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Abstract We study production of gravitino and Polonyi
particles in the minimal Starobinsky-Polonyi N = 1 super-
gravity with inflaton belonging to a massive vector super-
multiplet. Our model has only one free parameter given
by the scale of spontaneous SUSY breaking triggered by
Polonyi chiral superfield. The vector supermultiplet generi-
cally enters the action non-minimally, via an arbitrary real
function. This function is chosen to generate the inflaton
scalar potential of the Starobinsky model. Our supergrav-
ity model can be reformulated as an abelian supersymmetric
gauge theory with the vector gauge superfield coupled to two
(Higgs and Polonyi) chiral superfields interacting with super-
gravity, where the U (1) gauge symmetry is spontaneously
broken. We find that Polonyi and gravitino particles are effi-
ciently produced during inflation, and estimate their masses
and the reheating temperature. After inflation, perturbative
decay of inflaton also produces Polonyi particles that rapidly
decay into gravitinos. As a result, a coherent picture of infla-
tion and dark matter emerges, where the abundance of pro-
duced gravitinos after inflation fits the CMB constraints as a
Super Heavy Dark Matter (SHDM) candidate. Our scenario
avoids the notorous gravitino and Polonyi problems with the
Big Bang Nucleosynthesis (BBN) and DM overproduction.

1 Introduction

The Planck data [1–3] of the Cosmic Microwave Background
(CMB) radiation favors slow-roll single-large-field chaotic
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inflation with an approximately flat plateau of the scalar
potential, driven by single inflaton (scalar) field. The simplest
geometrical realization of this description is provided by the
Starobinsky model [4]. It strongly motivates us to connect
this class of inflationary models to particle physics theory
beyond the Standard Model (SM) of elementary particles. A
reasonable way of theoretical realization of this program is
via embedding of the inflationary models into N = 1 super-
gravity. It is also the first natural step towards unification
of inflation with the Supersymmetric Grand Unified Theo-
ries (SGUTs) and string theory. Inflaton is expected to be
mixed with other scalars, but this mixing has to be small.
The inflationary model building in the supergravity litera-
ture is usually based on an assumption that inflaton belongs
to a chiral (scalar) supermultiplet, see e.g., the reviews [5,6]
for details. However, inflaton can also belong to a massive
N = 1 vector multiplet instead of a chiral one. Since there
is only one real scalar in a massive N = 1 vector multiplet,
there is no need of stabilization of its (scalar) superpartners,
and the η-problem does not exist because the scalar poten-
tial of a vector multiplet is given by the D-term instead of
the F-term. The minimal supergravity models with infla-
ton belonging to a massive vector multiplet were proposed
in Refs. [7,8] by using the non-minimal self-coupling of a
vector multiplet, paramaterized by an arbitrary real function
[9]. These models can accommodate any desired values of
the CMB observables (the scalar tilt ns and the tensor-to-
scalar ratio r ), because the corresponding single-field (infla-
ton) scalar potential is given by the derivative squared of
that (arbitrary) real function. However, all models of Refs.
[7,8] have the vanishing vacuum energy after inflation, i.e.
the vanishing cosmological constant, and the vanishing vac-
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uum expectation value (VEV) of the auxiliary fields, so that
supersymmetry (SUSY) is restored after inflation and only
a Minkowski vacuum is allowed. A simple extension of the
models [7,8] was proposed in Refs. [10,11], where a Polonyi
(chiral) superfield with a linear superpotential [12] was added
to the action, leading to a spontaneous SUSY breaking and
a de-Sitter vacuum after inflation.

A successful theoretical embedding of inflation into super-
gravity models is, clearly, a necessary but is not a sufficient
condition. Even when these models are well compatible with
the Planck constraints on the (r, ns), they still may (and often,
do) lead to incompatibility with the (Hot and Cold) Dark
Matter (DM) abundance and the Big Bang Nucleosynthesis
(BBN). A typical issue is known as the gravitino problem:
in order to not ruin the BBN, gravitinos must not decay in
the early thermal bath injecting hadrons or radiation during
the BBN epoch [13–16]. As is well known, the BBN is very
sensitive to initial conditions, while each extra hadron or
radiation can radically jeopardize the BBN picture, leading
to disastrous incompatibility with cosmological and astro-
physical data. In addition, the so-called Polonyi problem was
also pointed out in the literature: Polonyi particles decay can
also jeopardize the success of the BBN [17–22]. Indeed, a
generic supergravity model predicts a disastrous overproduc-
tion of gravitinos and/or Polonyi particles or neutralinos. Any
specific predictions are model-dependent, because they are
very sensitive to the mass spectrum and the parameter range
under consideration. The mass pattern selects the leading
production mechanism or channel: either thermal (WIMP-
like) production or/and non-thermal production sourced by
inflation and decays of other heavier particles. The last chan-
nel includes a possible (different) production mechanism due
to evaporating Primordial Black Holes (PBH’s) that may be
formed in the early Universe [23–25]. Our minimal estima-
tion of the probability of the mini-PBH’s formation at the
long dust-like preheating stage after inflation gives such a
low value that the successive evaporation of the mini-PBH’s
doesn’t lead to a significant contribution to gravitino produc-
tion (Sect. 3). However, if inflation ends by a first order phase
transition, the situation drastically changes, and copious pro-
duction of mini-PBHs in bubble collisions [26,27] can lead
to a huge gravitino overproduction, thus excluding the first
order phase transition exit from inflation.

We consider the very specific, minimalistic and, hence,
a bit oversimplified N = 1 supergravity model of infla-
tion, with inflaton belonging to a massive vector multiplet.
We demonstrate that our model avoids the overproduction
and BBN problems, while it naturally accounts for the right
amount of cold DM. We assume both Polonyi field, triggering
a spontaneous SUSY breaking at high scales, and the mas-
sive gravitino, produced during inflation, to be super-heavy,
and call it the Super-Heavy Gravitino Dark Matter (SHGDM)
scenario. A production of super-heavy scalars during infla-

tion was first studied in Refs. [28,29], whereas the gravitino
production sourced by inflation was considered in Refs. [30–
32], though without specifying a particular model. In this
paper we apply the methods of Refs. [30–32] to the specific
Starobinsky-Polonyi supergravity model proposed in Refs.
[10,11]. The supersymmetric partners of known particles
(beyond the ones present in the model) are assumed to be
heavier than Polonyi and gravitino particles (in the context of
High-scale SUSY), also in order to overcome several techni-
calities in our calculations. Some of the physical predictions
of our model are (i) the Polonyi mass is a bit higher than
two times of the gravitino mass, and (ii) the inflaton mass is
slightly higher than two Polonyi masses. This implies that
inflaton can decay into Polonyi particles that, in their turn,
decay into a couple of gravitinos. We show that super-heavy
gravitinos produced from inflation and Polonyi decays can
fit the cold DM abundance. The parameter spaces of infla-
tion and cold DM are thus linked to each other in a coherent
unifying picture.

