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Abstract — We propose an approach to a self-testing (m, n)-
code checker design, based on subdividing the set of all code 
words into special subsets called segments. The checker circuit 
is constructed by using one- and two-output configurable logic 
blocks (CLB). Previously, in each output of a CLB, a function 
representing exactly one segment was implemented. In the 
proposed approach, at each CLBs output, it is possible to 
implement functions that represent several segments and to 
provide the self-testing property. It allows reducing the 
number of CLBs and simplifying the circuit of the checker.  
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I. INTRODUCTION  

In self-checking circuits, code checkers are used to 
provide the self-testing property. As a rule, the checker is 
designed on the same element base as the circuit. In the 
checker, the weight of an input codeword is usually 
calculated. For this purpose, threshold elements or parallel 
counters are used [1 – 6]. This paper proposes a design 
method of the checker based on configurable logic blocks 
(CLBs). In papers [7, 8], the authors propose a method for 
design a self-checking finite-state machine. In the case of 
correct operation of the circuit, the code words of some 
unordered code are implemented at the output of the circuit. 
Usually, the (m,n)-code is used, where n is the length of a 
code word, m is the number of unity components (the 
weight). The papers also develop a method for self-testing 
(m,n)-code checker design based on the repeated use of a 
special decomposition formula for a set of the (m,n)-code 
words and implementing the obtained formula by CLBs. In 
the method of self-testing checker design proposed in [8], the 
presence of two-output CLBs is not necessary. This means 
that the method allows building self-testing checkers using 
any modern CLBs (Field Programmable Gate Arrays 
(FPGA), manufacturers Xilinx, Altera, Achronix, Actel, 
Atmel, Lattice semiconductor, etc.) 

There is a special requirement for the implementation of 
the formula: the checker of the (m,n)-codes must be self-
testing for a given set of faults, say V. The set V includes all 
multiple stuck-at faults occurred at CLBs inputs and outputs. 
In this case, only one CLB in the checker can be defective. It 
is assumed that in a system consisting of a self-testing circuit 
and a (m,n)-code checker, either the circuit or the checker 
can be faulty, but not both. 

The self-testing checker should satisfy the following 
requirements: 

1) when a non-code word appears at the circuit output (or 
at the checker input), the checker should issue a 
corresponding signal; 

2) in the checker itself, a fault from the considered set of 
faults V may occur, which must be detectable in the working 
area of the detector, i.e. on the set of all its code words. This 
means that there must be an (m,n)-code word for which this 
fault appears at the outputs of the checker. 

The self-testing checker has two outputs with the 
following combinations of signal values: 

a) (01) or (10) mean that the input word is a word of the 
(m,n)-code and the checker is faultless; 

b) (00) or (11) mean that either the input word is non-
code or the checker is faulty. 

The checker is designed according to a formula 
representing the set of all (m,n)-code words, being the 
implementation of this formula. 

II. THE DECOMPOSITION METHOD  
FOR THE SET OF (M,N)-CODE WORDS 

The number of all (m,n)-code words is equal to m
nC , i.e., 

the number of combinations of n elements taken m at a time. 
The code words can be represented by a disjunction of 
conjunctions of the rank n. We denote this disjunctive 
normal form (DNF) as )(XDm

n , where X = {x1, x2, …, xn} is 
the set of variables. If, for example, n = 10, m = 5, then 

)(5
10 XD  includes 252

!5!5

!105
10 =

⋅
=C  conjunctions of the 

rank 10 and 2520 symbols. The DNF can not be reduced: 
)(XDm

n  is both the perfect DNF and the sum of prime 

implicants, since any two conjunctions of )(XDm
n  are 

orthogonal by at least two variables. 

To represent all (m, n)-code words, a special 
decomposition formula was proposed in [9]. We divide the 
set of variables X into two subsets X1, X2, where  
X1 = {x1, ..., xg}, X2 = {xg + 1, ..., xn}. The whole set of the  
(m,n)-code words of can be represented by the formula 

 = =
−

−
m
i

im
gn

i
g

m
n XDXDXD 0

21 )()()( , (1) 

where the ∧ between )( 1XDi
g  and )( 2XD im

gn
−

− is omitted. 

Here )( 1XDi
g , )( 2XD im

gn
−

−  are the decomposition 

functions; we call the cardinality of variable subsets after the 
last use of formula (1) as the decomposition base and denote 
it as k. 

