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Abstract 

Cutaneous Mast Cell Tumour (cMCT)’s Patnaik and Kiupel grading schemes rely on 

qualitative and semi-quantitative features susceptible to bias and inter-observer 

variability. The stereological estimation of volume-weighted mean nuclear volume (VV), 

on the other hand, provides information about both nuclear size and its variability, proven 

to have prognostic value in many solid tumours.  

VV of 55 cMCTs was estimated using the point-sampled intercept method in 10 

microscopic fields (800 X). These tumours were graded by three pathologists and the final 

grade was compared with VV and clinical history of dogs with a follow-up period of one 

year. 

 A cut-off value of VV>168 µm³ was shown to differentiate aggressive cMCTs with 

78.3% specificity and 87.5% sensitivity.  

The present study suggests that the estimation of VV on routine histological sections may 

objectively improve the detection of more aggressive cMCTs. 

 

Keywords: stereology, mean nuclear volume, canine, mast cell tumour 
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Resumo 

 

Valor Prognóstico do Volume Nuclear Médio em Mastocitomas Caninos 

 

A gradação de Mastocitomas Cutâneos Caninos (cMCTs) pelo sistema de Patnaik e 

Kiupel é baseado em critérios qualitativos e semi-quantitativos, que estão sujeitos a viés 

e variabilidade inter-observador. O recurso ao princípio estereológico do ‘volume médio 

nuclear’ (VV), por outro lado, fornece simultaneamente informação sobre o tamanho 

nuclear e a sua variação, o que está associado a um valor de prognóstico em diversos 

tumores.  

O VV de 55 cMCTs foi estimado através do método ‘point-sampled intercept’ em 10 

campos microscópicos (800 X). Estes tumores foram classificados por três patologistas e 

a classificação final foi comparada com o VV e o follow-up clínico de um ano.  

Um cut-off de VV>168 µm³ revelou diferenciar cMCTs de comportamento mais 

aggressivo com uma especificidade de 78.3% e uma sensibilidade de 87.5%.  

Este estudo sugere que o VV poderá objectivamente auxiliar a detecção de cMCTs com 

um comportamento mais agressivo. 

 

Palavras-chave: estereologia, volume médio nuclear, canino, mastocitoma  
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Internship report 

As part of the Integrated Master’s in Veterinary Medicine of Évora University, my 

internship place at Instituto Gulbenkian de Ciência (IGC) from September 2018 to March 

2019, and from November 2018 to February 2019, it was divided between IGC and 

Instituto Nacional de Investigação Agrária e Veterinária (INIAV). The following 

dissertation is based on the research developed at IGC. 

 

 

1. IGC 

The IGC is part of Fundação Calouste Gulbenkian, a private charitable foundation 

promoting innovation in charity, arts, education and science. The IGC is located at the 

Oeiras campus in Rua da Marinha Grande, home to research programmes of several 

domains, such as cell and developmental biology, evolutionary biology, plant biology and 

biophysics. The internship took place at the Histopathology Unit (HU) from September 

12th to March 29th, under the orientation of Dr Pedro Faísca. The HU’s mains goals are to 

provide preparations for microscopic analysis and pathology support to IGC users and 

associate laboratories, academic institutions and private companies. These services 

include processing and paraffin embedding, microtome, vibratome and cryotome 

sectioning, routine and special staining, immunohistochemistry (IHC), pathology 

assessment and high-quality image acquisition.   

The main species observed was the mouse (Mus musculus) and occasionally the zebrafish 

(Danio rerio). Sporadically, I was also able to observe cell cultures of human hepatocytes 

and oesophagus. The mouse slides observed included the integumentary system (skin), 

the respiratory system (lungs, trachea, bronchi, bronchioles), the digestive system and 

annex organs (stomach, large and small intestine, pancreas, liver and salivary glands), the 

lymphatic system (spleen, thymus and lymph nodes), the central nervous system (brain 

and spinal medulla), the urinary system (kidneys), the muscle-skeletal system (skeletal 

muscle, femur, tibia), the circulatory system (heart), the adipose tissue and the sensory 

organs (eye). The zebrafish slides included a section of the whole fish. Samples were 

mainly paraffin-embedded and routinely haematoxylin and eosin (H&E) stained. 

Occasionally, the pathology assessment required special stains, such as Periodic Acid-

Schiff, Masson’s Trichrome and Oil Red.  
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The work of an experimental pathologist was accompanied, which mainly consists in the 

morphological description of lesions and further comparison of animals from different 

experimental groups. The main task was the quantification of structures using ImageJ 

software and Stereology. The slides were digitalized using HAMAMATSU 

NanoZoomer-SQ Digital slide scanner C13140-01 and opened with NDPI view software. 

ImageJ quantification included white adipocyte area, lipid area in brown adipocyte tissue 

and lipid area in Oil Red-stained culture cells. The quantifications were executed 

manually or semi-automated. Stereological quantifications were mainly focused on 

Volume, as well as Mean Particle Volume, Number and Surface Area. Stereological 

estimations were done manually by superposing probes on the screen or using 

STEPanizer software. Volume estimations often included Volume Fraction (VF) 

estimations, for example, liver and metastasis VF, skin and epidermis VF, pancreas and 

pancreatic islets VF or heart and fibrosis VF. Mean particle volume estimations were 

performed on Barret’s Oesophagus culture cells, canine mast cell tumours and brown 

adipocyte mitochondria. Number estimations included hair follicle number on dorsal skin 

and pancreatic islets number. 

 

 

2. INIAV 

INIAV is the public Laboratory of Animal Health, Plant Health, Food and Feed Security. 