Our paper is organized as follows. In Sect. 2 we review
our model. In Sect. 3 we consider the gravitino and Polonyi
particle production mechanisms. Section 4 is our conclusion
and outlook.

2 The model

In this Section we briefly review the inflationary model of
Refs. [10,11]. We use the natural units with the reduced
Planck mass MPl = 1.1

The model has two chiral superfields (�, H) and a real
vector superfield V , all coupled to supergravity, and having
the Lagrangian

L =
∫

d2θ2E
{

3
8 (DD − 8R)e− 1

3 (K+2J )

+ 1
4W

αWα + W(�)

}
+ h.c., (1)

in terms of the chiral scalar curvature superfield R, the chi-
ral density superfield E and the superspace covariant spinor

derivatives (Dα,D.
α), a Kähler potential K = K (�, �)

and a superpotential W(�), the abelian (chiral) superfield
strength Wα ≡ − 1

4 (DD − 8R)DαV , and a real function
J = J (He2gV H) with the coupling constant g.

The Lagrangian (1) is invariant under the supersymmetric
U (1) gauge transformations

H → H ′ = e−igZ H, H → H ′ = eigZ H , (2)

1 Our notation and conventions coincide with the standard ones in Ref.
[33], including the spacetime signature (−,+,+,+). The N = 1 super-
conformal calculus [8,9] after the superconformal gauge fixing is equiv-
alent to the curved superspace description of N = 1 supergravity that
is used here.
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V → V ′ = V + i
2 (Z − Z), (3)

whose gauge parameter Z itself is a chiral superfield.
The chiral superfield H can be gauged away via the gauge

fixing of these transformations by a gauge condition H = 1.
Then the Lagrangian (1) gets simplified to

L =
∫

d2θ2E
{

3
8 (DD − 8R)e− 1

3 (K+2J )

+ 1
4W

αWα + W
}

+ h.c. (4)

After eliminating the auxiliary fields and moving from the
initial (Jordan) frame to the Einstein frame, the bosonic part
of the Lagrangian (4) reads [10]2

e−1L = − 1
2 R − KAĀ∂m A∂m Ā − 1

4 FmnF
mn

− 1
2 J

′′∂mC∂mC − 1
2 J

′′BmB
m − V, (5)

with the scalar potential

V = g2

2 J ′2 + eK+2J
[
K−1

AĀ
(WA + KAW)(W Ā + KĀW)

−
(

3 − 2
J ′2

J ′′

)
WW

]
, (6)

where we have used the supergravity (bosonic) field compo-
nents defined by3

2E | = e, DD(2E)| = 4eM,

R| = − 1
6 M,

DDR| = − 1
3 R + 4

9 MM + 2
9bmb

m − 2
3 iDmb

m,

in terms of the vierbein determinant e ≡ deteam , the spacetime
scalar curvature R, and the minimal set of the supergravity
auxiliary fields given by the complex scalar M and the real
vector bm . The matter (bosonic) field components are defined
by

�| = A, DαDβ�| = −2εαβF,

Dα̇Dα�| = −2iσαα̇
m∂m A,

DDDD�| = 16�A + 32
3 iba∂

a A + 32
3 FM,

V | = C, DαDβV | = εαβ X,

Dα̇DαV | = σαα̇
m(Bm − i∂mC),

DαW
β | ≡ − 1

4Dα(DD − 8R)DβV

= 1
2 σαα̇

mσ α̇βn(Dm∂nC + i Fmn) + δα
β(D + 1

2 �C),

DDDDV | = 16
3 bm(Bm − i∂mC) + 8�C − 16

3 MX + 8D,

in terms of the physical fields (A, C , Bm), the auxiliary fields
(F , X , D) and the vector field strength Fmn = DmBn −
Dn Bm .

2 The primes and capital latin subscripts denote the derivatives with
respect to the corresponding fields.
3 The vertical bars denote the leading field components of the super-
fields at θ = θ̄ = 0.

When the function J is linear with respect to its argument
(i.e. in the case of theminimal coupling of the vector multiplet
to supergravity), our results agree with the textbook [33]. In
the absence of chiral matter, � = 0, our results also agree
with Refs. [8,9].4

As is clear from Eq. (5), the absence of ghosts requires
J ′′(C) > 0, where the primes denote the differentiations
with respect to the given argument. In this paper, we restrict
ourselves to the Kähler potential and the superpotential of
the Polonyi model [12]:

K = ��, W = μ(� + β), (7)

with the parameters μ and β. Unlike Ref. [34], we do not
impose the nilpotency condition �2 = 0, in order to keep
manifest (linear) supersymmetry of our original construction
(1) and to avoid a concern about loosing unitary with the
nilpotent superfields at high energies.

Then, on the one side, our model includes the single-
field (C) inflationary model, whose D-type scalar potential
is given by

V (C) = g2

2 (J ′)2 (8)

in terms of an arbitrary function J (C), with the real inflaton
field C belonging to a massive vector supermultiplet. On the
other hand, the Minkowski vacuum conditions (after infla-
tion) can be easily satisfied when J ′ = 0, which implies [12]

〈A〉 = √
3 − 1 and β = 2 − √

3. (9)

This solution describes a stable Minkowski vacuum with
spontaneous SUSY breaking at arbitrary scale 〈F〉 = μ.
The related gravitino mass is given by

m3/2 = μe2−√
3+〈J 〉. (10)

There is also a massive (Polonyi) scalar of mass MA =
2μe2−√

3 and a massless fermion in the physical spectrum.
As regards early Universe phenomenology, our specific

model of Polonyi-Starobinsky (PS) supergravity has the fol-
lowing theoretically appealing features:

• there is no need to “stabilize” the single-field inflation-
ary trajectory against scalar superpartners of inflaton,
because our inflaton is the only real scalar in a massive
vector multiplet,

• any values of CMB observables ns and r are possible by
choosing the J -function,

• a spontaneous SUSY breaking after inflation takes place
at arbitrary scale μ,

4 Our J -function and the C-function of the inflaton field φ to be intro-
duced below, differ by their signs from those used in Refs. [8,9].
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• there are only a few parameters relevant for inflation
and SUSY breaking: the coupling constant g defining
the inflaton mass, g ∼ minf., the coupling constant μ

defining the scale of SUSY breaking, μ ∼ m3/2, and
the parameter β in the constant term of the superpoten-
tial. Actually, the inflaton mass is constrained by CMB
observations as minf . ∼ O(10−6), while β is fixed by the
vacuum solution, so that we have only one free parame-
ter μ defining the scale of SUSY breaking in our model
(before studying reheating and phenomenology).