In paper [8], we propose to choose g as the least integer 
number which is greater than or equal to 2n , i.e.,  

 2ng = . If g > k and/or n – g > k, then formula (1) is used 

again for any decomposition function  )( 1XDi
g , )( 2XD im

gn
−

− , 

mi ,0=   etc. Upon doing that, we obtain the formula for all 

(m,n)-code words, where p ≤ k for all )( rq
p XD . Multiple 

decomposition is applied both for the first and to the second 
multipliers in formula (1). 
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In this paper, we use only one decomposition step. For 
example, for 7

14D  and k = 7, where k is the number of CLBs 
inputs, we have two subsets of variables 

},,,,,,{ 7654321
1 xxxxxxxX = ,  

},,,,,,{ 141312111098
2 xxxxxxxX = . 

Formula (1) has the form (2): 
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 (2) 

To ensure the self-testing property of the checker, special 
requirements will be used for the functions implemented by 
the CLBs. Without loss of generality, we will consider 
single-output CLBs with not more than 7 inputs and two-
output CLBs with not more than 6 inputs. 

To provide the self-testing property in the considered 
class of faults, we use special functions. 

Let us denote the set of Boolean vectors where the 
function f(x1, …, xn) is equal to 1 as S1(f). Let us represent 
the Boolean function by the table where the columns 
correspond to Boolean variables, and the rows present 
Boolean vectors from the set S1(f). 

Definition 1. We call a function f as function of type 2, if 
in the table representation, every column contains exactly 
one unity component, and the number of unity components 
in all rows is the same.  

Table I demonstrates an example of a type 2 function. 

TABLE I.  EXAMPLE OF A TYPE 2 FUNCTION. 

x1 x2 x3 x4 x5 x6 
1 1 0 0 0 0 
0 0 1 1 0 0 
0 0 0 0 1 1 

Theorem 1. For a CLBs output, implementing a type 2 
function, and for any input multiple-stuck-at fault, either a 
test from S1(f) exists, or the multiple fault manifests itself as 
an output stuck-at-1 fault at the CLB. 

Theorem 2. If a type 2 function is implemented on one 
of the outputs of a two-output CLB, then whatever the 
second function associated with the CLB, an input multiple-
stuck-at fault of the CLB is either detected on the 
corresponding output type 2 function when the CLB receives 
a vector from S1(f) in the input, or the fault manifests itself as 
a stuck-at-1 fault. 

Theorems 1 and 2 are proven in [9] 

III. IDENTIFYING THE PROPERTIES OF CONFIGURABLE  
LOGIC BLOCKS IMPLEMENTING THE (M,N)-CODE WORDS 

Definition 2. We call as a segment ),...,( 1 k
q

k xxF  the set 

of all (q,k)-code words, i.e., all Boolean vectors where the 

function 1),...,( 1 =k
q
k xxD . 

We denote as FrSet(x1, …, xk) the set of all segments 

),...,( 1 k
q

k xxF , i.e., the set FrSet(x1, …, xk) includes all 

Boolean vectors of the length k and the weight q, where  
0 ≤ q ≤ k. 

We denote as FrSubset(x1, …, xk) a subset of the set 
FrSet(x1, …, xk) satisfying the following conditions: 

1) It contains at least two segments; 
2) if we arrange the weights of the segments in ascending 

order then in the sequence of weights there will be two 
neighboring elements with the difference at least two. 

Examples. A union of segments with the weights 2, 4, 5 
is a FrSubset(x1, …, xk), a union of segments with the 
weights 2, 3, 4 is not a FrSubset(x1, …, xk). 

Definition 3. Let us call a function whose domain of 
unity values coincides with a subset FrSubset(x1, …, xk), as 
Fsubset(x1, …, xk). 

Table II demonstrates an example of such a function. 

TABLE II.  EXAMPLE OF A FUNCTION FSUBSET(X1,X2,X3). 

x
1
 x

2
 x

3
 

0 0 0 
0 1 1 
1 0 1 
1 1 0 

The subset FrSubset(x1,x2,x3) for the function from 

Table°II consists of two segments: ),,( 321
0

3 xxxF , 

),,( 321
2

3 xxxF . 

Subsets FrSubset(x1, …, xp) can be of different 
cardinality. 

Let a CLB implement a function Fsubset(x1, …, xk). Here 
k is the number of CLBs inputs. 

Further we represent an input multiple stuck-at fault by a 
ternary vector with the components from the set  . 
Components equal to 0 or 1 are called as outer components, 
they correspond to inputs with stuck-at-0 or stuck-at-1 faults. 
Components equal to  are called inner components, they 
correspond to faultless inputs. 

Example. Let a CLB have 6 inputs. If it has stuck-at-0 
fault at the inputs {x1,x4} and  stuck-at-1 fault at the input 
{x3} then this multiple fault is described by the vector 

−−−100 . 

Theorem 3. If a CLB implements a function  
Fsubset(x1, ..., xk), where k is the number of the CLBs inputs, 
then for a multiple input stuck-at fault, either there is a test 
from the set FrSubset(x1, ..., xk), or a multiple fault manifests 
itself as a stuck-at-1 fault at the CLBs output. 

