of classes and the classes that are going to be merged (if necessary) were 
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stablished experimentally and are defined in section 4.5.4. This strategy allows the fine tuning of 

the segmentation. 

 

4.5.3 Bayesian 

The Bayesian classifier predicts membership probabilities for each class, i.e., the probability of a 

given voxel belongs to a particular class. Then, the class with the highest probability is considered 

as the most likely class.  

Regarding the initialization of this method, it was applied a filter to generate a Gaussian 

mixture model for the image to enter in the Bayesian Classifier. The filter produces a membership 

image that indicates the membership of each voxel to each class by creating Gaussian density 

functions centered around a number of intensity values. This number of intensity values is ob-

tained by running k-means on the ROI.  

As for the K-means, the output of the Bayesian classifier is a label map with pixel values 

indicating the classes they belong to. The number of classes in which the Bayesian classifier di-

vides the voxels can be defined by the user. As for the K-means, an optimized automatic strategy 

was defined to choose the optimal number of initial classes and the classes that are going to be 

merged, if necessary (see next section). 

 

4.5.4 Segmentation optimization  

The lesions to be segmented are very heterogeneous. There are lesions with hundreds of voxels 

and lesions with less than 10 voxels. Some of them are located in organs with high normal uptake 

(as is the liver, for instance) and others are in organs with very low normal uptake (as are the 

lungs). Others are next to regions with very high uptake, as is the bladder. In order to try to im-

prove the segmentation, we designed a strategy to make it more adaptable. It was developed sim-

ultaneously to the implementation of the K-means and Bayesian segmentation methods.  

Based on our experience (training) in this type of data, dividing voxels of each region de-

lineated by the physician in 2 or 3 classes gives satisfactory segmentation results in the 18F-FDG 

PET images. There are lesions where a simple binary classification (two classes) is very good. In 

other lesions is better to segment initially in three classes and then merge the two lower classes 

or merge the two higher classes. Thus, an automatic criterion needed to be defined. 

So, instead of the user indicate the number of initial classes in which the region delineated 

by the physician must be divided and the number of classes to merge at the end of the process, 

the program divides the sample automatically in 3 classes, according to the segmentation process 
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chosen (K-means or Bayesian). Thereafter, a coefficient (equation 4.3) is calculated, and then, 

depending on their index, the classes to merge will be the two lower or the two higher, or the 

program runs again the segmentation method but now defining only 2 initial classes. The coeffi-

cient is calculated by, 

 

𝑐𝑜𝑒𝑓 = (𝑚3 −𝑚1) (𝑚3 +𝑚1)⁄                                          (4.3) 

 

where 𝑚3 is the mean SUV of the voxels in class 3 (with higher values) and 𝑚1 the mean SUV 

of the voxels in the class with lower values (class 1).   

The empirical rule created based on prior knowledge define the number of classes 

(𝑛𝑐𝑙𝑎𝑠𝑠𝑒𝑠 ) to be initially created and the criterion for the merging (if necessary). The rule is de-

fined as follows, depending on the coefficient index (𝑐𝑜𝑒𝑓 ∈ [0,1]), 

 

{
 
 

 
 

 𝑐𝑜𝑒𝑓 < 0.92, 𝑡ℎ𝑒𝑛 𝑛𝑐𝑙𝑎𝑠𝑠𝑒𝑠 = 3 𝑎𝑛𝑑 𝑚𝑒𝑟𝑔𝑒 𝑡ℎ𝑒 𝑡𝑤𝑜 𝑙𝑜𝑤𝑒𝑟 𝑐𝑙𝑎𝑠𝑠𝑒𝑠

0.92 < 𝑐𝑜𝑒𝑓 < 0.94, 𝑡ℎ𝑒𝑛 𝑟𝑒𝑝𝑒𝑎𝑡 𝑡ℎ𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ 𝑛𝑐𝑙𝑎𝑠𝑠𝑒𝑠 = 2

𝑐𝑜𝑒𝑓 > 0.94, 𝑡ℎ𝑒𝑛 𝑛𝑐𝑙𝑎𝑠𝑠𝑒𝑠 = 3 𝑎𝑛𝑑 𝑚𝑒𝑟𝑔𝑒 𝑡ℎ𝑒 𝑡𝑤𝑜 ℎ𝑖𝑔ℎ𝑒𝑟 𝑐𝑙𝑎𝑠𝑠𝑒𝑠

          (4.4) 

 

 

4.6 Automated segmentation validation 

In order to validate the automatic segmentation, it was verified the superposition between manual 

segmentation of a set of lesions and the results of the implemented segmentation methods. To 

ensure that possible differences in the comparison of the features extracted from both medical 

images acquired in VEREOS and GEMINI are not due to the automatic segmentation, this vali-

dation was done in images from both equipment. This validation process involves the steps rep-

resented in figure 4.3.  
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A manual and independent segmentation was accomplished by two different observers in 

the images acquired from VEREOS (standard reconstruction) and GEMINI. This segmentation 

was performed in 50 consecutive lesions previously identified by an experienced nuclear medi-

cine physician (Chapter 4.3) in the first 15 PET/CT images included in the dataset. So, each ob-

server did 100 manual segmentations, 50 in VEREOS images and the correspondent 50 lesions 

in GEMINI images. This was done independently for both equipment (unaware of the segmenta-

tions performed in the images from the other equipment). The manual segmentation was per-

formed on lesions previously identified by the physician, using ITK-SNAP 3.8.0 

(www.itksnap.org) [63] and 3D Slicer 4.10.0 (https://www.slicer.org) [60] software.  

To measure the segmentation agreement between observers and the automatic segmenta-

tion, the Dice coefficient was calculated. This coefficient is a widely accepted evaluation metric, 

used as a measure to assess the spatial overlap between two segmentations [64]–[66]. Being 𝐴 

and 𝐵 two regions, the Dice Coefficient is given by: 

 

𝐷𝑖𝑐𝑒(𝐴, 𝐵) = 2 × #(𝐴 ∩ 𝐵) (#𝐴 + #𝐵)⁄                                (4.5) 

 

where ∩ is the intersection and # is an operator that represents the number of elements of the set 

(figure 4.4). The Dice coefficient can be defined as the overlap proportion. 

 

 

Figure 4.3: Schematic representation of the validation segmentation process. 

http://www.itksnap.org/
https://www.slicer.org/
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The manual segmentations were compared with the automatic segmentation obtained by 

applying the segmentation methods already implemented. The same 100 lesions (50 lesions on 

the VEREOS images and the corresponding 50 on the GEMINI images) that were manually seg-

mented were also segmented automatically using the following methods: 

 

- Threshold segmentation with 50% of the maximum SUV;  

- Threshold segmentation with 80% of the maximum SUV; 

- K-means segmentation with  𝑛𝑐𝑙𝑎𝑠𝑠𝑒𝑠 =  2;  

- K-means segmentation with 𝑛𝑐𝑙𝑎𝑠𝑠𝑒𝑠 =  3  &  merge the two lower classes; 

- K-means segmentation with optimized parameters for the number of classes and merging 

process; 

- Bayesian segmentation with  𝑛𝑐𝑙𝑎𝑠𝑠𝑒𝑠 =  2; 

- Bayesian segmentation with 𝑛𝑐𝑙𝑎𝑠𝑠𝑒𝑠 =  3  &  merge the two lower classes; 

- Bayesian segmentation with optimized parameters for the number of classes and merging 

process. 

 

Each of these segmentation results was compared with the manual segmentation. The au-

tomatic segmentation method that is going to be applied to the full dataset is the one with the 

higher agreement (higher Dice) with the manual segmentation. In order to understand if Dice 

obtained between manual and automatic segmentations are significantly different from each 

other, the Friedman’s test was calculated using IBM SPSS (significance level 𝛼=0.05). The 

Schematic representation of segmentation overlap  

No overlap:  

Dice=0 

Partial overlap: 

0<Dice<1 

Complete overlap: 

Dice=1 

Figure 4.4: Schematic representation of segmentation overlap and Dice coefficient. Adapted from [66]. 
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comparison groups are: Dice between observer 1 and observer 2; Dice between observer 1 and 

automatic segmentation and Dice between observer 2 and automatic segmentation. 

 

4.7 Features extraction 

Image features describing tumor characteristics were extracted in an automated way after tumor 

segmentation. Twenty-five features were defined. They can be broadly divided into two groups: 

tumor intensity and tumor geometry. The first group quantifies tumor intensity by first-order sta-

tistics, i.e. calculated directly from the histogram of all tumor voxel intensity values. The second 

group involves features based on the shape and size of the tumor. All algorithms to be used for 

feature extraction were implemented in C++ language. The definition of the features is mostly 

based on the paper by Aerts et al. [67]. 

 

4.7.1 Features based on first order statistics 

First order statistics (FOS) define the voxel intensities distribution within a medical image 

through usually used and basic metrics. In table 4.3, FOS extracted are clarified, considering A 

lesion voxel intensities, N the number of voxels and H the first order histogram with Nl discrete 

intensity levels. 

The standard deviation, variance and mean absolute deviation are measures of how much 

the uptake diverges from the mean, i.e., measures of histogram dispersion. The peak skewness is 

a measure of histogram asymmetry around the mean, and kurtosis measures histogram sharpness. 

Entropy and uniformity allow measuring histogram randomness. The SUVpeak is an average of 

voxels intensities within a fixed volume comprising the highest pixel value and it has shown to 

be a reliable parameter for 18F-FDG PET/CT quantification [68]. 

 

4.7.2 Geometric features 

Features related to the three-dimensional size and shape of the tumor region are comprised in this 

group. Geometric parameters are explained in table 4.4.  

