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Abstract

In this thesis, I present Burgers' equation and some of its applications. I consider the inviscid

and the viscid Burgers' equations and present di�erent analytical methods for their study:

the Method of Characteristic for the inviscid case, and the Cole-Hopf Transformation for the

viscid one.

Two applications of Burgers' equations are given: one in simple models of Tra�c Flow

(which have been introduced independently by Lighthill-Whitham and Richards) and another

in Coagulation theory (in which we use Laplace Transform to obtain Burgers' equations from

the original coagulation integro-di�erential equation). In both applications we consider only

analytical methods.
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Chapter 1

Introduction

The study of di�erential equations is an important �eld of mathematics, they are used as mod-

els describing phenomena arising in all the sciences. Meanwhile, modelling real life situations

gives rise to complicated di�erential equations the mathematical analysis of which usually

require some simpli�cation. An example of such a simpli�cation process is provided by the

Burgers' equations.

Burgers' equations are the nonlinear partial di�erential equations (for short, PDEs)

ut + uux = εuxx

for the unknown function u = u(x, t) of variables (x, t) ∈ R × (0,+∞), where case ε = 0 is

a paradigm of the so called hyperbolic pde type and case ε > 0 of the parabolic pde type.

The mathematical analysis of those two types of equations is quite di�erent: because while

in the later solutions are regular functions, in the former physical solutions are commonly

discontinuous functions.

The �rst time we noticed Burgers' equation in the literature (ε > 0) was in vol.6 of Forsyth

book [9, (1906), page 100] related with a classi�cation of linear pdes (Art. 206-207, pp. 97-

102), the second one (ε > 0, ε = 0) was in Bateman article [3, (1915), page 165, left column]

concerned with the motion of �uids, where the author tried to have a mathematical model

(�Burgers' equation�) developing discontinuities from the evolution of a continuous motion: a

controversial issue enrolling mathematicians and physicists as d'Alembert, Stokes, Helmholtz,

Kelvin, Kirchho�, Rayleigh, Levi-Civita, Prandtl, Lorentz, Sommerfeld, von Mises, von Kár-

mán, to cite a few. Then Burgers [6, (1948), page 181]1 used them (ε > 0, ε = 0) to study a

1Actually Burgers began that work with the communication [5, (1940), page 8] where he used already both

equations.
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system of equations simpler than that of hydrodynamics �which in a sense form a mathema-

tical model of turbulence� (cf. p.172 of [6], last lines of its Introduction). And, even if in fact

it does not model turbulence, the equation is named after him.

Burgers' equations arises in a number of unrelated applications, as in gas dynamics, non-

linear elasticity, shallow water theory, geometric optics, combustion theory, cancer medicine,

petroleum engineering, irrigation systems, tra�c or crowd panic. It appears often as a simpli-

�cation of complex or more sophisticated models. A �rst example was shown by Lagerstrom-

Cole-Trilling [13, (1949), page 151] in the context of the study of viscous compressible �uids

at supersonic regime (Appendix B, pp.146-154), there the Burgers' equation is obtained as a

limiting simpli�ed form of the compressible Navier-Stokes momentum equation.

The main relevance of Burgers' equations stands in the fact that it is a fundamental

equation to understand more general models and how to study the behaviour of phenomena

where the e�ects of nonlinear transport and dissipation (as viscosity or di�usion) are con�icting

as time goes by.

1.1 Motivation

Here, in order to better explain the ideas above, we will follow V.I. Arnold's words and exam-

ple in his book [2, page vi]: we will �adhere to the principle of minimal generality, according

to which every idea should �rst be clearly understood in the simplest situation�.

In a straight line, imagine a collection of particles moving freely. Because no force is acting

on the particles, by Newton's second law (�force = mass × acceleration�) each particle has

zero acceleration. And thus constant velocity. But the velocities of di�erent particles can be

di�erent of each other.

Let u(x, t) be the velocity of a particle which is in position x (over the straight line) at time

t. Notice that, at a �xed time t, the di�erent particles in their di�erent positions x can have

di�erent velocities u and, at a �xed position x, as time t evolves there are di�erent particles

passing through that position x and having di�erent velocities u. The function u(·, ·) is named

a �eld of velocities.

Now, let us observe an arbitrary single particle. Consider initial time t0 = 0. As at some

position we can have a unique particle, we will identify (label) the particle with its position

x0 at initial time. Then, let x = x(t;x0) be the position at time t of the particle x0, which we
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will abbreviate by x = x(t). We have by Newton's law x′′(t) = 0, so x(t) = x0 + ~v t where

~v = u(x0, 0) = u(x(t), t) for any t ≥ 0 because the velocity of particle x0 is constant.

Next we can resume V.I. Arnold's point of view to explain the meaning of the `wave-particle

duality' ([2], pp.2-3).

Particle description: given u(x, 0) = u0(x), the motion of our collection (physical system) of

particles is full described by an in�nite set of Ordinary Di�erential Equations (ODEs). One

equation for each particle x0 ∈ R, concerning its position x(t) along time,

(1.1)

x′(t) = u0(x0), t > 0

x(0) = x0

.

Equivalently, if we can assume that for each (x, t) there exist some line given by (1.1) such

that (x, t) = (x(t), t), we can describe the physical system otherwise. By the de�nition of our

function u, for any time t, u(x(t), t) = x′(t). Then

0 = x′′(t) =
d

dt

(
u(x(t), t)

)
= x′(t)ux(x(t), t)+ut(x(t), t) = uux+ut, for any x ∈ R and t > 0.

Wave description: given u(x, 0) = u0(x), the motion of our physical system is full described

by a single pde, concerning the �eld of velocities u(x, t) along position and time,

(1.2)

ut + uux = 0, x ∈ R, t > 0

u(x, 0) = u0(x), x ∈ R
,

where the pde (the Burgers' equation with ε = 0) is the Euler's momentum equation for the

motion.

So (1.1) and (1.2) are two equivalent descriptions of the motion, the former using Newton's

equation for particles and the later using Euler's equation for the velocity �eld (�momentum�).

In (1.2), from the given initial datum u0(·) (i.e., the condition at initial time t = 0) and

using the pde we ask to know what is the evolution of u(·, ·) for time t > 0. We say that (1.2)

is an initial value problem2.

Coming back to our system of particles moving in a straight line, suppose now that density

(or concentration) of particles is �large�. Then particles begin to interact. This slow down our

2If instead of x ∈ R we were considering x ∈ [a, b], then we should provide together with the initial datum

also boundary data at x = a and x = b: u(a, t) = a(t) and u(b, t) = b(t), for given functions a(·) and b(·). We

would name that problem an initial-boundary value problem.
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�ow. We are observing an e�ect of viscosity which we need to take into account in the model

(pde). For a motion with small variation on ux, it can be done introducing a term proportional

to uxx in the equation:

(1.3)

ut + uux = ε uxx, x ∈ R, t > 0

u(x, 0) = u0(x), x ∈ R
,

where ε > 0 is the viscosity coe�cient (and the pde is the Burgers' viscid equation).

Both inviscid (1.2) and viscid (1.3) Burgers' equations rules phenomena changing with

time and such equations are said evolutionary equations, in opposition to stationary equations

(or elliptic pdes). Still, they are quite di�erent. Actually (1.2) is the paradigm of a nonlinear

hyperbolic problem and (1.3) that of a parabolic one. To study the inviscid and the viscid

Burgers' equations we need use di�erent methods, we will use the Method of Characteristics

to study the �rst and the Cole-Hopf Transformation to study the second.

1.2 The purpose of the study

There are many interesting problems in Burgers' equation. Because of this reason, I would

like to work on this equation, namely to:

1. Study the idea/concept and technique/method of how to solve Burgers' equation by the

Method of Characteristics and the Cole-Hopf transformation.

2. Study the occurrence Burgers' equation in two di�erent areas, namely on a Tra�c model

and on a Coagulation equation.

1.3 Scope of the study

1. Scope of knowledge

In my study of Burgers' equation the focus will be on the role of changes of variables

and its consequences either in the context of the Method of Characteristics and in the

Cole-Hopf transformation. I shall need to study evolution equations (hyperbolic and

parabolic PDE, as well as ODE) using tools from classical Mathematical Analysis, in-

cluding results from vector calculus, multivariable Analysis, and Laplace transform.

To illustrate some applications of Burgers' equation, I study the occurrence of Burgers'

equation in a Tra�c model and in the analysis of a Coagulation model.
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2. Time duration since September, 2016 to June, 2017.

