
978-1-7281-2896-2/19/$31.00©2019 IEEE

Computing unite of a mobile computer vision
system

1st Ivan V. Zoev
Dept. of Information Technologies

Tomsk Polytechnic University
Tomsk, Russian Federation

ivz3@tpu.ru

2nd Nikolay G. Markov
Dept. of Information Technologies

Tomsk Polytechnic University
Tomsk, Russian Federation

markovng@tpu.ru

4th Alexey P. Beresnev
Dept. of Information Technologies

Tomsk Polytechnic University
Tomsk, Russian Federation

apb3@tpu.ru

3rd Timofey A. Yagunov
Dept. of Information Technologies

Tomsk Polytechnic University
Tomsk, Russian Federation

tay1@tpu.ru

Abstract—The work is devoted to the computing unite of a
mobile computer vision system and developing his algorithmic
software. We developed hardware-implemented the convolutional
neural networks on a field programmable gate array. A study of
the performance and power consumption of variants of the
computing unite.

Keywords—hardware convolutional neural networks, field
programmable gate array, computing unite of a mobile computer
vision system.

I. INTRODUCTION

Nowadays, the scientific direction moving to using
artificial neural networks for development of mobile
intelligent computer vision systems (CVS). These CVSs
should automatically analyze the images with the help of
neural networks trained by modern deep-learning methods.
The most promising mobile CVSs are developed using
convolutional neural networks (CNN) [1].

The paper proposes various ways for organization of
computations in a computing unite (CU) of a mobile CVS,
which consists a hardware-implemented CNN on a modern
system on a chip (SoC). The results of a study are presented
for performance and power consumption of three variants of
this CU for various ways of organizing computations.

II. ORGANIZATION OF COMPUTATIONS IN CU BASED ON

SOC

A. General statement on the organization of computations

A modern intellectual CVSs are systems which allow you
to automate the process of analyzing visual information using
artificial neural networks trained using deep learning methods.
An important class of these CVSs are mobile CVSs have been
installing on autonomous vehicles, for example, on unmanned
aerial vehicles, on unmanned vehicles, etc. These CVSs
should have low power consumption, for example, in the case
of unmanned aerial vehicles not more than 10 watts. Today,
mobile CVSs are developed using hardware-implemented
CNN on modern SoCs, which have field programmable gate
array (FPGA) for high-performance CNN computations. The
following arguments shown advantages of high performance
of the hardware implementation of the CNN on the FPGA:

• comparison with other implementations of the CNN,
for example, on graphics processors, gives that the
CU on SoC on modern FPGAs consumes
significantly less power;

• flexibility, it is mean possibility to implement on the
FPGA, different and even simultaneously operating
several CNN architectures.

Therefore, having these advantages of the hardware
implementation of the CNN on the FPGA, it is possible to
development mobile and high-performance CVS based of
modern SoC, which is intellectual in nature because of using
CNN.

In [2], it was proposed to use the computational resources
of not only the FPGA, but also other components of modern
SoCs for the hardware-based CNN. The architecture of most
SoCs allows you to organize direct access of a hardware-
implemented CNN to external memory. The implementation
of this method of interaction of the FPGA with external
memory will allows you to perform some operations that differ
from the convolution and subsample procedures of the CNN
on the SoC processor.

Also in [2] an original method for performing
computations in a hardware CNN on a FPGA was proposed.
It differs from the known methods by using unified
computational convolution and subsampling units. The
unification of the convolution / subsample blocks is achieved
by extracting a parameters of this blocks, usually specified at
the stage of their synthesis, and placing them in a separate
variable FPGA memory area, called the configuration memory
region. Thereby it allows to use the blocks of the suitable type
in the layers of the CNN with different architectural
parameters. The implementation of the method assumes that
the number of computing blocks involved in the hardware
CNN can be variable. And the number of computing blocks
is determined only by the FPGA resources. Scaling by the
number of using blocks carried out both as a whole for the
CNN and for individual layers. It will significantly reduce the
required computational resources of the FPGA and will help
implement various CNN architectures without FPGA
reconfiguring.

The reported study was funded by RFBR, project no. 18-47-700010
р_а.

