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Abstract—The work is devoted to the computing unite of a 
mobile computer vision system and developing his algorithmic  
software. We developed hardware-implemented the convolutional 
neural networks on a field programmable gate array. A study of 
the performance and power consumption of variants of the 
computing unite. 
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I. INTRODUCTION 

Nowadays, the scientific direction moving to using 
artificial neural networks for development of mobile 
intelligent computer vision systems (CVS). These CVSs 
should automatically analyze the images with the help of 
neural networks trained by modern deep-learning methods. 
The most promising mobile CVSs are developed using 
convolutional neural networks (CNN) [1].  

The paper proposes various ways for organization of 
computations in a computing unite (CU) of a mobile CVS, 
which consists a hardware-implemented CNN on a modern 
system on a chip (SoC). The results of a study are presented 
for performance and power consumption of three variants of 
this CU for various ways of organizing computations. 

II. ORGANIZATION OF COMPUTATIONS IN CU BASED ON 

SOC 

A. General statement on the organization of  computations 

A modern intellectual CVSs are systems which allow you 
to automate the process of analyzing visual information using 
artificial neural networks trained using deep learning methods. 
An important class of these CVSs are mobile CVSs have been 
installing on autonomous vehicles, for example, on unmanned 
aerial vehicles, on unmanned vehicles, etc. These CVSs 
should have low power consumption, for example, in the case 
of unmanned aerial vehicles not more than 10 watts. Today, 
mobile CVSs are developed using hardware-implemented 
CNN on modern SoCs, which have field programmable gate 
array (FPGA) for high-performance CNN computations. The 
following arguments shown advantages of high performance 
of the hardware implementation of the CNN on the FPGA: 

 

• comparison with other implementations of the CNN, 
for example, on graphics processors, gives that the 
CU on SoC on modern FPGAs consumes 
significantly less power; 

• flexibility, it is mean possibility to implement on the 
FPGA, different and even simultaneously operating 
several CNN architectures. 

Therefore, having these advantages of the hardware 
implementation of the CNN on the FPGA, it is possible to 
development mobile and high-performance CVS based of 
modern SoC, which is intellectual in nature because of using 
CNN. 

In [2], it was proposed to use the computational resources 
of not only the FPGA, but also other components of modern 
SoCs for the hardware-based CNN. The architecture of most 
SoCs allows you to organize direct access of a hardware-
implemented CNN to external memory. The implementation 
of this method of interaction of the FPGA with external 
memory will allows you to perform some operations that differ 
from the convolution and subsample procedures of the CNN 
on the SoC processor. 

Also in [2] an original method for performing 
computations in a hardware CNN on a FPGA  was proposed. 
It differs from the known methods by using unified 
computational convolution and subsampling units. The 
unification of the convolution / subsample blocks is achieved 
by extracting a parameters of this blocks, usually specified at 
the stage of their synthesis, and placing them in a separate 
variable FPGA memory area, called the configuration memory 
region. Thereby it allows to use the blocks of the suitable type 
in the layers of the CNN with different architectural 
parameters. The implementation of the method assumes that 
the number of computing blocks involved in the hardware 
CNN can be variable. And the number  of computing blocks 
is determined only by the FPGA resources. Scaling by the 
number of using blocks  carried out both as a whole for the 
CNN and for individual layers. It will significantly reduce the 
required computational resources of the FPGA and will help 
implement various CNN architectures without FPGA 
reconfiguring. 
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When implementing the unification method, in addition to 
allocate the configuration memory area, it is necessary to 
organize access of the SoC processor to this memory area and 
to develop the appropriate software, primarily in the form of a 
multifunctional driver of hardware CNN. 

B. Ways of organizing computations in the CU and their 
implementation 

The unification of computing blocks of the CNN hardware 
and the way proposed in [2] (below - Way 1) of organizing 
computations in SoC, taking into account the interaction of the 
FPGA with external memory, made it possible to implement a 
mobile CU of CVS based on the Terasic SoCKit developing 
board with the SoC Cyclone V SX [3]. The enlarged functional 
diagram of this CU is shown in Fig. 1. 

Fig. 1. The enlarged functional diagram of the CU for the mobile CVS. 

The diagram shows two main functional units. The SoC is 
the first one. It contains a processor system (PS) and FPGA. 
The PS in turn includes a DDR3 external memory controller 
and two ARM Cortex A9 processor cores. On FPGA we 
developed a controller of direct access to external memory 
(DMA controller), a block “Hardware implementation of 
CNN” and configuration memory. The block “Hardware 
implementation of CNN” consists of a neural computing unit 
(NCU). The NCU performs the computations of the 
convolution and subsampling procedures for different CNN 
architectures of the LeNet5 subclass. The second functional 
unit is external DDR3 memory. 