3. Place of research activity Department of mathematics, Faculty of Natural Sciences, Na-

tional University of Laos, 2016− 2017.

1.4 Related Research

1. Mikel Landajuela, in [14], review results on Burgers equation in its Viscous and non-

Viscous versions. Some applications of this paradigmatic equation are given, including

some tra�c models, and several numerical schemes for solving these equations are pre-

sented.

2. The book of Mark Holmes, [10], has a well explained chapter on the application of

Burgers' equation to several tra�c �ow situations, with reference to current research

literature.

3. Robert Pego, in [17], presents several mathematical models of coarsening, among them

the coagulation equations, and illustrate the use of several methods, including Laplace

transforms, in their study.

1.5 Research Methodology

In this thesis we study Burgers' equations using some analytical methods that we brie�y

describe in the subsections below.

1.5.1 The Method of Characteristics

If we have to solve the initial value problem to the inviscid Burgers' equation (Burgers' equa-

tion, for shortness) ut + uux = 0, x ∈ R, t > 0

u(x, 0) = u0(x), x ∈ R,
,

we can reverse the argument above and reduce our problem to the solution of a system of odes.

To proceed we just need to get the (characteristic) lines de�ned by x′(t) = u(x(t), t)

supposing that u is a solution of Burgers' equation. Then, over these lines, Burgers' equation

show us that

0 = ut(x(t), t) + u(x(t), t)ux(x(t), t) = ut(x(t), t) + x′(t)ux(x(t), t) =
d

dt
u(x(t), t),

5
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meaning that over that lines u is constant, say ∀t > 0 u(x(t), t) = u(x(0), 0) = u0(x(0)), using

the initial datum. Thus, we conclude u is constant along the lines de�ned by x′(t) = u(x(t), t).

Those lines are straight lines. Now we `see' the problem is solved, geometrically, provided that

for each given point (x, t) ∈ R× (0,+∞) we can get one such straight line coming from some

x0 point in the x axis (so x0 = x(0)).

Moreover we see that, if the initial datum u0(·) is not a nondecreasing function, then there

exist x1 < x2 such that u0(x1) > u0(x1), and the straight lines going up from these points x1

and x2 in the x axis will intersect in some point, say (x∗, t∗). By the previous construction

we should have u0(x1) = u(x∗, t∗) = u0(x2), which for a given initial datum u0 is in general

not possible. This means that at some �nite time the solutions of our hyperbolic initial value

problem will in general develop discontinuities (shocks), despite how many regular the initial

datum could be.

In Chapter 2 we will develop in full generality a theory of this Method of Characteristics.

1.5.2 The Cole-Hopf Transformation

For the viscid Burgers' equation

(1.4)

ut + uux − ε uxx = 0, ε > 0, x ∈ R, t > 0

u(x, 0) = u0(x), x ∈ R

the solutions do not develop discontinuities. Actually, the viscosity term ε uxx introduces

in the equation a dissipative e�ect which provides extra regularity to the solutions. This

should be not surprising if we consider that using a change of variables, the so called Cole-

Hopf Transformation, the viscid Burgers' equation is converted into the Heat equation where

the dissipative term models the heat di�usion. We will study the Cole-Hopf Transform in

Chapter 3.

1.6 Two applications of Burgers' Equations

Perhaps the most elementary example of application of both types of Burgers' equations is

given by some simple models of Tra�c Flow which have been introduced independently by

Lighthill-Whitham [15] and Richards [18]. We will have a glimpse of Tra�c Flow in Chapter 4.

Another example of the appearance of Burgers' equation is in coagulation theory. Smolu-

chowski's coagulation equation is an integro-di�erential equation modelling the growth of

clusters by coagulating reactions in which a cluster of size x and another of size y coagulate

6
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at a rate a(x, y) to give one of size x + y. When the rates are of the so called solvable cases,

i.e., when a(x, y) = 1, x + y or xy, the application of Laplace transform to the coagulation

equations results in ordinary or partial di�erential equations [16, 17]. It so happens that in

the last two cases the pde satis�ed by the Laplace transform is a Burger's equation. We shall

present an introductory bird's eye view of these results in Chapter 4.
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Chapter 2

The Method of Characteristics

2.1 The Advection Equation

Let us see the role of characteristic lines in the simplest case possible, the initial value problem

for the advection equation (a ∈ R is a constant, u0(·) is the given initial datum, at t = 0)

(2.1)

ut + aux = 0, x ∈ R, t > 0

u(x, 0) = u0(x), x ∈ R
.

Using the standard inner product we can rewrite the pde, the (linear) advection or transport

equation, as

(2.2) (ux, ut) · (a, 1) = 0 ⇐⇒ ∇u⊥~a ,

where ∇u(x, t) = (ux(x, t), ut(x, t)) is the gradient of u at (x, t) and ~a = (a, 1). Now, if for

c ∈ R we de�ne the c-Level curve of a function u by

Lc(u) = {(x, t) ∈ R× [0,+∞) : u(x, t) = c} ,

remember from calculus that at regular points of the function u we have

(2.3) ∇u(x, t)⊥Lc(u)(x, t)1.

From (2.2) and (2.3), because we are in the plane, we conclude that each level curve Lc(u) is

parallel to ~a at each of its points (x, t). Thus the Lc(u) curves are straight lines and moreover

they are all parallel to each other, having the common direction of ~a = (a, 1), Lc(u) //~a. They

1We mean: if (x, t) is a point over the line Lc(u), then the gradient vector of u at this point (x, t), ∇u(x, t),
is perpendicular to the line Lc(u) in that point. Also, we say that ~v is perpendicular (or parallel) to Lc(u) at

(x, t), notation ~v⊥Lc(u)(x, t) (or ~v //Lc(u)), if (x, t) ∈ Lc(u) and the vector ~v is perpendicular (or parallel)

to the tangent line or tangent vectors of Lc(u) at (x, t).

8



are a bundle of straight lines covering the half-plan t ≥ 0 (with slope 1/a).

For an arbitrary (x, t) where t > 0, let (x0, 0) be the point of intersection with the x-axis

of the straight level line passing by (x, t). This straight line is described by the equation

x0 = x− at (see Fig. 2.1) and because it is a level curve Lc(u) (see Fig. 2.2),

Figure 2.1: Abscissa for a given (x, t)

Figure 2.2: Characteristic line (a > 0)

using the initial condition u(x0, 0) = u0(x0):

(2.4) u(x, t) = c = u(x0, 0) = u0(x0) = u0(x− at).

9



It is now easy to verify that this u de�ned by u(x, t) = u0(x−at) is the solution of problem

(2.1), if the given initial datum u0 is regular enough (if it has �rst derivative).

Particle description: the bundle of those straight level lines is carrying up (into t > 0) the

initial signal, u0. They are characteristic curves (Fig. 2.2). They move at speed |a| to the

right if a > 0 or to the left if a < 0, cf. Fig. 2.3.

Figure 2.3: Plot of the solution u(x, t) with a = 2 and u0(x) = e−x
2

Wave description: if we �x the time t = t1 in the solution u(x, t), then the graphic of

u(x, t1) = u0(x − at1) is the graphic of u0 translated of at1 to the right (supposing a > 0).

Our solution u(x, t) describes an initial wave (graphic of u0) moving with velocity a (Fig. 2.3).

In this example because the advection equation is linear the characteristic lines moves par-

allel and the initial wave keep its form along its evolution (with time). For nonlinear equations,

as in the case of the inviscid Burgers' equation, this is no more true and the characteristic

lines, at �nite time, can provide �contradictory information�: the initial wave (graphic of u0)

along its evolution is deforming until a critical time where its graphic is no more the graphic of

a function (at that time, in some x1 the u should assume more than one value), see Section 2.4.

Meanwhile in the following two sections we will present the general theory of the Method

of Characteristics, �rst for linear equations (actually for semi-linear equations the theory is

similar) and then for nonlinear equations of quasi-linear type.

10



2.2 Linear Equations

We will consider the following �rst-order linear equation

(2.5) a(x, t)ux + b(x, t)ut = c(x, t) .

Suppose we can �nd a solution u(x, t). Consider the graph of this function given by

S ≡ {(x, t, u(x, t)) : x ∈ R, t ∈ R+} .

