
978-1-7281-2896-2/19/$31.00 ©2019 IEEE

On the self-testing (m,n)-code checker design

Natalia Butorina
National Research Tomsk State

University
Tomsk, Russia

e-mail: nnatta07@mail.ru

Yulia Burkatovskaya
National Research Tomsk Polytechnic

University
Tomsk, Russia

e-mail: tracey@tpu.ru

Elena Pakhomova
National Research Tomsk State

University
Tomsk, Russia

e-mail: peg@tpu.ru

Abstract — We propose an approach to a self-testing (m, n)-
code checker design, based on subdividing the set of all code
words into special subsets called segments. The checker circuit
is constructed by using one- and two-output configurable logic
blocks (CLB). Previously, in each output of a CLB, a function
representing exactly one segment was implemented. In the
proposed approach, at each CLBs output, it is possible to
implement functions that represent several segments and to
provide the self-testing property. It allows reducing the
number of CLBs and simplifying the circuit of the checker.

Keywords — self-testing, checker, (m,n)-code, CLB.

I. INTRODUCTION

In self-checking circuits, code checkers are used to
provide the self-testing property. As a rule, the checker is
designed on the same element base as the circuit. In the
checker, the weight of an input codeword is usually
calculated. For this purpose, threshold elements or parallel
counters are used [1 – 6]. This paper proposes a design
method of the checker based on configurable logic blocks
(CLBs). In papers [7, 8], the authors propose a method for
design a self-checking finite-state machine. In the case of
correct operation of the circuit, the code words of some
unordered code are implemented at the output of the circuit.
Usually, the (m,n)-code is used, where n is the length of a
code word, m is the number of unity components (the
weight). The papers also develop a method for self-testing
(m,n)-code checker design based on the repeated use of a
special decomposition formula for a set of the (m,n)-code
words and implementing the obtained formula by CLBs. In
the method of self-testing checker design proposed in [8], the
presence of two-output CLBs is not necessary. This means
that the method allows building self-testing checkers using
any modern CLBs (Field Programmable Gate Arrays
(FPGA), manufacturers Xilinx, Altera, Achronix, Actel,
Atmel, Lattice semiconductor, etc.)

There is a special requirement for the implementation of
the formula: the checker of the (m,n)-codes must be self-
testing for a given set of faults, say V. The set V includes all
multiple stuck-at faults occurred at CLBs inputs and outputs.
In this case, only one CLB in the checker can be defective. It
is assumed that in a system consisting of a self-testing circuit
and a (m,n)-code checker, either the circuit or the checker
can be faulty, but not both.

The self-testing checker should satisfy the following
requirements:

1) when a non-code word appears at the circuit output (or
at the checker input), the checker should issue a
corresponding signal;

2) in the checker itself, a fault from the considered set of
faults V may occur, which must be detectable in the working
area of the detector, i.e. on the set of all its code words. This
means that there must be an (m,n)-code word for which this
fault appears at the outputs of the checker.

The self-testing checker has two outputs with the
following combinations of signal values:

a) (01) or (10) mean that the input word is a word of the
(m,n)-code and the checker is faultless;

b) (00) or (11) mean that either the input word is non-
code or the checker is faulty.

The checker is designed according to a formula
representing the set of all (m,n)-code words, being the
implementation of this formula.

II. THE DECOMPOSITION METHOD
FOR THE SET OF (M,N)-CODE WORDS

The number of all (m,n)-code words is equal to m
nC , i.e.,

the number of combinations of n elements taken m at a time.
The code words can be represented by a disjunction of
conjunctions of the rank n. We denote this disjunctive
normal form (DNF) as)(XDm

n , where X = {x1, x2, …, xn} is
the set of variables. If, for example, n = 10, m = 5, then

)(5
10 XD includes 252

!5!5

!105
10 =

⋅
=C conjunctions of the

rank 10 and 2520 symbols. The DNF can not be reduced:
)(XDm

n is both the perfect DNF and the sum of prime

implicants, since any two conjunctions of)(XDm
n are

orthogonal by at least two variables.

To represent all (m, n)-code words, a special
decomposition formula was proposed in [9]. We divide the
set of variables X into two subsets X1, X2, where
X1 = {x1, ..., xg}, X2 = {xg + 1, ..., xn}. The whole set of the
(m,n)-code words of can be represented by the formula

 = =
−

−
m
i

im
gn

i
g

m
n XDXDXD 0

21)()()(, (1)

where the ∧ between)(1XDi
g and)(2XD im

gn
−

− is omitted.

