
INFORMATION AND COMMUNICATION TECHNOLOGIES AND SERVICES VOLUME: 17 | NUMBER: 4 | 2019 | DECEMBER

Introduction to the Computation Offloading from
Mobile Devices to the Edge of Mobile Network

Jakub DOLEZAL, Tomas ZEMAN

Department of Telecommunication Engineering, Faculty of Electrical Engineering,
Czech Technical University in Prague, Jugoslavskych partyzanu 1580/3, 160 00 Prague, Czech Republic

jakub.dolezal@fel.cvut.cz, tomas.zeman@fel.cvut.cz

DOI: 10.15598/aeee.v17i4.2695

Abstract. This paper introduces the concept of Small
Cell Cloud (SCC) composed of multiple Cloud-enabled
Small Cells (CeSCs), which provide radio connection
for mobile User Equipment (UE) such as smart-phones
or wearables such as smart glasses. Moreover, CeSCs
host computations offloaded from UEs in a way simi-
lar to centralized cloud, yet different in its proximity to
users. Proposed client-server architecture of SCC con-
veys mechanisms for moving offloaded computations
from the UEs to CeSCs. Real-life implementation of
the SCC architecture relies on custom-developed Of-
floading Framework which is responsible for low-level
communication between the UE and the SCC. The Of-
floading Framework is accompanied by an Augmented
Reality (AR) app, which employs intensive computa-
tions for discovery of places of interest. Such app is
latency-sensitive, a criterion which makes computation
offloading beneficial due to its ability to decrease la-
tency. The combination of the Offloading Framework
and the AR app makes up an SCC testbed used for fur-
ther performance evaluation. Numerous measurements
are carried out to examine the impact of various pa-
rameters. Based on Proof-of-concept implementation
and thorough measurements, it has been revealed that
computation offloading can decrease overall latency as
much as to 47 % and energy consumption on the UE
side to 56 %.

Keywords

Computation offloading, performance evalua-
tion, Small Cell Cloud.

1. Introduction

Current advances of mobile User Equipment (UE),
such as smartphones, tablets and wearables (including
smart glasses), lead to the state of omnipresent con-
nection to the Internet and subsequent heavy reliance
on the server side. Mobile developers largely exploit
this situation, pushing the boundaries of the UE and
systematically adding more logic to mobile apps, which
naturally leads to high utilization of CPU and short-
ened battery life. Although the UE gradually becomes
much more powerful than in the past, offering more
raw power to developers and mobile apps, this trend
has to face the limitation of battery capacity, which in
turn limits the duration of computations behind the
apps. Even though current UE is equipped with pow-
erful CPUs, the cost of energy for exploiting its full
potential may prove to be very high [1].

The traditional way to overcome battery capacity
problem is simply to let the server-side or cloud per-
form the computation-intensive logic operations. Many
techniques facilitate such effort, for example Remote
Procedure Call (RPC). The key idea behind RPC is
to let a mobile app act as a client to call a procedure
or a method deployed on a remote computer accessi-
ble through a network [9]. The theoretically unlimited
capacity and scalability of cloud lead to the idea of re-
placing the standard RPC by computation offloading.
The difference from RPC consists in the possibility to
call a method in a unified manner without explicitly
specifying where the responsible core resides – be it
either a mobile app or cloud. The decision should be
made by a dedicated software module (decision maker)
which ensures that energy or latency savings are at-
tained. Such decision relies on profiling of the previ-
ously executed computations and on estimation of the
upcoming ones. Profiling always involves energy con-
sumption. Moreover, certain CPU and memory usage
data are collected for on-UE execution, as well as radio

© 2019 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 413

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DSpace at VSB Technical University of Ostrava

https://core.ac.uk/display/286575676?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

INFORMATION AND COMMUNICATION TECHNOLOGIES AND SERVICES VOLUME: 17 | NUMBER: 4 | 2019 | DECEMBER

conditions and resource allocation for offloaded execu-
tion.

In traditional mobile networks, communication in-
volves multiple routers, each contributing to the overall
latency. Moreover, Radio Access Network (RAN) con-
sisting of widely-spread Macro Cells (MCs) can con-
tribute to the latency even more in case of traffic con-
gestion by degrading the quality of service [1]. Hence,
relying on mobile data networks when offloading to the
centralized cloud can introduce major drawbacks for
real-time apps which require low latency, such as aug-
mented or virtual reality.

To overcome these difficulties, the idea of Small Cell
Cloud (SCC) consisting of Cloud-enabled Small Cells
(CeSCs) is introduced [2]. The purpose of SCC is
to bring computation infrastructure to the vicinity of
users through decentralization of mobile network and
cloud. Basic Small Cells (SCs) were supposed to be
deployed in crowded areas such as squares, offices,
schools, shopping malls etc. to increase coverage and
network throughput and to decrease energy consump-
tion and latency [8]. The CeSCs merge the capabilities
of the SCs with cloud computing – having sufficiently
powerful CPU, memory and special middleware to be
able to perform user computations on-demand. As-
signing of hosting CeSCs to offloading computations is
orchestrated by Small Cell Manager (SCM).

There is a set of similar technologies, such as Fog
Computing or Mobile Edge Computing (MEC), on the
same basis as SCC. The MEC is an innovative stan-
dard that should merge cloud computing and mobile
networks [6, 7]. The difference between MEC and SCC
is that the former is a general architecture which brings
computations required for radio allocation from the
core of a mobile network to MCs on its edge to mini-
mize signaling overhead, while the latter seeks for a way
to spare some portion of MEC’s computation capacity
for the host users’ computations.