At each point (x, t) we can write (2.5) equivalently as the perpendicularity relationship:

(2.6) (a(x, t), b(x, t), c(x, t)) . (ux(x, t), uy(x, t),−1) = 0,

where the dot �·� represents the standard inner product in R3. But, recall from calculus,

a normal vector to the surface S at any of its points (x, y, u(x, y)) is given by N(x, t) =

(ux(x, t), ut(x, t),−1), where (ux(x, t), ut(x, t)) ≡ ∇u(x, t) is the gradient of u at (x, t). There-

fore (2.6) tell us that the vector (a(x, t), b(x, t), c(x, t)) lies in the tangent plane to S at the

point determined by (x, t). Consequently, to �nd a solution to (2.5), we will look for a surface

Figure 2.4: The normal vector and the tangent plane at a point of surface S.

S such that at each point (x, t, u) on S the vector (a(x, t), b(x, t), c(x, t)) lies in the tangent

plane to S. How do we construct such a surface?

We start by looking for curves which lies in S. We want the vector (a(x, t), b(x, t), c(x, t))

to lie in the tangent plane to our surface S at each point (x, t, u) on the surface. Therefore,

let's start by constructing a curve C = {(x(s), t(s), u(s))} parametrized by s such that at each

point on the curve C the vector (a(x(s), t(s)), b(x(s), t(s)), c(x(s), t(s))) is the tangent to the

curve. In particular, the curve C will satisfy the following system of odes

(2.7)


dx
ds = a(x(s), t(s))

dt
ds = b(x(s), t(s))

du
ds = c(x(s), t(s))

,
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because the vector
(
dx
ds ,

dt
ds ,

du
ds

)
is also tangent to the curve and it lies in the tangent plane.

Such a curve C is known as an integral curve for the vector �eld (a(x, t), b(x, t), c(x, t)).

For a pde of the form (2.5) with associated vector �eld V = (a(x, t), b(x, t), c(x, t)), we

look for its integral curves de�ned by (2.7), called the characteristic curves for (2.5), where

the equations in (2.7) are known as the characteristic equations for (2.5).

Once we have found the characteristic curves the goal is to construct a solution of (2.5) by

forming a surface S as a union of these characteristic curves. A surface S for which the vector

�eld V = (a(x, t), b(x, t), c(x, t)) lies in the tangent plane to S at each point (x, t, u) on S is

known as an integral surface for V .

In e�ect, introducing these characteristic equations, we have reduced our partial di�eren-

tial equation to a system of ordinary di�erential equations. We can use ode theory to solve

the system of characteristic equations, then piece together these characteristic curves to form

a surface. Such a surface will provide us with a solution to the pde.

Partial di�erential equations such as (2.5) are usually provided with additional conditions,

usually named initial or boundary conditions, which consists in known values of the solution

u(x, t) over a 1-dimensional manifold (i.e, a curve) Γ in the domain of u (a subset of R2).

Consider the case Γ = {γ(r) = (γ1(r), γ2(r)) : r ∈ R}, where γ is some given di�erentiable

parametrization of Γ. Let us prescribe our data in Γ by imposing that at each point (x, t) of

Γ the value of u(x, t) is given by a prescribed function u0: u|Γ = u0.

Let Γ = {(γ1(r), γ2(r), u0(γ1(r), γ2(r))} be the curve in R3 determined by Γ and the

prescribed data u0. Now, if the solution to (2.5) must satisfy u|Γ = u0 we need to construct

characteristic curves emanating from Γ, that is, looking for the solution of the characteristic

system

(2.8)


dx
ds = a(x(r, s), t(r, s))

dt
ds = b(x(r, s), t(r, s))

du
ds = c(x(r, s), t(r, s))

satisfying the initial condition at s = 0
x(r, 0) = γ1(r)

t(r, 0) = γ2(r)

u(r, 0) = u0(γ1(r), γ2(r))

12



Figure (2.5) provides the geometric interpretation of what has just been said.

Figure 2.5: Relation between the boundary line Γ, the boundary condition u0, and the integral

curve C and integral surface S of (2.5) satisfying u|Γ = u0

By the theory of odes the system (2.8) has a unique solution
x = x(r, s)

t = t(r, s)

u = u(r, s)

which satis�es the initial condition.

In de�ning the characteristic equations, we de�ned u(r, s) = u(x(r, s), t(r, s)). If we can

�nd some function H such that (r, s) = H(x, t), then we will have found the unique solution

of (2.5)

ũ(x, t) = u(H(x, t)) .

A condition that guarantee the existence of such a function H as above is the inverse function

theorem (in dimension 2) that we now state (the proof can be found in [12, page 140])

Theorem 2.2.1 (Inverse Function Theorem) Assume G : U ⊂ Rn 7→ Rn is a C1 function

and JG(~x0) 6= 0 where JG(~x0) is the Jacobian of G at the point ~x0. Then there exists an open

set V ⊂ U with ~x0 ∈ V and an open set W ⊂ Rn, with ~z0 = G(~x0) ∈W such that

G : V −→W

is one to one and onto, and the inverse function is C1

H = G−1 : W −→ V .

13



2.3 Quasi-Linear Equations

The general form of quasi-linear pdes is

(2.9) a(x, t, u)
∂u

∂x
+ b(x, t, u)

∂u

∂t
= c(x, t, u)

where a, b, c are functions of x, t, u. The initial condition u(x, 0) is speci�ed at t = 0

(2.10) u(x, 0) = f(x) .

The geometry of the problem was already explained in the linear case, the di�erence is

that now the functions a, b, c depend on u, the solution itself.

We represent the characteristic curve parametrically by

x = x(r, s), t = t(r, s), u = u(r, s),

where r labels the points where we start on the initial curve. So, the parameter s tells us how

far along the characteristic curve we are from that start point, while r governs the evolution

along the initial curve.

From (2.9), at each point (x, t) a particular tangent vector to the solution surface z = u(x, t)

is

(a(x, t, u), b(x, t, u), c(x, t, u)) .

Given any curve in the variable s, x = x(r, s), t = t(r, s), u = u(x, s), with parameter r (r

acts as a label only), its tangent vector is given by(
∂x

∂s
,
∂t

∂s
,
∂u

∂s

)
.

For a general curve on the surface z = u(x, t), the tangent vector (a, b, c) will be in general

di�erent than the tangent vector at (x, t, u(x, t)). However, we choose our curves with variables

(s, r) such that (x = x(r, s), t = t(r, s), u = u(r, s)) have tangent equal to (a, b, c):

(2.11)


xs = a(x, t, u)

ts = b(x, t, u)

us = c(x, t, u)

where (a, b, c) depends on (x, t, u). We have written partial derivatives to denote di�erentiation

with respect to s, since x, t, u are functions of both r and s. However, since only derivatives

in s are present in (2.11), these equations are odes. This has greatly simpli�ed our task: we

14



have reduced the solution of the pde to solve a system of odes.

Now, we need �x the initial values at s = 0 for the odes (2.11). We are free to choose the

value of t, we take t(r, 0) = 0. Since x changes with r, we choose r to denote the initial value

of x(r, s) along the x−axis (when t = 0) in the space time domain. Thus the initial values (at

s = 0) are

(2.12)


x(r, 0) = r

t(r, 0) = 0

u(r, 0) = f(r)

.

Using the odes theory, we are able to �nd a unique (local) solution to (2.11). As long as

we can invert the function G(r, s) = (x(r, s), t(r, s)), we can �nd a solution of (2.9) given by

u(x, t) = z(r(x, t), s(x, t)) .

For this we can use, again, the inverse function theorem (5.0.2).

2.4 The Inviscid Burgers' Equation

Consider Burgers' equation (1.2) with initial value problem φ(x). From (1.2) notice that we

can write this equation, in standard form as

ut +

[
u2

2

]
x

= 0

In trying to solve this equation using the method of characteristics, our characteristic equations

are given by 
dt

ds
= 1

dx

ds
= z

dz

ds
= 0

with initial conditions 
t(r, 0) = 0

x(r, 0) = r

z(r, 0) = φ(r)

we see that the solution is given by 
t = s

x = φ(r)s+ r

z = φ(r)
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From these solutions, we arrive at an implicit solution for (1.2) as

u = φ(x− ut)

We consider the projected characteristic curve, which are given by x = φ(r)s + r and t = s,

which implies x = φ(r)t + r. Now suppose the initial data φ satis�es the following. Suppose

there is an r1 < r2 such that φ(r1) > φ(r2). The projected characteristic curves interest

at some point (x0, t0). What does this mean? Look again at the characteristic equation.