Surface area (SA) and MTV provide information on the size of the tumor. SA is achieved 

by summing the areas of voxel faces that are in the boundary between the lesion and its back-

ground. The two compactness methods, sphericity, spherical disproportion, and surface to volume 

ratio are measures of how spherical, rounded or elongated the shape of the lesion is. TLG is the 

product of the lesion volume and its mean uptake. TLG is among the extracted features since it is 

a biomarker considered valuable to help indicating the optimal therapeutic strategy [69].  
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Let in the following definitions (table 4.4), N denotes the number of voxels in the lesion, 

Vv the volume of each voxel, and A the set of the lesion voxel intensities, as considered to FOS. 

 

Table 4.3: Implementation of the first order statistics.  

First Order Statistics  Methods* 
 

Energy 
𝑒𝑛𝑒𝑟𝑔𝑦 =  ∑𝐴(𝑖)2

𝑁

𝑖

  
 

Entropy 
𝑒𝑛𝑡𝑟𝑜𝑝𝑦 =  ∑𝐻(𝑖) log2𝐻(𝑖)

𝑁𝑙

𝑖

 
 

Kurtosis 

𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =  

1
𝑁
∑ (𝐴(𝑖) − �̅�)4𝑁
𝑖=1

(√
1
𝑁
∑ (𝐴(𝑖) − �̅�)2𝑁
𝑖=1 )

2 

 

, �̅� is the mean of 

𝐴. 

Maximum (SUVmax) The maximum intensity value of 𝐴.  

Mean (SUVmean) 
𝑚𝑒𝑎𝑛 =  

1

𝑁
∑𝐴(𝑖)

𝑁

𝑖

 
 

Mean Absolute Deviation 

(MAD) 

The absolute deviations of the mean of all voxel intensities. 

Median The 50th percentile of 𝐴.  

Minimum The minimum intensity value of 𝐴.  

Range The range of intensity value of 𝐴.  

Root Mean Square (RMS) 

𝑅𝑀𝑆 = √
∑ 𝐴(𝑖)2𝑁
𝑖

𝑁
 

 

Skewness 

𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =  

1
𝑁
∑ (𝐴(𝑖) − �̅�)3𝑁
𝑖=1

(√
1
𝑁
∑ (𝐴(𝑖) − �̅�)2𝑁
𝑖=1 )

3 

 

, �̅� is the mean of 

𝐴. 

Standard Deviation (SD) 

𝑆𝐷 = (
1

𝑁 − 1
∑(𝐴(𝑖) − �̅�)2
𝑁

𝑖=1

)

1
2⁄

 

, �̅� is the mean of 

𝐴. 

Uniformity 
𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑖𝑡𝑦 =  ∑𝐻(𝑖)2

𝑁𝑙

𝑖=1

 
 

Variance 
𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =  

1

𝑁 − 1
∑(𝐴(𝑖) − �̅�)2
𝑁

𝑖=1

 
, �̅� is the mean of 

𝐴. 
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Coefficient of Variation 

(CV) 
𝐶𝑉 =

𝑆𝐷

𝑚𝑒𝑎𝑛
 

 

SUVpeak(3x3x3) Maximum average SUV within 3x3x3 

voxels volume 

 

SUVpeak(2x2x2) Maximum average SUV within 2x2x2 

voxels volume 

 

*
A is the set of lesion voxel intensities, N is the number of voxels and H the first order histogram with Nl discrete 

intensity levels. 

 

 

Table 4.4: Implementation of the geometric features. 

Geometric features Methods* 
 

Surface Area (SA) Sum of faces area that are in the 

border between lesion and back-

ground 

 

Metabolic Tumor Volume 

(MTV) 

𝑀𝑇𝑉 = 𝑁 × 𝑉𝑣  

Compactness 1 
𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠1 =

𝑀𝑇𝑉

√𝜋 × 𝑆𝐴
2
3

 
 

Compactness 2 
𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠2 =  36𝜋 ×

𝑀𝑇𝑉2

𝑆𝐴3
 

 

Spherical disproportion 
𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙𝑑𝑖𝑠 =

𝑆𝐴

4𝜋 × 𝑅2
 

, 𝑅 is the radius of a 

sphere with the same 

volume as the tumor.  

Sphericity 

𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑖𝑡𝑦 =  
𝜋
1
3 × (6 ×𝑀𝑇𝑉)

2
3

𝑆𝐴
 

 

Surface to volume ratio (SVR) 
𝑆𝑉𝑅 =

𝑆𝐴

𝑀𝑇𝑉
 

 

Total Lesion Glycolysis** 

(TLG) 𝑇𝐿𝐺 = 𝑉 ×∑𝐴(𝑖)

𝑁

𝑖

        
 

*
N is the number of voxels in the lesion, Vv the volume of each voxel, and A the set of the lesion voxel intensities. 

**
TLG does not belong exclusively to geometric features since it relies on first order statistics too. 
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4.8 Statistical analysis  

As a final step for the reproducibility study, a statistical analysis involving the 25 features ex-

tracted from the lesions identified in the PET/CT images from 53 oncological patients was com-

pleted. To find out the features that are reproducible between both PET/CT devices (VEREOS 

and GEMINI), a comparison analysis was processed using IBM SPSS version 20 

(https://www.ibm.com), software commonly used for statistical analysis in this type of studies 

[70]–[73]. The features analysis were performed between the images from GEMINI and VE-

REOS reconstructed with default clinical parameters and between the images from both devices 

reconstructed to accomplish EARL specifications (GEMINI reconstructed with default parame-

ters and VEREOS reconstructed with an additional Gaussian post-smoothing filter of 3mm and 

5mm). 

Agreement between the features extracted from the image of both equipment was measure 

first using the intraclass correlation coefficient (ICC) for absolute agreement. The respective p-

values were also computed. Then, linear correlation coefficients between the correspondent fea-

tures were also calculated and depending on their values, conversion factors were estimated using 

linear regression. 

For all statistical tests done, a significance level of 5% was defined. 

 

 

https://www.ibm.com/
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5 RESULTS   

5.1 Detected lesions 

The following results are representative of the step explained in Chapter 4.4. In this stage, 287 

lesions were identified by an experienced nuclear medicine physician first on VEREOS images. 

Then, all the annotations were transposed to the GEMINI images by an observer.  In 4 of the 287 

cases, the lesions already identified in VEREOS images were not easily identifiable in the corre-

sponding GEMINI images. For that reason, these cases were reviewed by the nuclear medicine 

physician that corroborated the uncertainty transposing the identification to GEMINI image. So, 

these lesions were excluded from the dataset, which resulted in 283 lesions to analyze. An image 

showing one of these questionable cases can be consulted on appendix A (figure A.1).  

 The main anatomical localization of the lesions included bones, lungs, and liver. The 

localization distribution of the 283 lesions involved in the study are exhibited in the following 

table (table 5.1). 

 

Table 5.1: Anatomical localization of all lesions included in the study. 

Lesions location (N=283) Number of lesions 

Bones 106 

Soft tissue  

 Head and neck  

  Lymph nodes 16 

 Thorax   

  Lymph nodes 14 

5 

 
 

5 
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 In figure 5.1 lesions delineation examples are demonstrated. On the left column, is pre-

sented the delineation done by the physician in the VEREOS images and on the right the deline-

ation transposed to the GEMINI images. In this patient, 9 lesions were identified. Therefore, a 

mask containing 9 labels (one label for each lesion) was drawn, although neither all lesions are 

visible in the slices shown. Five of those nine lesions are illustrated in the figure (three in the 

liver, one in the lungs and another in the pelvic region). 

 

 

 

 

 

 

 

 

 

 

  Lung 80 

  Breast 10 

 Abdomen   

  Lymph nodes 3 

  Liver 34 

  Pancreas 3 

  Stomach 1 

 Pelvis   

  Lymph nodes 9 

  Uterus 1 

  Rectum 5 

  Kidneys 1 
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5.2 Lesions segmentation 

The purpose of the automatic segmentation algorithm was to segment each of the lesions identi-

fied by the physician. For each patient, each lesion is segmented independently from the other 

possible lesions the patient may have. 

This section is divided into the computation results from the automatic segmentation and 

validation with the manual segmentation. 

The PET images acquired from GEMINI and VEREOS have an isotropic voxel size of 4 

mm, and so the real images are not as smooth as the standard visualization images presented to 

VEREOS GEMINI 

Figure 5.1: Mask annotation of five lesions in VEREOS and GEMINI images. The identification and anno-

tation in the mask were made first on VEREOS by a nuclear medicine physician. Then, the regions drawn 

were transposed to the corresponding GEMINI image. These three lesions in the liver (marked by the arrows 

in red), one in the pelvic region (arrow in yellow), and one in the lungs (in green) were included in the 

dataset. 



CHAPTER 5: RESULTS 

 

36 

the physician (see an example in figure 5.2). All the images presented so far were smooth, but 

this option may induce a bias in the observer, especially when segmentations are being evaluated. 

Thus, in this section, the segmentation results are shown with pixelated images to better under-

stand the real segmentation results.  

 

 

Figure 5.2: Axial view of a PET image pixelated on the left and smooth on the right. 

 

 

5.2.1 Computed segmentation 

Threshold segmentation was firstly implemented and applied to the dataset of the identified le-

sions. A threshold of 50% and 80% of the maximum SUV were set. Figure 5.3 shows three lesions 

delineated by this method. Note that these lesions have different sizes, locations, and surrounding 

background.  
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Figure 5.3: Results of threshold segmentation of 50% and 80% applied in three different lesions. The lesion 

identified by a green arrow is located in the pelvic region. In blue, a lesion in the liver and in yellow, a 
lesion in the lungs. The results of the segmentation are in the images on the two right columns, in which 

the lesions are zoomed. 