In the future, the MEC could serve as a technol-
ogy enabler for a new generation of low-latency mo-
bile apps relying on intensive computations hosted by
CeSCs, thus saving battery life. The the recent years,
a deployment of MEC has surged worldwide [29]. Yet
its impact is limited to increased radio coverage and
throughput as the means of providing better data con-
nectivity mostly for smartphones. Data carriers are in
a constant seek to expand their business and to make
a transition from mere data delivery to become ser-
vice providers. Deploying storage in a proximity to
users in a form of Content Delivery Networks (CDNs) is
a common practice [31] exercised by major cloud com-
panies [30]. Adding computation faculties seems to be
the next step to reduce latency, yet doing so have to
be preceded by thorough examination of proper archi-
tectures and technologies.

The contribution presented in this paper includes the
description of offloading architecture, proof-of-concept
implementation of the offloading framework, and fi-
nally performance evaluation for various metrics and
parameters. Due to the novelty of SCC that results
in the lack of appropriate hardware or firmware, soft-
ware emulation is used as a workaround to approximate
real-life conditions as close as possible.

The rest of this paper is organized as follows: the
next section provides an overview of related work,
Sec. 3. introduces the SCC testbed includ-
ing the distributed nature of computation offloading,
Sec. 4. explains measurement setup, Sec. 5.
demonstrates advantages of the SCC by showing per-
formance measurements, and finally Sec. 6. con-
cludes the paper.

2. Related Work

The field of computation offloading is mapped by vari-
ous papers pointing out two major problems. The first
one is device profiling which aims to gather low-level
information about CPU and memory usage. The sec-
ond one is decision making whether a piece of code
should be offloaded, based on previous profiling.

More general approach of architecture overview and
discussion on suitable apps is followed in [10]. However,
any experiments, algorithm proposals or new contribu-
tions are lacking. Theoretical simulations without any
real-life measurements are provided by [11].

The hands-on results are delivered by papers exam-
ining various offloading-ready apps, including games,
face recognition and translation from one language to
another, accompanied by their performance evalua-
tions over Wi-Fi and 3G networks [12]. Multiple of-
floading techniques are evaluated also by [13]. Radio-
related offloading conditions are analyzed by [14]. An-
other offloading framework is rigorously described and
its performance evaluated for various scenarios, includ-
ing N-queens problem, face detection, virus scanning
and image combination, in [15].

To conclude, the existing papers seem to prefer more
theoretical approach or rely on benchmarks only. Such
methodology omits more complicated problems which
emerge only in real-life scenarios. This paper strives
to share deeper knowledge of computation offloading,
which in turn requires a real-life, non-trivial app pre-
pared for thorough examination.

Some of the existing papers focus on more gen-
eral radio- or cloud-related aspects, not really deal-
ing with the offloading itself: distribution of payload
over 5G networks, resource allocation and radio sig-
naling [16]; the benefits of infrastructure virtualization

© 2019 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 414

INFORMATION AND COMMUNICATION TECHNOLOGIES AND SERVICES VOLUME: 17 | NUMBER: 4 | 2019 | DECEMBER

and software-defined networks [17]; improvements of
TCP performance of high-throughput radio [18].

The scalability of Mobile Edge Computing for of-
floading is assessed in [26]. A radio-based architecture
is proposed with focus on the domain of Internet of
Things. A similar approach has been published in [28].
The deployment of MEC along software defined ultra-
dense networks is further described [27]. The paper
proposes various models for communication of control-
ling.

Models for computation offloading to the SCC are
proposed along with theoretical discussion, yet not re-
ally proven in any proof-of-concept setup linked to real
conditions [19]. The femto-cloud is a concept sharing
some traits with the MEC, including the computation
offloading, but only simulations results are provided to
demonstrate its benefits [20].

To conclude the findings mentioned above, MEC
is one of the main fields of mobile engineering being
backed by an array of contributions. Yet the majority
of them examines MEC from radio perspective, often
taking simulation approach of evaluation. Computa-
tion offloading is indeed seen as a part of MEC tech
stack, yet the evolution of proposed architectures is
aligned with radio backgrounds of their authors. The
lack of testbeds serving for proof-of-concept purposes
is surely the major setback for the community.

This paper introduces MEC testbed composed of em-
ulated SCs. Each SC is built on top of general-purpose
hardware and customized with communication- and
offloading-enabled software. This way facilitates an in-
sight into offloading and an investigation of real MEC
behavior.

3. SCC Architecture

This section explains the offloading architecture of the
Small Cell Cloud (SCC) and its proof-of-concept im-
plementation as depicted in Fig. 1. The core con-
cepts of the Small Cell Cloud (SCC) are explained
in [2]. The SCC contains multiple Cloud-enabled Small
Cells (CeSCs), each acting as both a radio access point
for the UE and a host for offloaded computations de-
manded by the UE [3]. The computations inside the
CeSCs are managed by a hypervisor running one or
more Virtual Machines (VM), depending on users’s ac-
tivity and CeSCs hardware configuration. The UE is
connected to the SCC through one of the CeSCs via
Wi-Fi (the current setup) or LTE (the desired final
state). Offloaded computations may be hosted by the
CeSC through which the UE is connected (the optimal
state) or by another one if the former does not have
spare computational capacity. Users’ privacy is very
important; when the offloaded computation is finished

and the results are sent back to the UE, the allocated
memory is purged so that the results cannot be ac-
cessed by a subsequent user.