In particular, the solution u satis�es
du

ds
= 0. This mean u is constant along characteristic

curves. Therefore, u(x0, t0) = u(r1, 0) = φ(r1). But, also u(x0, t0) = u(r2, 0) = φ(r2). But by

assumption φ(r1) > φ(r2). Therefore, we get a contradiction! We get a singularity formation

at some time t. For example, consider (1.2) with initial data φ(x) = e−x
2
. For x > 0,

Figure 2.6: Plot the characteristic curve intersect at some time t

φ′(x) < 0. Therefore, φ(r1) > φ(r2) for 0 < r1 < r2. Consequently, as described above, the

projected characteristics will cross. What does the solution look like? As show in Figure 2.7

below, the taller part of the wave will overtake the shorter part of the wave, causing the wave

to break. At a time T the wave breaks, the �solution� ' u will cease to be a function, taking

on multiple values, thus leading to a singularity in the solution. Of course, a function can't

take on multiple values. Consequently, the wave pictured below can't be a solution of (1.2)

after the time T when the wave breaks. if φ′(x) ≥ 0, projected characteristic curves will not

intersect, so there will be no con�ict in de�ning u. For example, consider (1.2) with the initial

data φ(x) = 5 arctan(x). In the movie below, we see that the wave do not break and we have

a smooth solution.
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Figure 2.7: Break up of the solution (1.2) after time T when the wave breaks (from [14]).

Figure 2.8: Solution smooth when the projected characteristic curve will not intersect

In the case when the projected characteristic curves do not intersect, we will not have

a con�ict in de�ning our solution u. However, it is possible that we will not have enough

information to de�ne u everywhere and in this case additional conditions (entropy condition)

need to be given.
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Chapter 3

The Cole-Hopf Transformation

In this chapter we will consider the initial value problem for the viscous Burgers' equation

(i.e., the Burgers' equation with a ε-viscosity term in the right-hand side):

(3.1)

ut + uux = εuxx, ε > 0, x ∈ R, t > 0

u(x, 0) = u0(x), x ∈ R
.

It is no longer an hyperbolic equation we are considering and the Method of Characteristics

is no more applicable. It is a parabolic equation and an important model in the study of this

type of nonlinear pdes (cf. the Introduction). Rather surprisingly, it can be solved analytically.

In fact, via the so called Cole-Hopf transformation (a change of the dependent variable) the

nonlinear viscous Burgers' equation is converted into the linear heat (or di�usion) equation

and to solve (3.1) it is enough to solve the linear heat initial value problem

(3.2)

vt = εvxx, x ∈ R, t > 0

v(x, 0) = v0(x), x ∈ R
,

which can then be solved by a variety of methods such as change of variables or Fourier

transform.

Now, as ε↘ 0 the viscous Burgers' equations limit is the inviscid Burgers' equation. And

it is natural to wait the solutions of (3.1) converge, as ε ↘ 0, to the solution of the inviscid

Burgers' problem. This is the vanishing viscosity method to solve the inviscid problem (see

Whitham [21]). This was the idea of Bateman [3, page 165, left column] in 1915 and this is a

source of todays research if we consider not just dissipation but also dispersion e�ects in the

models (see Bedjaoui-Correia-Mammeri [4]). We will not consider this issue in this thesis.

In this chapter we start in section 3.1 by studying the Cole-Hopf transformation, indepen-

dently discovered by Cole [7] and Hopf [11] (while we will follow Salsa book [19]) and in section

3.2 we will solve the resulting heat equation by using dimensionless variables that transform

the problem into an ode. Then in section 3.3 we state the solution of problem (3.1).
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3.1 The Cole-Hopf Transformation

We can rewrite the viscous Burgers' equation in the conservative (or divergence) form:

∂tu+ ∂x

(
1

2
u2 − εux

)
= 0 ⇐⇒ Curl(−u, 1

2
u2 − εux) = 0 .

The planar vector �eld (−u, 1

2
u2 − εux) is Curl-free and therefore, there exist some scalar

potential ψ = ψ(x, t) such that

ψx = −u , ψt =
1

2
u2 − εux .

From the �rst equation it follows that ψxx = −ux and, substituting in the second equation,

we conclude that ψ must verify the equation

(3.3) ψt =
1

2
ψ2
x + εψxx .

Next we try to get rid of the quadratic term by an adequate change of variable letting ψ = g(v),

with g to get be chosen. We have

ψt = g′(v)vt , ψx = g′(v)vx , ψxx = g′′(v)(vx)2 + g′(v)vxx

and substituting these into (3.3) we �nd

g′(v)vt =
1

2

(
g′(v)vx

)2
+ ε

(
g′′(v)(vx)2 + g′(v)vxx

)
⇐⇒

g′(v)(vt − εvxx) =

[
1

2
(g′(v))2 + εg′′(v)

]
(vx)2 ⇐⇒

vt − εvxx = 0 ,

if we choose g such that
1

2
(g′(v))2 +εg′′(v) = 0 which is an ode of separable type with solution

g(v) = 2ε log(v) (where g′(v) 6= 0). Thus, our change of variable is ψ = 2ε log(v).

We resume. If we know how to solve the heat equation

vt − εvxx = 0 ,

then we know how to solve the viscid Burgers' equation (as u = −ψx):

(3.4) u = −2ε (log(v))x = −2ε
vx
v
.

Moreover, using the (3.1) initial datum and from (3.4) we get the equivalent initial datum

v0(x) for the heat equation:

(3.5) u0(x) = −2ε
d

dx
(log(v0(x))) ⇐⇒ v0(x) = exp

(∫ x

0
− 1

2ε
u0(z)dz

)
.
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Conclusion: to solve (3.1) it is su�cient to solve (3.2) with the particular initial datum v0 of

the form given in (3.5).

Finally we want to remark that this method is useful when ε > 0, just to solve the parabolic

problem. To solve the hyperbolic problem, for ε = 0, we must use some other method (as

the Method of Characteristics). Still, we want to point out that in the limit as ε ↘ 0+ the

solutions of problem (3.2) converge to the solution of problem (3.1), see [21].

3.2 The Heat Equation

In this section we are going to solve the initial value problem (3.2). There are various methods

to solve the linear equation vt−εvxx = 0 on the real line R. To keep with the main underlying

tool on this thesis, which is the use of transformation of variables, we will analyse the heat (or

di�usion) equation using adequate changes of variables.

The linear homogeneous di�usion equation has simple but revealing physical properties

and there are special particular solutions which can be used to generate many other solutions.

Those special solutions are constructed identifying particular natural/physical changes of vari-

able that leave the equation itself unchanged and because of this these changes of variable are

called invariant transformations.

Changing scales: let u = u(x, t) be a solution in the half-space R× (0,+∞) of

(3.6) ut − εuxx = 0

and consider the linear transformations de�ned by

x 7→ ax, t 7→ bt, u 7→ cu (a, b, c > 0) ,

which represents dilation-contractions of the graph of u, changes in the scale of each axis.

Then, let us check for which values of a, b, c

u∗(x, t) = c u(ax, bt)

is still a solution of (3.6): u∗t (x, t) = cb ut(ax, bt) and u∗xx(x, t) = ca2 uxx(ax, bt), so we get

u∗t − εu∗xx = cb ut − ca2 εuxx = 0

if b = a2. This relation suggests the name of parabolic dilation for the transformation

x 7→ ax, t 7→ a2t (a > 0).

We notice that under such transformations the ratio x√
εt
remains unchanged:

(3.7)
ax√
ε(a2t)

=
ax

|a|
√
εt

=
x√
εt
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and because of the physical dimensions of the parameter ε this ratio is dimensionless, see [19].

Conservation (of mass or energy): again, let u = u(x, t) be a solution of (3.6) in R× (0,+∞).

We just saw that the functions

u∗(x, t) = c u(ax, a2t) (a, c > 0)

are also solutions of (3.6) in R × (0,+∞). Now, suppose u satis�es the condition, for some

q ∈ R (e.g., for q =
∫
R u0(x)dx),

(3.8) ∀t > 0

∫
R
u(x, t)dx = q,

which stands for conservation of the integral measurement along time. If, for instance u

represents concentration of a substance (density of mass), equation (3.8) states that the total

mass remains equal to q for every time t. Or if u is temperature, (3.8) says that the system

keep its total internal energy constant along time. Then we ask for which a, c the solution u∗

still satis�es (3.8)? ∫
R
u∗(x, t)dx = c

∫
R
u(ax, a2t)dx

and letting y = ax, dy = a dx, we have∫
R
u∗(x, t)dx = ca−1

∫
R
u(y, a2t)dy = ca−1q .