Information & Communication Technologies

246

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic archive of Tomsk Polytechnic University

https://core.ac.uk/display/286575794?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

When implementing the unification method, in addition to
allocate the configuration memory area, it is necessary to
organize access of the SoC processor to this memory area and
to develop the appropriate software, primarily in the form of a
multifunctional driver of hardware CNN.

B. Ways of organizing computations in the CU and their
implementation

The unification of computing blocks of the CNN hardware
and the way proposed in [2] (below - Way 1) of organizing
computations in SoC, taking into account the interaction of the
FPGA with external memory, made it possible to implement a
mobile CU of CVS based on the Terasic SoCKit developing
board with the SoC Cyclone V SX [3]. The enlarged functional
diagram of this CU is shown in Fig. 1.

Fig. 1. The enlarged functional diagram of the CU for the mobile CVS.

The diagram shows two main functional units. The SoC is
the first one. It contains a processor system (PS) and FPGA.
The PS in turn includes a DDR3 external memory controller
and two ARM Cortex A9 processor cores. On FPGA we
developed a controller of direct access to external memory
(DMA controller), a block “Hardware implementation of
CNN” and configuration memory. The block “Hardware
implementation of CNN” consists of a neural computing unit
(NCU). The NCU performs the computations of the
convolution and subsampling procedures for different CNN
architectures of the LeNet5 subclass. The second functional
unit is external DDR3 memory.

An executing the convolution procedure for each
convolutional layer of the CNN was required two types of data
independent of each other. The first is the input and output data
(the analyzed image and feature maps) of the CNN
convolution layer. The second type is the weights of the
convolution layer. This statement allows us to propose a
second way (below - Way 2) of organizing computations in a
CU, which includes using two channels of external memory in
SoC and two different external memory modules. One of this
channels will be reserved only for the transfer of the first type
of data, and the second - for the transfer of data of another

type. The Fig. 2 shows the enlarged functional diagram of the
CU with that way of implementation.

Fig. 2. The enlarged functional diagram of the CU for implement Way 2
computations of organization.

The difference between the new functional diagram of the
CU (new version of the CU) and the diagram of the CU in Fig.
1 (the first version of the CU) is that the controller of direct
access to external memory (DMA controller) has access in two
physically separated memory modules. It provides data
transfer between these two external memory modules and the
hardware implementation of the CNN. Considering this, it
make possible the simultaneous loading input data and
weights into the internal buffers of the NCU module.

The best option for this variant of CU is the placement of
the CNN weights in the external memory module connected
directly to the FPGA through its own DMA controller.
Because when perform calculating the CNN, the weights do
not change, and the necessity of their unloading from the PS
memory appears only during the initialization of the CU. The
input and output data of the CNN layers should be stored in
the PS external memory module. Because it gives the
possibility of their operational pre- and post-processing.

It is possible to propose a third way (below - Way 3) of
organizing computations in a CU, which includes using
several modules of the NCU in the "Hardware implementation
of the CNN" block. In fact, this method is an extension of the
capabilities of Way 1, which have only one NCU module for
use. Fig. 3 shows the enlarged functional diagram of the CU
(the third version of the CU) with the implementation of Way
3 of the organization of computations. This diagram shows the
usage of n NCU modules.

Information & Communication Technologies

247

Fig. 3. The enlarged functional diagram of the CU for implement Way 3
organization of computations.

The number n of NCU modules can be variable and their
number depends only on the amount of computational
resources of SoC. Also, the each NCU is a completely
independent and self-sufficient module. The internal
architecture of individual NCU in the “Hardware
implementation of CNN” block also may be differ.

III. ALGORITHMIC SOFTWARE OF CU

We implemented the hardware components (diagrams in
Fig. 1, Fig. 2, Fig. 3) and also developed the corresponding
algorithmic software executing on PS. The algorithmic
software have difficult original algorithm of locating and
marking external memory (memory mapping) for hardware-
implemented CNN on FPGA with various architectures. The
point of this algorithm is to reduce the amount of external
memory required for CNN computations by providing direct
access for NCU to external memory areas that are common to
different layers of the CNN. Also we have developed the
algorithms for the reconfiguration of the NCU in the FPGA.