(a) Components of CeSC consisting of radio end-point and com-
putation hosting based on a hypervisor and the developed

Offloading Framework.

(b) Network topology of the SCC.

(c) Integration of the app with the Offloading Framework.

Fig. 1: The architecture of Small Cell Cloud (SCC).

The CeSCs are assigned the incoming offloading re-
quests by the overseer entity called Small Cell Manager
(SCM). The SCM strives to minimize latency and over-

© 2019 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 415

INFORMATION AND COMMUNICATION TECHNOLOGIES AND SERVICES VOLUME: 17 | NUMBER: 4 | 2019 | DECEMBER

head within the SCC and to optimize resource usage
across the SCCs [4]. It is the responsibility of SCM
to know the SCC topology and status, health and free
capacity of all CeSCs within the SCC. The commu-
nication protocol between the SCM and the CeSCs is
concealed from the UE for security reasons; the CeSCs
communicate with the SCM on behalf of the UE [3].
To prevent the single point of failure design flaw, there
is one or even more secondary SCMs shadowing the
current knowledge of the primary SCM so that they
can replace the primary one fast.

3.1. Offloading Framework

The Offloading Framework is a piece of software which
facilitates the communication between the UE and the
SCC. The UE stack of the Offloading Framework is
added to offloading-enabled apps during compilation.
In runtime, the UE stack acts as a client on the app’s
behalf and handles networking and low-level system
operations required for the offloading to work.

A part of offloading-enabled app performs heavy
computations which can be offloaded. In the termi-
nology of the Offloading Framework, this part is called
offloadable module and its execution is monitored and
profiled by the UE stack. The module is designated to
be offloadable using Java annotation [22]. Other parts
of the app are not relevant for offloading, mostly due
to low latency or direct access to UE’s hardware such
as screen or location sensor. After the app is launched,
the UE stack begins with SCC connection and mod-
ule profiling. Once the SCC becomes available, the UE
stack authorizes and authenticates itself to provide se-
curity and privacy. Then the app installation file is
retrieved from the UE and uploaded to the SCC to be
ready for offloaded execution.

Future versions will cease this perpetual uploading
and deliver a repository of certified offloading-enabled
apps. The repository will provide a stack of functions
ranging from basic storage to app-specific profiling in-
formation.

From now on, executions of offloadable modules are
intercepted in runtime and a decision is made if the ex-
ecution will proceed on-UE or offloading request to the
SCC should be made instead. The current implemen-
tation provides limited support for runtime decisions;
a constant decision is made instead during performance
evaluation below. The implementation of runtime de-
cision making is underway, so the UE stack will be able
to learn from the previous executions and to predict la-
tency and energy consumption in the future. In case of
offloaded execution, the UE stack sends offloading re-
quest to the SCC through the CeSC to which it is con-
nected. This CeSC asks the SCM to select which CeSC
should host the computation. If the hosting CeSC is

different from the CeSC to which the UE is connected,
the latter simply forwards the offloading request to the
former, as shown in Fig. 2. As soon as the offloading
request arrives to the hosting CeSC, its data are passed
to the VM Stack of the Offloading Framework which is
pre-installed on the VM image.

Fig. 2: Resource allocation at the beginning of the offloading
process – the CeSC serves as a relay between the UE
and the VM.

The logic behind switching between the on-UE and
offloaded executions of the offloadable module is trans-
parent to the calling part of the app which is guaran-
teed to obtain indistinguishable results. The technique
of calling the same method on the UE and VM side is
accomplished collaboratively by both stacks of the Of-
floading Framework. Signature of the desired method
along with input data is serialized by the UE stack,
then transferred to the VM, and finally deserialized by
the VM stack which launches the method using Java
reflection [21], waits for its results and sends them back
to the UE. Currently, the Framework supports Android
OS [23]; the VMs run Android x86 image.

The already existing apps can leverage the offloading
by annotating the classes containing offloadable code
with the @Offloadable keyword defined by the Offload-
ing Framework. Methods of such classes are divided to
offloadable and non-offloadable; the former have to be
annotated with the same @Offloadable keyword. More-
over, designated parameters and class fields with direct
impact on computation complexity are also annotated
by @Variable keyword. While some papers propose
automatic learning of offloading algorithms (which pa-
rameters and fields are important), such approach is
hard to comprehend and predict for a developer. In-
stead, the Offloading Framework approach is to let
a developers make decisions based on their knowledge
of their own code.

All method calls to the annotated classes are in-
tercepted in runtime by bytecode instrumentation on
low level of Android Runtime. Calls to non-offloadable
methods are intercepted, exercised on the target class
yet also stored and queued for later offloading execu-
tion. Calls to offloadable methods are intercepted in
a different manner – it is first decided if offloading is
beneficial, based on variable values retrieved in run-

© 2019 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 416

INFORMATION AND COMMUNICATION TECHNOLOGIES AND SERVICES VOLUME: 17 | NUMBER: 4 | 2019 | DECEMBER

time using Java Reflection mechanism. In case of of-
floading execution, the previously queued calls of non-
offloadable methods are serialized and sent to the VM
as a part of the offloading payload. This approach is
based on convention over configuration approach while
striving for unified way of method calls. No mat-
ter if offloading actually happens, calls of both non-
offloadable and offloadable methods are handled as lo-
cal calls without dealing with stubs, brokers or any
similar concepts typical for Remote Procedure Calls.