The (inflaton) scalar potential associated with the Starobin-
sky inflationary model of (R + R2) gravity arises when [8]

J (C) = 3
2 (C − lnC) (11)

that implies

J ′(C) = 3
2

(
1 − C−1

)
and J ′′(C) = 3

2

(
C−2

)
> 0.

(12)

According to (5), a canonical inflaton field φ (with the canon-
ical kinetic term) is related to the field C by the field redefi-
nition

C = exp
(√

2/3φ
)

. (13)

Therefore, we arrive at the (Starobinsky) scalar potential

VStar.(φ) = 9g2

8

(
1 − e−√

2/3φ
)2

with m2
inf . = 9g2/2.

(14)

The full action (1) of this PS supergravity in curved super-
space can be transformed into a supergravity extension of the
(R + R2) gravity action by using the (inverse) duality pro-
cedure described in Ref. [8]. However, the dual supergravity
model is described by a complicated higher-derivative field
theory that is inconvenient for studying particle production.
Actually, there is also the F-type scalar potential in PS super-
gravity due to mixing of inflaton and Polonyi scalars, that
leads to instability of the Starobinsky inflation described by
the D-term alone. However, after adding a Fayet-Iliopoulos
(FI) term [35] together with its supersymmetric completion
[36] to the Lagrangian (1) and modifying the J -function
above, the Starobinsky inflation can be restored, and the
inflaton-Polonyi mixing can be suppressed [37]. The FI term
does not affect the phenomenology discussed in this paper,
as long as 〈J 〉 is negative and close to zero [37], as we always
assume.

Another nice feature of our model is that it can be rewrit-
ten as a supersymmetric (abelian and non-minimal) gauge
theory coupled to supergravity in the presence of a Higgs

superfield H , resulting in the super-Higgs effect with simul-
taneous spontaneous breaking of the gauge symmetry and
supersymmetry. Indeed, the U (1) gauge symmetry of the
original Lagrangian (1) allows us to choose a different (Wess-
Zumino) supersymmertic gauge by “gauging away” the chi-
ral and anti-chiral parts of the general superfield V via the
appropriate choice of the superfield parameters Z and Z as

V | = DαDβV | = Dα̇Dβ̇V | = 0,

Dα̇DαV | = σαα̇
mBm,

DαW
β | = 1

4σαα̇
mσ α̇βn(2i Fmn) + δα

βD,

DDDDV | = 16
3 bm Bm + 8D.

Then the bosonic part of the Lagrangian in terms of the super-
field components in Einstein frame, after elimination of the
auxiliary fields and Weyl rescaling, reads [11]

e−1L = − 1
2 R − KAA∗∂m A∂m Ā − 1

4 FmnF
mn

−2Jhh̄∂mh∂mh̄ − 1
2 JV 2 BmB

m

+i Bm(JVh∂
mh − JV h̄∂

mh̄) − V, (15)

where h, h̄ are the Higgs field and its conjugate.
The standard U (1) Higgs mechanism arises with the

canonical function J = 1
2he

2V h̄, where we have chosen
g = 1 for simplicity. As regards the Higgs sector, it leads
to

e−1LHiggs = −∂mh∂mh̄ + i Bm(h̄∂mh − h∂mh̄)

−hh̄Bm B
m − V. (16)

After changing the variables h and h̄ as

h = 1√
2 (ρ + ν)eiζ , h̄ = 1√

2 (ρ + ν)e−iζ , (17)

where ρ is the (real) Higgs boson, ν ≡ 〈h〉 = 〈h̄〉 is the Higgs
VEV, and ζ is the Goldstone boson, the unitary gauge fixing
of h → h′ = e−iζ h and Bm → B ′

m = Bm + ∂mζ , leads to
the standard result [38]

e−1LHiggs = − 1
2∂mρ∂mρ − 1

2 (ρ + ν)2BmB
m − V. (18)

The same result is also achieved by considering the super-
Higgs mechanism where, in order to get rid of the Goldstone
mode, one uses the super-gauge transformations (2) and (3),
and defines the relevant field components of Z and i(Z − Z)

as

Z | = ζ + iξ, i
2Dα̇Dα(Z − Z)| = σm

αα̇∂mζ. (19)

Examining the lowest components of the transformation (2),
one can easily see that the real part of Z | cancels the Gold-
stone mode of (17). Similarly, when applying the derivatives
Dα̇ and Dα to (3) and taking their lowest components (then
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Dα̇DαV | = σm
αα̇Bm), one finds that the vector field “eats up”

the Goldstone mode as

B ′
m = Bm + ∂mζ. (20)

The Minkowski vacuum after inflation can be easily lifted
to a de Sitter vacuum (Dark Energy) in our model by the
simple modification of the Polonyi sector and its parameters
as [11]

〈A〉 = (
√

3 − 1) + 3 − 2
√

3

3(
√

3 − 1)
δ + O(δ2),

β = (2 − √
3) +

√
3 − 3

6(
√

3 − 1)
δ + O(δ2). (21)

It leads to a small positive cosmological constant

V0 = μ2eα2
δ = m2

3/2δ (22)

and the superpotential VEV

〈W〉 = μ(〈A〉 + β) = μ(a + b − 1
2δ), (23)

where a ≡ (
√

3−1) and b ≡ (2−√
3) is the SUSY breaking

vacuum solution to the Polonyi parameters in the absence of
a cosmological constant (see Ref. [39] also).

3 Gravitino and Polonyi production

In this Section, we consider the gravitino (ψμ) and Polonyi
(A) particles production during inflation and after it. We
assume that all other (heavy) SUSY particles (not present
in our model) have masses larger than those of Polonyi and
gravitino (High-scale SUSY), with gravitino as the LSP (the
lightest superpartner of known particles) and as the cold Dark
Matter (SHGDM).

There are several competitive sources of particle produc-
tion in our model. First, gravitino and Polonyi particles can be
produced via Schwinger’s effect (out of vacuum) sourced by
inflation. Since the mass of a Polonyi particle is higher than
two gravitino masses (Sect. 2), the former is unstable, and
decays into two gravitinos, A → ψ3/2ψ3/2. Second, both
gravitino and Polonyi can be produced by inflaton decays,
during oscillations of the inflaton field around its minimum
after inflation. A competition between the gravitino/Polonyi
creation during inflation and their production by inflaton
decays is known to be very sensitive to the mass hierarchy.
It is, therefore, very instructive to study them in our model
(Sect. 2) that is minimalistic and highly constrained.