A multifunctional software driver for the Linux kernel OS
was developed for ensure interaction between the FPGA, PS
and external memory. This driver was written by using C
language. The main functions of the driver is following:

• functions for interaction with FPGA registers;

• functions that work with data buffers in external
memory modules;

• functions that mapping the external memory;

• reconfiguration of the NCU in the FPGA;

• interrupt handling, which come from FPGA.

This driver easily adapts to the peculiarities of different the
CU versions and the CNN architectures.

In C++ language, we have developed a library for the
interaction of user with the CU settings. Library functions
allow him to interact with the CU through the character
devices registered by multifunctional driver. Each operation in
this driver is initiated by a user’s command transferred to the
character device through a specific library function.

IV. THE TASK OF STUDYING THE EFFECTIVENESS OF CU

In each of the three variants of CU, was implemented one
of the methods of computations organization discussed above.
The original CNN architecture of the LeNet5 subclass from
[4] was used as a hardware-implemented CNN in CU. This
CNN architecture has the following parameters. The first layer
is a convolutional, the number of input feature maps 3, output
- 6, the kernel size of convolution is 7x7, stride is 1. The
second layer is subsample, the number of input feature maps
is 6, the output - 6, kernel size of the subsample is 2x2, stride
is 2. The third layer is convolutional, the number of input maps
is 6, output - 32, kernel size of convolution is 5x5, stride is 1.
The fourth layer is subsample, the number of input feature
maps is 32, output 32, kernel size of subsample is 2x2, stride
is 2. The fifth layer is convolutional, the number of input
feature maps is 32, output - 100, kernel size of convolution is
5x5, stride is 1. The sixth (fully connected) layer is the
convolution, the number of input feature maps 100, output -
10, kernel size of convolution is 1x1, stride is 1.

Initially, training was carried out on the software-
implemented CNN of this architecture on a sample of images
of hand-written numbers MNIST [5]. It contains 60,000
training images and 10,000 test pairs (tag-image). The CNN
training was carried out using the Caffe library [6], used the
method of back propagation of error and the method of
stochastic gradient descent. Optimization parameters were
taken from the library's training examples. The accuracy of the
classification of handwritten numbers for the software-
implemented CNN of this architecture, using the 32-bit
floating-point format, is 98.7%. The weight coefficients,
obtained during training, then were transferred to each of the
CU variants.

In all experiments, was solved the problem of classifying
each image from 10,000 MNIST test images. The
classification of images was carried out using each of the three
variants of the CU. For classifying images, we used
configurations K1, K2, K3 and K4 of the NCU module
presented in table I. The operating frequency of the NCU in
each of the configurations is 50 MHz.

TABLE I. CONFIGURATIONS OF NCU MODULE

Configuration Name of NCU K1 K2 K3 K4
Number of computational convolution
blocks

6 10 32 100

Number of computational subsample
blocks

6 10 32 32

The performance of each CU version was estimated as the
difference between the time getting the result from the SoC as
a handwritten digit class and the launch time of this CU for
classification. The moments of time were determined using the
standard chrono library of the C++ programming language.
The average time for classifying one image was calculated as
the average of 10,000 times the classification of test images.

There are we also researched the energy consumption of
each variants of CU and their efficiency.

Information & Communication Technologies

248

V. THE RESULTS OF THE RESEARCH AND THEIR

DISCUSSION

Table II shows the results of studying a performance for
two variants of the CU that use Way 1 and Way 2 for
organization of computations.

TABLE II. CU PERFORMANCE WITH WAY 1 AND WAY 2 COMPUTING
ORGANIZATION

Configurations NCU
Average classification time per image, ms

Way 1 Way 2

K1 16,464 15,487

K2 13,985 11,27

K3 6,933 6,579

K4 7,202 5,986

The results from table II show that in the case of the variant
CU implementing Way 2, for all configurations of NCU, there
is a reduction in the average time for classifying one image
with comparing to the variant CU implementing Way 1. At the
same time, optimal performance according to the CU
performance criteria , related to the amount of computing
resources, has a CU with NCU K3 configuration (32
convolution blocks and 32 subsample blocks).