3.2. Offloading Communication

This section describes in detail how all elements of the
SCC mentioned above work together to make offload-
ing work. The CeSCs firmware supports data adding,
removing and purging on demand, hence allowing fast
changes of the SCC topology and providing additional
computation capacity exactly in the user’s location.
The firmware is built on top of Xen hypervisor [24]
managing an array of VMs, which actually host of-
floaded computations. Computations hosted by the
VMs are stateless for higher performance and security.
Subsequent offloading requests demanded by the same
UE can be hosted by different VMs and even CeSC de-
pending on the total amount of offloaded executions.

There are more strategies how the CeSC can report
its status to the SCC. One of them repeatedly uploads
status data to the SCM including CPU and memory
utilization so that the SCM can assign offloading re-
quests accordingly [3]. Moreover, the SCC is capable
of distributing a single offloading request to multiple
parallel VMs, each having a disjunctive subset of in-
put data. Although it is preferable to keep all parallel
VMs on the same CeSC due to networking overhead,
it is not always possible due to resource fragmenta-
tion. In such situation, parallel VMs are selected by
the SCM with the criterion of minimum networking
overhead and close position regarding the SCC topol-
ogy. The workload employs single master – multiple
slaves approach as shown in Fig. 3. The master VM
divides the workload to slave VMs, merging the slaves’
contribution into the response to the UE. The paral-
lelization is transparent to the UE since the UE stack
communicates with the VM stack of the master only.

Regarding the optimization towards efficient offload-
ing patterns, the apps should always break too complex
modules into simpler ones. Such pattern makes the
process of decision-making faster and less error-prone;
it also reduces networking overhead due to sending
data to the SCC and receiving data by the UE. Even
the adaptation to quickly changing radio conditions is
much faster if execution can return quickly before the
previously considered conditions change [5].

Fig. 3: Calling of a computation-intensive method is inter-
cepted by Java reflection, decision and subsequent of-
floaded execution is done transparently for the devel-
oper.

4. Experimental Setup

The setup of performance evaluation is thoroughly de-
scribed in this section. In order to demonstrate how
offloading can improve execution of intensive computa-
tions, the Offloading Framework needs some app which
actually employs such computations while requiring
low latency. For this reason, an Augmented Reality
app Percipio was selected to serve as the base scenario
for all further measurements in this paper. The pub-
lic version of Percipio can be obtained from Google
Play [25]. The performance evaluation is conducted
with slightly modified version integrated with the Of-
floading Framework.

Percipio runs on Android UE and discovers places of
interest visible in the UE’s field of vision. A marker
for each discovered place is than rendered on the UE’s
screen as an overlay over its camera image. Augmented
Reality is a perfect example of technology suitable for
computation offloading due to its CPU-heavy computa-
tions running in a loop and loosely coupled logic behind
place discovery. Percipio is installed on Sony Xperia Z3
smartphone and Samsung Galaxy Tab 10.1 tablet, the
configuration of which is shown in Tab. 1. Unfortu-
nately, SCC is not yet commercially available at the
time of writing this paper. Software emulation was
chosen instead as the only means of delivering real-
life results. CeSCs within SCC run on general-purpose
servers, the configuration of which is specified in Tab. 2.
Instead of using LTE connection, the SCC is available
through a dedicated Wi-Fi network.

While the on-UE latency is caused by CPU computa-
tions only, the total offloading latency consists of three
subsequent phases: 1) the radio phase contains both
sending and receiving of data between the UE and the
CeSC; 2) during the storage phase, definitions of places
are loaded from an external storage by the VM; 3) dur-
ing the calculation phase, computations are run by the
VM instead of the UE. The on-UE and offloaded execu-
tions of Percipio are compared in terms of the following
metrics:

© 2019 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 417

INFORMATION AND COMMUNICATION TECHNOLOGIES AND SERVICES VOLUME: 17 | NUMBER: 4 | 2019 | DECEMBER

• Latency – is the measure of time from the begin-
ning of a computation to its end. The exact na-
ture of latency depends on the execution type. For
an on-UE execution, it is simply the duration of
computation in the UE’s CPU. For an offloaded
execution, the latency is a sum of partial steps be-
hind offloading, such as data upload from the UE
to the SCC, data download from the SCC to the
UE and computation on the SCC-side.

• Energy – means how much energy Percipio con-
sumes during computation or offloading. For an
on-UE execution, the energy is mostly consumed
by CPU. For an offloaded execution, the energy is
mostly consumed by radio transmission, since the
UE’s CPU is almost idle. In both cases, the energy
does not include the consumption of background
Android processes and screen.

Results for the aforementioned metrics depend on
Percipio-relevant parameters explained below. These
parameters are set in runtime before conducting mea-
surements to reveal their impact on offloading.

• Discovery Range sets how distant a place of in-
terest can be from the UE’s location in order to
be loaded by Percipio into memory and effectively
become a part of the input data. Higher Discovery
Range increases the number of places loaded and
the volume of the input data. Double Discovery
Range increases the volume of the input data four
times, which means quadratic incrementation of
computation complexity.

• Parallelization sets the size of elements working
in parallel on place discovery. The exact meaning
of an element depends on execution type. For an
on-UE execution, the element is a simple thread
having been assigned to the UE’s CPU core. For
an offloaded execution, the element is a thread of
CeSC being managed by a hypervisor. Computa-
tion workload is always distributed equally among
all available elements. Parallelization value of one
means that the computation is carried over in a se-
quential way as it is intended for a benchmarking
purpose.

Every measurement is run in a cycle and repeated
129 times. Data from the first iteration are removed
from the final results to prevent pollution from cold-
start – allocation of threads, IO operations, etc.