An executing the convolution procedure for each 
convolutional layer of the CNN was required two types of data 
independent of each other. The first is the input and output data 
(the analyzed image and feature maps) of the CNN 
convolution layer. The second type is the weights of the 
convolution layer. This statement allows us to propose a 
second way (below - Way 2) of organizing computations in a 
CU, which includes using two channels of external memory in 
SoC and two different external memory modules. One of this 
channels will be reserved only for the transfer of the first type 
of data, and the second - for the transfer of data of another 

type. The Fig. 2 shows the enlarged functional diagram of the 
CU with that way of implementation. 

Fig. 2. The enlarged functional diagram of the CU for implement Way 2 
computations of organization.  

The difference between the new functional diagram of the 
CU (new version of the CU) and the diagram of the CU in Fig. 
1 (the first version of the CU) is that the controller of direct 
access to external memory (DMA controller) has access in two 
physically separated memory modules. It provides data 
transfer between these two external memory modules and the 
hardware implementation of the CNN. Considering this, it 
make possible the simultaneous loading input data and 
weights into the internal buffers of the NCU module. 

The best option for this variant of CU is the placement of 
the CNN weights in the external memory module connected 
directly to the FPGA through its own DMA controller. 
Because when perform calculating the CNN, the weights do 
not change, and the necessity of their unloading from the PS 
memory appears only during the initialization of the CU. The 
input and output data of the CNN layers should be stored in 
the PS external memory module. Because it gives the 
possibility of their operational pre- and post-processing. 

It is possible to propose a third way ( below - Way 3) of 
organizing computations in a CU, which includes using 
several modules of the NCU in the "Hardware implementation 
of the CNN" block. In fact, this method is an extension of the 
capabilities of Way 1, which have only one NCU module for 
use. Fig. 3 shows the enlarged functional diagram of the CU 
(the third version of the CU) with the implementation of Way 
3 of the organization of computations. This diagram shows the 
usage of n NCU modules. 
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Fig. 3. The enlarged functional diagram of the CU for implement Way 3 
organization  of computations. 

The number n of NCU modules can be variable and their 
number depends only on the amount of computational 
resources of SoC. Also, the each NCU is a completely 
independent and self-sufficient module. The internal 
architecture of individual NCU in the “Hardware 
implementation of CNN” block also may be differ. 

III. ALGORITHMIC SOFTWARE OF CU 

We implemented the hardware components (diagrams in 
Fig. 1, Fig. 2, Fig. 3) and also developed  the corresponding 
algorithmic software executing on PS. The algorithmic 
software have difficult original algorithm of locating and 
marking external memory (memory mapping) for hardware-
implemented CNN on FPGA with various architectures. The 
point of this algorithm is to reduce the amount of external 
memory required for CNN computations by providing direct 
access for NCU to external memory areas that are common to 
different layers of the CNN. Also we have developed the 
algorithms for the reconfiguration of the NCU in the FPGA. 

A multifunctional software driver for the Linux kernel OS 
was developed for ensure interaction between the FPGA, PS 
and external memory. This driver was written by using C 
language. The main functions of the driver is following: 

• functions for interaction with FPGA registers; 

• functions that work with data buffers in external 
memory modules; 

• functions that mapping the external memory; 

• reconfiguration of the NCU in the FPGA; 

• interrupt handling, which  come from FPGA. 

This driver easily adapts to the peculiarities of different the 
CU versions and the CNN architectures. 

In C++ language, we have developed a library for the 
interaction of user with the CU settings. Library functions 
allow him to interact with the CU through the character 
devices registered by multifunctional driver. Each operation in 
this driver is initiated by a user’s command transferred to the 
character device through a specific library function. 

IV. THE TASK OF STUDYING THE EFFECTIVENESS OF CU 

In each of the three variants of CU, was implemented one 
of the methods of  computations organization discussed above. 
The original CNN architecture of the LeNet5 subclass from 
[4] was used as a hardware-implemented CNN in CU. This  
CNN architecture has the following parameters. The first layer 
is a convolutional, the number of input feature maps 3, output 
- 6, the kernel size of convolution is 7x7, stride is 1. The 
second layer is subsample, the number of input feature maps 
is 6, the output - 6, kernel size of the subsample is 2x2, stride 
is 2. The third layer is convolutional, the number of input maps 
is 6, output - 32, kernel size of convolution is 5x5, stride is 1. 
The fourth layer is subsample, the number of input feature 
maps is 32, output 32, kernel size of subsample is 2x2, stride 
is 2. The fifth layer is convolutional, the number of input 
feature maps is 32, output - 100, kernel size of convolution is 
5x5, stride is 1. The sixth (fully connected) layer is the 
convolution, the number of input feature maps 100, output - 
10, kernel size of convolution is 1x1, stride is 1. 

Initially, training was carried out on the software-
implemented CNN of this architecture on a sample of images 
of hand-written numbers MNIST [5]. It contains 60,000 
training images and 10,000 test pairs (tag-image). The CNN 
training was carried out using the Caffe library [6], used the 
method of back propagation of error and the method of 
stochastic gradient descent. Optimization parameters were 
taken from the library's training examples. The accuracy of the 
classification of handwritten numbers for the software-
implemented CNN of this architecture, using the 32-bit 
floating-point format, is 98.7%. The weight coefficients, 
obtained during training, then were transferred to each of the 
CU variants. 