Thus, for (3.8) to be satis�ed we must have c = a. In conclusion, if u = u(x, t) is a solution

of (3.6) in R× (0,+∞) satisfying (3.8), the same is true for

(3.9) u∗(x, t) = a u(ax, a2t) (a > 0).

Think about our solution u of problem (3.2) as the concentration of a substance of initial

total mass q =
∫
R u0(x)dx in a di�usion process which conserves the mass of that substance

(during the process we do not loose mass, e.g., often by some change of phase as precipitation or

evaporation we can loose mass). Then the relevance of (3.7) relies on the following argument.

Fix, arbitrarily, a point (x, t) ∈ R× (0,+∞). In (3.9) take a =
(√
εt
)−1

, we have

u∗(x, t) =
1√
εt
u

(
x√
εt
,
1

ε

)
which means that (as ε is �xed) u is a function of a single variable, say Uε(ξ), with ξ =
x√
εt
. This variable ξ is dimensionless, meaning that

√
εt has length dimension. So q√

εt
has

concentration dimension and in

(3.10) q u∗(x, t) =
q√
εt
Uε

(
x√
εt

)
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neither the function Uε nor its variable ξ have physical dimensions. We are now working with

mathematical scale free solutions of the di�usion equation and of course, because the equation

is linear, the expression in (3.10) is still a solution. We want to determine Uε = Uε(ξ).

Uε is related to the solution u∗ by (3.10). So because u∗ is a concentration we require

Uε ≥ 0 and the total mass conservation yields, after the change of variable x 7→
√
εt,

(3.11) q =

∫
R
u∗(x, t)dx =

1√
εt

∫
R
Uε

(
x√
εt

)
dx =

∫
R
Uε (ξ) dξ.

We keep the required mass conservation. Finally, we translate for Uε what means that u∗ is a

solution of (3.6):

u∗(x, t) =
1√
εt
Uε(ξ) where ξ =

x√
εt
,

u∗t (x, t) = − 1

2t
√
εt
Uε(ξ)−

x√
εt

1

2t
√
εt
U ′ε(ξ),

u∗x(x, t) =
1

εt
U ′ε(ξ),

u∗xx(x, t) =
1

εt
√
εt
U ′′ε (ξ),

u∗t − εu∗xx = − 1

t
√
εt

(
U ′′ε (ξ) +

1

2
ξU ′ε(ξ) +

1

2
Uε(ξ)

)
,

so Uε must be a solution of the ode in R

(3.12) U ′′ε (ξ) +
1

2
ξU ′ε(ξ) +

1

2
Uε(ξ) = 0.

Since Uε ≥ 0, (3.11) implies that

lim
ξ→±∞

Uε(ξ) = 0

On the other hand, because (3.12) is invariant with respect to the change of variables ξ 7→ −ξ,
we look for even solutions Uε(−ξ) = Uε(ξ). Then we can restrict ourselves to ξ ≥ 0, with

boundary conditions

(3.13) U ′ε(0) = 0 = lim
ξ→+∞

Uε(ξ).

To solve (3.12) observe that it can be written in the form

d

dξ

[
U ′ε(ξ) +

1

2
ξUε(ξ)

]
= 0

equivalent to

(3.14) U ′ε(ξ) +
1

2
ξUε(ξ) = c (c ∈ R).
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Letting ξ = 0 in (3.14) and recalling (3.13) we deduce that c = 0 and therefore we have to

solve the �rst order linear homogeneous ode

U ′ε(ξ) +
1

2
ξ Uε(ξ) = 0

which has solution

Uε(ξ) = c0 e
− ξ

2

4 (c0 ∈ R).

This function is even, positive, integrable and vanishes at in�nity, it only remains to choose

c0 in order to ensure (3.11):

q =

∫
R
Uε (ξ) dξ = c0

∫
R
e−

ξ2

4 dξ

doing the change of variable ξ = 2z, we have

q = 2c0

∫
R
e−z

2
dz = 2c0

√
π

and thus c0 = q√
4π
.

Going back, we have found the following solution of (3.6)

(3.15) u∗(x, t) =
q√

4πεt
e−

x2

4εt , x ∈ R, t > 0.

The function

ΓD(x, t) =
1√

4πεt
e−

x2

4εt

is called the fundamental solution of equation (3.6) because it is proved [19] that the solution

of problem (3.2) is given by

v(x, t) =

∫
R
v0(y) ΓD(x− y, t)dy.
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3.3 The Viscous Burgers' Equation

The initial value problem (3.2) has then the unique smooth integrable solution in the half-plane

t > 0

v(x, t) =
1√

4πεt

∫ +∞

−∞
v0(y) e−

(x−y)2
4εt dy.

Consequently, using (3.4) and (3.5), the problem (3.1) has a unique smooth solution in the

half-plane t > 0 given by

u(x, t) =

+∞∫
−∞

x−y
t exp

(
− 1

2ε

y∫
0

u0(z)dz

)
exp

(
− (x−y)2

4εt

)
dy

+∞∫
−∞

exp

(
− 1

2ε

y∫
0

u0(z)dz

)
exp

(
− (x−y)2

4εt

)
dy

which is continuous up to t = 0 at any continuity point of u0, provided that (see [19])

(3.16)
1

x2

∫ x

0
u0(z)dz → 0 as |x| → ∞.
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Chapter 4

Applications

To exemplify the role of Burgers' equation in the mathematical modeling of di�erent phe-

nomena, in this chapter I will study two applications: in section 4.1 I present a model of

tra�c �ow and we will see that the density of �owing objects obeys a Burgers' equation; in

section 4.2 a model for the coagulation of particles will be presented and we will conclude that,

under certain assumptions, the (modi�ed) Laplace transform of those equations will result in

a Burgers' equation.

In both applications that we shall consider, a full mathematical theory is still the subject

of current mathematical research (see [8, 10, 14, 16, 17]).

4.1 A Tra�c Model

There are many di�erent situations in which we can speak about tra�c �ow. The simplest

situations correspond to the �ow of some entity along a one dimensional. The entity can be

some macroscopic object, such as cars (Figure 4.1), or some microscopic or submicroscopic

objects, such as cellules (Figure 4.2) or molecules (Figure 4.3).

Figure 4.1: Aerial view of cars moving on a highway [10, page 205].
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Figure 4.2: Red blood cells �owing in an arteriol [10, page 206].

Figure 4.3: Computer illustration of methane molecules �owing though a carbon nanotube

[10, page 206]

Although the underlying physics of each of these is quite di�erent they all involve the

movement of some entity along a one dimensional path. This simplicity is explicitly used

when developing a mathematical model for the motion of these objects. In what follows we

will consider the case of tra�c �ow of cars in a (single lane) street, but all can also be applied

to other systems, such as the one dimensional motion of blood cells and molecules.

Several general modeling hypothesis are assumed to get from a real life situation, such as

those in the �gures 4.1�4.3, to a mathematical model of it. In this section we assume that the

objects are numerous enough that it is not necessary to keep track of each one individually

and we can use an averaged value.

4.1.1 Density

One of the most important variables in the model we shall present is the tra�c density ρ(x, t),

that is, the number of cars per unit length at the position x and time t. In practice, to measure

ρ at time t = t0 and at the position x = x0 along the highway we selects a small spatial interval

of length 2∆x around that position, x0 −∆x < x < x0 + ∆x, and then counts the number of
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cars within this interval. If ∆x is small enough so that only cars in the immediate vicinity of

x0 are used to determine the density at this point, we have

(4.1) ρ(x0, t0) ≈ number of cars from x0 −∆x to x0 + ∆x at t = t0
2∆x

However, note that ∆x cannot be so small that it is on the order of the length of individual

cars (and the spacing between them), otherwise the above average would not make sense. In

the continuum viewpoint, the cars are distributed smoothly over the entire x-axis, and the

value of ρ(x0, t0) is the limit of the right-hand side of (4.1) as ∆x −→ 0.

To illustrate how density is determined we follow [10, pages 207-8]: suppose the simple

case where cars all have length ` > 0, and they are spaced a constant distance d ≥ 0 from

each other (see Figure 4.4).

Figure 4.4: A queue of cars all the same length and evenly spaced (from [10, page 208]).

Given an interval 2∆x along the highway then the number of cars in this interval is, approxi-

mately, 2∆x/(`+ d). Inserting this into (4.1) we �nd that

ρ =
1

`+ d

One conclusion that comes from this formula is that there is a maximum density: since

the distance between cars is non negative and �nite, 0 ≤ d < ∞, then ` + d > ` and so

ρ = 1
`+d < 1

` =: ρM . Note that ρM has a natural and easy interpretation: is the density

that corresponds to all cars being aligned without any space between them (a situation that,

naturally, in practical terms can only occur if the cars are not moving � see discussion in

page 30 below).