 

 

K-means segmentation was also evaluated. Different configurations were evaluated (see 

sections 4.5.2 and 4.5.4). Three segmentations examples are shown in figure 5.4 for the same 

exactly lesions represented in the previous images (figure 5.3).  
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The equivalent was executed using the Bayesian segmentation. The results are presented 

in the following figure 5.5. 

 

 

 

 

Figure 5.4: Results of K-means segmentation in three lesions using different configurations. Apparently, 

the auto-adjusted configuration (K-means optimized) originated better segmentations than the two fixed 

configurations.  
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5.2.2 Validation 

Manual segmentation is a time-consuming process. However, with the objective of validating the 

results from the automatic segmentation, two observers delineated the same 50 lesions. Lesions 

were segmented twice by each observer, one in the images from the GEMINI and the other in the 

images from the VEREOS. An example of the outcomes of these segmentations is shown in figure 

5.6.  

Figure 5.5: Results of Bayesian segmentation in three lesions using different configurations. Auto-adjusted 

configuration (Bayesian optimized) apparently originated better results than the fixed configurations. 
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After all the lesions of the validation set were manually segmented, a validation of the 

automatic segmentation with the manual was completed. It was calculated the Dice coefficient 

between the segmentations. This coefficient allows us to evaluate the overlap between two seg-

mentations.  

In each of the following tables (table 5.2 – table 5.9), the median and interquartile range 

(IQR) of Dice coefficients between the manual and automatic segmentation are presented. Be-

sides that, the Dice resulted from the superposition among the lesions segmented by observers 

was also obtained, and it is repeated in each table. The nonparametric test (Friedman’s test) eval-

uates if exists significant difference among the three Dice distributions. If there is significant 

difference in the Dice coefficient, the pairwise comparison between the groups is presented. The 

results presented consider all manual segmentations done in both scanners (100 segmentations 

each one). 

Figure 5.6: Manual segmentation by two observers in the same lesions in images acquired by VEREOS 

and GEMINI scanners. The lesions to delineate manually are identified by a red arrow in the original 

PET/CT images. Each manual segmentation is represented by a rosy contour. 
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➢ Manual segmentation vs threshold method (50%) 

Table 5.2: Dice coefficient between manual segmentation and automatic segmentation using 50% of the 

maximum SUV. 

 Observer 1 vs 

Observer 2 

(I) 

Observer 1 vs 

Threshold 50% 

(II) 

Observer 2 vs 

Threshold 50% 

(III) 

p-value 

(Friedman’s test) 

Dice  

Median 

IQR 

0.84 

0.22 

0.70 

0.34 

0.66 

0.29 
< 0.001* 

*For pairwise comparison only the samples II and III showed no statistical significance (p = 0.112). 

 

 

➢ Manual segmentation vs threshold method (80%) 

Table 5.3: Dice coefficient between manual segmentation and automatic segmentation using 80% of the 

maximum SUV.  

 Observer 1 vs 

Observer 2 

(I) 

Observer 1 vs 

Threshold 80% 

(II) 

Observer 2 vs 

Threshold 80% 

(III) 

p-value 

(Friedman’s test) 

Dice  

Median 

IQR 

0.84 

0.22 

0.17 

0.26 

0.18 

0.24 
< 0.001* 

*For pairwise comparison only the samples II and III showed no statistical significance (p = 0.860). 

 

 

➢ Manual segmentation vs K-means (2 initial classes) 

Table 5.4: Dice coefficient between manual segmentation and automatic segmentation using the K-means 

method for nclasses = 2.  

 Observer 1 vs 

Observer 2 

(I) 

Observer 1 vs 

K-means  

(II) 

Observer 2 vs 

K-means  

(III) 

p-value 

(Friedman’s test) 

Dice  

Median 

IQR 

0.84 

0.22 

0.74 

0.23 

0.76 

0.21 
 0.028* 

*For pairwise comparison, the samples II, III and I, III showed no statistical significance (respectively, p = 0.377 and 

p = 0.083). 
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➢ Manual segmentation vs K-means (3 initial classes and then merge the two lower 

classes) 

Table 5.5: Dice coefficient between manual segmentation and automatic segmentation using the K-means 

method with nclasses = 3 and then merge the two lower classes. 

 Observer 1 vs 

Observer 2 

(I) 

Observer 1 vs 

K-means  

(II) 

Observer 2 vs 

K-means  

(III) 

p-value 

(Friedman’s test) 

Dice  

Median 

IQR 

0.84 

0.22 

0.66 

0.39 

0.64 

0.33 
< 0.001* 

*For pairwise comparison only the samples II and III showed no statistical significance (p = 0.750). 

 

 

➢ Manual segmentation vs K-means Optimized 

Table 5.6: Dice coefficient between manual segmentation and automatic segmentation using optimized K-

means method.  

 Observer 1 vs 

Observer 2 

(I) 

Observer 1 vs 

K-means  

(II) 

Observer 2 vs 

K-means  

(III) 

p-value 

(Friedman’s test) 

Dice  

Median 

IQR 

0.84 

0.22 

0.80 

0.21 

0.79 

0.21 
0.002* 

*For pairwise comparison only the samples II and III showed no statistical significance (p =1.000). 

 

 

➢ Manual segmentation vs Bayesian (2 initial classes) 

Table 5.7: Dice coefficient between manual segmentation and automatic segmentation using Bayesian 

method for nclasses = 2. 

 Observer 1 vs 

Observer 2 

(I) 

Observer 1 vs 

Bayesian  

(II) 

Observer 2 vs 

Bayesian  

(III) 

p-value 

(Friedman’s test) 
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Dice  

Median 

IQR 

0.84 

0.22 

0.76 

0.21 

0.79 

0.18 
0.007* 

*For pairwise comparison, the samples II, III and I, III showed no statistical significance (respectively, p = 0.191 and 

p = 0.066). 

 

 

➢ Manual segmentation vs Bayesian (3 initial classes and then merge the two lower 

classes) 

Table 5.8: Dice coefficient between manual segmentation and automatic segmentation using Bayesian 

method for nclasses = 3 and then merge the two lower classes. 

 Observer 1 vs 

Observer 2 

(I) 

Observer 1 vs 

Bayesian  

(II) 

Observer 2 vs 

Bayesian  

(III) 

p-value 

(Friedman’s test) 

Dice  

Median 

IQR 

0.84 

0.22 

0.55 

0.40 

0.53 

0.38 
< 0.001* 

*For pairwise comparison only the samples II and III showed no statistical significance (p = 0.525). 

 

➢ Manual segmentation vs Bayesian Optimized 

Table 5.9: Dice coefficient between manual segmentation and optimized Bayesian method.  

 Observer 1 vs 

Observer 2 

(I) 

Observer 1 vs 

Bayesian 

(II) 

Observer 2 vs 

Bayesian  

(III) 

p-value 

(Friedman’s test) 

Dice  

Median 

IQR 

0.84 

0.22 

0.83 

0.26 

0.83 

0.25 
0.052 

 

 

The segmentations of the two observers reached a median Dice coefficient of 0.84. The 

optimized K-means and Bayesian methods reached a median Dice coefficient between them and 

the manual segmentation of 0.80 and 0.83, respectively. Tables 5.2 to 5.9 show that the Bayesian 
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optimized segmentation method is the one that has no statistically significant differences compar-

atively to the manual segmentations (Friedman’s test, p = 0.052) 

To evaluate data dispersion among the three groups (Dice obtained between observers and 

Dice between observers and Bayesian optimized segmentation), figure 5.7 presents the boxplot 

for descriptive statistics. The median (Q2) is similar among the three boxplots, as seen in the 

previous table 5.9. The minimum value in the data “Observer1 vs Bayes Opt.” is an outlier that 

was reviewed. In this case, the program segmented less than the observer in VEREOS image. In 

this lesion, the ROI drawn in the identification step did not catch enough background for a correct 

segmentation. Contrariwise, the same lesion in GEMINI image was segmented properly by the 

program (Dice = 0.89 between observer and automatic segmentation). 

  

 

 

 The boxplot analysis corresponding to the data presented in the tables 5.2 to 5.8 can be 

accessed on appendix A (figures A.2 – A.5). 

    

 

 

 

 

Figure 5.7: Boxplots representing Dice coefficient dispersion: Observer 1 vs Observer 2; Observer 1 vs 

Bayesian optimized; Observer 2 vs Bayesian optimized. 
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5.3 Features extraction 

Finally, to reach our goal, tumor biomarkers were extracted from the segmented lesions. Taking 

into consideration the previous results presented from segmentation attempts, the optimized 

Bayesian method was selected to delineate all 283 lesions included in the final dataset.  

As explained in Chapter 4.7, 25 image features describing tumor characteristics were taken 

out. The extracted features can be divided into two groups: tumor intensity (first-order statistics) 

and tumor geometry (features based on shape and size). The agreement level between the features 

is accessed by the ICC. 

 

5.3.1 Standard reconstruction 

Firstly, the outcomes of the 25 features pulled out from the images of VEREOS and GEMINI 

reconstructed with default clinical parameters are presented in table 5.10. The median and IQR 

are exhibited for each feature extracted from the 283 lesions. These measures are shown for the 

lesions identified in GEMINI and VEREOS images. Correlation coefficient and ICC were com-

puted between features extracted from images acquired in GEMINI and the corresponding ones 

from VEREOS scanner. 