Since the exact equations of motion in our model (Sect. 2)
are very complicated, in this Section we take them only in the
leading order with respect to the inverse Planck mass. Let us

begin with Polonyi and gravitino production during inflation
by ignoring for a moment their couplings to inflaton. The
effective action of the Polonyi field in the FLRW background
reads

I [A] =
∫

dt
∫

d3x
a3

2

×
(
Ȧ2 − 1

a2 (∇A)2 − M2
A A

2 − ζ RA2
)

, (24)

where the non-minimal coupling constant (of Polonyi field
to gravity) is ζ = 1 in our case (Sect. 2), A is the Polonyi
field, a is the FLRW scale factor, MA is the Polonyi mass,
and R is the Ricci scalar.

A mode expansion of the Polonyi field in terms of the
conformal time coordinate η reads

A(x) =
∫

d3k(2π)−3/2a−1(η)

×
[
bkhk(η)eik·x + b†

kh
∗
k(η)e−ik·x] , (25)

where b, b† are the (standard) creation/annihilation opera-
tors, and the coefficient functions h, h+ are properly nor-
malized as

hkh
′∗
k − h′

kh
∗
k = i. (26)

It follows from Eqs. (24) and (25) that the equations of
motion of the modes are given by

h′′
k (η)+ω2

k (η)hk(η) = 0, where ω2
k = k2+M2

Aa
2+5

a′′

a
,

(27)

and we have defined h′′ = d2h/dη2 with respect to the
conformal time η. For our purposes, it is convenient to
rescale Eq. (27) by some reference constants a(η∗) ≡ a∗
and H(η∗) = H∗ to be specified later, and rewrite it as

h′′
k̃
(η̃) + (k̃2 + b2ã2)hk̃(η̃) = 0 , (28)

in terms of the rescaled quantities

η̃ = ηa∗H∗, ã = a/a∗, k̃ = k/(H∗a∗).

Similarly, the gravitino field is governed by the massive
Rarita–Schwinger action

I [ψ] =
∫

d4x e ψ̄σRσ {ψ} , (29)

in terms of the gravitino field strength

Rσ {ψ} = iγ σνρDνψρ + m3/2γ
σνψν (30)
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and the supercovariant derivative

Dμψν = ∂μψν + 1
4ωμabγ

abψν − �ρ
μνψρ , (31)

by using the notation γ μ1...μn = γ [μ1 . . . γ μn ] with unit
weight of the antisymmetrization. The supergravity torsion is
of the second order with respect to the inverse Planck mass,
so that it can be ignored. The �

ρ
μν can be represented by the

symmetric Christoffel symbols, but they are cancelled from
the action (29).

The gravitino equation of motion now reads

(i /D − m3/2)ψμ − (
iDμ + m3/2

2 γμ

)
γ · ψ = 0. (32)

In the flat FLRW background, Eq. (32) becomes

iγmn∂mψn = −
(
m3/2 + i

a′

a
γ 0

)
γm∂mψ , (33)

where we have

eaμ = a(η)δaμ, m3/2 = m3/2(η), ωμab = 2ȧa−1eμ[ae0
b].
(34)

A solution to Eq. (33) for the helicity 3/2 modes reads

ψμ(x) =
∫

d3p(2π)−3(2p0)
−1

∑
λ

{eik·xbμ(η, λ)akλ(η)

+e−ik·xbCμ(η, λ)a†
kλ(η)}. (35)

We find that the equations of motion for the 3/2-helicity
gravitino modes have the same form as that of Eq. (27),
namely,

b′′
μ(η, λ) + Ĉ(k, a)b′

μ(η, λ) + ω2(k, a)bμ(η, λ) = 0, (36)

Ĉ(k, a)b′
μ(η, λ) = −2iγ νi kiγνη∂

ηbμ

−2γν(m3/2 + i a
′
a γ 0)iγ νη∂ηbμ , (37)

ω2(k, a)/2 = k2 + m2
3/2 + 2i a

′
a γ 0m3/2 −

(
a′
a

)2
. (38)

It is customary to write them down (similarly to the well
known relation between Dirac and Klein-Gordon equations)
as

Pν P
νbμ(η, λ) = 0, (39)

where, in our case, we have

Pν = iγ νη∂η − γ νi ki −
(
m3/2 + i a

′
a γ 0

)
γ ν = 0. (40)

Equation (36) can be rescaled in the same way as Eq. (28).
Interactions of gravitino with matter fields can be described

in terms of the effective gravitino mass M3/2 that is a func-
tion of matter fields in the Rarita–Schwinger equation, with

m3/2 = 〈
M3/2

〉
. In our model with the matter given by infla-

ton and Polonyi scalars (Sect. 2), we find

M3/2(φ, Ã) = μM−1
Pl exp

[
(1/

√
6)M−1

Pl φ

+M−2
Pl (

¯̃AÃ + α
¯̃A + α Ã + α2)

]
( Ã + α + β),

(41)

where α ≡ 〈A〉 and A = α + Ã, in terms of inflaton field φ

and Polonyi scalar Ã with
〈
Ã
〉
= 0, and we have restored the

dependence upon Planck mass.
In order to obtain the number density of produced parti-

cles, we perform a Bogoliubov transformation,

hη1
k (η) = αkh

η0
k (η) + βkh

∗η0
k (η) . (42)

This transformation is supposed to be done from the vacuum
solution with the boundary condition η = ηin , correspond-
ing to the initial time of inflation, to the final time η = η f

when particles are no longer created from inflation. Since we
have a′/a2 � 1 and ba/k � 1, we can take the extremes as
ηin = −∞ and η f = +∞ in the semiclassical approxima-
tion. Given such boundary conditions, the energy density of
Polonyi particles produced during inflation is given by

ρA(η) = MAnA(η) = MAH
3
in f

(
1

ã(η)

)3

PA, (43)

where we have used the standard notation

PA = 1

2π2

∫ ∞

0
dk̃k̃2|βk̃ |2. (44)

Similar equations are valid for gravitino, with the power spec-
trum

Pψ = 1

2π2

∫ ∞

0
dk̃k̃2|bμb

Cμ|. (45)

Some comments are in order.
(i) Technical details about the power spectrum and our

estimate of the normalized value of PA to be of the order
exp

[−O(1)MA/Hin f
]

are given in Appendix.
(ii) Our proposal about Polonyi particles produced during

inflation reads

�Ah
2 
 �Rh

2
(
Treh

T0

)
8π

3

(
MA

MPl

)
nA(t f )