4.1.2 Flux

The second variable we need is the �ux J(x, t), which has the dimensions of cars per unit

time. To measure J at x = x0 and t = t0 we select a small time interval t0−∆t < t < t0 + ∆t

and counts the net number of cars that pass through x = x0 during this time period, using

the convention that a car moving to the right is counted as +1, while one moving to the left

is counted as −1. Again here the underlying assumption is that ∆t is small enough that only
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cars that are passing x0 at, or near, t = t0 are used to determine the �ux at t0. At the same

time, from an experimental point of view, ∆t cannot be so small that no cars are able to pass

this location during this time interval. Under these conditions the �ux J satis�es

(4.2) J(x0, t0) ≈ net number of cars that pass x0 from t = t0 −∆t to t = t0 + ∆t

2∆t
.

As above, in the continuum viewpoint cars are distributed smoothly over the entire t-axis

and the value of J(x0, t0) is the limit of the right hand side of (4.2) as ∆t −→ 0.

Returning to the above simple case of evenly spaced equal cars in a highway, if we now

add the assumption that all cars are moving with a constant positive velocity v, then cars that

start out a distance 2v∆t from x0 will pass x0 in the time interval from t0 −∆t to t0 + ∆t.

The corresponding number of cars is, approximately, 2v∆t/(l + d). Inserting this into (4.2)

yields

(4.3) J =
v

l + d
= ρv

This is a relation between density, velocity and �ux quite basic for the model as we shall

see now.

4.1.3 Balance Law

To derive an equation for the density of cars we will use what is known as the �control volume

argument�, already used before. The balance law for the cars within the highway interval

I := [x0 −∆x, x0 + ∆x] is{
number of cars in I at t = t0 + ∆t

}
−
{
number of cars in I at t = t0 −∆t

}
,=

=
{
number of cars that cross x0 −∆x in the time interval [t0 −∆t, t0 + ∆t]

}
−

−
{
number of cars that cross x0 + ∆x in the time interval [t0 −∆t, t0 + ∆t]

}
Rewriting this using (4.1) and (4.2) yields

∆x
(
ρ(x0, t0 + ∆t)− ρ(x0, t0 −∆t)

)
= ∆t

(
J(x0 −∆x, t0)− J(x0 + ∆x, t0)

)
Now, assuming the functions are su�ciently smooth, we can expand ρ and J about (x0, t0)

using Taylor's theorem. Doing this

∆x
(
ρ+ ρt∆t+

1

2
ρtt(∆t)

2 +
1

6
ρttt(∆t)

3 + ... − ρ+ ρt∆t−
1

2
ρtt(∆t)

2 +
1

6
ρttt(∆t)

3 + ...
)

= ∆t
(
J − Jx∆x+

1

2
Jxx(∆x)2 − 1

6
Jxxx(∆x)3 + ...

− J − Jx∆x− 1

2
Jxx(∆x)2 − 1

6
Jxxx(∆x)3 + ...

)
,
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where ρ and J are evaluated at (x0, t0). Collecting the terms in the above equation we obtain

ρt +O((∆t)2) = −Jx +O((∆x)2),

and letting ∆x −→ 0 and ∆t −→ 0 we conclude that ρt = −Jx or

(4.4)
∂ρ

∂t
+
∂J

∂x
= 0

Equation (4.4) is our balance law. Assuming the relation between velocity and �ux J = ρv

arrived at in the previous subsection we can rewrite (4.4) as

(4.5)
∂ρ

∂t
+

∂

∂x
(vρ) = 0.

Clearly, in order to study this equation one needs to assume the initial density is known, that

is

(4.6) ρ(x, 0) = f(x)

where f is given (eventually known from observation, or from the historical record).

Observe, however, that (4.5) has two unknown quantities: the density ρ and the velocity

v. In order to study the mathematical model (4.5)-(4.6) we need to know how these two

quantities are related. A relation of the type v = v(ρ) is called a constitutive law and is not

a relation that can be obtained from Mathematics alone: it is a relation that expresses the

real-life problem under consideration and must be obtained, depending on the cases, either

from observational measurements, from experiments, or from more fundamental (physical)

theories.

In the case of cars �owing in a highway the constitutive law v = v(ρ) has been studied by

several authors and some experimental data is presented and discussed in [10, Section 5.4].

An example of these data is presented in Figure 4.5

Figure 4.5: Experimental results of v as function of ρ for cars in a freeway near Amsterdam

(from [10, Figure 5.6]).

Observe that there are essentially two di�erent regimes: if the density is low (in the

example in Figure 4.5 below 80 cars/kilometer) the velocity is constant (and equal to the
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maximum velocity allowed by law); in the other hand, if the density is high the velocity

decreases monotonically with the increase of density, in an almost linear way that seems to

attain velocity zero around a density1 of 220 cars/kilometer. We now brie�y consider these

two regimes.

4.1.4 Constant velocity model

From (4.4), the simplest assumption, valid, as we saw, for low car densities, is that v is

constant in terms of its dependence on ρ, in other words, v = a. This assumption results in

the advection equation

(4.7)
∂ρ

∂t
+ a

∂ρ

∂x
= 0

already considered in Chapter 2. As we saw there, this is an example of a linear �rst order par-

tial di�erential equations that can be completely solved using the Method of Characteristics.

There is nothing more really interesting that can be presently be added about this model.

4.1.5 Greenshields model

A much more interesting regime is the high density one referred to above. One of the most

widely used constitutive laws in tra�c �ow studies tries to capture this behaviour in the

simplest possible way. It is the so called Greenshields model [10, Section 5.4.2], given by

(4.8) v(ρ) = vM

(
1− ρ

ρM

)
where vM and ρM is the maximum velocity and density, respectively.

It turns out that in order to re�ect that drivers will reduce their speed to account for an

increasing density ahead, so we should suppose that J is function of the density gradient as

well

(4.9) J = ρv −D∂ρ

∂x

where D is constant, if we put (4.8) and (4.9) into (4.4 ), we get that

∂ρ

∂t
+

∂

∂x

[
vM
ρM

(ρM − ρ) ρ

]
= D

∂2ρ

∂x2

1Observe that this density means that there is one car in about every 4,5 meters, which means that there

will be no space between the cars: we are at a situation of maximum possible car density and so the tra�c

�ow must have come to a halt, as already pointed out above in page 27.
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or

(4.10)
∂ρ

∂t
+ a(ρ)

∂ρ

∂x
= D

∂2ρ

∂x2

where a(ρ) = vM

(
1− 2ρ

ρM

)
.

The function a(ρ) is known as the wave velocity and equation (4.10) is a non-linear con-

servation equation for ρ. In the case when a(ρ) = ρ, then equation (4.10) become to visid

Burgers' Equation, where it can be solved by Cole-Hopf transform, as we already consider in

Chapter 3.

4.1.6 An application to a tra�c �ow situation

In previous section we considered about the velocity is constant and in this section we will

consider the situation when velocity is some function depend on density ρ, assuming that

(4.11) v = F (ρ)

From (4.4) the general formula for �ux is

J = ρv = ρF (ρ)

Assuming that F is a smooth function of ρ, using chain rule, it follows that

∂J

∂x
= J ′(ρ)

∂ρ

∂x

substitute to (4.4), we have

(4.12)
∂ρ

∂t
+ a(ρ)

∂ρ

∂x
= 0

where a(ρ) = J ′(ρ) or equivalently

(4.13) a(ρ) = F (ρ) + ρF ′(ρ)

The equation above is written resembles the constant velocity version in (4.7), one signi�cant

di�erence is that the wave velocity a(ρ) can depend on the unknown ρ, and if this happen then

(4.12) is non-linear. Generally non-linear Partial Di�erential Equations are very di�cult to

solve. However, the case of velocity is a(ρ) = ρ the equation (4.12) is Burgers' Equation and

we can consider the solution by Method of Characteristic as we already considered in Chapter

2.
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Example: This example we will show a very simple situation of a tra�c model with a

given initial condition. We consider the constitutive law v(ρ) = 1
2ρ, giving rise to the following

equation:

(4.14)

ρt + ρρx = 0

ρ(x, 0) = ρ0(x)

where the initial condition ρ0(x) is C1(R), monotonic decreasing, ρ0 ∈ [0, 1], and satis�es

(4.15) ρ0(x) =

1, x < 0

0, x ≥ 1.