 

Table 5.10: Absolute agreement assessment of lesion features extracted from 18F-FDG PET images ac-

quired in GEMINI and VEREOS scanners with standard reconstruction. (IQR = Interquartile range; ICC = 

Intraclass correlation coefficient). 

 
FEATURES 

GEMINI 

(standard 

reconstruction) 

VEREOS 

(standard 

reconstruction) 

Pearson 

Correlation 

ICC** 

Median IQR Median IQR 

 

 

 

 

 

 

Energy 538.6 1869 695.3 2182 0.93 0.93 

Entropy 1.864 1.012 2.172 0.854 0.90 0.85 

Kurtosis 2.892 0.944 3.007 1.263 0.60 0.57 

Maximum      

(SUVmax) 

4.863 3.839 5.916 3.894 0.88 0.83 

Mean              

(SUVmean) 

3.316 1.475 3.793 1.495 0.85 0.80 
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FIRST  

ORDER  

STATIS-

TICS 

Mean Absolute 

Deviation 
0.435 

 

0.594 0.637 

 

0.702 0.89 0.85 

Median 3.199 1.332 3.574 1.443 0.83 0.79 

Minimum 2.515 0.826 2.718 0.961 0.66 0.64 

Range 2.169 3.192 3.281 3.816 0.88 0.84 

Root Mean Square 3.384 1.631 3.910 1.547 0.86 0.81 

Skewness 0.864 0.413 0.916 0.499 0.44 0.43 

Standard Devia-

tion 

0.545 0.730 0.782 0.850 0.88 0.83 

Uniformity 0.175 0.161 0.134 0.110 0.79 0.71 

Variance 0.297 1.034 0.612 1.626 0.85 0.83 

Coefficient of 

Variation  

0.169 0.145 0.219 0.173 0.82 0.76 

SUVpeak(3x3x3) 3.480 2.661 3.864 2.610 0.93 0.92 

SUVpeak(2x2x2) 4.145 3.168 4.862 3.400 0.91 0.88 

 

 

 

 

GEOMET-

RIC 

FEATURES 

Surface Area 1728 2592 1760 2976 0.98 0.97 

Metabolic Tumor 

Volume (MTV) 

3200 6848 3200 7680 0.98 0.98 

Compactness1 12.31 10.76 11.99 13.06 0.97 0.97 

Compactness2 0.235 0.124 0.229 0.140 0.75 0.74 

Spherical dispro-

portion 

1.621 

 

0.316 1.635 0.377 0.94 0.92 

Sphericity 0.617 0.114 0.612 0.131 0.85 0.85 

Surface to volume 

ratio 

0.545 

 

0.206 0.556 0.252 0.83 0.82 

Total Lesion Gly-

colysis (TLG)*  

10514 26855 11426 29493 0.97 0.97 

* TLG does not belong exclusively to geometric features since it relies on first order statistics too. 

** A p-value < 0.001 was achieved for all calculated ICC and Pearson correlation coefficient. 
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As an additional analysis, the variability of SUVmax (most frequently used feature in the 

clinic) was assessed between acquisitions when the first acquisition was on VEREOS and the 

second on GEMINI (88 lesions) and vice-versa (195 lesions). 

For the first case (figure 5.8), in which the first image acquisition was performed in VE-

REOS scanner and the second in GEMINI scanner, there were no statistically significant differ-

ences between the SUVmax of lesions (Wilcoxon test, p-value = 0.755). When the first acquisition 

was done first in GEMINI and then in VEREOS (figure 5.9), the SUVmax differences were statis-

tically significant (Wilcoxon test, p-value < 0.001). 
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Figure 5.8: Bland and Altman plot representing the variability of SUVmax between first acquisition in VE-

REOS and second acquisition in GEMINI. Both VEREOS and GEMINI images were reconstructed with 

standard protocol. In the x-axis is the mean SUVmax between acquisitions and in the y-axis is the SUVmax 

difference between second acquisition (GEMINI) and first acquisition (VEREOS). N=88 lesions. 
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5.3.2 Reconstruction for EARL specifications  

Next, with the aim of fulfil EARL accreditation specifications, it was performed a comparison 

between the features extracted from the GEMINI images reconstructed with standard parameters 

(the same results previously presented) and the features extracted from VEREOS images after a 

post-reconstruction Gaussian filter of 3 mm (Table 5.11), as recommended by Koopman et al 

[14]. The same statistics accessible in the previous table are now in table 5.11. 
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Figure 5.9: Bland and Altman plot representing the variability of SUVmax between first acquisition in GEM-

INI and second acquisition in VEREOS. Both GEMINI and VEREOS images were reconstructed with 

standard protocol. In the x-axis is the mean SUVmax between acquisitions and in the y-axis is the SUVmax 

difference between second acquisition (VEREOS) and first acquisition (GEMINI). N=195 lesions. 
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Table 5.11: Absolute agreement assessment of lesion features extracted from 18F-FDG PET images ac-

quired in GEMINI with standard reconstruction and for VEREOS with an additional post-reconstruction 

Gaussian filter of 3 mm (IQR = Interquartile range; ICC = Intraclass correlation coefficient). 

 
FEATURES 

GEMINI 

(standard 

reconstruction) 

VEREOS 

(with Gaussian 

filter of 3 mm) 

Pearson 

Correlation 

ICC** 

Median IQR Median IQR 

 

 

 

 

 

 

 

FIRST  

ORDER  

STATIS-

TICS 

Energy 538.6 1869 657.3 2112 0.93 0.93 

Entropy 1.864 1.012 2.027 0.900 0.90 0.88 

Kurtosis 2.892 0.944 2.936 1.098 0.58 0.57 

Maximum      

(SUVmax) 

4.863 3.839 5.513 3.794 0.89 0.87 

Mean              

(SUVmean) 

3.316 1.475 3.714 1.503 0.85 0.82 

Mean Absolute 

Deviation 

0.435 0.594 0.553 0.610 0.90 0.88 

Median 3.199 1.332 3.517 1.465 0.83 0.80 

Minimum 2.515 0.826 2.723 1.015 0.66 0.64 

Range 2.169 3.192 2.858 3.432 0.89 0.87 

Root Mean Square 3.384 1.631 3.806 1.558 0.86 0.84 

Skewness 0.864 0.413 0.903 0.495 0.41 0.41 

Standard Devia-

tion 

0.545 0.730 0.701 0.770 0.90 0.88 

Uniformity 0.175 0.161 0.147 0.129 0.80 0.76 

Variance 0.297 1.034 0.491 1.300 0.87 0.86 

Coefficient of 

Variation  

0.169 0.145 0.203 0.152 0.82 0.80 

SUVpeak(3x3x3) 3.480 2.661 3.775 2.542 0.93 0.93 

SUVpeak(2x2x2) 4.145 3.168 4.583 3.193 0.91 0.90 
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GEOMET-

RIC 

FEATURES 

Surface Area 1728 2592 1728 2912 0.98 0.97 

Metabolic Tumor 

Volume (MTV) 

3200 6848 3072 7552 0.98 0.98 

Compactness1 12.31 10.76 11.97 12.56 0.97 0.97 

Compactness2 0.235 0.124 0.233 0.129 0.76 0.76 

Spherical dispro-

portion 

1.621 0.316 1.626 0.325 0.94 0.94 

Sphericity 0.617 0.114 0.615 0.117 0.86 0.86 

Surface to volume 

ratio 

0.545 0.206 0.567 0.243 0.84 0.82 

Total Lesion Gly-

colysis (TLG)*  

10514 26855 10653 30243 0.97 0.97 

* TLG does not belong exclusively to geometric features since it relies on first order statistics too. 

** A p-value < 0.001 was achieved for all calculated ICC and Pearson correlation coefficient. 

 

 

Again, the SUVmax variability between acquisitions was assessed. The following figures 

5.10 and 5.11 show the results. The SUVmax was statistically higher in the second acquisition 

comparatively to the first acquisition (Wilcoxon test, p-value = 0.030 when the first acquisition 

was in VEREOS and p-value < 0.001 when the GEMINI was first). 
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Figure 5.10: Bland and Altman plot representing the variability of SUVmax between first acquisition in 
VEREOS and second acquisition in GEMINI. GEMINI images were reconstructed with standard recon-

struction and VEREOS images with a Gaussian post-reconstruction filter of 3 mm. In the x-axis is the mean 

SUVmax between acquisitions and in the y-axis is the SUVmax difference between second acquisition (GEM-

INI) and first acquisition (VEREOS). N=88 lesions. 

 

Figure 5.11: Bland and Altman plot representing the variability of SUVmax between first acquisition in 

GEMINI and second acquisition in VEREOS. GEMINI images were reconstructed with standard recon-

struction and VEREOS images with a Gaussian post-reconstruction filter of 3 mm. In the x-axis is the mean 

SUVmax between acquisitions and in the y-axis is the SUVmax difference between second acquisition (VE-

REOS) and first acquisition (GEMINI). N=195 lesions. 
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Also, with the purpose of fulfill EARL accreditation specifications, it was performed the 

same comparison as before, but now with a post-reconstruction Gaussian filter with FWHM of 5 

mm in VEREOS images, as recommend by Philips Healthcare to satisfy EARL specifications. 

Once again, the same statistics done in the previous tables are now in the table 5.12. 

 

Table 5.12: Absolute agreement assessment of lesion features extracted from 18F-FDG PET images ac-

quired in GEMINI with standard reconstruction and for VEREOS with an additional post-reconstruction 

Gaussian filter of 5 mm (IQR = Interquartile range; ICC = Intraclass correlation coefficient). 