Proof. Let the CLB implement the function  
Fsubset(x1, ..., xk), k be the number of the CLBs inputs. Let 
the fault be described by a ternary vector β and the vector has 
r outer components, r ≤ k. Consider all possible cases. 

1. Let r = k, i.e., all the components of β are outer. So, 
а)  if β is a code word from FrSubset(x1, …, xk) then the fault 

manifests itself as the output stuck-at-1 fault; 
б)  otherwise, if β is not a code word from  

FrSubset(x1, …, xk), then the fault is detected by any 
vector from FrSubset(x1, …, xk); the output value is equal 
to 0 instead of 1. 

2. Let r < k, s be the number of unity components of the 
vector β. There can be several cases: 
а)  if 0 < s ≤ r < k, then any vector α from  

FrSubset(x1, …, xk) having at least one zero component 
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with the same number as a unity component of β, is a test 
for the fault. Such vector α exists, because for any 
component, there is a vector from FrSubset(x1, …, xk) in 
which the component is equal to zero; 

б)  if s = 0, then any vector α from FrSubset(x1, …, xk), 
having at least one unity component with the same 
number as a zero component of β, is a test for the fault. 
Such vector α exists, because for any component, there is 
a vector from FrSubset(x1, …, xk) in which the 
component is equal to unity. 

The theorem is proved. 

Theorem 4. If at one of the outputs of two-output CLB a 
function of the type Fsubset(x1, ..., xk) is implemented, 
whatever the second function associated with the CLB, a 
multiple input stuck-at fault of this CLB is either detected on 
the corresponding vector α from FrSubset(x1, ..., xk), or it 
appears on this output as a stuck-at-1 fault. 

Proof. At one of the CLBs outputs, a function of the type 
Fsubset(x1, ..., xk) is implemented. According to Theorem 1, 
for a multiple input stuck-at fault , either there is a test from 
the set FrSubset(x1, ..., xk), or the multiple fault manifests 
itself as an output stuck-at-1 fault. Both functions 
implemented by the CLB depend on the same sets of 
variables , and the functions themselves are implemented on 
separate memory blocks (LUT). At the second output of the 
CLB, the multiple stuck-at fault may not appear at all. It 
depends on the type of function implemented by the second 
output. The theorem is proved. 

Consider the subcircuit 1 (Fig. 1). The lower level of this 
subcircuit consists of a one- or two- output CLB (CLB1), 
which implements the function (one of the outputs) 
Fsubset(x1, ..., xk), and the output of this CLB corresponds to 
the input of several CLBs implementing the function of type 
2 (CLB2 and CLB3). The set of CLBs variables that 
implement the function of type 2, are different. The outputs 
of the subcircuit are the outputs of the CLB, implementing a 
function of type 2. 

Theorem 5. For a multiple input stuck-at fault of one of 
the CLB of subcircuit 1, either there is a test from the set 
FrSubset(x1, ..., xk), or the fault manifests itself as an output 
stuck-at-1 fault of subcircuit 1. 

The statement follows from Theorems 1 – 4. 

The detector circuit has a tree structure, on the lower 

level of which only functions q
pD (x1, …, xp) are used, where 

0 <q ≤ p, p ≤ k, k – is the number of the CLBs inputs. Earlier, 
in [7, 8], at every CLBs output  exactly one function 

q
pD (x1, …, xp) was implemented. Theorem 5 allows 

simplifying the self-testing-checker circuit and to reduce the 
number of CLBs in it. For example, Fig.2 demonstrates “old” 

checker 7
14D , as Fig. 3 shows  a “new” circuit of the same 

checker 7
14D . 

Consider the “old” circuit. Let us construct a checker for 
7
14D , using subcurcuit 2 if k = 7. At the first step of 

decomposition one can obtain. 
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There are 8 Boolean functions depending on the variables 
x1, x2, x3, x4, x5, x6, x7. For their implementation one needs 8 
CLBs. Their characteristics are listed in Table III. 

There are 8 Boolean functions depending on the variables 
x8, x9, x10, x11, x12, x13, x14. For their implementation one 
needs 8 CLBs. Their characteristics are listed in Table IV. 

To accomplish formula (2) one needs 4 CLBs. Their 
characteristics are listed in Table V. 

 
Fig. 1. Subcircuit 1. 

TABLE III. BOOLEAN FUNCTIONS DEPENDING ON THE VARIABLES X1, X2, X3, X4, X5, X6, X7. 