Here)(1XDi
g ,)(2XD im

gn
−

− are the decomposition

functions; we call the cardinality of variable subsets after the
last use of formula (1) as the decomposition base and denote
it as k.

In paper [8], we propose to choose g as the least integer
number which is greater than or equal to 2n , i.e.,

 2ng = . If g > k and/or n – g > k, then formula (1) is used

again for any decomposition function)(1XDi
g ,)(2XD im

gn
−

− ,

mi ,0= etc. Upon doing that, we obtain the formula for all

(m,n)-code words, where p ≤ k for all)(rq
p XD . Multiple

decomposition is applied both for the first and to the second
multipliers in formula (1).

Information & Communication Technologies

336

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic archive of Tomsk Polytechnic University

https://core.ac.uk/display/286575804?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

In this paper, we use only one decomposition step. For
example, for 7

14D and k = 7, where k is the number of CLBs
inputs, we have two subsets of variables

},,,,,,{ 7654321
1 xxxxxxxX = ,

},,,,,,{ 141312111098
2 xxxxxxxX = .

Formula (1) has the form (2):

.)()()()(
)()()()(

)()()()(

)()()()(

20
7

17
7

21
7

16
7

22
7

15
7

23
7

14
7

24
7

13
7

25
7

12
7

26
7

11
7

27
7

10
7

7
14

XDXDXDXD
XDXDXDXD
XDXDXDXD

XDXDXDXDD

∨∨
∨∨∨
∨∨∨

∨∨=

 (2)

To ensure the self-testing property of the checker, special
requirements will be used for the functions implemented by
the CLBs. Without loss of generality, we will consider
single-output CLBs with not more than 7 inputs and two-
output CLBs with not more than 6 inputs.

To provide the self-testing property in the considered
class of faults, we use special functions.

Let us denote the set of Boolean vectors where the
function f(x1, …, xn) is equal to 1 as S1(f). Let us represent
the Boolean function by the table where the columns
correspond to Boolean variables, and the rows present
Boolean vectors from the set S1(f).

Definition 1. We call a function f as function of type 2, if
in the table representation, every column contains exactly
one unity component, and the number of unity components
in all rows is the same.

Table I demonstrates an example of a type 2 function.

TABLE I. EXAMPLE OF A TYPE 2 FUNCTION.

x1 x2 x3 x4 x5 x6
1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1

Theorem 1. For a CLBs output, implementing a type 2
function, and for any input multiple-stuck-at fault, either a
test from S1(f) exists, or the multiple fault manifests itself as
an output stuck-at-1 fault at the CLB.

Theorem 2. If a type 2 function is implemented on one
of the outputs of a two-output CLB, then whatever the
second function associated with the CLB, an input multiple-
stuck-at fault of the CLB is either detected on the
corresponding output type 2 function when the CLB receives
a vector from S1(f) in the input, or the fault manifests itself as
a stuck-at-1 fault.

Theorems 1 and 2 are proven in [9]

III. IDENTIFYING THE PROPERTIES OF CONFIGURABLE
LOGIC BLOCKS IMPLEMENTING THE (M,N)-CODE WORDS

Definition 2. We call as a segment),...,(1 k
q

k xxF the set

of all (q,k)-code words, i.e., all Boolean vectors where the

function 1),...,(1 =k
q
k xxD .

We denote as FrSet(x1, …, xk) the set of all segments

),...,(1 k
q

k xxF , i.e., the set FrSet(x1, …, xk) includes all

Boolean vectors of the length k and the weight q, where
0 ≤ q ≤ k.

We denote as FrSubset(x1, …, xk) a subset of the set
FrSet(x1, …, xk) satisfying the following conditions:

1) It contains at least two segments;
2) if we arrange the weights of the segments in ascending

order then in the sequence of weights there will be two
neighboring elements with the difference at least two.

Examples. A union of segments with the weights 2, 4, 5
is a FrSubset(x1, …, xk), a union of segments with the
weights 2, 3, 4 is not a FrSubset(x1, …, xk).