In all experiments, was solved the problem of classifying 
each image from 10,000 MNIST test images. The 
classification of images was carried out using each of the three 
variants of the CU. For classifying images, we used 
configurations K1, K2, K3 and K4 of the NCU module 
presented in table I. The operating frequency of the NCU in 
each of the configurations is 50 MHz. 

TABLE I.  CONFIGURATIONS OF  NCU MODULE 

Configuration Name of NCU K1 K2 K3 K4 
Number of computational convolution 
blocks 

6 10 32 100 

Number of computational subsample 
blocks 

6 10 32 32 

 

The performance of each CU version was estimated as the 
difference between the time getting the result from the SoC as 
a handwritten digit class and the launch time of this CU for 
classification. The moments of time were determined using the 
standard chrono library of the C++ programming language. 
The average time for classifying one image was calculated as 
the average of 10,000 times the classification of test images. 

There are we also researched the energy consumption of 
each variants of CU and their efficiency. 
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V. THE RESULTS OF THE RESEARCH AND THEIR 

DISCUSSION 

Table II shows the results of studying a performance for 
two variants of the CU that use Way 1 and Way 2 for 
organization of computations. 

TABLE II.  CU PERFORMANCE WITH WAY 1 AND WAY 2 COMPUTING 
ORGANIZATION 

Configurations NCU 
Average classification time per image, ms 

Way 1 Way 2 

K1 16,464 15,487 

K2 13,985 11,27 

K3 6,933 6,579 

K4 7,202 5,986 

 

The results from table II show that in the case of the variant 
CU implementing Way 2, for all configurations of NCU, there 
is a reduction in the average time for classifying one image 
with comparing to the variant CU implementing Way 1. At the 
same time, optimal performance according to the CU 
performance criteria , related to the amount of computing 
resources, has a CU with NCU K3 configuration (32 
convolution blocks and 32 subsample blocks). 

The following series of experiments was carried out for a 
variant of CU implemented Way 3 computing organization, 
which containing two or three NCU modules with a K3 
configuration. The maximum possible number of NCU 
modules is three. It is the limit amount of FPGA resources in 
the Cyclone V SX SoC. Table III shows the results of these 
experiments. For comparison, table III includes the 
performance of CU variant that implements Way 1. This way, 
like Way 3, takes into account the interaction of the FPGA 
with only one external memory module. In experiments when 
computations of computations in CU Way 3 for each analyzed 
image was performed synchronous launch of NCU modules. 

TABLE III.  CU PERFORMANCE WITH WAY 1 AND WAY 3 COMPUTING 
ORGANIZATION 

Performance variants CU Way 1 
Way 3 

(2 modules 
NCU) 

Way 3 
(3 modules 

NCU ) 
Number of simultaneously 
classified images, pcs 

1 2 3 

Average image 
classification time on one 
module of the NCU, ms 

6,933 7,811 12,763 

Average classification time 
per image, ms 

6,933 3,905 4,161 

 

The best performance has the version of the CU, which 
implements Way 3 of the organization of computational 
processes with two NCU modules. So the preference should 
be given this variant of CU. 

The measuring of power consumption in this experimental 
shows that the CU variants in organization of computations for 
Way 1 and for Way 3 is 5.1 watts. The power consumption of 
the variant of the CU implementing the Way 2 of the 

organization of computations increases to 7.4 watts. The 
reason of such increase covered in connection of another 
DDR3 external memory module. 

All results obtained in the experiments indicate that taking 
into account modern requirements for CVSs in terms of 
performance and power consumption, in principle any of the 
three CU variants can be used as part of a mobile and high-
performance CVS with low power consumption. However, the 
developer must choose the variant of the CU in accordance 
with the scale of the real-time work for the CVS. 

VI. CONCLUSION 

Today, the current research area is focused on the 
development of mobile and high-performance CVSs using 
modern SoCs. This paper is devoted to the development of a 
CU these CVSs. In this CU the hardware is implemented on 
the FPGA SoC Cyclone V SX CNN allows to solve the tasks 
of classifying objects in images. 

Two new ways for organization of computations were 
proposed. And different CU variants were implemented based 
on proposed functional diagrams. Also algorithmic software 
for these CUs was developed. 

The task of the researching of the performance was solved 
for all proposed variants of the CU with the hardware 
implementation of the original architecture of the CNN of the 
LeNet5 subclass. The results of carried out research show that 
the best performance has a CU version that implements Way 
3 of the organization of computations, and preference should 
be given to CU with two hardware-implemented neural 
computing units. Also we found that the lowest power 
consumption have devices that implement Way 1 and Way 3 
of the organization of computations. 
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