Its reference national laboratories are responsible for the official analysis of numerous 

zoonoses and antimicrobial resistance. INIAV participates in the surveillance activities 

of Transmissible Spongiform Encephalopathies (TSEs), a group of diseases caused by 

the accumulation of abnormal prionic protein in the brain leading to fatal 

neurodegeneration, such as Bovine Spongiform Encephalopathy, small ruminant 

Classical and Atypical Scrapie and cervid Chronic Wasting Disease. Such activities 

include active and passive surveillance of bovine species, sheep, goats and cervids as 

well as sheep genotyping. This internship took place at the Pathology Laboratory, from 

November 5th, 2018, to February 28th, 2019, under the supervision of Dr Leonor Orge. 

Atypical Scrapie was diagnosed in portuguese sheep for the first time in 2004. Following 

the confirmation, caudal medulla isolates from ARR/ARR and ARQ/ARQ genotypes 

were sent to the Friedrich-Loeffler-Institut (German National Reference Laboratory for 
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TSEs) to strain type the form of disease by mouse bioassay. Each isolate was inoculated 

intracranially in 15 TgshpXI mice expressing ovine PrPARQ, resulting in a total of 30 

animals. Incubation periods were monitored, and animals were gradually euthanized after 

manifesting neurological clinical signs. The brains were formalin-fixed and paraffin-

embedded and posteriorly sent to INIAV.  

At INIAV, the brains were sectioned at the levels of the medulla, superior colliculus, 

thalamus and basal ganglia. 5 µm-thick sections were H&E-stained according to standard 

protocols for histopathology. Lesion profiling was analyzed by the vacuolation severity 

of nine grey matter areas and three white matter areas. Vacuolation was semi-quantified 

using a score of 0 to 5 in grey matter areas and 0 to 3 in white matter areas (1). 

PrPSc deposition was evaluated by IHC on serial sections of the same coronal areas, 

according to standard protocols adjusted to mouse brain upon previous testing.  

Lesional profiles showed more vacuolation in the hippocampus (G6), cerebral cortex, 

cerebellar white matter (W1) and cerebral peduncles (W3) in both genotypes. The 

originally diagnosed sheep had white matter PrPsc deposition at the level of the obex, 

suggesting a “white matter-type immunolabelling”. A mouse bioassay using tg338 

expressing ovine PrPVRQ with isolates from sheep without white matter vacuolation is 

taking place, to evaluate if these differences are due to a different strain or to a yet 

unknown cause. The lesional profiles, incubation periods and PrPsc depostion suggest 

that, independently of sheep genotype, these isolates are concordant with Atypical 

Scrapie Nor98 transmitted to transgenic tg338 mice. Regarding the possibility of 

phenotype shifting, it is relevant to pursue strain typing studies. 



1 

 

I. Literature Review 

1. Introduction 

In biology, the observation of three-dimensional objects is enabled by the production of 

two-dimensional sections. The production of such sections has consequential loss of 

relation between structures and the number of sections required to section an entire object 

becomes unpredictable. Solids are observed as profiles, surfaces are observed as lines and 

lengths are observed as points (Figure 1) (2). Routine histopathology analyses a small 

fraction of the total organ, and while such amounts may be useful for a qualitative 

appreciation of the organ’s condition, the same sample will only be suitable for a 

quantitative analysis if a statistically sound sampling method is applied (3).  

 

 

 

Figure 1. Production of 2D sections across objects (adapted from West, 2012). 

 

Stereology is the gold standard method in quantitative studies and allows the recovery of 

3D information through estimations, that is, approximations with defined margins of 

error. Stereological estimates rely on sampling procedures which have various levels that 

fall into a defined hierarchy: the number of animals, the number of blocks, the number of 

sections, the number of measurements performed, and the precision of the each individual 

measurement (2).  

Stereological measurements use probes, i.e., geometric shapes (points, lines, cycloids, 

counting frames) superposed on tissue sections to gather information about the object (2). 

These probes are applied in a ‘design-based’ scheme, where all structures have the same 

probability of being sampled, eliminating assumptions about size, shape, orientation or 
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distribution (4). While it is not necessary to sample the whole object, access to the entire 

object is necessary to ensure that all structures have the same probability of being 

sampled. Most stereological probes require ‘isotropic’ sampling, where structures are 

randomly sampled without a preferential orientation (2,5,6).   

The efficiency of a procedure is related to the amount of sampling performed, and the 

margins of error of stereological estimations are defined with statistical principles 

(accurate sampling, isotropy and randomization). The main goal is to “do more less 

well!”, in other words, to gather the maximum amount of information at the least effort 

or cost (2,4,7,8).  

The greatest source of variability in stereological estimates comes from the highest 

sampling levels, especially the biological variances between individuals. The lowest 

levels, such as the precision of each measurement or feature-to-feature variances have 

little effect on variability (8). 

 

 

1.1. Application of stereology in tumour studies 

It is well established that tumour cells revealing significant variation in size and larger 

nuclei will generally be considered aggressive (5,9).  Malignant cells have higher mitotic 

activity and higher nuclei-cytoplasmic ratio than the cells that originate them, 

accompanied by greater amounts of DNA and clumping of chromatin. These cause the 

increase of nuclear size and density as well as alterations of chromatin texture. Abnormal 

metabolic activity also leads to lack of cytoplasmic differentiation and alterations in 

nucleoli size and shape (6).  

Tumour histologic grading relies on the qualitative appreciation of morphological 

features and has a crucial impact on prognosis and treatment. The subjectivity of tumour 

grading is not only sensitive to personal bias and knowledge, but also prone to inter-

observer variability. An objective and quantitative approach to malignancy severity, on 

the other hand, provides a significant advantage in terms of reproducibility (6).  