 
FEATURES 

GEMINI 

(standard 

reconstruction) 

VEREOS 

(with Gaussian 

filter of 5 mm) 

Pearson 

Correlation 

ICC** 

Median IQR Median IQR 

 

 

 

 

 

 

 

FIRST  

ORDER  

STATIS-

TICS 

Energy 538.6 1869 580.1 1868 0.93 0.93 

Entropy 1.864 1.012 1.874 0.960 0.91 0.91 

Kurtosis 2.892 0.944 2.870 1.064 0.58 0.58 

Maximum      

(SUVmax) 

4.863 3.839 4.978 3.375 0.91 0.90 

Mean              

(SUVmean) 

3.316 1.475 3.565 1.467 0.87 0.86 

Mean Absolute 

Deviation 

0.435 0.594 0.456 0.541 0.91 0.91 

Median 3.199 1.332 3.393 1.404 0.85 0.84 

Minimum 2.515 0.826 2.663 0.917 0.71 0.70 

Range 2.169 3.192 2.354 2.908 0.91 0.90 

Root Mean Square 3.384 1.631 3.620 1.501 0.88 0.88 

Skewness 0.864 0.413 0.848 0.446 0.46 0.46 

Standard Devia-

tion 

0.545 0.730 0.580 0.649 0.91 0.90 

Uniformity 0.175 0.161 0.173 0.154 0.83 0.82 
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Variance 0.297 1.034 0.336 0.921 0.88 0.87 

Coefficient of 

Variation  

0.169 0.145 0.180 0.139 0.85 0.85 

SUVpeak(3x3x3) 3.480 2.661 3.621 2.474 0.93 0.93 

SUVpeak(2x2x2) 4.145 3.168 4.282 2.911 0.92 0.92 

 

 

 

 

GEOMET-

RIC 

FEATURES 

Surface Area 1728 2592 1696 2784 0.97 0.97 

Metabolic Tumor 

Volume (MTV) 

3200 6848 3136 7296 0.97 0.98 

Compactness1 12.31 10.76 12.34 11.58 0.97 0.97 

Compactness2 0.235 0.124 0.247 0.127 0.77 0.77 

Spherical dispro-

portion 

1.621 0.316 1.593 0.302 0.94 0.94 

Sphericity 0.617 0.114 0.628 0.112 0.87 0.86 

Surface to volume 

ratio 

0.545 0.206 0.553 0.222 0.83 0.82 

Total Lesion Gly-

colysis (TLG)*  

10514 26855 9947 28411 0.97 0.97 

* TLG does not belong exclusively to geometric features since it relies on first order statistics too. 

** A p-value < 0.001 was achieved for all calculated ICC and Pearson correlation coefficient. 

 

 

Once again, the variability of SUVmax between acquisitions was assessed. The results are 

in figures 5.12 and 5.13. In both cases, the SUVmax was statistically higher in the second acquisi-

tion comparatively to the first acquisition (Wilcoxon test, p-value < 0.001).  
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Figure 5.12: Bland and Altman plot representing the variability of SUVmax between first acquisition in 

VEREOS and second acquisition in GEMINI. Both reconstructed images satisfied EARL specifications 

according to Philips recommendations. In the x-axis is the mean SUVmax between acquisitions and in the 

y-axis is the SUVmax difference between second acquisition (GEMINI) and first acquisition (VEREOS). 

N=88 lesions. 

 

Figure 5.13: Bland and Altman plot representing the variability of SUVmax between first acquisition in 

GEMINI and second acquisition in VEREOS. Both reconstructed images satisfied EARL specifications 

according to Philips recommendations. In the x-axis is the mean SUVmax between acquisitions and in the 

y-axis is the SUVmax difference between second acquisition (VEREOS) and first acquisition (GEMINI). 

N=195 lesions. 
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DISCU SSION  AND CON CLUSIONS  

In the present study, 18F-FDG PET/CT images were acquired and reconstructed with default clin-

ical protocols, for both VEREOS and GEMINI, as recommended by the manufacturer. The im-

ages acquired in GEMINI followed the instructions provided by EANM research Ltd (EARL) 

procedures [12]. VEREOS standard reconstructions protocols do not fulfill EARL specifications 

unless a Gaussian post-reconstruction smoothing filter is applied. A PET with DPC technology 

shows recovery coefficients above EARL requirements [14]. In this study is being compared two 

protocols defined by default (VEREOS: 4x4x4 mm3, OSEM 3 iterations and 15 subsets, relaxa-

tion factor 1.0; GEMINI: 4x4x4 mm3, OSEM 3 iterations and 33 subsets, relaxation factor 0.7). 

Two additional analyses were also done with VEREOS reconstruction protocols that fulfill the 

EARL standards.  

In the initial stage of this work, several attempts were made to transpose the identification 

of the lesions done by the nuclear physician in one scan to the scan acquired in the other equip-

ment. This was done using image registration algorithms that included linear and deformable 

registration strategies [74]. The idea was to find the optimal geometric transformation that aligns 

both patient's images and then apply that transformation to the lesion identified by the physician. 

The results of this technique were not encouraging for this study, mainly in small lesions. For this 

reason, a manual transposition of the annotations completed in VEREOS to GEMINI images had 

to be executed. 

As manual segmentation is not feasible in large datasets due to the time needed to accom-

plish the task, several automatic segmentation procedures were tried. The results achieved for the 

threshold method with a cut-off of 50% and 80% were not adequate for this kind of study. For K-

means and Bayesian segmentation methods were created an optimized process. In order to 
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validate the automatic segmentation, two observers segmented manually several lesions. If the 

agreement between two observers is similar to the agreement of automatic segmentation with 

manual segmentation, then automatic segmentation can be computed with reliability. Dice coef-

ficient between observer’s segmentation was 0.84 (median) and 0.83 (median) between manual 

and automatic segmentation (Bayesian optimized) without statistically significant differences be-

tween them. Based on these segmentation results, the Bayesian optimized method was applied to 

all lesions in the images acquired in both scanners, VEREOS and GEMINI.  

Finally, lesion features usually used in clinics and research based on first order statistics 

and geometry were extracted (25 features). The most important is to access the agreement be-

tween these features extracted from the images of both equipment (GEMINI and VEREOS). ICC 

represents the absolute agreement between features. In literature is suggested that ICC values less 

than 0.5 represent poor reliability, values between 0.5 and 0.75 are representative of moderate 

reliability, values between 0.75 and 0.90 indicate good reliability and values greater than 0.90 

show excellent reliability [75]–[77]. Under such conditions, and with images reconstructed with 

standard protocol, a good or excellent agreement (ICC > 0.75) was demonstrated for most of the 

features, both in the first order statistics and those related to geometry. Energy, SUVpeak2x2x2, sur-

face area, MTV, compacteness1, spherical disproportion, and TLG revealed an excellent agree-

ment (ICC > 0.90). Skewness showed to be an unreliable parameter (ICC ≈ 0.43), even though it 

exhibited a statistically significant ICC (p < 0.001), as all the remaining features. Kurtosis, mini-

mum SUV, uniformity and compactness were the ones that demonstrated moderate reliability 

(0.50  ICC  0.75). Particularly, SUVmax, the most frequently used feature in the clinics, showed 

high agreement (ICC ≈ 0.83). On average, this feature was statistically higher in VEREOS than 

in the GEMINI (95% confidence interval: 0.96-1.35). 

VEREOS images reconstructed with an additional post-reconstruction Gaussian smoothing 

filter in order to fulfill EARL requirements were also compared with GEMINI images recon-

structed with default parameters. According to the achievements presented in [14], to meet EARL 

standards a Gaussian filter with a kernel width of 3 mm was applied. Yet, considering Philips 

guidelines, a Gaussian filter with FWHM of 5 mm should be applied to fulfill EARL specifica-

tions. Then, both filters were used. Naturally, the ICC achieved between the features were equal 

or superior using the Gaussian post-reconstruction filter than using the standard reconstruction, 

especially for a FWHM of 5 mm (ICC > 0.80 for most of the features). Nevertheless, kurtosis, 

minimum SUV and skewness showed an ICC ≤ 0.70, even with these reconstruction parameters. 

Very likely, the reason for that is not related to differences between equipment, but the lack of 

reliability of these lesional features. So, these features are not adequate for lesions characteriza-

tion in 18F-FDG PET images.  
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Results have demonstrated high reliability among the lesional features, especially when the 

reconstruction protocols fulfill the EARL standards. Thus, conversion factors between the fea-

tures extracted from the images acquired in both scanners are not necessary.  

As SUVmax is the most used feature by the nuclear medicine physicians in routine practice 

or clinical trials, a particular analysis of the variability of this measure between acquisitions in 

VEREOS and GEMINI was done. Using the VEREOS standard reconstruction, the overall lesions 

SUVmax in VEREOS images was significantly higher than in GEMINI, because of the superior 

recovery coefficients in VEREOS images [14]. But, when the VEREOS images were recon-

structed accordingly the EARL standards, the difference vanished.  

The lesions SUVmax extracted from the second scan was statistically higher than the lesion 

SUVmax extracted from the first scan, when VEREOS images were reconstructed with EARL 

standards, independently of the order of the scans (figure 5.10 – 5.13). This is due to the effect of 

time in 18F-FDG lesions uptake.  

To summarize, there is a high agreement between most of the first order and geometric 

features extracted from the lesions, especially when the reconstruction protocols applied to both 

equipment fulfill the EARL standards. Thus, it is feasible to extrapolate that, under controlled 

acquisition and reconstruction parameters, these features can be used in multi-scanner studies 

(including longitudinal patient evaluation), using VEREOS and GEMINI PET/CT devices.  