The following series of experiments was carried out for a
variant of CU implemented Way 3 computing organization,
which containing two or three NCU modules with a K3
configuration. The maximum possible number of NCU
modules is three. It is the limit amount of FPGA resources in
the Cyclone V SX SoC. Table III shows the results of these
experiments. For comparison, table III includes the
performance of CU variant that implements Way 1. This way,
like Way 3, takes into account the interaction of the FPGA
with only one external memory module. In experiments when
computations of computations in CU Way 3 for each analyzed
image was performed synchronous launch of NCU modules.

TABLE III. CU PERFORMANCE WITH WAY 1 AND WAY 3 COMPUTING
ORGANIZATION

Performance variants CU Way 1
Way 3

(2 modules
NCU)

Way 3
(3 modules

NCU)
Number of simultaneously
classified images, pcs

1 2 3

Average image
classification time on one
module of the NCU, ms

6,933 7,811 12,763

Average classification time
per image, ms

6,933 3,905 4,161

The best performance has the version of the CU, which
implements Way 3 of the organization of computational
processes with two NCU modules. So the preference should
be given this variant of CU.

The measuring of power consumption in this experimental
shows that the CU variants in organization of computations for
Way 1 and for Way 3 is 5.1 watts. The power consumption of
the variant of the CU implementing the Way 2 of the

organization of computations increases to 7.4 watts. The
reason of such increase covered in connection of another
DDR3 external memory module.

All results obtained in the experiments indicate that taking
into account modern requirements for CVSs in terms of
performance and power consumption, in principle any of the
three CU variants can be used as part of a mobile and high-
performance CVS with low power consumption. However, the
developer must choose the variant of the CU in accordance
with the scale of the real-time work for the CVS.

VI. CONCLUSION

Today, the current research area is focused on the
development of mobile and high-performance CVSs using
modern SoCs. This paper is devoted to the development of a
CU these CVSs. In this CU the hardware is implemented on
the FPGA SoC Cyclone V SX CNN allows to solve the tasks
of classifying objects in images.

Two new ways for organization of computations were
proposed. And different CU variants were implemented based
on proposed functional diagrams. Also algorithmic software
for these CUs was developed.

The task of the researching of the performance was solved
for all proposed variants of the CU with the hardware
implementation of the original architecture of the CNN of the
LeNet5 subclass. The results of carried out research show that
the best performance has a CU version that implements Way
3 of the organization of computations, and preference should
be given to CU with two hardware-implemented neural
computing units. Also we found that the lowest power
consumption have devices that implement Way 1 and Way 3
of the organization of computations.

ACKNOWLEDGMENT

 The reported study was funded by RFBR, project no. 18-
47-700010 р_а.

REFERENCES
[1] Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z,

Karpathy A, Khosla A, Bernstein M, Berg A C, Fei-Fei L. ImageNet
Large Scale Visual Recognition Challenge. International J of Computer
Vision 2015; 115(3): 211-252; DOI: 10.1007/s11263-015-0816-y.

[2] A.P. Beresnev, I.V. Zoev, and N.G. Markov. Research on
convolutional neural networks of yolo class for mobile object detection
system. In Proceedings of 28th International Conference on Computer
Graphics and Vision September 24-27, 2018, Тomsk, Russian
Federation., pages 184–187, 2018.

[3] T. Technologies, “SoCKit - the Development Kit for New SoC Device”
Terasic. [Online]. Available: http://www.terasic.com.tw/cgi-
bin/page/archive.pl?CategoryNo=167&No=816. [Accessed: 24-Jun-
2019].

[4] I.V. Zoev, A.P. Beresnev, N.G. Markov, and A.N. Malchukov. Fpga-
based device for handwritten digit recognition in images. Computer
Optics, 41(6), 2017.

[5] “THE MNIST DATABASE” MNIST handwritten digit database, Yann
LeCun, Corinna Cortes and Chris Burges. [Online]. Available:
http://yann.lecun.com/exdb/mnist/. [Accessed: 24-Jun-2019].

[6] “Caffe” Caffe | Deep Learning Framework, 2019. [Online]. Available:
https://caffe.berkeleyvision.org/. [Accessed: 24-Jun-2019].

Information & Communication Technologies

249