Nuclear size quantification can be performed by morphometry, image analysis and 

stereology. Both morphometry and image analysis rely on area estimations of nuclear 

profiles, one of the most elusive structures to quantify. A stereological approach, on the 
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other hand, obtains three-dimensional information using a ‘design-based’ scheme, where 

no assumptions about shape or orientation are made (4,6,10). 

 

 

1.1.1. Particle size 

The measurement method applied in particle sizing is based on a measurable criterion, 

in which every particle is given a ‘weight’. Particles may be sampled according to their 

height, number, surface area or volume. For examples, if particles are sampled according 

to their volume, a larger particle will have a greater probability of being sampled (3).  

Volume estimation can either be number-weighted or volume-weighted, in which 

particles are sampled according to their number or volume, respectively. Figure 2 

illustrates a population of particles of different volumes (a). Each particle is placed in a 

box with limited spacing. The first box has particles of volume smaller than 5 μ3, the 

second box has particles greater than 5 μ3 and smaller than 10 μ3, and so on (b). The first 

histogram reports the number of particles in each bin and is a measure of number-

weighted distribution of volume (NV) (c). The second histogram represents the volume 

inside each box and provides a measure of volume-weighted distribution of volume (VV) 

(d). The same population of particles provides two different aspects of volume 

distribution (3). 

 

 

Figure 2. Number and volume-weighted distribution (adapted from Howard & Reed, 

2018). 
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Volume-weighted estimations of volume are interesting in tumour studies because the 

mean particle volume mainly reflects the volume of the greater particles. In a number-

weighted volume, on the other hand, the mean volume is mainly influenced by the 

smaller particles. 

 

 

1.2. Estimation of volume-weighted mean nuclear volume (VV) 

The ‘point-sampled intercept method’ was developed by Gundersen and Jensen (1983) 

and provides a measure of volume-weighted mean nuclear volume (VV) highly suited for 

tumour malignancy studies (11). The PSI method samples nuclei using points (+) has an 

with associated isotropic lines that create an intercept across the nuclear profile (Figure 

3). The length of each intercept is measured from nuclear boundary to nuclear boundary 

(𝑙0
3) and the mean intercept length provides an unbiased estimation of volume-weighted 

distribution of volume (3). 

 

 

Figure 3. Point-sampled intercept (adapted from Skau et al. 2001). 

 

 

Only a fraction of nuclei is sampled, therefore one measures the volume-weighted mean 

nuclear volume, which provides information about how large a fraction of the total 

volume is. One of the advantages of VV application in tumour malignancy is that it 

favours nuclear size and therefore contains more information about larger nuclei. It 

should thus be applied in a situation where larger particles contain valuable information, 

as is the case in tumour cells (5,6,11,12). 

The PSI method requires the assurance of two conditions. Firstly, the observer must be 

able to distinguish all profiles belonging to the same nucleus (11–13), which, in the case 
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of mononucleated cells can be observed as one single connected profile (11). The second 

required condition is the assurance of isotropy. Either 1) the structures of interest 

(particles) are assumed as randomly orientated and a set of arbitrary lines is applied or 2) 

isotropy is achieved using randomly orientated probes  (11). There are three different 

possibilities: 

a) If a structure has a preferred orientation (anisotropic), it is possible to 

perform Isotropic Uniform Random (IUR) sectioning and application of lines in a 

fixed direction (5); 

b) If a structure is isotropically orientated, a fixed direction can be applied 

however, assumptions about random orientation should be done carefully; 

c) If a nuclear population has a preferred orientation, as is the case in a 

cutaneous specimen, the PSI method is applied on vertical sections. In this case, 

nuclear anisotropy is counterbalanced using isotropic sine-weighted orientated lines 

(9,13).  

 

IUR sections have fixed distance apart and are performed without a preferential 

orientation. These sampling method often destroys crucial diagnostic information (6). 

Vertical Uniform Random (VUR) sections, on the other hand, preserve the location of 

the tumour and are generated by 1) placing an object with a pre-defined horizontal plane 

on a table and 2) sectioning it perpendicularly to the table. Such horizontal plane is either 

defined by the observer or corresponds to a region within the tissue (14). In a cutaneous 

tumour biopsy, the horizontal plane can be defined by the epidermis (14–16).  

 

 

1.2.1. PSI method on VUR sections 

The PSI method requires a set of different probes: 1) an orientation frame which defines 

the direction of the test-lines; 2) a set of test-lines with equally spaced points that sample 

nuclei and create intercepts across the nuclear profiles; 3) an orientation frame that 

samples the area of the field of view for measurement 4) a logarithmic ruler used to 

measure the length of the nuclear intercepts.  
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1.2.1.1. Orientation frame 

Figure 4 exemplifies the production of an orientation frame. Initially, an arc is projected 

on the frame along with traced horizontal lines. The lines are traced equidistantly along 

the vertical axis represented by the left-hand corner of the frame (a). The points where 

the lines intercept the arc are projected to the centre of the arc (b). The endpoints of the 

lines generate orientation numbers (c) (15). The orientation frame follows a sine-

weighted distribution i.e., the greater the number, the larger the angle to the vertical 

axis and smaller the distance between numbers (5,15). 

 

 

 

Figure 4. Production of an orientation frame (adapted from Sorensen, 1991b). 

 

 

Figure 5 demonstrates the orientation frame composed of 97 numbers used on VV 

measurements. Each tumour is generally measured in five to ten fields of view and the 

initial orientation is randomly generated number between 1 and 97. The test-lines are 

assembled so one of the lines passes through the generated number and the lower left-

hand corner of the frame (17). The following fields have orientations defined by the 

addition of a constant period of 37 or the subtraction of 60, if the subsequent number 

is greater than 61 (5,15). 
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Figure 5. Orientation frame (adapted from Sorensen, 1991b). 