 

6.1 Limitations  

This study faced some limitations that could lead to differences between the features extracted 

from both devices, GEMINI and VEREOS. These limitations should be considered and are sum-

marized below: 

A) According to the European Association of Nuclear Medicine (EANM) guidelines, the sug-

gested whole-body PET/CT uptake time (min post-injection of 18F-FDG) is 60 min, with an ac-

ceptable range of 55-75 min [4], [31]. The effect of the time interval on SUV in healthy organs is 

relatively small [78], but in lesions, there is a significant improvement in target-to-background 

ratio when acquiring the PET image in an approximate 90 min window [79]. On average, the 

interval between 18F-FDG patient’s administration and the start of scanning was 70 min, and the 

time between acquisitions was 40 min (mean). All data were acquired in a clinical environment. 

Consequently, there was a notable variation caused by dual imaging studies and external work-

flow factors. Summing up, the time difference between acquisitions should have been smaller in 

some acquisitions, but it was the shortest possible achieved in the clinic. In addition, in few ac-

quisitions the difference time exceeded the acceptable. 
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B) Even though the lesions segmentation algorithm performed similarly to human observers, we 

may assume that other segmentation methods could lead to different results. 

C) Although the patients were laid down approximately in the same position in both scans, the 

shape of the body changes from one scan to another, and consequently the shape of the lesions.  

D) The same lesions were comprised in the ROI drawn by the physician in GEMINI and VEREOS 

images. Naturally, the surrounding background region included is different. Depending on the 

lesion location, if the background in the ROI is not enough, the automatic segmentation may be 

compromised. An example of this issue is the outlier obtained in the boxplot of figure 5.7. 

 

6.2 Future Work  

For future perspectives, there are several projects that can be conducted: 

- Using images from VEREOS and GEMINI, identical projects should be studied using 

different reconstruction protocols: 

1. In the future, when EARL2 specifications are totally implemented, images from VE-

REOS should be reconstructed based on the new EARL guidelines. A reproducibility 

study between EARL2 VEREOS reconstructions and default GEMINI images recon-

struction can be concluded. 

2. GEMINI images can be reconstructed to obtain sharper images, closer to VEREOS 

definitions. Yet, it is not possible to obtain images equal to the ones from VEREOS due 

to the capability limitations of the analog device.  

3. VEREOS allows whole-body reconstruction with voxels of 2 x 2 x 2 mm3. It would 

be interesting to evaluate how different the image features will be reconstructing images 

from VEREOS with 2 mm and GEMINI with 4 mm.  

 

- Instead of lesions, it can be measured the uptake distribution of healthy organs. 

- Add texture analysis. This is only feasible for large lesions (at least 64 voxels [80]).  

- Compare the number of lesions identifiable in VEREOS and GEMINI. Novel techniques 

implemented in VEREOS improve small lesions detectability [81]. Thus, in order to test if 

there are differences in the number of lesions detectable in VEREOS and GEMINI images, 

a study in which various nuclear medicine physicians identify lesions independently in 

VEREOS and GEMINI will be important.  

- Development of an automatic identification of the lesions. This task is a huge challenge 

because, sometimes, the lesion uptake is slightly higher than the surrounding region, the 
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lesion is next to an organ with high uptake or may exist several foci with high uptake that 

are no lesions. 

 

 



 

 

 



 

61 

 

B IBL IOGRAPHY  

 

[1] M. S. Hofman and R. J. Hicks, “How We Read Oncologic FDG PET/CT,” 

Cancer Imaging, vol. 16, no. 1, p. 35, 2016, doi:10.1186/s40644-016-0091-3. 

[2] M. G. Vander, L. C. Cantley, and C. B. Thompson, “Understanding the 

Warburg Effect : The Metabolic Requirements of Cell Proliferation,” Science 

(80-. )., vol. 324, no. 5930, pp. 1029–1033, 2009, doi:10.1126/science.1160809. 

[3] A. Zhu, D. Lee, and H. Shim, “Metabolic Positron Emission Tomography 

Imaging in Cancer Detection and Therapy Response,” Semin. Oncol., vol. 

38, no. 1, pp. 55–69, 2011, doi:10.1053/j.seminoncol.2010.11.012. 

[4] R. Boellaard et al., “FDG PET/CT: EANM procedure guidelines for tumour 

imaging: version 2.0,” Eur. J. Nucl. Med. Mol. Imaging, vol. 42, no. 2, pp. 328–

354, 2015, doi:10.1007/s00259-014-2961-x. 

[5] L. K. Griffeth, “Use of Pet/Ct Scanning in Cancer Patients: Technical and 

Practical Considerations,” Baylor Univ. Med. Cent. Proc., vol. 18, no. 4, pp. 

321–330, 2005, doi:10.1080/08998280.2005.11928089. 

[6] M. D. Seemann, “Whole-Body PET/MRI: The Future in Oncological 

Imaging,” Technol. Cancer Res. Treat., vol. 4, no. 5, pp. 577–582, 2005, 

doi:10.1177/153303460500400512. 

[7] S. J. Rosenbaum, T. Lind, G. Antoch, and A. Bockisch, “False-Positive FDG 

PET Uptake−the Role of PET/CT,” Eur. Radiol., vol. 16, no. 5, pp. 1054–1065, 

2006, doi:10.1007/s00330-005-0088-y. 

[8] B. A. Siegel and F. Dehdashti, “Oncologic PET/CT: current status and 

controversies,” Eur. Radiol. Suppl., vol. 15, no. S4, pp. d127–d132, 2005, 

doi:10.1007/s10406-005-0116-7. 

[9] E. Roncali and S. R. Cherry, “Application of Silicon Photomultipliers to 

Positron Emission Tomography,” Ann. Biomed. Eng., vol. 39, no. 4, pp. 

1358–1377, 2011, doi:10.1007/s10439-011-0266-9. 

[10] R. Mirzoyan, M. Laatiaoui, and M. Teshima, “Very high quantum 



 

62 

efficiency PMTs with bialkali photo-cathode,” Nucl. Instruments Methods 

Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., vol. 567, no. 1, 

pp. 230–232, 2006, doi:10.1016/j.nima.2006.05.094. 

[11] N. C. Nguyen et al., “Image Quality and Diagnostic Performance of a 

Digital PET Prototype in Patients with Oncologic Diseases: Initial 

Experience and Comparison with Analog PET,” J. Nucl. Med., vol. 56, no. 

9, pp. 1378–1385, 2015, doi:10.2967/jnumed.114.148338. 

[12] R. Boellaard et al., “FDG PET and PET/CT : EANM procedure guidelines 

for tumour PET imaging : version 1.0,” Eur J Nucl Med Mol Imaging, vol. 37, 

pp. 181–200, 2010, doi:10.1007/s00259-009-1297-4. 

[13] NEMA NU 2-2012. Performance Measurements of Positron Emission 

Tomographs. National Electrical Manufacturers Association, 2012. 

[14] D. Koopman et al., “Digital PET compliance to EARL accreditation 

specifications,” EJNMMI Phys., vol. 4, no. 9, pp. 1–6, 2017, 

doi:10.1186/s40658-017-0176-5. 

[15] M. Hatt, F. Tixier, L. Pierce, P. E. Kinahan, C. C. Le Rest, and D. Visvikis, 

“Characterization of PET/CT images using texture analysis: the past, the 

present… any future?,” Eur. J. Nucl. Med. Mol. Imaging, vol. 44, no. 1, pp. 

151–165, 2017, doi:10.1007/s00259-016-3427-0. 

[16] I. N. Bankman, T. Nizialek, I. Simon, O. B. Gatewood, I. N. Weinberg, and 

W. R. Brody, “Segmentation algorithms for detecting microcalcifications in 

mammograms,” IEEE Trans. Inf. Technol. Biomed., vol. 1, no. 2, pp. 141–149, 

1997, doi:10.1109/4233.640656. 

[17] G. V Saradhi et al., “A Framework for Automated Tumor Detection in 

Thoracic FDG PET Images Using Texture-Based Features,” in 2009 IEEE 

International Symposium on Biomedical Imaging, 2009, pp. 97–100. 

[18] Z. Zhang, W. V. Stoecker, and R. H. Moss, “Border detection on digitized 

skin tumor images,” IEEE Trans. Med. Imaging, vol. 19, no. 11, pp. 1128–

1143, 2000, doi:10.1109/42.896789. 

[19] Z. Ma, J. M. R. S. Tavares, R. N. Jorge, and T. Mascarenhas, “A review of 

algorithms for medical image segmentation and their applications to the 

female pelvic cavity,” Comput. Methods Biomech. Biomed. Engin., vol. 13, no. 

2, pp. 235–246, 2010, doi:10.1080/10255840903131878. 

[20] W. Jentzen, L. Freudenberg, E. G. Eising, M. Heinze, W. Brandau, and A. 

Bockisch, “Segmentation of PET volumes by iterative image 

thresholding.,” J. Nucl. Med., vol. 48, no. 1, pp. 108–14, 2007. 

[21] F. Gallivanone, F. Fazio, L. Presotto, M. C. Gilardi, C. Canevari, and I. 

Castiglioni, “Adaptive threshold method based on PET measured lesion-

to-background ratio for the estimation of Metabolic Target Volume from 



 

63 

18F-FDG PET images,” in 2013 IEEE Nuclear Science Symposium and Medical 

Imaging Conference, 2013, pp. 1–7, doi:10.1109/NSSMIC.2013.6829383. 