MPl H2(t f )
, (46)

where MA is the Polonyi mass, �Rh2 
 4.31 × 10−5 is the
fraction of critical energy density that is in radiation today,
�Ah2 is fraction of the critical energy density of produced
Polonyi fields (and a similar estimate for gravitino). Though
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we do not have a rigorous proof of Eq. (46), it can be argued
by starting from

ρA(t0)

ρR(t0)
= ρA(treh)

ρR(treh)

(
Treh

T0

)
, (47)

where ρR is the energy density of radiation, ρA is the Polonyi
energy density, Treh and T0 are the temperature of the Uni-
verse at reheating time treh and today t0, respectively. Assum-
ing that Polonyi particles are produced after the de Sitter
phase te, when the transition to the coherent oscillation phase
begins, the inflaton and Polonyi energy densities will be red-
shifted with almost the same rate. This scaling holds until the
reheating stage finishes and the radiation dominated epoch
begins. Assuming that most of the energy density is converted
into radiation contribution with

ρR 
 ρc = 3H2M2
Pl

8π
, (48)

we obtain

ρA(treh)

ρR(treh)

 8π

3

ρA(te)

M2
Pl H

2(te)
, (49)

where H(te) is the Hubble parameter at a fixed time t = te.
Then Eq. (46) follows from Eq. (49).

(iii) According to Eq. (43), relating Hubble scale, Polonyi
mass and the desiderata Polonyi energy-density, there is
about 8th-orders-of-magnitude suppression of the energy-
density. According to (i), the normalized power spectrum
PA cannot provide such suppression with our values for
MA and Hin f . However, it comes from the dilution factor
(ã)−3 = (a f /ai )−3 in Eq. (43).

Our semi-analytical estimations for Eq. (43) indicate that
almost all Polonyi particles are produced in an excursion of
the inflaton field around φe ≡ φ(te) with �φ 
 0.2. The
value of the dilution factor can be estimated from

(a(t f )/a(ti ))
−3 = exp

[
−24π

∫ φi

φ f

dφ V−1(φ)V,φ(φ)

]

= exp(−��), (50)

where we have defined �� = �(φ(ti ))−�(φ(t f )), having
in mind that φ(ti ) > φ(t f ) and

�(φ) = 48π
√

2/3e−√
2φ/3(1 − e−√

2φ/3)−1 . (51)

After integrating over the effective particle production region
�φ, we find �� = 18.2, i.e.

(a(t f )/a(ti ))
−3 
 exp(−18.2) 
 10−8, (52)

leading to the correct CDM amount.

The a(t f ) refers to a cosmological time t f close to reheat-
ing. The cosmological time ti when particle production effec-
tively started (and checked by our numerical simulations) is
not far from the ti because the inflaton field has an excur-
sion of merely �� = �(ti ) − �(t f ) 
 20 that is pro-
portional to �t = t f − ti . But the relation between a(t)
and the cosmological time t is exponential. This is the ori-
gin of the very large exponential suppression (by the 8th
orders) between a f and ai despite of the fact that the effec-
tive time of particle production is very short. From the phys-
ical point of view, particles produced during t f are diluted
with the factor exponentially larger then a(ti ). Our results
are in agreement with the standard expectations [60] that
particle production is most efficient towards the end of infla-
tion.

(iv) To get the masses MA and m3/2 ≡ mψ in a different
way, we have to add a few more assumptions about details of
reheating. Since our SHGDM scenario is based on Starobin-
sky inflation, all cosmological parameters can be fixed mod-
ulo the e-foldings number Ne that is between 50 and 60 for
compatibility with CMB observations. This also allows us to
estimate the error margin for the masses in question at about
20%.

Let us take Ne = 55 as the best fitting (reference) point
[6,61]. This leads to the following set of the cosmological
(inflation) parameters [62]:

ns = 0.964, r = 0.004, min f = 3.2 · 1013 GeV,

Hin f = πMP
√
Pg/2 = 1.4 · 1014 GeV, (53)

where MP = 2.44·1018 GeV is the reduced Planck mass, and
Pg stands for tensor perturbations. In our SHGDM scenario,
well below the inflaton mass scale, the low-energy theory
is given by the Standard Model (SM) that has the effective
number of d.o.f. as g∗ = 106.75. Then, it is reasonable to
assume that all the SM particles were generated by pertur-
bative inflaton decay, whose reheating temperature is well
known in Starobinsky inflation [6,63,64],

Treh =
(

90

π2g∗

)1/4 √
�tot MP = 3 · 109 GeV . (54)

This value is also consistent with the successful leptogenesis
scenario of Ref. [65] based on the see-saw type-I mechanism,
that requires the reheating temperature to be higher than 1.4×
109 GeV.

On the other hand, the reheating temperature for heavy
gravitino is given by [66,67]

Treh = 1.5 · 108 GeV

(
80

g∗

)1/4 ( m3/2

1012 GeV

)3/2
. (55)
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Fig. 1 Numerical simulations of the produced gravitino mass density
(normalized) as a function of the Polonyi mass parameter are displayed
in blue, in the parameter range compatible with inflation, reheating
and leptogenesis (at the reference point Ne = 55): ns = 0.964,
r = 0.004, min f = 3.2 · 1013 GeV, Hin f = 1.4 · 1014 GeV, and

Treh = 3 · 109 GeV. The right amount of cold DM: �3/2h2 =
�DMh2 = 0.11 (in orange) is generated when the Polonyi mass is
MA ≈ 2m3/2 = (1.54 ± 0.2) × 1013 GeV that is compatible with
the Polonyi mass inferred from Starobinsky inflation and reheating in
Eq. (56) below

Combining Eqs. (54) and (55), we arrive at the gravitino and
Polonyi masses

m3/2 = (7.7 ± 0.8) · 1012 GeV and

MA = 2e−〈J 〉m3/2 ≈ 2m3/2. (56)

These masses are compatible with the correct abundance of
cold DM, according to our numerical estimates in Fig. 1, that
lends further support towards our conjecture in Eq. (46).

(v) The decay rate of Polonyi particle into two gravitinos
is given by [40,41]

�(A → ψ3/2ψ3/2) 
 3

288π
M3

A/m2
3/2 
 2.6 × 10−2m3/2.

(57)

This channel is a direct consequence of the gravitino mass
generation mechanism from the non-vanishing Polonyi vac-
uum expectation value. In addition, it implies that Polonyi
particles rapidly decay into gravitinos. Moreover, since we
have m3/2 = 7.7 · 1012 GeV, it implies � � Hin f . This
means that the decay time scale is much larger then the pro-
duction time during inflation, i.e. τA→ψ3/2ψ3/2 � τin f lation .
As a consequence, the decays of Polonyi particles into grav-
itinos are subleading and negligible during inflation. There-
fore, gravitino and Polonyi particles are independently cre-
ated during inflation. After the reheating, Polonyi particles
will completely decay into gravitinos (see below). In partic-
ular, the Polonyi number density nS gets transformed into a
contribution to the gravitino number density �n� = 2nA.
Since the Polonyi mass is about two times of the gravitino

mass, the Polonyi energy density before its decays is com-
pletely converted into gravitinos, i.e. (��ψ)h2 = �Sh2.