 

 

1.2.1.2. Lines associated with points 

A set of equally spaced points (+) samples nuclei and the associated lines select nuclear 

intercepts for measurement (Figure 6). Whenever a nucleus is hit by two points, it is 

measured twice (15).  

 

 

Figure 6. Test-lines and equally spaced points 

 

 

1.2.1.3. Counting frame  

A counting frame composed of inclusion (dashed) and exclusion (full) lines selects the 

area of the cross-section for measurement. Figure 7 illustrates that nuclei fully or 

partially within the frame, are sampled (green). Nuclei intercepting the exclusion lines 

or landing outside the frame are excluded from measurement (red) (5,18).  
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Figure 7. Counting frame (adapted from Sorensen, 1991b). 

 

 

1.2.1.4. Logarithmic ruler 

Although any ruler may be used for intercept measurement, the logarithmic (𝑙0
3) ruler 

has the advantage of providing cubed intercept lengths (5). This rule is composed of 15 

classes, each 17% wider than the preceding class (Figure 8) (15,19). The ruler length 

of the magnification must be adjusted so the higher classes correspond to the longest 

intercepts. If smaller than the latter, a ruler is unsuitable for measurement (10,12).  

 

 

Figure 8. Logarithmic ruler (Fehrenbach et al. 2005 - 21).  

 

 

The intercept intercept length (𝑙0
3) is measured form nuclear boundary to nuclear 

boundary and falls into one of the classes of the logarithmic ruler. The mean cubed 

intercept length (𝑙0
3̅) is multiplied by 

𝝅

𝟑
 and the mean nuclear volume is obtained. 

Knowledge of the absolute magnification is required to convert 𝑙0
3̅ to µm³ (12,15,19). 
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1.2.2. Meaning of VV 

If VV and NV are simultaneously estimated from the same population, the coefficient of 

variation (CV) of nuclear size can also be measured in a population of tumour cells. CV 

has also been shown to have prognostic significance and is calculated using Equation 1 

(3,15). Despite the interest in knowledge of CV, VV is frequently enough to investigate 

tumour malignancy and the description of the distribution of size may be irrelevant. 

 

Equation 1. VV = NV × (1 + CV2) 

 

Equation 1 demonstrates that VV contains information about both size and variability in 

size. Therefore, if two specimens present with different VV values, it is not possible to 

conclude if these are due to differences in size or due to presence of nuclear 

pleomorphism (3,15). 

 

 

1.2.3. Reproducibility of VV 

The greatest impact on VV variability seems to be related to biological variation among 

patients, with up to 80% total observed variance (9,10). Since the biological variability 

is always present, the number of fields and intercepts measured have a greater impact 

on efficiency than variances between fields or the precision of each intercept. The 

general formula is approximately 75 intercepts per tumour measured in 5 to 10 high 

power fields (5,6,15). The number of points, lines, and fields also affects efficiency and 

must be constant for different specimens of the same tumour. Using several points with 

few lines may lead to the measurement of the same nucleus the same way twice. The 

absolute magnification and the number of points must be adjusted so that the number of 

nuclei sampled by two points is decreased to a minimum (6,12). 

The unbiased nature of the estimation also relies on tissue processing. Accurate VV 

estimations depend on the correct identification and preservation of nuclear profiles. 

Varying severity areas may present internal variation to tissue processing, and the loss 

of nuclear profiles on the cross-section has an unpredictable influence on efficiency. 
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One practical solution to this problem is the standardization fixation, dehydration, 

embedding and sectioning (6).  

Since its development, VV has been correlated with histological grading and mortality 

rates of various tumours. These include: malignant melanoma (10,21,22), prostatic 

cancer (23,24), breast cancer (25,26) bladder tumours (27,28) squamous cell carcinoma 

of the uterine cervix (9) or neuroblastoma (29).  
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2. Canine Mast Cell Tumours 

2.1. Mast cell biology 

Mast Cells (MCs) have round central nuclei and variable cytoplasmic granules, involved 

in inflammatory and immune response. MCs contain high-affinity IgE receptors that 

trigger the inflammatory mediators upon activation by IgE, a process known as 

degranulation. These mediators include heparin, histamine, leukotrienes, prostaglandins, 

proteases, cytokines, chemokines and growth factors (30–32). MC granules are observed 

with metachromatic stains, such as toluidine blue or the Wright’s combinations, and is 

caused by binding of mediators to cationic dyes (31,33,34).  

MCs are derived from hematopoietic cells originated in the bone marrow, most likely 

the myelomonocytic line (35). Unlike other hematopoietic cells, pluripotent CD34+ and 

CD117 leave the bone marrow and enter the bloodstream as undifferentiated precursors 

of MCs. Differentiation into mature MCs occurs after infiltration of either connective 

tissue or mucosa. Mature MCs retain the ability to proliferate (36–38).  

MCs are ubiquitous in connective tissues, therefore MCTs can develop anywhere in the 

body (35). In dogs, MCs exist in higher numbers in the skin, lungs, gastrointestinal tract 

and liver (33,37).  The preferential location of MCs is the dermis, near hair follicles and 

blood vessels. Occasionally MCs can be found in subcutaneous fat (38,39). 

 

 

2.2. Cutaneous Mast Cell Tumours 

Canine mast cell disease usually occurs as single or multiple cutaneous Mast Cell 

Tumours (MCTs), and less frequently cutaneous or systemic mastocytosis. MCTs arise 

from the malignant transformation of mast cells and they should always be considered 

malignant (40,41). Cutaneous MCTs (cMCTs) are the most frequent form of mast cell 

disease in dogs, followed by subcutaneous MCTs. Extracutaneous MCTs are found in 

visceral organs such as the liver, spleen, gastrointestinal tract or lung, and are frequently 

caused by distant metastasis from a cutaneous nodule. Mast cell leukaemia is very rare 

in dogs (37,38).  

cMCTs are one of the most frequently diagnosed skin tumours in dogs (42–44). 