Definition 3. Let us call a function whose domain of
unity values coincides with a subset FrSubset(x1, …, xk), as
Fsubset(x1, …, xk).

Table II demonstrates an example of such a function.

TABLE II. EXAMPLE OF A FUNCTION FSUBSET(X1,X2,X3).

x
1
 x

2
 x

3

0 0 0
0 1 1
1 0 1
1 1 0

The subset FrSubset(x1,x2,x3) for the function from

Table°II consists of two segments:),,(321
0

3 xxxF ,

),,(321
2

3 xxxF .

Subsets FrSubset(x1, …, xp) can be of different
cardinality.

Let a CLB implement a function Fsubset(x1, …, xk). Here
k is the number of CLBs inputs.

Further we represent an input multiple stuck-at fault by a
ternary vector with the components from the set .
Components equal to 0 or 1 are called as outer components,
they correspond to inputs with stuck-at-0 or stuck-at-1 faults.
Components equal to are called inner components, they
correspond to faultless inputs.

Example. Let a CLB have 6 inputs. If it has stuck-at-0
fault at the inputs {x1,x4} and stuck-at-1 fault at the input
{x3} then this multiple fault is described by the vector

−−−100 .

Theorem 3. If a CLB implements a function
Fsubset(x1, ..., xk), where k is the number of the CLBs inputs,
then for a multiple input stuck-at fault, either there is a test
from the set FrSubset(x1, ..., xk), or a multiple fault manifests
itself as a stuck-at-1 fault at the CLBs output.

Proof. Let the CLB implement the function
Fsubset(x1, ..., xk), k be the number of the CLBs inputs. Let
the fault be described by a ternary vector β and the vector has
r outer components, r ≤ k. Consider all possible cases.

1. Let r = k, i.e., all the components of β are outer. So,
а) if β is a code word from FrSubset(x1, …, xk) then the fault

manifests itself as the output stuck-at-1 fault;
б) otherwise, if β is not a code word from

FrSubset(x1, …, xk), then the fault is detected by any
vector from FrSubset(x1, …, xk); the output value is equal
to 0 instead of 1.

2. Let r < k, s be the number of unity components of the
vector β. There can be several cases:
а) if 0 < s ≤ r < k, then any vector α from

FrSubset(x1, …, xk) having at least one zero component

Information & Communication Technologies

337

with the same number as a unity component of β, is a test
for the fault. Such vector α exists, because for any
component, there is a vector from FrSubset(x1, …, xk) in
which the component is equal to zero;

б) if s = 0, then any vector α from FrSubset(x1, …, xk),
having at least one unity component with the same
number as a zero component of β, is a test for the fault.
Such vector α exists, because for any component, there is
a vector from FrSubset(x1, …, xk) in which the
component is equal to unity.

The theorem is proved.

Theorem 4. If at one of the outputs of two-output CLB a
function of the type Fsubset(x1, ..., xk) is implemented,
whatever the second function associated with the CLB, a
multiple input stuck-at fault of this CLB is either detected on
the corresponding vector α from FrSubset(x1, ..., xk), or it
appears on this output as a stuck-at-1 fault.

Proof. At one of the CLBs outputs, a function of the type
Fsubset(x1, ..., xk) is implemented. According to Theorem 1,
for a multiple input stuck-at fault , either there is a test from
the set FrSubset(x1, ..., xk), or the multiple fault manifests
itself as an output stuck-at-1 fault. Both functions
implemented by the CLB depend on the same sets of
variables , and the functions themselves are implemented on
separate memory blocks (LUT). At the second output of the
CLB, the multiple stuck-at fault may not appear at all. It
depends on the type of function implemented by the second
output. The theorem is proved.

Consider the subcircuit 1 (Fig. 1). The lower level of this
subcircuit consists of a one- or two- output CLB (CLB1),
which implements the function (one of the outputs)
Fsubset(x1, ..., xk), and the output of this CLB corresponds to
the input of several CLBs implementing the function of type
2 (CLB2 and CLB3). The set of CLBs variables that
implement the function of type 2, are different. The outputs
of the subcircuit are the outputs of the CLB, implementing a
function of type 2.

Theorem 5. For a multiple input stuck-at fault of one of
the CLB of subcircuit 1, either there is a test from the set
FrSubset(x1, ..., xk), or the fault manifests itself as an output
stuck-at-1 fault of subcircuit 1.