5. Performance Evaluation

Figure 4 shows the impact of different values of dis-
covery range on the latency. For very short discovery

Tab. 1: Configuration of the measured UE.

Specification UE 1 UE 2
CPU Clock 2.5 GHz 1.9 GHz

RAM Memory 3 GB 2 GB

Battery Capacity 3100 mAh 8220 mAh

Android Version 6.0.1 4.4

Tab. 2: Configuration of CeSC hosting the computations.

CPU Type CPU Clock Memory
Intel Core i5 2.4 GHz 8 GB

ranges (up to 200 m), the complexity of computations
is low. For UE 1, the latency during offloading is higher
for discovery range 100 and 200 m, respectively. Con-
versely, offloading latency for UE 2 is reduced for the
same discovery ranges. This difference is caused by in-
ferior CPU performance of UE 2. It is evident that
offloading of low-complex computations from powerful
UE can mitigate faster completion on the VM side due
to offloading radio overhead. Due to quadratic com-
putation complexity, the on-UE latency steeply rises
from discovery range of 300 m onwards. Although
the absolute value of latency of an offloaded execu-
tion also slowly increases for larger values of discovery
range, more powerful CPU on CeSC side is capable of
completing it much faster compared to the UE’s CPU.
Moreover, the overhead of offloading has lesser impact
on the overall latency for more complex computations.
For discovery range of 300 m, offloading decreases the
latency by 44 to 61 % for the UE 1 and UE 2, respec-
tively. For discovery range of 500 m, offloading reduces
the latency even more by 46 to 48 % for the UE 1 and
UE 2, respectively. Gradually increasing computation
complexity seems to diminish the differences between
various UE types. This is apparently caused by the
differences in CPU performance.

100 200 300 400 500
Discovery Range (m)

0.0

0.2

0.4

0.6

0.8

La
te

nc
y

(s
)

Fig. 4: Impact of discovery range of an Augmented Reality app
on latency.

© 2019 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 418

INFORMATION AND COMMUNICATION TECHNOLOGIES AND SERVICES VOLUME: 17 | NUMBER: 4 | 2019 | DECEMBER

Figure 5 depicts the impact of discovery range on
the energy consumption. For discovery ranges up to
200 m, offloading consumes more energy compared to
on-UE execution. However, the absolute amount of en-
ergy spent by both on-UE and offloaded executions is
negligible for both UE types (less than 200 mJ). For
discovery range of 300 m, energy consumption while
offloading is further decreased by 27 to 43 % for the
UE 1 and UE 2, respectively. For discovery range of
500 m, offloading yields even more significant decrease
by 44 to 56 % for the UE 1 and UE 2, respectively.
The efficiency of offloading increases for more complex
computations, since the volume of data transmitted
between the UE and the CeSC rises much slower com-
pared to the computation complexity. This pattern
makes offloading efficiency actually dependent on radio
conditions instead of computation complexity. Signal
strength of radio connection was kept constant dur-
ing these measurements. Complementary, dedicated
measurements below examine the impact of decreased
throughput.

100 200 300 400 500

Discovery Range (m)

0.0

0.2

0.4

0.6

0.8

E
ne

rg
y

(J
)

Fig. 5: Impact of discovery range of an Augmented Reality app
on energy consumption.

Figure 6 shows how parallelization influences the la-
tency. The discovery range of 300 m is used, hence
the latency for no parallelization corresponds to the
results above. On-UE parallelization is implemented
by threads running on available CPU cores. For UE 1,
each running thread decreases the latency – 2 threads
by 17 %, 3 threads by 11 %, and 4 threads by 9 % com-
pared to no parallelization, 2 threads, and 3 threads,
respectively. For UE 2, more threads also reduce the
latency – 2 threads by 25 %, 3 threads by 10 %,
and 4 threads by 8 % compared to no parallelization,
2 threads, and 3 threads, respectively. The paralleliza-
tion scaling hereby exponentially decreases when run-
ning more threads. Although the UE 1 has a quad-
core CPU, and therefore is capable of running up to
4 threads in parallel, the necessity to access shared
memory degrades its computation power. Actually,
running 3 or more threads does not exploit CPU cores

at 100 % – mean utilization of each core is 77 % for
3 threads and 62 % for 4 threads. Offloading paral-
lelization distributes workload among multiple VMs, as
described in Subsec. 3.2. For UE 1, putting 2 VMs
to work decreases the latency by 14 % compared to
no parallelization. Other VMs added gradually further
decrease the latency even more – 3 VMs by 15 % and
4 VMs by 4 % compared to 2 VMs and 3 VMs, respec-
tively. For UE 2, having 2 VMs reduces the latency by
13 % compared to no parallelization. More VMs re-
duce the latency in a similar manner – 3 VMs by 15 %
and 4 VMs by 6 % compared to 2 VMs and 3 VMs,
respectively. Similarly to on-UE execution, paralleliza-
tion scaling also exponentially decreases when running
more VMs. This is caused by the role of offloading and
parallelization overhead, which mitigates the decreased
computation time.

1 2 3 4

Parallelization

0.0

0.1

0.2

0.3

0.4

0.5

La
te

nc
y

(s
)

Fig. 6: Impact of parallelization on latency; parallelization is
achieved by CPU cores for on-UE execution or by VMs
for offloaded execution.