Although they may be present in dogs of all ages, cMTCs are most frequent in middle-

aged to elderly dogs (41,44). Spontaneous receding MCTs have also been described in 
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dogs younger than 1 year (33,37,38). There is no gender predilection but breeds such as 

Boxers, Labrador Retriever and Pugs and similar ancestry tend to be predisposed to 

development of disease (38,41).  

cMCTs have variable gross appearance, ranging from single to multicentric, raised to 

deep, soft or firm nodules, which may help predict tumour aggressiveness. Typically, 

they present as alopecic, erythematous and oedematous masses (37,38,41). Diameter 

may range from a few millimetres to several centimetres and ulceration may be present 

in larger tumours (39). Common complications of cMCT development include delayed 

wound healing, gastrointestinal ulceration and coagulation defects due to the release of 

histamine, heparin, eosinophilic chemotactic factor and proteases. Some dogs exhibit 

inflammation following tumour manipulation (Darrier’s sign), due to MC degranulation 

(37,38). Life-threatening anaphylactic shock caused by acute degranulation is a possible 

but unusual outcome for dogs (37). 

 

 

2.3. Prognostic factors 

cMCTs are heterogenous and have marked variable biological behaviour, ranging from 

tumours of benign behaviour treated with surgery alone, to potentially fatal metastatic 

tumours (45–47). Growth rate and gross appearance can provide information about the 

biological behaviour of these tumours. While low-grade cMCTs tend to develop slowly 

and remain localized in the absence of clinical signs, more aggressive tumours tend to 

grow rapidly and ulcerate. The existence of paraneoplastic signs at the time of diagnosis 

is also indicative of a worse prognosis (48,49).  

cMCTs first metastasize to regional lymph nodes, followed by visceral organs, such as 

the liver and spleen. Although cMCTs typically present as single isolated masses, a 

significant number of dogs will develop multiple simultaneous or sequential cMCTs 

(39). Distant cutaneous nodules are most likely de novo cMCTs, rather than true 

metastasis (38,48–50). Prognosis is directly associated with tumour grade, rather than 

the number of tumours present at time of diagnosis, suggesting that each cMCT should 

be treated individually, according to tumour grade (44).  
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Several factors have been used to predict cMCT biological behaviour, including tumour 

stage, histological grade, evaluation of surgical margins, molecular markers of 

proliferation and detection of mutations in c-kit (42,51). Tumour grade reveals the 

strongest association with biological behaviour and prognosis (40,44–46,51).  Currently, 

the most used systems are Patnaik and Kiupel grading.  

 

2.3.1. Tumour Grade 

MCTs are nonencapsulated tumours with distinctive histological features recognized at 

low magnifications, such as the presence of neoplastic cells in cords with distinct cell 

borders or closely packed sheets. The characteristic presence of few to many eosinophils 

may mask the neoplastic cells. MCTs have scant to abundant collagenous stroma with 

variable amounts of necrosis and collagenolysis, secondary to eosinophilic infiltration. 

Neoplastic cells have round central nuclei, acidophilic cytoplasm and cytoplasmic 

granules, which may fail to stain metachromatically. cMCTs lay in the outer dermis 

with possible extension to the subcutis. The epidermis is usually intact but extension of 

neoplastic cells to the epidermis causes ulceration in larger masses (38,39).  

Subcutaneous MCTs lay in the subcutis, surrounded by subcutaneous fat. The existing 

grading systems were developed for cMCTs, therefore subcutaneous MCTs are usually 

evaluated according to the extent of tumour invasion (circumscribed, intermediate or 

infiltrative), surgical margins, mitotic count and other proliferation markers (38,52).  

MCTs originated in mucous membranes, particularly the muzzle, seem to have greater 

metastatic potential when compared with haired skin tumours. Since Patnaik grading 

requires evaluation of dermal invasiveness, these tumours are preferentially graded 

according to Kiupel (53). 

 

2.3.1.1. Patnaik grading  

Patnaik grading was developed in 1984 and grades cMCTs as grade-I (G1), grade-II 

(G2) and grade-III (G3). Grade-I (well-differentiated) cMCTs have moderately 

pleomorphic mast cells arranged in rows and confined to the dermis, with round central 

to indented nuclei, fine cytoplasmic granules with little stromal reaction and absence 

of mitotic figures. Grade-II (intermediate differentiated) cMCTs exhibit moderately 

cellular pleomorphic mast cells arranged in groups, with areas of oedema and necrosis 
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and 0 to 2 mitotic figures per high power field (hpf). Grade-III (poorly differentiated) 

cMCTs exhibit highly cellular pleomorphic mast cells arranged in packed sheets, which 

replace the subcutis and deeper tissues with severe stromal reaction and 3 to 6 mitotic 

figures per hpf (Table 1) (40).  

Patnaik grading reveals significant inter-observer variability, specifically among G1 

and G2 (45,46,54). G2 cMCTs have unpredictable biological behaviour and 

differentiation of more aggressive tumours is associated with the knowledge of 

proliferation markers, such as the mitotic count and immunohistochemistry of ki-67 

(49). 

 

2.3.1.2. Kiupel grading  

Kiupel et al. established a two-tier grading system not only to eliminate the ambiguity 

of G2 but also to diminish grading variability among pathologists (45). The authors 

proposed that cMCTs should be graded as high-grade (HG) when one or more of the 

following events are present: at least 7 mitotic figures in 10 hpf, at least 3 

multinucleated cells in 10 hpf, at least 3 bizarre nuclei in 10 hpf and karyomegaly. 