№ Implemented function Output № Implemented function Output 

1 ),,,,,,( 7654321
0
7 xxxxxxxD  y1 5 ),,,,,,( 7654321

4
7 xxxxxxxD  y9 

2 ),,,,,,( 7654321
1
7 xxxxxxxD  y3 6 ),,,,,,( 7654321

5
7 xxxxxxxD  y11 

3 ),,,,,,( 7654321
2
7 xxxxxxxD  y5 7 ),,,,,,( 7654321

6
7 xxxxxxxD  y13 

4 ),,,,,,( 7654321
3
7 xxxxxxxD  y7 8 ),,,,,,( 7654321

7
7 xxxxxxxD  y15 

TABLE IV. BOOLEAN FUNCTIONS DEPENDING ON THE VARIABLES X8, X9, X10, X11, X12, X13, X14. 

№ Implemented function Output № Implemented function Output 

9 ),,,,,,( 141312111098
7
7 xxxxxxxD  y2 13 ),,,,,,( 141312111098

3
7 xxxxxxxD  y10 

10 ),,,,,,( 141312111098
6
7 xxxxxxxD  y4 14 ),,,,,,( 141312111098

2
7 xxxxxxxD  y12 

11 ),,,,,,( 141312111098
5
7 xxxxxxxD  y6 15 ),,,,,,( 141312111098

1
7 xxxxxxxD  y14 

12 ),,,,,,( 141312111098
4
7 xxxxxxxD  y8 16 ),,,,,,( 141312111098

0
7 xxxxxxxD  y16 
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TABLE V.  BOOLEAN FUNCTIONS FOR ACCOMPLISHING  
FORMULA (2). 

№ Implemented function Output 

17 654321 yyyyyy ∨∨  y17 

18 121110987 yyyyyy ∨∨  y18 

19 16151413 yyyy ∨  Outputs of the checker 

20 ),( 1817
1
2 yyD  Outputs of the checker 

The outputs of CLB19 and CLB20 are the outputs of the 
checker. Hence, 20 CLBs are used to implement the checker. 
The circuit is represented in Fig. 2. 

At the “new” circuit, we use the following functions 
(Table VI and Table VII). 

TABLE VI.  BOOLEAN FUNCTIONS DEPENDING ON THE VARIABLES  
X1, X2, X3, X4, X5, X6, X7. 

№ Implemented function Output 

1 
),...,,( 721

0
7 xxxD , ),...,,( 721

3
7 xxxD  

),...,,( 721
6
7 xxxD  

y1 

2 
),...,,( 721

1
7 xxxD , ),...,,( 721

4
7 xxxD  

),...,,( 721
7
7 xxxD  

y3 

3 ),...,,( 721
2
7 xxxD ,  ),...,,( 721

5
7 xxxD  

 
y5 

TABLE VII.  BOOLEAN FUNCTIONS DEPENDING ON THE VARIABLES  
X8, X9, X10, X11, X12, X13, X14. 

№ Performing function Output 

4 

),,,,,,( 141312111098
7
7 xxxxxxxD  

),,,,,,( 141312111098
2
7 xxxxxxxD  

),,,,,,( 141312111098
1
7 xxxxxxxD  

y2 

5 

),,,,,,( 141312111098
6
7 xxxxxxxD  

),,,,,,( 141312111098
4
7 xxxxxxxD  

),,,,,,( 141312111098
0
7 xxxxxxxD  

y4 

6 
),,,,,,( 141312111098

3
7 xxxxxxxD  

),,,,,,( 141312111098
5
7 xxxxxxxD  

y6 

To accomplish formula (2) one needs 2 CLBs. Their 
characteristics are listed in Table VIII. 

TABLE VIII.  BOOLEAN FUNCTIONS FOR ACCOMPLISHING FORMULA (2). 

№ Performing function Output 

7 654321 yyyyyy ∨∨  
outputs of the 

checker 

8 256341 yyyyyy ∨∨  
outputs of the 

checker 

The outputs of CLB7 and CLB8 are the outputs of the 
checker. Hence, to perform checker 8 CLBs are used. The 
circuit of the detector is represented in Fig. 3. 

x1 x2 x3 x4 x5 x6 x7

CLB1 CLB3 CLB5 CLB7

CLB2 CLB4 CLB6 CLB8

x8 x9 x10 x11 x12 x13 x14

CLB9 CLB11 CLB13 CLB15

CLB10 CLB12 CLB14 CLB16

CLB17

CLB20

CLB18 CLB19

y1 y5 y9 y13

y3 y7 y11 y15

y18

y6

y4 y8

y14y10

y12 y16

y17

y2

 
Fig. 2. The checker of the (7, 14)-code. 

 

Fig. 3. The new checker of the (7, 14)-code. 
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IV. CONCLUSION 

Thus, we propose an approach to design of a self-testing 
(m,n)-code checker, which allows reducing the number of 
CLBs and simplifying the checker circuit. Previously, at each 
output of the CLB, functions representing exactly one 
segment. In the proposed approach, at each CLBs output, it is 
possible to implement functions that represent several 
segments. 
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