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Abstract — Hafnium diboride (HfB2) in aluminum matrix 

(Al) material was prepared by diffusion sintering of a mixture 

of hafnium diboride and aluminum micropowders. The effect of 

the hafnium diboride content (HfB2) in the aluminum matrix 

(Al) on sintering characteristics and properties of the samples is 

presented. The effect of microwave activation of the aluminum 

powders has been established. The diffusion sintering behavior 

was concluded. The material properties and structure were 

defined. 
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I. INTRODUCTION  

Due to the nuclear industry development the new materials 
design process is a crucial task to protect against ionizing 
radiation and neutrons [1]. New materials that can absorb or 
scatter ionizing radiation, at the same time having a low 
density and mass-dimensional characteristics of the final 
products are needed to be design. Moreover, using of lead 
screens and their subsequent disposal are a complex 
environmental problem; therefore, replacing such screens 
with new materials makes it possible to solve not only 
technical problems, but also to improve the environmental 
situation [2]. 

Hafnium diboride (HfB2) should be noticed as a 
perspective material because of its nucleus high neutron 
capture cross section and scattering properties of boron 
nucleus. Aluminum has a relatively low density and low 
induced radioactivity [3]. Hafnium diboride physicochemical 
and radiation properties are well–studied, it is also known that 
it has high strength covalent bonding and low self-diffusion 
coefficient which indicates the need for high temperatures and 
pressure to create a strong non-porous structure. HfB2 is a 
ceramic material, which suggests its fragility [4, 5]. Taking 
into consideration the known features of sintering ceramic 
materials with aluminum, leading to low-strength crack-
sensitive systems (different thermal expansion coefficients of 
metals and ceramics, thermal stresses at the metal-ceramic 
interface) it was decided to create a system based on 
microwave radiation activated aluminum micropowder. 

Microwave effect on metal powders is known to an increase 
in the oxidation heat affect and a decrease in the oxidation 
onset temperature [6]. Microwave effect also leads to an 
increase of the aluminum nanopowder reserve energy, which 
is the result of the double electric layer formation and 
stabilization. Thereby microwave emission leads to a change 
in the substructural characteristics of metal-containing high-
energy materials and results in an increase in the micro-stress 
in the metal component of aluminum particles [7]. 

Solid phase sintering was chosen because, in addition to 
the required lower energy costs, this solid phase interaction 
process is a diffusion process. A metal layer deposited on 
ceramics partially oxidized from the side facing the ceramics. 
The metal crystal lattice in the surface layer varies, at the same 
time, the chemically reorganized cells are not separated from 
the internal cells with the original crystal structure [8]. 

The aim of the work was to carry out exploratory 
researches of hafnium diboride diffusion (solid phase) 
sintering using microwave activated aluminum micropowder. 

II.  EXPERIMENTAL TECHNIQUES AND POWDER 

CHARACTERISTICS  

To prepare material by diffusion sintering, mixtures of 
HfB2 and Al micropowders were prepared by heating. 
Information about the initial micropowders are given in table 
1. 

TABLE I.   INITIAL POWDERS 

HfB2 
TU No 6-09-03-418-76; particle shape is irregular; particle 

size – 40 μm 

Al 

ASD – 6M produced by OOO «SUAL-PM» (Shelekhov): 

the average surface diameter of the powder particles is 2.3 

μm, the shape of the particles is close to spherical. The 

powder was produced by spraying molten aluminum in a 

chamber with a special atmosphere [9, 10]. The aluminum 

content in the powder after storage in conditionally sealed 
containers is 86 wt. % 

The powder was irradiated according to the conditions and 
methods described in [6]. Figure 1 shows the thermograms of 
the initial (a) and irradiated aluminum powder (b). 
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Fig. 1. Thermograms of aluminum powder ASD-6M: a - thermogram of the initial powder; b - powder thermogram after microwave irradiation

To prepare material samples HfB2: Al mixtures were used, 
the composition and mass of which are presented in table 2. 
Similar mixtures were obtained on the basis of microwave 
irradiated aluminum [11, 12]. Tungsten nanopowder (W) was 
added to sample 4 in order to increase the sample adsorbing 
ability since W possesses high shielding properties due to high 
x-ray density. In addition, W is characterized by extremely 
high melting point, good machinability and high corrosive 
resistance [13, 14].  