Low-grade (LG) cMCTs are based on the absence of the above (Table 1) (45). Kiupel 

grading has repeatedly demonstrated to play a superior prognostic value and to 

significantly decrease tumour grade variability among pathologists (46,54). Recently, 

Kiupel grading was adapted to cytological preparations (51,55). 
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Table 1. Patnaik and Kiupel grading (adapted from Meuten, 2017).  

Cutaneous Mast Cell Tumour grading criteria 

Patnaik (1984) 

Grade-I 

(G1) 

Confined to the dermis, well-differentiated MCs arranged in rows, 

distinctive cytoplasmic granules, 0 mitotic figures per hpf 

Grade-II 

(G2) 

Lower dermis and subcutaneous tissue, intermediate-differentiated MCs 

arranged in groups, visible granules, 0-2 mitotic figures per hpf 

Grade- III 

(G3) 

Subcutis and deep tissues, poorly differentiated MCs arranged in closely 

packed sheets, visible to absent granules, 2-6 mitotic figure per hpf 

Kiupel (2011) 

High-grade 

(HG) 

Presence of one or more: ≥7 mitotic figures/10 hpf;  ≥3 multinucleated 

cells/10 hpf; ≥3 bizarre nuclei/10 hpf; karyomegaly 

Low-grade 

(LG) 
None of the above 

 

 

2.3.2. Cellular Proliferation 

Cellular proliferation reflects the number of cycling cells and the rate at which cells are 

progressing through the cell cycle. Proliferation markers evaluate these parameters 

individually, therefore, there is a need to combine multiple markers in order to 

understand cellular proliferation (43,56). The four most commonly used markers in 

veterinary medicine are mitotic count, Proliferating Cell Nuclear Antigen (PCNA), Ki-

67 and Nucleolar Organizer Regions (AgNOR) (50).  

Mitosis is a phase index recognized in phase M and the mitotic count is an indicator of 

cellular proliferation widely used in histologic grading systems. A high mitotic count is 

indicative of a worse prognosis, however, a small number of aggressive cMCTs will 

exhibit low mitotic counts (56). Mitotic counts have reproducibility problems related to 

methodology and cMCT staining (57,58).  

PCNA is also a phase index mainly expressed during phase M. PCNA is involved in 

multiple nuclear functions, including DNA repair (43). Ki-67 is a nuclear protein 
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expressed during all stages of the cell cycle but is absent in resting cells. The relative 

number of cells expressing Ki-67 reflects the number of cells undergoing the cell cycle 

(42). AgNORs are nucleolar particles which can be recognised as dark nucleolar foci in 

silver-based stained, caused by silver affinity of associated proteins. Elevated nuclear 

AgNOR counts indicate increased speed of the cell cycle progression and are associated 

with worse prognosis (43,50,56).  

Immunohistochemical PCNA and Ki-67 staining and histochemical AgNOR staining 

provide mutually exclusive and complementary information about cellular 

proliferation. The AgNOR × Ki-67 score (Ag67) provides a strong reflection of cellular 

proliferation, because it combines information about the rate of the cell cycle and the 

number of cycling cells. Elevated Ag67 is associated with likelihood of progression of 

disease and greater mortality rates (43,56). 

 

 

2.3.3. KIT expression and c-kit mutations 

C-kit is a proto-oncogene that encodes KIT protein, a tyrosine kinase receptor. Binding 

of stem cell factor to KIT promotes MC survival, maturation and differentiation. Altered 

KIT expression and mutations in c-kit are prognostic indicators of cMCT biological 

behaviour (30,56,59). The most common mutations occur in exon 11 which cause 

ligand-independent KIT expression, promoting aberrant survival and proliferation of 

mutated cells (43,60,61). Dogs with c-kit mutations are candidates to targeted treatment 

with c-kit inhibitors (38). 

Abnormal KIT expression is evaluated using IHC. There are three described expression 

patterns in canine cMCTs: membrane-associated staining (pattern 1); focal or stippled 

cytoplasmic staining (pattern 2); and diffuse cytoplasmic staining (pattern 3). Pattern 2 

and 3 are associated with worse prognosis (59). Aberrant KIT expression may occur in 

the absence of c-kit mutations (56). 

 

 

 

 

 



   

17 

 

2.3.4. Surgical Margins 

cMCTs should always be removed with margins of at least 1 cm laterally. The standard 

procedure involves removal of two to three cm laterally and a one tissue plane in depth. 

The initial surgery provides the best chance for a cure (56,62).  

Evaluation of tumour margins may be difficulted by MC extending from the primary 

mass and blending with inflammatory cells surrounding the primary mass. Currently, 

clusters of MCs located in the surrounding margins are assumed as neoplastic and well-

differentiated isolated cells are assumed as inflammatory (56).  

 

 

2.3.5. Staging 

Clinical staging can help determine the likelihood of progression of disease and the 

most indicated treatment. Full staging of cMCTs involves palpation and aspiration of 

regional lymph nodes in addition to abdominal imaging (by ultrasound or radiography) 

to evaluate the presence of metastasis in the lungs, liver and spleen (38,48,49).  

Stage I cMCTs are solitary tumours confined to the dermis in absence of metastasis. 

Stage II are confined to the dermis but present with lymph node metastasis. Stage III 

are multiple tumours occurring in the dermis or infiltrating tumours with no lymph node 

involvement. Stage IV occur in association with distant metastasis.  