An example of this could be obtained by taking ρ0(x) = 1 − x for x between 0 and 1 and

mollifying the resulting function.

The situation modelled by (4.14)-(4.15) can be thought of as a high density group of cars

moving fast in a street that is blocked by a car which stopped at some point (x = 1).

By method of characteristics in chapter 2 we get the solution in implicit form

ρ(x, t) = ρ0(x0) = ψ(x− ρt)

and we can see the solution in the Figure 4.6.

Figure 4.6: Example of the plot of the solution of (4.14) with an initial condition (4.15) as

described in the text, (from [14]).

Let us see what is occurring in the ρ − x plane. Figure 4.7 shows that, when time t

increasing from t0 = 0 to t1 (t1 > t0), cars in the portion of the street between 0 and 1

(x ∈ [0, 1]) are getting closer together (for any given x in this region, the density ρ(t, x) either

stays the same or increases, when t changes from t0 to t1) and at time T all cars at x < 1

are moving forward with velocity v = 1
2 and the car at x = 1 is stopped, so there will be an

accident (and the occurrence of a mathematical shock).
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Figure 4.7: Plot moving of the density when time increasing

4.2 Coagulation equations

4.2.1 Introducing the mathematical model

In this section we will arrive at Burgers' equation in a completely di�erent setting.

Consider a large container with a very large number of particles whose sizes are indexed

by the positive real variable x ∈ R+. Assume that those particles can undergo coagulation

reactions in which a particle of size x and a particle of size y can get together to form a particle

of size x+ y, or, schematically,

(x) + (y) −→ (x+ y).

Let c(x, t) be the density, at time t, of particles of size x (usually called �x-clusters�, or

simply �clusters�), and assume the number of particles is so large that this function can be

considered smooth, then the di�erential equation modeling these coagulation reactions is the

following continuous version of Smoluchowski's coagulation equations [8]:

(4.16)
∂c

∂t
(x, t) =

1

2

x∫
0

a(x− y, y)c(x− y, t)c(y, t)dy− c(x, t)
∞∫

0

a(y, t)c(y, t)dy, (x, t) ∈ R2+

where a(x, y) is the rate of the reaction (x)+(y)→ (x+y), which, from physical considerations,

must be symmetric, a(x, y) = a(y, x), and non negative, a(x, y) ≥ 0. The nonlinear integro-

di�erential equation (4.16) is to be suplemented by an initial condition

(4.17) c(x, 0) = c0(x),

with c0(x) some given initial distribution of particles.

In the studies of (4.16) the following reformulation of the equation, leading to a kind of

weak version of the equation, is of fundamental importance. To avoid unessential technical

di�culties we will deduce it under the assumption that c(x, t) is su�ciently regular. We shall

also consider a smooth and compactly supported function φ : R+ → R. Multiplying equation
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(4.16) by φ(x) and integrating the result in x between 0 and ∞ we can write

d

dt

∞∫
0

φ(x)c(x, t)dx =
1

2

∞∫
0

x∫
0

φ(x)a(x− y, y)c(x− y, t)c(y, t)dydx−(4.18)

−
∞∫

0

∞∫
0

φ(x)a(y, t)c(x, t)c(y, t)dydx.

Our goal is to rearrange the right-hand side terms so that we obtain the following �weak�

version of this coagulation equation:

d

dt

∞∫
0

φ(x)c(x, t)dx =
1

2

∞∫
0

∞∫
0

(
φ(x+ y)− φ(x)− φ(y)

)
a(x, y)c(x, t)c(y, t)dxdy.(4.19)

• Let us start by rearranging the �rst double integral in the right-hand side of (4.18). The

region of integration is the conic �triangular� region of R2+ bounded by the x-axis and

the line y = x (see Figure 4.8).

Figure 4.8: Region of �rst double integral in (4.18).

Changing the order of integration we obtain

1

2

∞∫
0

∞∫
y

φ(x)a(x− y, y)c(x− y, t)c(y, t)dxdy,

and now changing variables (x, y) 7→ (z, y) where z = x− y, we get

1

2

∞∫
0

∞∫
0

φ(z + y)a(z, y)c(z, t)c(y, t)dzdy.(4.20)

34



• Now, for the second double integral in the right-hand side of (4.18), write it as
∞∫

0

∞∫
0

φ(x)a(y, t)c(x, t)c(y, t)dydx =
1

2

∞∫
0

∞∫
0

φ(x)a(x, y)c(x, t)c(y, t)dxdy +

+
1

2

∞∫
0

∞∫
0

φ(x)a(x, y)c(x, t)c(y, t)dxdy

and now, performing a change of notation x↔ y only on the second of these integrals and

remembering the symmetry assumption on the rate coe�cient a(x, y), we can re-write

the right-hand side as

1

2

∞∫
0

∞∫
0

(
φ(x) + φ(y)

)
a(x, y)c(x, t)c(y, t)dxdy(4.21)

Hence, substituting (4.20)-(4.21) into (4.18) we get (4.19).

The usual practice in partial di�erential equations is that, once a weak version of the

equation is obtained under convenient assumptions on the regularity of the functions involved,

it is the weak version that will become the object of study by its own, independently of the

assumptions made for its deduction, thus allowing for the consideration of much larges classes

of solutions to be considered.

This principle is also used in coagulation equations and thus it is the equation (4.19) that

is the object of analysis in most of the mathematical studies (see examples in [8]), even when

the considered test function φ is no longer smooth and of compact support.

In the next section we will consider the coagulation equation with the so-called �solvable�

reaction coe�cients a(x, y) = 1, a(x, y) = x + y and a(x, y) = xy, by exploiting (4.19) with

φ(x) being a function related to the kernel function in the Laplace transform. We shall see

that in two of these three cases we will arrive at a Burgers' equation.

4.2.2 Application of Laplace Transforms

Analysis of the solvable case a(x, y) = 1

From the three solvable coe�cients2 referred above, we will start with the simplest one,

a(x, y) = 1, which will already show us the approach to be used in all others.

Consider φ(x) = 1− e−xs and let

(4.22) ψ(s, t) :=

∞∫
0

φ(x)c(x, t)dx.

2Those three cases of a(x, y) are called solvable exactly because the application of Laplace transforms to

(4.19) results in an ordinary di�erential equation, or in a partial di�erential equation � Burgers' equation �

that can then be, in principle, explicitly solved.
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Observe that ψ(·, t) is very similar to the Laplace transform of c(·, t), which would have been

obtained using φ(x) = e−xs instead. The present use of this �modi�ed� Laplace transform

(called �de-singularized� in the mathematical literature � see [16, 17]) is more convenient for

applications to coagulation studies. Having present that, for c(·, t) integrable in R+, ψ(s, t) =
∞∫
0

c(x, t)dx− (Lc(·, t))(s), where Lc represents the usual Laplace transform of c, properties of

ψ can be easily deduced from those of L.

Let us substitute φ into (4.19) to get

∂

∂t
ψ(s, t) = −1

2

∞∫
0

∞∫
0

(
e−(z+y)s − e−zs − e−ys + 1

)
c(z, t)c(y, t)dzdy.

Writing the right-hand side in expanded form

∂

∂t
ψ(s, t) = − 1

2

( ∞∫
0

e−zsc(z, t)dz

∞∫
0

e−ysc(y, t)dy −
∞∫

0

e−zsc(z, t)dz

∞∫
0

c(y, t)dy −

−
∞∫

0

e−ysc(y, t)dy

∞∫
0

c(z, t)dz +

∞∫
0

c(z, t)dz

∞∫
0

c(y, t)dy
)

=− 1

2

( ∞∫
0

e−usc(u, t)du
)2
− 2

∞∫
0

e−usc(u, t)du)

∞∫
0

c(u, t)du+
( ∞∫

0

c(u, t)du
)2


=− 1

2

 ∞∫
0

e−usc(u, t)du−
∞∫

0

c(u, t)du

2

=− 1

2

 ∞∫
0

(1− e−us)c(u, t)du

2

=− 1

2
ψ(s, t)2

Hence, we obtain the following ordinary di�erential equation3 for the (modi�ed) Laplace

transform of the cluster distribution function c(x, t) when the coagulation coe�cients are

a(x, y) = 1:

(4.23) ψt = −1

2
ψ2,

with the corresponding initial condition obtained from the initial condition (4.17) for the

coagulation equation:

ψ0 :=

∞∫
0

e−usc0(u)du.