[22] Y. E. Erdi et al., “Segmentation of lung lesion volume by adaptive positron 

emission tomography image thresholding,” Cancer, vol. 80, no. 12 Suppl, 

pp. 2505–9, Dec. 1997. 

[23] U. Ilhan and A. Ilhan, “Brain tumor segmentation based on a new 

threshold approach,” Procedia Comput. Sci., vol. 120, pp. 580–587, 2017, 

doi:10.1016/j.procs.2017.11.282. 

[24] M. Hatt, C. Cheze, A. Turzo, C. Roux, D. Visvikis, and I. T. Oncology, “A 

Fuzzy Locally Adaptive Bayesian Segmentation Approach for Volume 

Determination in PET,” IEEE Trans. Med. Imaging, vol. 28, no. 6, pp. 881–

893, 2009. 

[25] S. Mercieca, J. Belderbos, J. van Loon, K. Gilhuijs, P. Julyan, and M. van 

Herk, “Comparison of SUVmax and SUVpeak based segmentation to 

determine primary lung tumour volume on FDG PET-CT correlated with 

pathology data,” Radiother. Oncol., vol. 129, no. 2, pp. 227–233, 2018, 

doi:10.1016/j.radonc.2018.06.028. 

[26] W. Ju, D. Xiang, B. Zhang, L. Wang, I. Kopriva, and X. Chen, “Random 

Walk and Graph Cut for Co-Segmentation of Lung Tumor on PET-CT 

Images,” IEEE Trans. Image Process., vol. 24, no. 12, pp. 5854–5867, 2015, 

doi:10.1109/TIP.2015.2488902. 

[27] M. Piert et al., “Accuracy of tumor segmentation from multi-parametric 

prostate MRI and 18F-choline PET/CT for focal prostate cancer therapy 

applications,” EJNMMI Res., vol. 8, no. 1, p. 23, 2018, doi:10.1186/s13550-

018-0377-5. 

[28] K. G. Foley et al., “Development and validation of a prognostic model 

incorporating texture analysis derived from standardised segmentation of 

PET in patients with oesophageal cancer,” Eur. Radiol., vol. 28, no. 1, pp. 

428–436, 2017, doi:10.1007/s00330-017-4973-y. 

[29] B. Abualhaj et al., “Comparison of five cluster validity indices performance 

in brain [ 18 F]FET-PET image segmentation using k -means,” Med. Phys., 

vol. 44, no. 1, pp. 209–220, 2017, doi:10.1002/mp.12025. 

[30] A. Juslin and J. Tohka, “Unsupervised Segmentation of Cardiac PET 

Transmission Images for Automatic Heart Volume Extraction,” in 2006 

International Conference of the IEEE Engineering in Medicine and Biology 

Society, 2006, pp. 1077–1080, doi:10.1109/IEMBS.2006.259416. 

[31] R. L. Wahl, H. Jacene, Y. Kasamon, and M. A. Lodge, “From RECIST to 

PERCIST: Evolving Considerations for PET Response Criteria in Solid 

Tumors,” J. Nucl. Med., vol. 50, no. 5, pp. 122–150, 2009, 



 

64 

doi:10.2967/jnumed.108.057307. 

[32] B. Huang, T. Chan, D. L.-W. Kwong, W. K. S. Chan, and P.-L. Khong, 

“Nasopharyngeal Carcinoma: Investigation of Intratumoral Heterogeneity 

With FDG PET/CT,” Am. J. Roentgenol., vol. 199, no. 1, pp. 169–174, 2012, 

doi:10.2214/AJR.11.7336. 

[33] N.-M. Cheng et al., “Textural Features of Pretreatment 18F-FDG PET/CT 

Images: Prognostic Significance in Patients with Advanced T-Stage 

Oropharyngeal Squamous Cell Carcinoma,” J. Nucl. Med., vol. 54, no. 10, 

pp. 1703–1709, 2013, doi:10.2967/jnumed.112.119289. 

[34] S.-C. Chan et al., “Tumor heterogeneity measured on F-18 

fluorodeoxyglucose positron emission tomography/computed 

tomography combined with plasma Epstein-Barr Virus load predicts 

prognosis in patients with primary nasopharyngeal carcinoma,” 

Laryngoscope, vol. 127, no. 1, 2016, doi:10.1002/lary.26172. 

[35] T. Kitao et al., “Reproducibility and uptake time dependency of volume-

based parameters on FDG-PET for lung cancer,” BMC Cancer, vol. 16, no. 

1, p. 576, Dec. 2016, doi:10.1186/s12885-016-2624-3. 

[36] R. Ossenkoppele et al., “Discriminative Accuracy of [ 18 F]flortaucipir 

Positron Emission Tomography for Alzheimer Disease vs Other 

Neurodegenerative Disorders,” JAMA, vol. 320, no. 11, p. 1151, 2018, 

doi:10.1001/jama.2018.12917. 

[37] B. N. Ganguly, N. N. Mondal, M. Nandy, and F. Roesch, “Some physical 

aspects of positron annihilation tomography: A critical review,” J. 

Radioanal. Nucl. Chem., vol. 279, no. 2, pp. 685–698, Feb. 2009, 

doi:10.1007/s10967-007-7256-2. 

[38] J. L. Humm, A. Rosenfeld, and A. Del Guerra, “From PET detectors to PET 

scanners,” Eur. J. Nucl. Med. Mol. Imaging, vol. 30, no. 11, pp. 1574–1597, 

Nov. 2003, doi:10.1007/s00259-003-1266-2. 

[39] H.-H. Lin, K.-S. Chuang, C.-C. Lu, Y.-C. Ni, and M.-L. Jan, “Use of beam 

stoppers to correct random and scatter coincidence in PET: A Monte Carlo 

simulation,” Nucl. Instruments Methods Phys. Res. Sect. A Accel. 

Spectrometers, Detect. Assoc. Equip., vol. 711, pp. 27–37, 2013, 

doi:10.1016/j.nima.2012.12.124. 

[40] B. Furlow, “PET-CT Cancer Imaging,” vol. 90, no. 2, 2018. 

[41] T. Frach, G. Prescher, C. Degenhardt, R. De Gruyter, A. Schmitz, and R. 

Ballizany, “The Digital Silicon Photomultiplier – Principle of Operation 

and Intrinsic Detector Performance,” in 2009 IEEE Nuclear Science 

Symposium Conference Record, 2009, pp. 1959–1965. 

[42] C. Degenhardt et al., “Performance evaluation of a prototype Positron 



 

65 

Emission Tomography scanner using Digital Photon Counters (DPC),” in 

2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record, 

2012, pp. 2820–2824, doi:10.1109/NSSMIC.2012.6551643. 

[43] C. Dege et al., “The digital Silicon Photomultiplier &#x2014; A novel sensor 

for the detection of scintillation light,” in 2009 IEEE Nuclear Science 

Symposium Conference Record, 2009, pp. 2383–2386, 

doi:10.1109/NSSMIC.2009.5402190. 

[44] N. R. Pal and S. K. Pal, “A review on image segmentation techniques,” 

Pattern Recognit., vol. 26, no. 9, pp. 1277–1294, 1993, doi:10.1016/0031-

3203(93)90135-J. 

[45] D. L. Pham, C. Xu, and J. L. Prince, “Current methods in Medical Image 

Segmentation,” Annu. Rev. Biomed. Eng., 2000. 

[46] P. H. Jarritt, K. J. Carson, A. R. Hounsell, and D. Visvikis, “The role of 

PET/CT scanning in radiotherapy planning,” Br. J. Radiol., vol. 79, pp. S27–

S35, 2006, doi:10.1259/bjr/35628509. 

[47] N. C. Krak, R. Boellaard, O. S. Hoekstra, J. W. R. Twisk, C. J. Hoekstra, and 

A. A. Lammertsma, “Effects of ROI definition and reconstruction method 

on quantitative outcome and applicability in a response monitoring trial,” 

Eur. J. Nucl. Med. Mol. Imaging, vol. 32, no. 3, pp. 294–301, 2005, 

doi:10.1007/s00259-004-1566-1. 

[48] A. C. Paulino, M. Koshy, R. Howell, D. Schuster, and L. W. Davis, 

“Comparison of CT- and FDG-PET-defined gross tumor volume in 

intensity-modulated radiotherapy for head-and-neck cancer,” Int. J. Radiat. 

Oncol., vol. 61, no. 5, pp. 1385–1392, 2005, doi:10.1016/j.ijrobp.2004.08.037. 

[49] N. Otsu, “A Threshold Selection Method from Gray-Level Histograms,” 

IEEE Trans. Syst. Man. Cybern., vol. 9, no. 1, pp. 62–66, 1979, 

doi:10.1109/TSMC.1979.4310076. 

[50] L. S. Davis, “A survey of edge detection techniques,” Comput. Graph. Image 

Process., vol. 4, no. 3, pp. 248–270, 1975, doi:10.1016/0146-664X(75)90012-X. 

[51] J. Canny, “A Computational Approach to Edge Detection,” IEEE Trans. 

Pattern Anal. Mach. Intell., no. 6, pp. 679–698, 1986, 

doi:10.1109/TPAMI.1986.4767851. 

[52] R. Pohle and K. D. Toennies, “Segmentation of medical images using 

adaptive region growing,” in Medical Imaging 2001: Image Processing., 2001, 

pp. 1337–1346, doi:10.1117/12.431013. 

[53] J. Dehmeshki, X. Ye, and J. Costello, “Shape based region growing using 

derivatives of 3D medical images: application to semiautomated detection 

of pulmonary nodules.,” 2003 Int. Conf. Image Process., vol. 1, pp. 1085–8, 

2003. 