Differentiation of stage II and III involves the correct detection of lymph node 

involvement (56). cMCTs primarily metastasize to regional lymph node and one study 

suggested that the excision of non-palpable and normal sized lymph node improves the 

early detection of metastasis, with no apparent association with primary tumour grade 

(63). Nevertheless, both histopathology and cytology produce false positive diagnosis 

of lymph node metastasis (64).  Table 2 represents a lymph node classification proposed 

by Weishaar et al, where ‘HN’ refers to ‘histological node’.  
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Table 2. Nodal metastasis classification  

Lymph node metastasis classification system  

Classification Interpretation Histological criteria 

HN0 Non-metastatic 
 0-3 isolated mast cells in sinuses and/or 

parenchyma per 400x field or none of the below 

HN1 Pre-metastatic 
 >3 isolated mast cells in sinuses and/or 

parenchyma in at least four 400x fields 

HN2 
Early 

metastasis 

 Aggregates of ≥3 mast cells in sinuses and/or 

parenchyma or sheets of mast cells in sinuses 

HN3 
Overt 

metastasis 

 Disruption or effacement of nodal architecture by 

foci/nodules/sheets/masses composed of mast cells 

 

 

Stage III cMCTs may have multiple masses due to the development of multiple de novo 

masses. Stage IV is difficulted by challenges in clinical detection of distant metastasis 

and lack of post-mortem examination of dogs. Some studies suggest the advantage of 

liver and spleen ultrasound-guided aspiration in early detection of distant metastasis, 

even in the absence of abdominal alterations (56,65). 
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II. Research Project 

3. Aim 

Currently, tumour grade is the most valuable predictor of cMCT biological behaviour. 

Histological grading evaluates malignancy severity and labels tumours based on 

morphological features. The qualitative and subjective nature of tumour grading is highly 

sensitive to personal bias, causing significant intra and inter-observer variability and 

consequent poor reproducibility. Additionally, tumour grade has a crucial impact on 

prognosis and patient treatment, reinforcing the need to substitute subjective and 

qualitative parameters by objective and quantitative techniques. The goal of this study 

was to: 

 

a) Objectively quantify cMCT nuclear size with a stereological approach 

b) Investigate VV‘s relation with tumour grade 

c) Investigate VV’s ability to predict cMCT biological behaviour 
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4. Materials & Methods 

4.1. Case selection and histopathological analysis 

The pathology archives of DnaTech were used to select 55 cMCTs from December 2016 

to December 2017. Exclusion criteria included absence of an identifiable vertical-axis, 

incisional biopsies and end-stage disease. Data regarding age, sex and breed was not 

included.  

All cMCTs were formalin-fixed and paraffin-embedded at the time of submission. Each 

specimen was sectioned perpendicularly to the cutaneous surface into 5-µm-thick 

sections and routinely H&E-stained. These tumours were blindly graded following 

Patnaik and Kiupel by three pathologists. The final grade corresponded to the grade 

assigned by at least two of the three pathologists (66).  

 

 

4.2. Outcomes 

Considering that the use of different treatment modalities would have influenced the 

interpretation of results, only cMCTs treated with surgical removal alone were selected 

for prognostic analysis (n = 31) (67). Veterinarians were surveyed regarding clinical 

outcomes including local recurrence, lymph node metastasis and disease-related death.  

Animals were followed until May 2019 with a minimum follow-up of one year. 

Histopathological confirmation of nodal metastasis was performed when possible.  

Distant nodules were considered de novo cMCTs and excluded from statistical analysis 

(38). Surgical margins were also evaluated. 

 

 

4.3. Stereological estimations 

Each slide was scanned with HAMAMATSU NanoZoomer-SQ Digital slide scanner 

C13140-01 and the fields of 800X magnification were assessed with NDPI view 

software. Cross-sections were rotated along their vertical axis, so the cutaneous surface 

was positioned upwards. 

 

 

 



   

21 

 

4.3.1. Field selection 

The distance between fields was approximately constant and proportional to the overall 

tumour sectional area, visible on the map widget on the lower right-hand corner (Figure 

8). The final magnification (M) was calculated dividing the tissue scale on page (12.4 

cm = 124000 µm) by the tissue scale on tissue level (50 µm) (Equation 2) (3). 

 

Equation 2. M = 
𝑆𝑐𝑎𝑙𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑛 𝑝𝑎𝑔𝑒 (𝜇𝑚)

𝑆𝑐𝑎𝑙𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑎𝑡 𝑡𝑖𝑠𝑠𝑢𝑒 𝑙𝑒𝑣𝑒𝑙 (𝜇𝑚)
 = 

124000(𝜇𝑚)

50 (𝜇𝑚)
= 2480X 

 

 

Figure 9. Selection of fields. Cutaneous mast cell tumour (cMCT), H&E, Bar 5 mm in 

overview, bars 50 µm in inserts. 

 

 

4.3.2. Measurements 

An orientation frame was taped onto the screen (Figure 10). The first field had a 

direction determined by a randomly generated number between 1 and 97, in this case, 

20  (outlined in red) (Figure 11). The following orientation numbers were systematically 

determined by the addition of 37 – (Table 2). 

 



   

22 

 

 

 

Figure 10. Orientation frame. cMCT, H&E, Bar 50 µm 

 

 

 

Figure 11. Orientation frame + Test-lines. cMCT, H&E, Bar, 50 µm 

 

Table 3. Orientation numbers 

1  38  75  15  52  89  29  66      6  43  80  20  57  94  34  71  11  48  85  25  62  2 

2  39  76  16  53  90  30  67      7  44  81  21  58  95  35  72  12  49  86  26  63  3 

3  40  77  17  54  91  31  68      8  45  82  22  59  96  36  73  13  50  87  27  64  4 

4  41  78  18  55  92  32  69      9  46  83  23  60  97  37  74  14  51  88  28  65  5 

        5  42  79  19  56  93  33  70    10  47  84  24  61  1 
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The orientation frame also served as a counting frame. The top and right-hand corner 

lines were defined as inclusion lines, whereas the bottom and left-land lines were 

defined as exclusion lines. Figure 12 exemplifies nuclei point-sampling, outlined in red. 