3Although ψ is a function of two variable, in (4.23) one of them, s, acts as a mere parameter.
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Analysis of the solvable case a(x, y) = x+ y

Consider now the coagulation kernel a(x, y) = x + y, and let φ and ψ be as above in sec-

tion 4.2.2. Doing exactly the same computations as before we arrive at

∂

∂t
ψ(s, t) =−

−( ∞∫
0

ue−usc(u, t)du
)( ∞∫

0

(
1− e−us

)
c(u, t)du

)
+

+

∞∫
0

uc(u, t)du

∞∫
0

(
1− e−us

)
c(u, t)du

 ,

and observing that ψs(t, s) =
∞∫
0

ue−usc(u, t)du we can �nally obtain the following partial

di�erential equation for ψ:

(4.24) ψt − ψψs = −ρψ

where ρ =
∞∫
0

uc(u, t)du. This quantity has the physical interpretation of the total density of the

system of clusters and it has been proved that, for the coagulation kernel under consideration,

it is a constant quantity independent of the time t, [8], so that we can use the initial condition

(4.17) to write ρ =
∞∫
0

uc0(u)du.

Again, the corresponding initial condition is obtained in the natural way from the initial

condition (4.17) for the coagulation equation:

ψ(s, 0) =

∞∫
0

e−usc0(u)du.

Observe that (4.24) is a Burgers' partial di�erential equation that can be solved by the

Method of Characteristics

Analysis of the solvable case a(x, y) = xy

Finally, let us consider a(x, t) = xy and take φ(x) =
(
1− e−xs

)
x, being ψ(s, t) still de�ned by

(4.22). Again the exact same computations as in the above to sections leads to

∂

∂t
ψ(s, t) = −1

2

2

∞∫
0

u2e−usc(u, t)du
( ∞∫

0

ue−usc(u, t)−
∞∫

0

uc(u, t)du
)
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and since in the present case we have ψs(t, s) =
∞∫
0

u2e−usc(u, t)du, we can use this and the

de�nition of ψ to write the following partial di�erential equation for φ:

(4.25) ψt − ψψs = 0,

with the initial condition obtained as before.

Final Remarks

Having obtained the ordinary di�erential equation (4.23) or the Burgers' equations (4.24) and

(4.25) for the (modi�ed) Laplace transforms of the solution of the coagulation equation (4.19),

we could now be expected to present the way the solutions to (4.23), (4.24), or (4.25) (in

the last two cases obtained, for instance, by the Method of Characteristics) can be used to

gain knowledge about the solutions to (4.19). This, however, is a very di�cult process since

in most cases the solutions to (4.23), (4.24), or (4.25) are not explicitly known, and so to

translate the behaviour of those not explicitly solutions to information about the behaviour of

the coagulation solutions is a very hard problem which is the subject of current mathematical

research. Furthermore, it is in fact far removed from the main topic of study or this thesis,

which was Burgers' equation.
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Chapter 5

Conclusion

In this thesis, I studied Burgers' equation and some of its applications. In the �rst chapter,

I introduced the occurrence of Burgers' equation and gave the motivation to understand the

model. Burgers' equation can be classi�ed in two case: the inviscid and the viscid equations.

In the study of both these cases, I used analytical methods: the Method of Characteristics in

the �rst case, and the Cole-Hopf transformation in the second.

In chapter 2, to understand the Method of Characteristics, I introduced it by considering

the simplest example of an advection equation, and then I studied the Method of Charac-

teristics for linear, semi-linear, and quasi-linear equations in general form. The Method of

Characteristics allow the reduction of the partial di�erential equation to a system of ODEs;

using ODE theory to study the system of characteristic equation we conclude the existence of

a system of characteristic curves, and then, recurring to tools from Real Analysis, such as the

implicit and inverse function theorems, these characteristic curves are pieced together to get a

solution of the PDE. In the last section of this chapter I considered inviscid Burgers' equation

and solve it by using the Method of Characteristics. I also apply this method in chapter 4 to

a Burgers' equation modeling tra�c �ow.

In chapter 3, I solved viscid Burgers' equation by using the Cole-Hopf transformation, in

this method we converted non-linear viscous Burgers' equation into a linear heat equation,

then solve the heat equation by noticing the existence of a dimensionless variable that allow

for the transformation of the heat equation on the real line into a boundary value problem

for a second order ODE. After getting the solution of the ODE, we transform it back to the

solution of heat equation and then to the solution of viscid Burgers' equation.

In chapter 4, I studied two applications: in the �rst section I presented a model of tra�c

�ow, where I explained the important variables in modeling tra�c �ow as density and �ux,
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exhibit the relation between density, velocity and �ux, and use a balance law to obtain an

equation modeling the �ow of tra�c. Then I illustrate the model in the simplest case of

velocity say: constant velocity model, and also in a more realistic case: the Greenshields'

model. Finally I gave an example of a simple situation of a tra�c model, by considering a

linear relation between velocity and car density, with given initial condition. To solve the

example I used the Method of Characteristics. For the second application, I studied an aspect

related to the coagulation equations, namely, taking the continuous version of Smoluchowski's

coagulation equation, the goal of this section was to show the appearance of Burgers' equation

in an apparently surprising situation unrelated to conservation laws. We consider coagulation

equation with the �solvable� reaction coe�cients and apply (modi�ed) Laplace transforms.

The result of this will be that the Laplace transform will satisfy either an ODE , or a Burgers'

equation, depending on the �solvable� case under consideration.
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Appendix

In this appendix we collect a few standard de�nition and results used in previous chapter

[1, 20]

De�nition 5.0.1 If u = (u1, u2) and v = (v1, v2) are vectors in 2−space, then the dot product

of u and v is written as u · v and de�ned as

u · v = u1v1 + u2v2

Theorem 5.0.2 If u and v are non-zero vector in 2-space or 3-space, and θ is the angle

between them, then

u · v = ‖u‖‖v‖cosθ

and if u and v are orthogonal if and only if u · v = 0

Theorem 5.0.3 Assume that f(x, y) has continuous �rst-order partial derivatives in an open

disk center at (x0, y0) and that ∇f(x0, y0) 6= 0, then ∇f(x0, y0) is perpendicular to the level

curve of f though (x0, y0)

Proof 5.0.1 Let

(5.1) f(x, y) = c

be the level curve though (x0, y0), this level curve can be represented parametrically by the

equation

x = x(t)

y = y(t)

So, that the level curve has a non-zero tangent vector at (x0, y0). More precisely x′(t0)i +

y′(t0)j 6= 0

Where to is the value of the parameter corresponding to (x0, y0).

Di�erentiating (3.3) with respect to t, and applying the Chain rule yields

fx(x(t), y(t))x′(t) + fy(x(t), y(t))y′(t) = 0

Substituting t = t0, and using the fact that x(t0) = x0 and y(t0) = y0, we obtain

fx(x0, y0)x′(t0) + fy(x0, y0)y′(t0) = 0
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Which can be written as

∇f(x0, y0) · (x′(t0)i+ y′(t0)j) = 0

This equation tells us that ∇f(x0, y0) is perpendicular to the tangent vector x′(t0)i + y′(t0)j

and, therefore, is perpendicular to the level curve though (x0, y0), as shown in �gure 5.1

Figure 5.1: Gradient perpendicular to tangent line

De�nition 5.0.4 Let f be a real-valued function of the real variable t, de�ned for t > 0.

Consider the function F de�ned by

(5.2) F (s) =

∞∫
0

e−stf(t)dt

For all values of s for which this integral exists. The function f is call the Laplace transform

of the function f . We denote the Laplace transform F of f by L{f(t)}.

Theorem 5.0.5 (Linearity) Let f1 and f2 be functions whose Laplace transform exists and

let c1 and c2 be constant then,

L{c1f1(t) + c2f2(t)} = c1L{f1(t)}+ c2L{f2(t)}

De�nition 5.0.6 A function f is said to be of exponential order if there exists a constant α

and positive constants t0 and M such that

|f(t)| < Meαt

for all t > t0 at which f(t) is de�ned. More explicitly, if f is of exponential order corresponding

to some de�nite constant α, then we say that f is of exponential order eαt

Theorem 5.0.7 (Di�erentiation) Let f be a real function that is continuous for t ≥ 0, and

of exponential order eαt and suppose f ′ is piecewise continuous in every �nite closed interval

0 ≤ t ≤ b, then L{f ′} exists for s > α and L{f ′} = sL{f} − f(0).
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