The statement follows from Theorems 1 – 4.

The detector circuit has a tree structure, on the lower

level of which only functions q
pD (x1, …, xp) are used, where

0 <q ≤ p, p ≤ k, k – is the number of the CLBs inputs. Earlier,
in [7, 8], at every CLBs output exactly one function

q
pD (x1, …, xp) was implemented. Theorem 5 allows

simplifying the self-testing-checker circuit and to reduce the
number of CLBs in it. For example, Fig.2 demonstrates “old”

checker 7
14D , as Fig. 3 shows a “new” circuit of the same

checker 7
14D .

Consider the “old” circuit. Let us construct a checker for
7
14D , using subcurcuit 2 if k = 7. At the first step of

decomposition one can obtain.

.)()()()(

)()()()(

)()()()(

)()()()(

20
7

17
7

21
7

16
7

22
7

15
7

23
7

14
7

24
7

13
7

25
7

12
7

26
7

11
7

27
7

10
7

7
14

XDXDXDXD
XDXDXDXD
XDXDXDXD

XDXDXDXDD

∨∨
∨∨∨
∨∨∨

∨∨=

 (2)

There are 8 Boolean functions depending on the variables
x1, x2, x3, x4, x5, x6, x7. For their implementation one needs 8
CLBs. Their characteristics are listed in Table III.

There are 8 Boolean functions depending on the variables
x8, x9, x10, x11, x12, x13, x14. For their implementation one
needs 8 CLBs. Their characteristics are listed in Table IV.

To accomplish formula (2) one needs 4 CLBs. Their
characteristics are listed in Table V.

Fig. 1. Subcircuit 1.

TABLE III. BOOLEAN FUNCTIONS DEPENDING ON THE VARIABLES X1, X2, X3, X4, X5, X6, X7.

№ Implemented function Output № Implemented function Output

1),,,,,,(7654321
0
7 xxxxxxxD y1 5),,,,,,(7654321

4
7 xxxxxxxD y9

2),,,,,,(7654321
1
7 xxxxxxxD y3 6),,,,,,(7654321

5
7 xxxxxxxD y11

3),,,,,,(7654321
2
7 xxxxxxxD y5 7),,,,,,(7654321

6
7 xxxxxxxD y13

4),,,,,,(7654321
3
7 xxxxxxxD y7 8),,,,,,(7654321

7
7 xxxxxxxD y15

TABLE IV. BOOLEAN FUNCTIONS DEPENDING ON THE VARIABLES X8, X9, X10, X11, X12, X13, X14.

№ Implemented function Output № Implemented function Output

9),,,,,,(141312111098
7
7 xxxxxxxD y2 13),,,,,,(141312111098

3
7 xxxxxxxD y10

10),,,,,,(141312111098
6
7 xxxxxxxD y4 14),,,,,,(141312111098

2
7 xxxxxxxD y12

11),,,,,,(141312111098
5
7 xxxxxxxD y6 15),,,,,,(141312111098

1
7 xxxxxxxD y14

12),,,,,,(141312111098
4
7 xxxxxxxD y8 16),,,,,,(141312111098

0
7 xxxxxxxD y16

Information & Communication Technologies

338

TABLE V. BOOLEAN FUNCTIONS FOR ACCOMPLISHING
FORMULA (2).

№ Implemented function Output

17 654321 yyyyyy ∨∨ y17

18 121110987 yyyyyy ∨∨ y18

19 16151413 yyyy ∨ Outputs of the checker

20),(1817
1
2 yyD Outputs of the checker

The outputs of CLB19 and CLB20 are the outputs of the
checker. Hence, 20 CLBs are used to implement the checker.
The circuit is represented in Fig. 2.

At the “new” circuit, we use the following functions
(Table VI and Table VII).

TABLE VI. BOOLEAN FUNCTIONS DEPENDING ON THE VARIABLES
X1, X2, X3, X4, X5, X6, X7.

№ Implemented function Output

1
),...,,(721

0
7 xxxD ,),...,,(721

3
7 xxxD

),...,,(721
6
7 xxxD

y1

2
),...,,(721

1
7 xxxD ,),...,,(721

4
7 xxxD

),...,,(721
7
7 xxxD

y3

3),...,,(721
2
7 xxxD ,),...,,(721

5
7 xxxD

y5

TABLE VII. BOOLEAN FUNCTIONS DEPENDING ON THE VARIABLES
X8, X9, X10, X11, X12, X13, X14.