Figure 7 depicts how parallelization influences the
energy consumption. For UE 1, adding more threads
one by one decreases the energy consumption –
2 threads by 9 %, 3 threads by 13 %, and 4 threads
by 6 % compared to no parallelization, 2 threads, and
3 threads, respectively. For UE 2, the pattern of re-
duced energy consumption for more threads remains
the same – 2 threads by 10 %, 3 threads by 12 %,
and 4 threads by 8 % compared to no parallelization,
2 threads, and 3 threads, respectively. There are ac-
tually two complementary patterns that influence the
overall energy consumption – while each working CPU
core increases the consumption, the decreased latency
decreases it. The combination of these patterns ex-
plains why the energy consumption is slightly reduced.
For offloading parallelization, the energy consumption
of 250 mJ is constant for both UE types, no matter how
many VMs are running. The energy is actually spent
by the UE on transferring data between itself and the
master CeSC, while the CPU is idle when waiting for
the results. Since the volume of data is the same for

© 2019 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 419

INFORMATION AND COMMUNICATION TECHNOLOGIES AND SERVICES VOLUME: 17 | NUMBER: 4 | 2019 | DECEMBER

various numbers of VMs, the energy consumption re-
mains constant. The amount of consumed energy actu-
ally depends on signal strength and network through-
put.

1 2 3 4

Parallelization

0.0

0.1

0.2

0.3

0.4

0.5

0.6

E
ne

rg
y

(J
)

Fig. 7: Impact of parallelization on energy consumption; paral-
lelization is achieved by CPU cores for on-UE execution
or by VMs for offloaded execution.

6. Conclusions

The architectures of SCC and the underlying Offload-
ing Framework are introduced in this paper and their
key principles are explained. Offloading of computa-
tions from the UE to the MEC can be beneficial for
computation-intensive apps that require low latency,
such as Virtual or Augmented Reality, e.g. Percipio
app. Percipio conducts intensive computations in or-
der to discover places visible in the user’s field of vi-
sion. Since MEC is not commercially available, soft-
ware emulation is performed on general-purpose hard-
ware. Contemporary deployments of MEC are limited
to radio access while omitting computation faculties.
The Offloading Framework can be used for real An-
droid apps without any further requirements on the
UE-side. The future apps can be easily adapted to
support computation offloading while the framework
handles low-level communication with the MEC. Such
scenario can enable future business models for mobile
carriers by offering MEC’s spare computation capac-
ity to third parties. Communication overhead in such
case is bound to be very small due to the proximity of
MEC to users, hence providing an edge to apps such
as games, Augmented and Virtual Reality.

Offloading of Percipio’s computations from the UE
to the SCC provides significant reduction (up to 47 %)
of latency. At the same time, energy consumption can
be decreased by up to 56 %. It is important to men-
tion that the actual latency and energy savings de-
pend on the scale of computations, effectiveness of data

transfer from the UE to the SCC and vice versa, and
CPU/chipset of the UE. The data transfer is the main
element of offloading overhead, since an app’s internal
state has to be converted to low-level data and sent
to the SCC. Until a reply arrives back to the UE, its
CPU is actually idle, and therefore most of energy is
spent during radio transmission. Another CPU-heavy
app running on a different UE may not yield the same
results. The general criterion of suitability of a partic-
ular app for offloading depends on the comparison be-
tween the computation and offloading overheads. Low-
complexity computations have lower latency and en-
ergy consumption than offloading overhead, and there-
fore offloading does not bring any savings in such case.

Acknowledgment

This paper is supported by the CTU research grant
No. SGS16/156/OHK3/2T/13.

References

[1] DOLEZAL, J. and L. KENCL. Improving QoE
of SIP-based Automated Voice Interaction in Mo-
bile Networks. In: 8th International Conference on
Network and Service Management and Workshop
on Systems Virtualiztion Management. Las Vegas:
IEEE, 2012, pp. 329–335. ISBN 978-1-4673-3134-
0.

[2] LOBILLO, F., Z. BECVAR, M. A. PUENTE,
P. MACH, F. LO PRESTI, F. GAMBETTI,
M. GOLDHAMER, J. VIDAL, A. K. WIDI-
AWAN and E. CALVANESSE. An architecture for
mobile computation offloading on cloud-enabled
LTE small cells. In: Wireless Communications
and Networking Conference Workshops. Istanbul:
IEEE, 2014, pp. 1–6. ISBN 978-1-4799-3086-9.
DOI: 10.1109/WCNCW.2014.6934851.

[3] PUENTE, M. A., Z. BECVAR, M. ROHLIK,
F. LOBILLO and E. C. STRINATI. A Seam-
less Integration of Computationally-Enhanced
Base Stations into Mobile Networks towards 5G.
In: 81st Vehicular Technology Conference. Glas-
gow: IEEE, 2015, pp. 1–5. ISBN 978-1-4799-8088-
8. DOI: 10.1109/VTCSpring.2015.7145645.

[4] MUNOZ, O., A. PASCUAL-ISERTE and J. VI-
DAL. Optimization of Radio and Computational
Resources for Energy Efficiency in Latency-
Constrained Application Offloading. IEEE
Transactions on Vehicular Technology. 2015,
vol. 64, iss. 10, pp. 4738–4755. ISSN 0018-9545.
DOI: 10.1109/TVT.2014.2372852.