The initial and the microwave irradiated micropowders 
were checked for pyrophorosity by determining four activity 
parameters [6]. After the powder irradiating, its oxidation 
onset temperature decreased by almost 100 °С, remaining 
above 400 °С (Fig. 1), i.e. microwave radiation does not give 
a pyrophorous property to the previously passivated powder 
[15, 16]. 

TABLE II.  COMPOSITION OF MIXTURES OF 

POWDERS HFB2 AND AL 

Item 

No 
HfB2 

content, 

wt. % 

Al 

content, 

wt. % 

The additive 

nanopowder 

W content, wt. 

% 

The 

mixture 

mass, g. 

1 90 10 0 5.5 

2 50 50 0 10.0 

3 10 90 0 9.5 

4 50 20 30 8.0 

The powders sample weights were mixed by grinding 
them on the tracing paper with a cork wrapped in tracing paper 
until a uniform color was obtained. The resulting mixtures 
were pressed using a hydraulic press. Compacting pressure - 
1.5 MPa. Compressed tablets sintering was carried out in a 
muffle furnace at 550 °C in an anoxic environment for 4 hours. 

X-ray phase analysis (XRD) of sintered samples was 
performed using a Diffrey-401 diffractometer (X-ray tube 

radiation 𝐹𝐾ɑ,  = 1.93 Å). 

III. EXPERIMENTAL RESULTS 

Figure 2 shows photographs of the obtained samples. 
Initial aluminum based samples have splits and cracks. 
Microwave-irradiated aluminum based samples are 
characterized by higher mechanical characteristics. According 
to the obtained results, the sintered samples phase composition 
is consistent (table 1) with the data of table 2 and 3: the 
composition of the sintered samples corresponds to the 

additivity concept. The results of the XRD are given in tables 
3 and 4. 

 

Fig. 2. Photos of the samples: 1,2,3,4 - samples of the 

corresponding composition based on the initial aluminum 

powder and 1 MW, 2 MW, 3 MW, 4 MW - samples of the 
corresponding compositions based on microwave-activated 

aluminum 

TABLE III.  SINTERED SAMPLES PHASE COMPOSITION 

OF MATERIAL BASED ON HFB2 AND INITIAL ALUMINUM 

Item 

No 
HfB2 

content, 

wt. % 

Al 

content, 

wt. % 

The additive 

nanopowder 

W content, wt. 

% 

The 

mixture 

mass, g. 

1 90 10 0 5.5 

2 50 50 0 10.0 

3 10 90 0 9.5 

4 50 20 30 8.0 

TABLE IV.  SINTERED SAMPLES PHASE COMPOSITION 

OF MATERIAL BASED ON HFB2 AND MICROWAVE 

IRRADIATED ALUMINUM 

Item 

No 

HfB2 content, 

rel. % 

Al content, 

rel. % 

Sintering products 

contents, rel. % 

1 97 3 0 

2 75 25 0 

3 48 52 0 

4 68 13 18 (B2O3) 

Boron oxidized to B2O3 was found on the sample surface. 
Al2O3 on the surface was not detected. According to the XRD 
results, there are significant differences in the composition of 
samples 3 and 4 (tables 2 and 3). For sample 3 the differences 
can be explained by the structure homogeneity imperfection, 
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when most of the aluminum is in the sample surface layer. For 
sample 4 the difference in the content of sintering products is 
related to the oxidation possibility of the additive (W) in the 
presence of sample defects noted for samples based on initial 
aluminum (there is a cleavage and crack in the sample 
volume). 

The apparent density of samples without taking into 
account closed and open pores was measured in this work [17, 
18]. The apparent density of initial Al based samples are given 
in table 5, microwave-activated Al based samples in table 6. 

