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Abstract— Although the beam shaping assemblies (BSAs) 

for reactor-based Boron Neutron Capture Therapy (BNCT) 

facilities are typically of a single design, the accelerator beams 

with the possibility to provide neutron spectrum to give 

characteristics which are optimum for different treatment sites 

and tumor depth generally may require a fine-tuning procedure 

which can be undertaken with variable-geometry BSA. In this 

study, a special geometry is proposed for use with a hybrid 

photoneutron source equipped with drill-chuck type head. Both 

the neutron spectrum and epithermal neutron flux can be 

treated by changing the BSA geometry. 
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I. INTRODUCTION 

Boron Neutron Capture Therapy (BNCT) is a promising 
cancer treatment, which kills the cancer cells selectively by 
the use of a cancer-seeking boron compound and a neutron 
irradiation. BNCT is expected to be very effective for several 
types of cancer such as Glioblastoma Multiform (GBM) and 
Melanoma for which no successful treatment has been 
developed [1].  

This method depends on (1) using an appropriate boron 
carrier drug with more 10B deposition in cancer cells in 
comparison to normal tissue. (2) sufficient low-energy 
neutrons in tumor position for (n,α) capture in 10B [2]. 7Li 
nuclei and alpha particles as interaction products of neutron 
capture in 10B have high linear energy transfer values, and 
hence will lead to high energy depositions within the cell 
dimension and may destroy the tumor. 

Since thermal neutrons cannot penetrate into the position 
of the GBM deep in brain, a high energy neutron beam should 
be provided that thermalized after penetration in tumor 
position.  

Higher flux of therapeutic epithermal neutron beam 
ensures that the treatment will be performed in a reasonable 
time. 

Accelerator-based neutron sources are the most 
appropriate ones for the BNCT purposes which are safe and 
relatively compact which can be regarded as the feasible 
approaches that incorporate Linacs.  

Linacs, as a neutron source for BNCT, have been 
investigated by different researchers worldwide through 
different simulations and modeling approaches [3-7]. 

In conventional designs, having determined the 
appropriate BSA for a given neutron source, the related 
component of BSA is normally fixed for treatment. In this 
research, based on electron Linac a variable-geometry BSA is 
mounted on the accelerator head which produces variable 
epithermal neutron flux and can be adjusted for various dose 
demands. This idea can be further developed for various 
requirements according to different needs in reactor-based 
BNCT. The Monte Carlo MCNPX code has been used for the 
simulations. 

II. MATERIALS AND METHODS 

A. Photoneutron target design 

In this research, we used a photoneutron target proposed 
by Torabi et al. for 25 MeV electron Linac [8]. Photon 
production (Bremsstrahlung) in tungsten target using 25 MeV 
electrons has been simulated using the MCNPX Monte Carlo 
Code [9]. The Bremsstrahlung spectra have been 
corresponded to the photon source, and moreover, the 
photoneutron production in uranium has been modelled. As 
shown in Fig. 1, the photoneutron source consists of the 
optimized sizes of tungsten and uranium hemispheres as the 
photon converter and photoneutron target, respectively.  

 

Fig. 1. A hybrid photoneutron source: (1) A 0.4-cm radius tungsten 

hemisphere as an electron/photon converter; (2) A uranium hemisphere with 

6 cm in radius as photon/neutron converter. 

 Figs. 1 and 2 show the hybrid photoneutron source used 
in this study and also the neutron spectrum at the curved 
surface of the target, respectively. 
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Fig. 2. Photoneutron spectrum at the end surface of the photoneutron target 

used in the present study (Fig. 1). 

B. Beam Shaping Assembly 

The neutron transport through moderator, reflector and 
collimator, as different components of the BSA, has been 
carried out by the Monte Carlo code, MCNPX, to obtain the 
therapeutic neutron beam so that the IAEA recommendations 
are fulfilled [2]. The materials with a maximum Σsf→epi/Σγ can 
be selected as appropriate moderators, where Σsf→epi and Σγ 
are the macroscopic fast-to-epithermal scattering- and 
neutron-capture cross-sections, respectively [8].  

The proposed BSA in cylindrical arrangement includes 
three layers of materials with an outer shell as shown in Fig. 
3, such that the inner cylindrical parts are adjustable whilst the 
outer layer remains fixed. Having set the BSA diameter as 
0.50 m, different compositions in various thicknesses have 
been examined in order to satisfy in-Air criteria determined by 
IAEA.  Finally, as an optimum configuration, 15 cm of 
Fluental®, 30 cm of MgF2 and 20 cm of TiF3 have been 
selected as shown in Fig. 3. However, the drill-chuck parts can 
move in forward direction as shown in Fig. 4. 

 

Fig. 3. The proposed drill-chuck shaped BSA assembly and water phantom: 

(1) Water phantom, (2) Lead, (3) Nickel, (4) Fluental®, (5) MgF2, (6) TiF3 

and (7) Electron beam corridor.  

 

Fig. 4. Different drill-chuck head of the BSA head. 

The proposed variable-geometry drill-chuck BSA together 
with a typical patient bed is illustrated in Fig. 5. 

 
 

Fig. 5. Conceptual design of variable-geometry drill-chuck head BSA and 

a typical patient bed. 

III. RESULTS AND DISCUSSION 

The most appropriate neutron spectrum with sufficient 
flux has been produced using the proposed hybrid 
photoneutron target design used in this study. Fig. 6  shows 
the MCNPX-simulated therapeutic neutron beam in the water 
phantom corresponding to five different positions of drill 
chuck part shown in Fig. 4.  
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Fig. 6. Variation of thermal neutron fluence at different positions within the 

water phantom. 
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One may conclude that, using this variable-geometry BSA, 
several epithermal neutron flux can be available without the 
change in operational parameters of Linac. 

IV. CONCLUSIONS 

One of the requirements for the BNCT treatment is correct 
dose delivery to patient, which can be adjusted by Treatment 
Time (TT) or therapeutic neutron flux (which relates to dose 
rate). Technically, TT cannot be shorter than the determined 
duration, so the therapeutic neutron flux should be changed 
for low dose treatment. If the beam shaping assembly is 
variable in geometry, the BNCT can be performed without any 
limitation in treatment time. This design can also be used for 
reactor based BNCT to have thermal and epithermal neutrons 
for superficial and deep-seated tumor simultaneously. 
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