© 2019 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 420

https://doi.org/10.1109/WCNCW.2014.6934851
https://doi.org/10.1109/VTCSpring.2015.7145645
https://doi.org/10.1109/TVT.2014.2372852

INFORMATION AND COMMUNICATION TECHNOLOGIES AND SERVICES VOLUME: 17 | NUMBER: 4 | 2019 | DECEMBER

[5] BECVAR, Z., J. PLACHY and P. MACH. Path
selection using handover in mobile networks with
cloud-enabled small cells. In: 25th Annual Interna-
tional Symposium on Personal, Indoor, and Mo-
bile Radio Communication. Washington: IEEE,
2014, pp. 1480–1485. ISBN 978-1-4799-4912-0.
DOI: 10.1109/PIMRC.2014.7136402.

[6] ETSI White Paper No. 11. Mobile Edge Com-
puting: A key technology towards 5G. London:
The European Telecommunications Standards In-
stitute (ETSI), 2015.

[7] ETSI GS MEC 003 V1.1.1. Mobile Edge Comput-
ing (MEC); Framework and Reference Architec-
ture. Sophia Antipolis: The European Telecom-
munications Standards Institute (ETSI), 2016.

[8] ANDREWS, J. G., S. BUZZI, W. CHOI,
S. V. HANLY, A. LOZANO, A. C. K. SOONG
and J. C. Zhang. What Will 5G Be?. IEEE Jour-
nal on Selected Areas in Communications. 2014,
vol. 32, iss. 6, pp. 1065–1082. ISSN 0733-8716.
DOI: 10.1109/JSAC.2014.2328098.

[9] CERAMI, E. Web Services Essentials: Dis-
tributed Applications with XML-RPC, SOAP,
UDDI & WSDL. 1st ed. Sebastopol: O’Reilly Me-
dia, Inc., 2002. ISBN 0-596-00224-4.

[10] LIU, F., P. SHU, H. JIN, L. DING, J. YU, D. NIU
and B. LI. Gearing Resource-Poor Mobile Devices
with Powerful Clouds: Architectures, Challenges,
and Applications. IEEE Wireless Communica-
tions. 2013, vol. 20, iss. 3, pp. 14–22. ISSN 1536-
1284. DOI: 10.1109/MWC.2013.6549279.

[11] CHEN, X. Decentralized Computation Offload-
ing Game for Mobile Cloud Computing. IEEE
Transactions on Parallel and Distributed Systems.
2015, vol. 26, iss. 4, pp. 974–983. ISSN 1045-9219.
DOI: 10.1109/TPDS.2014.2316834.

[12] CUERVO, E., A. BALASUBRAMANIAN,
D. CHO, A. WOLMAN, S. SAROIU, R. CHAN-
DRA and P. BAHL. MAUI: Making Smartphones
Last Longer with Code Offload. In: 8th In-
ternational Conference on Mobile Systems,
Applications, and Services. San Francisco:
ACM, 2010, pp. 49–62. ISBN 978-1-60558-985-5.
DOI: 10.1145/1814433.1814441.

[13] GENG, Y., W. HU, Y. YANG, W. GAO and
G. CAO. Energy-Efficient Computation Offload-
ing in Cellular Networks. In: 23rd International
Conference on Network Protocols. San Francisco:
IEEE, 2015, pp. 145–155. ISBN 978-1-4673-8295-
3. DOI: 10.1109/ICNP.2015.20.

[14] BARBERA, M. V., S. KOSTA, A. MEI and
J. STEFA. To Offload or Not to Offload?

The Bandwidth and Energy Costs of Mobile
Cloud Computing. In: 2013 Proceedings IEEE
INFOCOM. Turin: IEEE, 2013, pp. 1285–
1293. ISBN 978-1-4673-5944-3. DOI: 10.1109/IN-
FCOM.2013.6566921.

[15] KOSTA, S., A. AUCINAS, P. HUI, R. MORTIER
and X. ZHANG. ThinkAir: Dynamic resource
allocation and parallel execution in the cloud
for mobile code offloading. In: 2012 Proceedings
IEEE INFOCOM. Orlando: IEEE, 2012, pp. 945–
953. ISBN 978-1-4673-0773-4. DOI: 10.1109/INF-
COM.2012.6195845.

[16] BARBAROSSA, S., S. SARDELLITTI and
P. DI LORENZO. Communicating While
Computing: Distributed mobile cloud com-
puting over 5G heterogeneous networks.
IEEE Signal Processing Magazine. 2014,
vol. 31, iss. 6, pp. 45–55. ISSN 1053-5888.
DOI: 10.1109/MSP.2014.2334709.

[17] LIU, J., T. ZHAO, S. ZHOU, Y. CHENG
and Z. NIU. CONCERT: A Cloud-Based Ar-
chitecture for Next-Generation Cellular Sys-
tems. IEEE Wireless Communications. 2014,
vol. 21, iss. 6, pp. 14–22. ISSN 1536-1284.
DOI: 10.1109/MWC.2014.7000967.

[18] TAORI, R., Y. B. CHANG, H. J. KANG,
S. K. BAEK, Y. M. SON and J. S. PARK. Cloud
Cell: Paving the way for Edgeless Networks.
In: Global Communications Conference. Atlanta:
IEEE, 2013, pp. 3546–3552. ISBN 978-1-4799-
1353-4. DOI: 10.1109/GLOCOM.2013.6831623.

[19] CHEN, X., L. JIAO, W. LI and X. FU. Effi-
cient Multi-User Computation Offloading for
Mobile-Edge Cloud Computing. IEEE/ACM
Transactions on Networking. 2016, vol. 24,
iss. 5, pp. 2795–2808. ISSN 1063-6692.
DOI: 10.1109/TNET.2015.2487344.