 

66 

[54] A. Norouzi et al., “Medical Image Segmentation Methods, Algorithms, and 

Applications,” IETE Tech. Rev., vol. 31, no. 3, pp. 199–213, 2014, 

doi:10.1080/02564602.2014.906861. 

[55] P. A. N. Su, T. Chen, W. Xu, X. Shao, H. Wang, and Y. Zhao, “Dominant-

set-based Consensus for Fuzzy C-means Clustering Ensemble,” in 2018 

International Conference on Machine Learning and Cybernetics (ICMLC), 2018, 

pp. 85–90. 

[56] H. Caillol, W. Pieczynski, and A. Hillion, “Estimation of Fuzzy Gaussian 

Mixture and Unsupervised Statistical Image Segmentation,” IEEE Trans. 

Image Process., vol. 6, no. 3, pp. 425–440, 1997. 

[57] T. Mcinerney and D. Terzopoulos, “Deformable models in medical image 

analysis: a survey,” Med. Image Anal., vol. 1, no. 2, pp. 91–108, 1996, 

doi:10.1016/s1361-8415(96)80007-7. 

[58] Philips, “Technical Reference Guide - Vereos PET/CT.” 2018. 

[59] B. Bai, J. Bading, and P. S. Conti, “Tumor Quantification in Clinical Positron 

Emission Tomography,” Theranostics, vol. 3, no. 10, 2013, 

doi:10.7150/thno.5629. 

[60] A. Fedorov et al., “3D Slicer as an image computing platform for the 

Quantitative Imaging Network,” Magn. Reson. Imaging, vol. 30, no. 9, pp. 

1323–1341, 2012, doi:10.1016/j.mri.2012.05.001. 

[61] H. J. Johnson, M. M. Mccormick, and L. Ib, The ITK Software Guide Book 1: 

Introduction and Development Guidelines. Fourth Edition. 2005. 

[62] T. S. Yoo et al., “Engineering and Algorithm Design for an Image 

Processing API : A Technical Report on ITK - the Insight Toolkit,” Stud. 

Health Technol. Inform., vol. 85, pp. 586–592, 2002. 

[63] P. A. Yushkevich et al., “User-guided 3D active contour segmentation of 

anatomical structures: Significantly improved efficiency and reliability,” 

Neuroimage, vol. 31, pp. 1116–1128, 2006, 

doi:10.1016/j.neuroimage.2006.01.015. 

[64] A. S. Ribeiro, E. R. Kops, H. Herzog, and P. Almeida, “Hybrid approach 

for attenuation correction in PET/MR scanners,” Nucl. Inst. Methods Phys. 

Res. A, vol. 734, pp. 166–170, 2014, doi:10.1016/j.nima.2013.09.034. 

[65] G. Wagenknecht et al., “Attenuation Correction in MR-BrainPET with 

Segmented T1-weighted MR images of the Patient’s Head - A Comparative 

Study with CT,” in 2011 IEEE Nuclear Science Symposium Conference Record, 

2011, pp. 2261–2266, doi:10.1109/nssmic.2011.6153858. 

[66] K. H. Zou et al., “Statistical Validation of Image Segmentation Quality 

Based on a Spatial Overlap Index1,” Radiol. Alliance Heal. Serv. Res., vol. 11, 



 

67 

no. 2, pp. 178–189, 2004, doi:10.1016/S1076-6332(03)00671-8. 

[67] H. J. W. L. Aerts et al., “Decoding tumour phenotype by noninvasive 

imaging using a quantitative radiomics approach,” Nat. Commun., vol. 5, p. 

4006, 2014, doi:10.1038/ncomms5006. 

[68] A. Sher et al., “For avid glucose tumors , the SUV peak is the most reliable 

parameter for [18F]FDG-PET/CT quantification , regardless of acquisition 

time,” EJNMMI Res., pp. 4–9, 2016, doi:10.1186/s13550-016-0177-8. 

[69] E. Woff, A. Hendlisz, L. Ameye, C. Garcia, and T. Kamoun, “Metabolic 

Active Tumor Volume and Total Lesion Glycolysis by F- FDG PET / CT 

Validated as Prognostic Imaging Biomarkers in Chemorefractory 

Metastatic Colorectal Cancer,” J. Nucl. Med., 2018, 

doi:10.2967/jnumed.118.210161. 

[70] G. Kuhnert et al., “Impact of PET/CT image reconstruction methods and 

liver uptake normalization strategies on quantitative image analysis,” Eur 

J Nucl Med Mol Imaging, vol. 43, no. 2, pp. 249–258, 2015, 

doi:10.1007/s00259-015-3165-8. 

[71] E. M. Blanchet et al., “18F-FDG PET/CT as a predictor of hereditary head 

and neck paragangliomas,” Eur. J. Clin. Invest., vol. 44, pp. 325–332, 2014, 

doi:10.1111/eci.12239. 

[72] N. G. Mikhaeel et al., “Combination of baseline metabolic tumour volume 

and early response on PET/CT improves progression-free survival 

prediction in DLBCL,” Eur J Nucl Med Mol Imaging, vol. 43, no. 7, pp. 1209–

1219, 2016, doi:10.1007/s00259-016-3315-7. 

[73] A. Archier et al., “18F-DOPA PET/CT in the diagnosis and localization of 

persistent medullary thyroid carcinoma,” Eur J Nucl Med Mol Imaging, vol. 

43, no. 6, pp. 1027–1033, 2015, doi:10.1007/s00259-015-3227-y. 

[74] F. P. M. Oliveira and J. M. R. S. Tavares, “Medical image registration : a 

review,” Computer Methods in Biomechanics and Biomedical Engineering, vol. 

17, no. 2. pp. 73–93, 2014, doi:10.1080/10255842.2012.670855. 

[75] T. K. Koo and M. Y. Li, “A Guideline of Selecting and Reporting Intraclass 

Correlation Coefficients for Reliability Research,” J. Chiropr. Med., vol. 15, 

no. 2, pp. 155–163, 2015, doi:10.1016/j.jcm.2016.02.012. 

[76] J. P. Eir, “Quantifying test-retest reliability using the intraclass correlation 

coefficient and the SEM,” J. Strength Cond. Res., vol. 19, no. 1, pp. 231–240, 

2005, doi:10.1519/00124278-200502000-00038. 

[77] S. Qin, L. Nelson, L. Mcleod, S. Eremenco, and S. Joel, “Assessing test–

retest reliability of patient-reported outcome measures using intraclass 

correlation coefficients : recommendations for selecting and documenting 

the analytical formula,” Qual. Life Res., vol. 28, pp. 1029–1033, 2019, 



 

68 

doi:10.1007/s11136-018-2076-0. 

[78] R. Wang, H. Chen, and C. Fan, “Impacts of time interval on 18F-FDG 

uptake for PET/CT in normal organs,” Medicine (Baltimore)., vol. 97, no. 45, 

p. e13122, 2018. 

[79] Z. Al-Faham, P. Jolepalem, J. Rydberg, and C.-Y. O. D. Wong, “Optimizing 

18F-FDG uptake time prior to imaging improves the accuracy of PET/CT 

in liver lesions,” J. Nucl. Med. Technol., vol. 44, no. 2, pp. 70–72, 2016, 

doi:10.2967/jnmt.115.169953. 

[80] F. Orlhac, C. Nioche, and I. Buvat, Texture — User Guide. 2019. 

[81] C. S. Van Der Vos, D. Koopman, S. Rijnsdorp, A. T. M. Willemsen, and E. 

P. Visser, “Quantification , improvement , and harmonization of small 

lesion detection with state-of-the-art PET,” Eur J Nucl Med Mol Imaging, vol. 

44, pp. 4–16, 2017, doi:10.1007/s00259-017-3727-z. 



 

69 

 

A.  APPENDIX    

In the lesion’s identification step, the lesions were detected in VEREOS images and a ROI sur-

rounding the lesions was drawn. When transposing that information to GEMINI images, a few 

lesions were not identifiable. For that reason, and after being reviewed by the nuclear physician, 

these lesions were excluded from the dataset. The image that follows (figure A.1) shows one of 

these questionable cases.  

 

 
Figures A.2 to A.5 represent the boxplot graphs to better understand data dispersion among 

the groups: Dice between observers’ segmentation; Dice between observer 1 and automatic seg-

mentation; Dice between observer 2 and automatic segmentation. It is presented the results for 

different automatic segmentation methods used (Threshold, K-means, and Bayesian approach).  
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Figure A.1: Lesion identified in an image acquired from VEREOS scanner that is not visible in the corre-

sponding GEMINI image. The lung lesion is identified by a red arrow in the VEREOS mask. In the corre-

sponding GEMINI image, the same lesion is not visible, and so it is not included in the study. 
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Figure A.3: Boxplot representing Dice coefficient dispersion between manual segmentation and segmenta-

tion using K-means method with nclasses = 2 (left graph) and nclasses = 3 & merge two lower classes (right 
graph). 

Figure A.2: Boxplot representing Dice coefficient dispersion between manual segmentation and segmen-

tation using threshold method (50% on the left graph and 80% on the right graph). 
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Figure A.5: Boxplot representing Dice coefficient dispersion between manual segmentation and optimized 

segmentation for K-means method. 

Figure A.4: Boxplot representing Dice coefficient dispersion between manual segmentation and segmenta-

tion using Bayesian method with nclasses = 2 (left graph) and nclasses = 3 & merge two lower classes (right 

graph). 