In Fig. 1 we show a numerical simulation of the produced
gravitino mass density as a function of the Polonyi mass.5

The spectrum is composed of two contributions: (a) the
Polonyi energy-density spectrum produced during inflation,
converted into gravitinos after reheating; and (b) the energy-
density spectrum of gravitinos produced during inflation.
The first contribution largely dominates over the second one.
Intriguingly, the Polonyi and gravitino masses inferred from
inflation, reheating and leptogenesis bounds are well com-
patible with the correct amount of CDM.

Next, let us consider the gravitino and Polonyi produc-
tion from inflaton decays. As regards gravitino, its coupling
to inflaton arises from the Weyl rescaling of vierbein in the
gravitino action. The gravitino kinetic term does not con-
tribute because of conformal flatness of the FLRW universe,
so that the only source of gravitino production is given by
the gravitino mass term6

Lmass = − 1
2e

Gtot/2ψ̄μγ μνψν , (58)

5 We chose the lower (on the left) intersection point in Fig. 1 because the
higher (on the right) intersection point leads to the heavy Polonyi particle
becoming a spectator during inflation and reheating that is inconsistent
with our approach.
6 Similarly, we can ignore the massless fermion present in the spec-
trum of our model because the expansion of (conformally flat) FLRW
universe does not lead to perturbative production of massless particles.
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where the G tot in our model is given by

G tot = K + ln |W |2 + 2J , (59)

and the gravitino mass is by m3/2 = 〈
eGtot/2

〉
. The mass term

in the form (58) also shows the Polonyi and inflaton couplings
to gravitino.

The perturbative decay rate of inflaton φ into a pair of
gravitino is given by [43]

�φ→ψ3/2ψ3/2 =
∣∣Gφ

∣∣2

288π

m5
inf

m2
3/2M

2
Pl

. (60)

In our case, the factor Gφ vanishes at the minimum of the
inflaton scalar potential (14), because the inflaton VEV also
vanishes. So, the perturbative production of gravitino from
inflaton decays is suppressed. One may also wonder about a
non-perturbative gravitino production from inflaton decays,
as was studied e.g., in Refs. [44,45]. However, unlike the
usual Yukawa couplings, the coupling of gravitino to infla-
ton in our model is given by the exponential factor in (58)
that never vanishes. Hence, the gravitino production due to
inflaton decays can be ignored in our model.

The situation is different with the Polonyi production due
to inflaton decays. Inflaton is heavier than Polonyi particle
by the factor of two approximately, according to Eqs. (53)
and (56). The perturbative decay rate of inflaton into a pair
of Polonyi scalars is (see e.g., Ref. [6] for a review)

�φ→AA = 1

192π

m3
inf

M2
Pl

. (61)

One may expect that the non-perturbative pre-heating in this
case can be significantly more efficient due to a broad para-
metric resonance [46] that is a rather generic feature for cou-
pled scalars. Indeed, in our model, inflaton is mixed with
Polonyi field via the scalar potential (6). An expansion of
the scalar potential (6) with the J -finction given by Eq. (11),
with respect to both scalar fields φ and A, gives rise to the
quartic interacion term

Lφφ→AA = λφ2 ĀA , (62)

whose dimensionless coupling constant λ does not vanish. It
implies that the broad parametric resonance can happen in
our model along the lines of Ref. [46], while it could lead to
the enhancement of the perturbative production of Polonyi
particles up to the factor of O(105) – see. e.g., Ref. [47] for
the example of numerical calculations. However, our direct
calculation yields

λ = 10e7−2
√

3 μ2

M2
Pl

, (63)

so that the coupling constant λ is of the order O(10−7) or
less in our model, and this value fully compensates any pos-

sible enhancement of the Polonyi production by the broad
parametric resonance. In short, the Polonyi production from
inflaton decays is just perturbative in our case. The Polonyi
particles produced in this channel quickly decay into graviti-
nos, with the perturbative decay rate (57) implying that the
gravitino production from inflaton decays is sub-leading with
respect to Schwinger’s effect shown in Fig. 1. The former
channel would be kinematically suppressed if the Polonyi
mass were higher than half of the inflaton mass, because
then the inflaton two-particle decay into two Polonyi parti-
cles would be forbidden.

(vi) To the end of this Section, we note that the pre-heating
stage with the dust-like equation of state p = 0, started at
the end of inflation at ti ∼ 1/H and finished in the period of
reheating at t f ∼ MPl/T 2

reh, is sufficiently long to provide the
growth of density fluctuations and the formation of nonlinear
structures of gravitationally bounded systems. In particular,
the Primordial Black Holes (PBHs) may be formed at this
stage. Later on, the PBHs can be evaporating and converting
about 1/N (1g/M) of their masses to gravitinos, where N is
the number of evaporated species with account of their statis-
tical weight, and M is the PBH mass. Here we have taken into
account that at M ≤ 1g the temperature of Hawking evapo-
ration is Tev ≥ 1013 GeV, so that the fraction of evaporated
gravitino is determined by the ratio of their statistic weight
to the statistic weight of all evaporated species. During the
pre-heating stage at ti ≤ t ≤ t f , the gravitationally bounded
systems are formed in the mass range

Mo ≤ M ≤ Mmax , (64)

where

Mo = M2
Pl/Hin f (65)

is the mass within the cosmological horizon at the beginning
of pre-heating, and

Mmax = δ3/2M2
Pl t f (66)

is the mass of the gravitationally bounded systems formed
at the end of pre-heating. Here δ is the amplitude of density
fluctuations.

According to Ref. [23], the minimal estimation of the
probability of the PBH formation at this stage is determined
by consideration of their direct collapse in the black holes
with the special symmetric and homogeneous gravitation-
ally bound configurations [48], and is given by ∼ δ13/2 [49].
For δ ≈ 10−5, the estimated fraction of the total density at
the end of pre-heating stage β, corresponding to the PBH in
the range (64) is of the order of

β < 10−32. (67)
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Hence, the contribution of gravitino produced in the evapo-
ration of these black holes is negligible at the beginning of
the matter dominated stage with Tmd = 1 eV as

�g <
Treh

Tmd

1

N
β < 10−17, (68)

where we have also used N ∼ 103. A formation of black
holes in the course of evolution of the gravitationally bounded
systems formed during the pre-heating stage can significantly
increase the value of β, though addressing the problem of
evolution of the gravitationally bounded systems of scalar
fields deserves a separate study.