№ Performing function Output

4

),,,,,,(141312111098
7
7 xxxxxxxD

),,,,,,(141312111098
2
7 xxxxxxxD

),,,,,,(141312111098
1
7 xxxxxxxD

y2

5

),,,,,,(141312111098
6
7 xxxxxxxD

),,,,,,(141312111098
4
7 xxxxxxxD

),,,,,,(141312111098
0
7 xxxxxxxD

y4

6
),,,,,,(141312111098

3
7 xxxxxxxD

),,,,,,(141312111098
5
7 xxxxxxxD

y6

To accomplish formula (2) one needs 2 CLBs. Their
characteristics are listed in Table VIII.

TABLE VIII. BOOLEAN FUNCTIONS FOR ACCOMPLISHING FORMULA (2).

№ Performing function Output

7 654321 yyyyyy ∨∨
outputs of the

checker

8 256341 yyyyyy ∨∨
outputs of the

checker

The outputs of CLB7 and CLB8 are the outputs of the
checker. Hence, to perform checker 8 CLBs are used. The
circuit of the detector is represented in Fig. 3.

x1 x2 x3 x4 x5 x6 x7

CLB1 CLB3 CLB5 CLB7

CLB2 CLB4 CLB6 CLB8

x8 x9 x10 x11 x12 x13 x14

CLB9 CLB11 CLB13 CLB15

CLB10 CLB12 CLB14 CLB16

CLB17

CLB20

CLB18 CLB19

y1 y5 y9 y13

y3 y7 y11 y15

y18

y6

y4 y8

y14y10

y12 y16

y17

y2

Fig. 2. The checker of the (7, 14)-code.

Fig. 3. The new checker of the (7, 14)-code.

Information & Communication Technologies

339

IV. CONCLUSION

Thus, we propose an approach to design of a self-testing
(m,n)-code checker, which allows reducing the number of
CLBs and simplifying the checker circuit. Previously, at each
output of the CLB, functions representing exactly one
segment. In the proposed approach, at each CLBs output, it is
possible to implement functions that represent several
segments.

REFERENCES

[1] Parag K. Lala, Self-Checking and Fault-Tolerant Digital Design,
Morgan Kaufmann Pub., 2000, 400 p.

[2] Anderson D.A. and Metze G., “Design of totally self-checking check
circuits for m-out-of-n codes”, IEEE Trans. Computers C-22, 1973,
pp. 263–269.

[3] Marouf M.A. and Friedman A.D., “Efficient design of self-checking
checker for any m-out-of-n code”, IEEE Trans. Computers C-27,
1978, pp. 482–490.

[4] Ubar R., Raik J. and Vierhaus H-T., Design and Test Technology for
Dependable Systems-on-Chip, New York: IGI Global, 2011, 578 p.

[5] Göessel M., Ocheretny V., Sogomonyan E. and Marienfeld D., New
Methods of Concurrent Checking, Edition 1, Dordrecht: Springer
Science+Business Media B. V., 2008, 182 p.

[6] Sapozhnikov V.V., Sapozhnikov V.V., Efanov D.V., Pivovarov D.V.,
“A method of a functional monitoring system constructing based on
(1,5)-code logical complement”, Radioelectronics and Computer
Science (Radioelektronika i informatika), 2017, №3, pp. 15–22 (in
Russian).

[7] Matrosova A.Yu. and Nikitin K.V., “Design of a self-testing (m,n)-
code checkers using onfigurable logic blocks”, Tomsk State
University Journal, Supplement №6, 2003, pp. 124–136 (in Russian).

[8] Butorina N.B., Tsidendorzhieva S.R., “Design of a self-testing
checker of (m,n)-code words” 7°Russian conference with
international participation “New information technologies in the study
of complex structures”, Tomsk: TSU, 2008, p. 44 (in Russian).

[9] Burkatovskaya Yu.B., Butorina N.B., Matrosova A.Yu., “Design of
self-testing (m,n)-code checker for an arbitrary number of code
words”, Tomsk State University Journal, Supplement, 2006, №17,
p. 190–197 (in Russian).

Information & Communication Technologies

340