TABLE V.  THE APPARENT DENSITY OF HFB2 BASED 

SAMPLES AND INITIAL AL POWDER 

Characteristics Item No (tab. 2) 
1 2 3 4 

Density ρ, g/cm3 1.97 2.05 2.36 2.79 

Shrinkage,% -0.41 -0.23 -0.50 -3.95 

 

TABLE VI.  THE APPARENT DENSITY OF HFB2 BASED 

SAMPLES AND MICROWAVE-ACTIVATED AL POWDER 

Characteristics 
Item No (tab. 2) 

1 2 3 4 

Density ρ, g/cm3 3.98 1.94 1.97 3.14 

Shrinkage,% -0.31 -0.35 -0.35 -0.31 

There are a high porosity and negative shrinkage for all 
samples, which indicate oxidation processes. At the same 
time, comparing the obtained data, it can be said that the 
microwave-activated Al based samples structure is more 
stable. 

Figure 3 shows photographs obtained using scanning 
electron microscopy (SEM). 

 

 

 

 

 

Fig. 3. Samples photos obtained by diffusion sintering: 1,2,4 are photographs of the initial aluminum powder based samples respectively; 1 

MW, 2 MW, 3 MW - photographs of the microwave-activated aluminum powder based samples respectively 

In photo 1 (Fig. 3) spherical particles with an average size 
of 2.1 μm are observed, while in photo 1 MW a specific 
geometric shape is not observed and particle size is about 2.5 
μm. The high light areas are hafnium diboride particles, 
characterized by a higher density and occupy about 11% of 
the volume in photograph 1 and about 28% in photograph 
1 MW. Fragments are combined into associations, which 
indicates partial sintering. According to microanalysis, there 

are aluminum atoms in sample 1 detected by the electrons 

emission from the Kɑ orbitals at their mass ratio of 74.01%, 

and hafnium atoms in a mass ratio of 25.99% by electrons 
emission from the L orbitals. There are aluminum atoms in 
sample 1 MW detected by the electrons emission from the   K

ɑ orbitals at their mass ratio of 79.47 %, and hafnium atoms in 

a mass ratio of 20.53 % by electrons emission from the L 
orbitals. Boron atoms were not detected, since its content in 
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the sample is below the microscope detection limit. For 
samples 2 and 2 MW, the average grain size is 2 and 2.6 μm, 
respectively. The mass ratio of aluminum and hafnium in the 
sample is 2 61.92 % and 38.02%, respectively. For sample   2 
MW is 67.05 % and 32.95%. Boron atoms were also not 
detected. In sample 3 MW, the average grain size is 2.5 μm, 
the mass fraction of aluminum is 28.4%, the mass fraction of 
hafnium is 71.6%., The tungsten content is defined as 26.1 wt. 
% in sample 4, the hafnium content is 40.84 wt. %. The images 
determine structure of the samples as porous. 

According to additionally carried out experiments using a 
spectrophotometer, the aluminum nanopowders burning 
samples emission spectra were recorded [19]. 

 

Fig. 4. Aluminum powders emission spectra: 1 – Initial 
aluminum powder; 2 - Microwave-activated aluminum 

powder; 3 - Irradiated by         4 MeV electron beam (dose 31 
x-ray); 4 - Irradiated by 7 MeV electron beam (dose 100 x-

ray);  

Difference spectra: 5 – Microwave-activated aluminum 
nanopowder and initial aluminum nanopowder; 6 – Irradiated 

by electron beam (dose 31 X-ray) aluminum nanopowder and 

initial aluminum nanopowder; 7 – Irradiated by electron beam 
(dose 100 X-ray) aluminum nanopowder and initial aluminum 

nanopowder 

Microwave-activated aluminum nanopowder during 
combustion emits a difference spectrum (spectrum 5), as well 
as an internal nanopowder. At the same time, the irradiated by 
electron beam aluminum nanopowder has an additional 
emission band in the range of 600–950 nm (difference spectra 
6 and 7), which significantly improves the combustion 
characteristics of such aluminum in comparison with 
unirradiated powders [20, 21].  

IV. CONCLUSIONS 

1. The method of diffusion sintering of a ceramic material 
in an aluminum matrix was tested in this paper. It was 
concluded that the obtained samples properties are not 
correspond to the required strength properties of the material. 
Nevertheless, it is noted that microwave-activated aluminum 
based samples have better sintering properties and a complete 
structure in general. 

2. Due to the insufficient hardness of the obtained compact 
samples, this sintering method can be recommended for the 
material used to fill hollow protective partitions 
manufacturing. 
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