The situation drastically changes when inflation ends by
a first order phase transition when bubble collisions lead to
copious production of black holes at β ∼ 0.1 with the mass
(65) [26,27]. Evaporation of these PBHs leads to a fraction
of the total density by the end of pre-heating of the order
10−4 in the form of gravitino, and it results in the gravitino
dominated stage at T ∼ 10−4Treh ∼ 105 GeV. This huge
gravitino overproduction excludes a possibility of the first
order phase transition by the end of inflation. This is impos-
sible in the single-field inflation, also by considering an extra
axion-like field and extra moduli decoupled during the slow-
roll epoch. The inflaton in our model has the characteristic
Starobinsky potential that, as is well known, does not lead to
any violent phase transition after inflation. The Polonyi field
does not alter this situation. However, in a more general case,
in which other scalar and pseudo-scalar fields enter the slow-
roll dynamics, these extra fields can have scalar potentials
ending in false minima during the reheating. In such case,
the tunnelling from the false minima to the true minima can
induce bubbles in the early Universe, catalising an efficient
formation of PBHs. These issues deserve a more detailed
investigation beyond the scope of our paper.

4 Conclusion and outlook

In this paper we studied the gravitino production in the con-
text of Starobinsky-Polonyi N = 1 supergravity with the
inflaton field belonging to a massive vector multiplet, and the
mass hierarchy minf > 2MA > 4m3/2 close to the bounds
(by the order of magnitude). On the one hand, we found
the regions in the parameter space where the gravitino and
Polonyi problems are avoided, and super heavy gravitinos can
account for the correct amount of Cold Dark Matter (CDM).
The dominating channel of gravitino production is due to
decays of Polonyi particles, in turn, produced during infla-
tion. On the other hand, we found that direct production of
gravitinos during inflation is a subleading process that does
not significantly change our estimates.

Intriguingly, our results imply that the parameter spaces of
cold DM and inflation can be linked to each other, into a nat-

ural unifying picture. This emerging DM picture suggests a
phenomenology in ultra high energy cosmic rays. For exam-
ple, super heavy Polonyi particles can decay into the SM
particles as secondaries in top-bottom decay processes. Cos-
mological high energy neutrinos from primary and secondary
channels may be detected in IceCube and ANTARES exper-
iments. A numerical investigation of these channels deserves
further investigations, beyond the purposes of this paper.

Our scenario offers a link to the realistic Supersymmetric
Grand Unified Theories (SGUTs) coupled to supergravity.
The super-Higgs effect considered in Sect. 2 is associated
with the U (1) gauge-invariant supersymmetric field theory.
This U (1) can be naturally embedded into a SGUT with a
non-simple gauge group. The Starobinsky inflationary scale,
defined by eitherminf or Hinf is by three or two orders of mag-
nitude lower, respectively, than the SGUT scale of 1016 GeV.
The SGUTs with the simple gauge group SU (5), SO(10) or
E6 are well motivated beyond the Standard Model. How-
ever, the SGUTs originating from the heterotic string com-
pactifications on Calabi-Yau spaces usually come with one
or more extra U (1) gauge factors as e.g., in the following
gauge symmetry breaking patterns: E6 → SO(10) ×U (1),
SO(10) → SU (5)×U (1), the “flipped” SU (5)×UX (1) and
so on (see e.g., Ref. [50] for more). Alternatively, SGUTs can
be obtained in the low energy limit of intersecting D-branes
in type IIA or IIB closed string theories. Also in this context,
extra U (1) factors in the gauge group are unavoidable. For
instance, the “flipped” SU (5)×UX (1) from the intersecting
D-brane models was studied in Refs. [51–54].

We propose to identify one of the extra U (1) gauge (vec-
tor) multiplets with the inflaton vector multiplet considered
here. This picture would be very appealing because it unifies
SGUT, inflation and DM. Moreover, the extra U (1) gauge
factor in the SGUT gauge group may also stabilize proton
and get rid of monopoles, domain walls and other topologi-
cal defects [55].

Our scenario also allows us to accommodate a positive
cosmological constant, i.e. to include dark energy (see the
end of Sect. 2) too. Further physical applications of our super-
gravity model for inflation and DM to SGUTs and reheating
are very sensitive to interactions between the supergravity
sector and the SGUT fields. Demanding consistency of the
full picture including SGUT, DM and inflation may lead
to further constraints. For instance, a matter field must be
weakly coupled to inflaton – less then 10−3 – in order to pre-
serve the almost flat plateau of the inflaton scalar potential.
Among the other relevant issues, the Yukawa coupling of
inflaton to a Right-Handed (RH) neutrino is very much con-
nected to the leptogenesis issue. Inflaton can also decay into
RH-neutrinos, in turn, decaying into SM visible particles. Of
course, these remarks are very generic and have low predic-
tive power, being highly model-dependent. But they motivate
us for a possible derivation of our supergravity model from
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superstrings – see e.g., Ref. [50] for the previous attempts
along these lines.

Another opportunity can be based on Refs. [56,57], by
adapting the Pati-Salam model to become predictive in the
neutrino mass sector and be accountable for leptogenesis in
supergravity, as was suggested in Ref. [30]. Then one can
generate a highly degenerate mass spectrum of RH neutri-
nos, close to 109 GeV, i.e. four orders smaller than the infla-
ton mass. In this approach an extra U (1) is necessary for
consistency, while it can be related to the Higgs sector in
supergravity.

It is worth mentioning that our hidden sector includes only
inflaton and Polonyi, and it may have to be extended. The
scale invariance of the (single-field) Starobinsky inflation
is already broken by the mixing of inflaton with Polonyi
scalar, while its breaking is necessary for a formation of
mini-PBHs during inflation. The physical consequences of
the inflaton-Polonyi mixing demand a more detailed investi-
gation, beyond the scope of this paper.