[20] HABAK, K., M. AMMAR, K. A. HARRAS
and E. ZEGURA. Femto Clouds: Leveraging
Mobile Devices to Provide Cloud Service at
the Edge. In: 8th International Conference
on Cloud Computing. New York: IEEE,
2015, pp. 9–16. ISBN 978-1-4673-7287-9.
DOI: 10.1109/CLOUD.2015.12.

[21] Oracle Corporation. Trail: The Reflection API.
In: Oracle: The Java™ Tutorials [online]. 2019.
Available at: https://docs.oracle.com/
javase/tutorial/reflect/.

[22] Oracle Corporation. Lesson: Annotations. In: Or-
acle: The Java™ Tutorials [online]. 2019.
Available at: https://docs.oracle.com/
javase/tutorial/java/annotations/.

© 2019 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 421

https://doi.org/10.1109/PIMRC.2014.7136402
https://doi.org/10.1109/JSAC.2014.2328098
https://doi.org/10.1109/MWC.2013.6549279
https://doi.org/10.1109/TPDS.2014.2316834
https://doi.org/10.1145/1814433.1814441
https://doi.org/10.1109/ICNP.2015.20
https://doi.org/10.1109/INFCOM.2013.6566921
https://doi.org/10.1109/INFCOM.2013.6566921
https://doi.org/10.1109/INFCOM.2012.6195845
https://doi.org/10.1109/INFCOM.2012.6195845
https://doi.org/10.1109/MSP.2014.2334709
https://doi.org/10.1109/MWC.2014.7000967
https://doi.org/10.1109/GLOCOM.2013.6831623
https://doi.org/10.1109/TNET.2015.2487344
https://doi.org/10.1109/CLOUD.2015.12
https://docs.oracle.com/javase/tutorial/reflect/
https://docs.oracle.com/javase/tutorial/reflect/
https://docs.oracle.com/javase/tutorial/java/annotations/
https://docs.oracle.com/javase/tutorial/java/annotations/

INFORMATION AND COMMUNICATION TECHNOLOGIES AND SERVICES VOLUME: 17 | NUMBER: 4 | 2019 | DECEMBER

[23] Google Inc. Android | The platform pushing
what’s possible. In: Android [online]. 2019. Avail-
able at: https://www.android.com.

[24] Xen Project. In: The Linux Foundation Projects:
Xen Project [online]. 2019. Available at: https:
//www.xenproject.org.

[25] DOLEZAL, J. and Z. BECVAR. Percipio.
In: Google Play [online]. 2017. Available at:
http://play.google.com/store/apps/
details?id=com.zeevoy.percipio.

[26] LYU, X., H. TIAN, L. JIANG, A. VINEL, S. MA-
HARJAN, S. GJESSING and Y. ZHANG. Se-
lective Offloading in Mobile Edge Computing for
the Green Internet of Things. IEEE Network.
2018, vol. 32, iss. 1, pp. 54–60. ISSN 0890-8044.
DOI: 10.1109/MNET.2018.1700101.

[27] CHEN, M. and Y. HAO. Task Offloading
for Mobile Edge Computing in Software De-
fined Ultra-Dense Network. IEEE Journal
on Selected Areas in Communications. 2018,
vol. 36, iss. 3, pp. 587–597. ISSN 0733-8716.
DOI: 10.1109/JSAC.2018.2815360.

[28] WANG, F., J. XU, X. WANG and S. CUI. Joint
Offloading and Computing Optimization in Wire-
less Powered Mobile-Edge Computing Systems.
IEEE Transactions on Wireless Communications.
2018, vol. 17, iss. 3, pp. 1784–1797. ISSN 1536-
1276. DOI: 10.1109/TWC.2017.2785305.

[29] Small Cell Forum. Small cells market sta-
tus report December 2017. In: Small Cell
Forum Releases [online]. 2017. Available at:
https://scf.io/en/documents/050_-_
Small_cells_market_status_report_
December_2017.php.

[30] Google. Google Cloud CDN – Low Latency Con-
tent Delivery. In: Cloud CDN [online]. 2019. Avail-
able at: https://cloud.google.com/cdn/.

[31] Netflix. Netflix | Open Connect. In: Netflix | Open
Connect [online]. 2019. Available at: https://
openconnect.netflix.com/en/.

About Authors

Jakub DOLEZAL was born in Prague, Czech
Republic. He received his M.Sc. from Czech Technical
University in Prague in 2010. His research interests
include computation offloading and Augmented Real-
ity.

Tomas ZEMAN was born in Prague, Czech
Republic. He received his M.Sc. from Czech Technical
University in Prague in 1989 and Ph.D. in 2001. His
research interests include data communication and
networking.

© 2019 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 422

https://www.android.com
https://www.xenproject.org
https://www.xenproject.org
http://play.google.com/store/apps/details?id=com.zeevoy.percipio
http://play.google.com/store/apps/details?id=com.zeevoy.percipio
https://doi.org/10.1109/MNET.2018.1700101
https://doi.org/10.1109/JSAC.2018.2815360
https://doi.org/10.1109/TWC.2017.2785305
https://scf.io/en/documents/050_-_Small_cells_market_status_report_December_2017.php
https://scf.io/en/documents/050_-_Small_cells_market_status_report_December_2017.php
https://scf.io/en/documents/050_-_Small_cells_market_status_report_December_2017.php
https://cloud.google.com/cdn/
https://openconnect.netflix.com/en/
https://openconnect.netflix.com/en/

	Introduction
	Related Work
	SCC Architecture
	Offloading Framework
	Offloading Communication

	Experimental Setup
	Performance Evaluation
	Conclusions