Our scenario can be reconsidered in the general frame-
work of Split-SUSY and High-scale SUSY, by questioning
its compatibility with the SM and the known Higgs mass
value of 125.5 GeV in particular, e.g., along the lines of the
comprehensive study in Ref. [58]. 7 Then the “unification
help” from SUSY to GUT scenarios could be implemented
in our model. In this case, several new decay channels are
opened and new parameters enter. In particular, there is a
scenario in which the Higgsino at 1−100 TeV scale is envis-
aged, with intriguing implications for future colliders. In such
case, produced gravitinos can decay into Higgsinos that (in
the form of neutralinos) could provide another candidate for
Dark Matter. However, there also exist contributions from
thermal production that may affect the Higgsino production.
Actually, the upper bound on the scale of Split-SUSY, accord-
ing to Fig. 3 of Ref. [58], is given by 108 GeV that already
excludes compatibility of Split-SUSY with our scenario that
requires a higher SUSY. In the case of High-scale SUSY, the
upper bound in Fig. 3 of Ref. [58] is given by 1012 GeV for a
considerable part of the parameter space, so that this bound
is again too low for our model. However, it is still possible
to go beyond that bound in the case of High-scale SUSY, as
is shown in Fig. 5 of Ref. [58], so that our SHGDM scenario
is still allowed. A more detailed study of the compatibility
of our scenario with the SM deserves further investigation,
beyond the scope of this paper.
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Appendix: the power spectrum of Polonyi and gravitino
emissions

Below we provide some technical details about our calcula-
tion of the power spectrum of Polonyi and gravitino emis-
sions, based on finding a numerical solution to Eq. (27) in
the framework of adiabatic theory [68–70].

A change of variables from hk in Eq. (25) to Wk as

hk = (
√

2Wk)
−1exp

(
−i

∫ η

Wk(η
′)dη′

)
, (69)

and plugging this into Eq. (25) yield

W 2
k = w2

k −
[
W ′′

k /2Wk − 3
4

(
W ′

k/Wk
)2

]
, (70)

where ′ = ∂/∂η denotes the derivative with respect to the
conformal time.

Applying the Bogoliubov transformation to hk leads to
the following relation among Wk and β:

|βk(η1, η0)|2 = (4W η0
k W η1

k )−1{(ζ ′
k

η0 − ζ ′
k

η)2

+(W η0
k − W η1

k )2} , (71)

where

ζ
′ η
k = W ′

k
η/2W η

k . (72)

The adiabatic approximation consists of considering the
background metric to be slowly changing in time, so that the
time variation can be treated by introducing a small parameter
ε via the substitution ∂/∂η → ε∂/∂η (this approximation can
be reasonably applied during inflation),

W = W (0) + ε2W (2) + ε4W(4) + · · · , (73)
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where the label (n) = (0), (2), (4), . . . denotes the adiabatic
order expansion. The numerical problem can be solved by
defining the iterative map as follows:

M[Wn
k ] =

√
w2
k − 1

2

[
W ′′(n)

k /W (n)
k − 3

2

(
W ′(n)

k /W (n)
k

)2
]
.

(74)

This map raises the adiabatic order as

W (n+2)
k = M[W (n)

k ], W (0)
k = wk . (75)

A few leading terms of the adiabatic order expansion can
be straightforwardly calculated, with the following results:

W (0) = w, W (2) = 3w′2/8w3 − w′′/4w2,

W (4) = −k1(w
′)4/w7 + k2(w

′)2w′′/w6 − k3(w
′′)2/w5

−k4w
′w′′′/w5 + k5w

′′′/w4, (76)

where k1 = 297/128, k2 = 99/32, k3 = 13/32, k4 = 5/8
and k5 = 1/16. The j-th adiabatic order reads

h( j)
k = (1/

√
2W j

k ) exp

(
−i

∫ η

W ( j)
k (η′)dη′

)
, (77)

where the adiabatic vacuum state of the j-th order is defined
by specifying the boundary conditions at a fixed value η∗ of
η as

hk(η
∗) = h( j)

k (η∗), h′
k(η

∗) = h′( j)
k (η∗). (78)

A similar iterative procedure can be applied to gravitino
also. The bμ modes can be decomposed into two vector-
spinor fields,

bkμ = (hI
kuαμ, hI I

k uα̇†

μ )T , (79)

where u is a vector-spinor of spin 3/2, while hI,I I has the
structure similar to that of Eq. (69) in terms of other functions
W±. The equations of motion for W± are very complicated,

[−W 3/2
± + 3W ′2± /(4W 5/2

± ) − W ′′±/(2W 3/2
± )]

−i(γ μγ i + γ iγ μ)ki (γνγ0 + γ0γν)

×[√W± − W ′±/2W 3/2
± ]/2

−2γν(m3/2 + i a
′
a γ 0)i(γνγ0 + γ0γν)

×[√W± − W ′±/2W 3/2
± ]

+(k2 + m2
3/2 + 2i a

′
a γ 0m3/2)(2W±)−1/2,

[−W 3/2
− + 3W ′2− /(4W 5/2

− ) − W ′′−/(2W 3/2
− )]

+i(σ̄μσi + σ̄iσμ)ki (σ̄
νσ 0 + σ̄ 0σν)

×[√W− − W ′−/2W 3/2
− ]/2

−2σν(m3/2 + i a
′
a σ0)i(σ̄

νσ 0 + σ̄ 0σν)

×[√W− − W ′−/2W 3/2
− ]

+(k2 + m2
3/2 + 2i a

′
a σ 0m3/2)(2W−)−1/2,

×[−W 3/2
+ + 3W ′2+ /(4W 5/2

+ ) − W ′′+/(2W 3/2
+ )]

−i(σμσ̄ i + σ i σ̄ μ)ki (σνσ̄0 + σ0σ̄ν)

×[√W+ − W ′+/2W 3/2
+ ]/2

−2σν(m3/2 + i a
′
a σ 0)i(σνσ̄0 + σ0σ̄ν)

×[√W+ − W ′+/2W 3/2
+ ]

+(k2 + m2
3/2 + 2i a

′
a γ 0m3/2)(2W+)−1/2, (80)

where we have used the notation σ̄ = (I,−σi ) and σ =
(I, σi ).

One arrives at the following gravitino spectrum:

|bkμ(η1)b
Cμ
k (η0)| = (4W η0

k − W η1
k +)−1

{(ζ ′η0
k − − ζ

′η1
k +)2 + (W η0

k − − W η1
k +)2}, (81)

with a similar equation for Polonyi fields. Plugging in the
adiabatic solutions for β’s and b’s into the above equations
leads to the final power spectra, though only numerically.

Our numerical results can be compared with the semi-
analytical results of Ref. [71], where the steepest descent
method of integration was used, leading to the crude estimate

|βk |2 
 exp
[
−4MA(H2

i + Ri/6)−1/2)
]
, (82)

where Hi and Ri are the Hubble parameter and the Ricci
scalar during inflation. Inserting Ri = 6(ä/a + H2

i ) 
 H2
i ,

Hi = 1.4 × 1014 GeV and MA = 1.5 × 1013 GeV into (82)
yields |βk |2 
 0.67, in basic agreement with our numeri-
cal results. It is worth noticing that, according to Ref. [71],
Eq. (82) is subject to O(k/MA) corrections.
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