 

 

Figure 12. Nuclei point-sampling. cMCT, H&E, Bar, 50 µm 

 

 

Each point-sampled nucleus landing partially or within the orientation frame was 

measured with a logarithmic ruler of 3.35 cm. Each nuclear intercept was measured 

from nuclear boundary to nuclear boundary in the direction of the test-lines. Figure 13 

illustrates an example of an intercept falling into the ruler’s first class (outlined in 

green). Intercept measurement was registered along a minimum of 10 fields of view. 

The frequency of each class along the fields of view is used in VV calculations.  
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Figure 13. Intercept length measurement. cMCT, H&E, Bar, 50 µm  

 

 

4.3.3. Calculations 

Table 4 reflects the general formulas applied in VV estimation. Column A indicates each 

class of the logarithmic ruler. The length of each class (Column B) is estimated by 

computing the upper limit of class z (1, 2… n-1, n) in a ruler of n classes (n = 15) of 

length Ln. If Ln=3.35 cm, the upper limit of class 1 is 0.62 cm (Equation 3) (15,19).  

 

Equation 3. Upper limit of class 1 = 
(𝐿𝑛)3

10𝑛/(𝑛−1)−1
× (10𝑧/(𝑛−1) − 1) = 

= 
3.353

1015/(14)−1
× (101/(14) − 1) = 0.62 cm 
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Table 4. Example of general formulas applied in mean nuclear volume (VV) estimations 

(adapted from Sorensen 1991b, Skau et al. 2001). 

VV formulas 

A B C D E F G 

Class 

no. 

Upper  

Limit 

Length 

(cm) 

Upper 

Limit 

Length³ 

(cm³) 

Class Width 

Length³ 

(cm³) 

Class mid-

volume³ 

(cm³) 

Observed 

no. per 

class 

 

E x F 

 

1 0.85 0.62 0.62 0.27 12 3.76 

2 1.11 1.36 0.73 0.99 14 13.86 

3 1.31 2.22 0.87 1.79 8 14.32 

4 1.48 3.24 1.02 2.73 9 24.60 

5 1.64 4.45 1.2 3.84 4 15.38 

6 1.8 5.86 1.42 5.16 3 15.47 

7 1.96 7.54 1.67 6.70 0 0 

8 2.12 9.51 1.97 8.52 0 0 

9 2.28 11.83 2.32 10.67 0 0 

10 2.44 14.57 2.74 13.20 0 0 

11 2.61 17.79 3.23 16.18 0 0 

12 2.78 21.6 3.8 19.69 0 0 

13 2.97 26.08 4.48 23.84 0 0 

14 3.15 31.37 5.29 28.72 0 0 

15 3.35 37.6 6.23 34.48 0 0 

∑     50 87.39 

 

 

Column C represents the upper limit of each class raised to the third power (length³). 

Column D is the class width in terms of length³, given by the difference between the 

volume (Column C) of one class and the preceding class (example: class 3 = 3.24 - 2.22 

= 1.02). Column E is the upper limit of a class minus half the class width (Column C-

Column D/2). Column F exhibits the frequency of each class. Column G indicates the 
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sum of the intercept lengths (l0
3) (adapted from 44,45). Following the measurement of 

a minimum of 50 cells per specimen, the mean intercept length is given by Equation 4. 

 

Equation 4.  𝑙0
3̅ = 

∑𝐺

∑𝐹
 = 

86.85

50
 = 1.75 cm³ 

The final magnification (2480X) and the length of the ruler are required to convert mm³ 

to µm³ (Equation 5). 

Equation 5. VV = 
𝜋

3
× (

𝐿₁₅ × 10000

3 × 𝑀
)

3

×  𝑙0
3̅ = 

𝜋

3
× (

3.35 × 10000

3 × 2480
)

3

× 1.74 = 167.5 µm³ 

 

 

4.4. Statistical analysis 

Statistical analysis was conducted using Excel, GraphPad and R with ggplot2 and pROC 

packages (68,69). The interobserver agreement of histological grading was investigated 

using Fleiss’s Kappa statistics (70). Wilcoxon’s rank-sum test was used to test 

differences in VV values according to tumour grade. VV values were converted into a 

dichotomous variable, according to Patnaik’s and Kiupel’s grading scheme, G2 or G3 

cMCTs and LG or HG cMCTs, respectively. Tumours treated with surgery alone were 

given an outcome value of zero (OC0). Outcome of one (OC1) included animals 

manifesting local recurrence, lymph node metastasis and death associated with disease. 

Wilcoxon’s rank-sum test was used to test differences in VV and surgical margins 

according to outcome. Receiver Operating Characteristics (ROC) curve analysis was 

used to access the prognostic value of VV. ROC curves plotting the sensitivity (true 

positive rate) against 1-specificity (false positive rate) were generated and the areas under 

the curves (AUC) were calculated. 
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5. Results  

5.1. Histological grading 

The final grades had at least two similar grades assigned by the three pathologists. 

Overall, LG were graded as G2, and HG were graded as G3 (Figure 14). 

 

 

Figure 14. Grading distribution 

 

 

The next step was the evaluation of interobserver variability of tumour grade. The 55 

cMCTs analysed resulted in a total of 0 G1, 39 G2 and 16 G3 (Table 5). The three 

pathologists attributed the same grade in 47.3% (n = 26) of the cases. G2 had the highest 

disagreement rates (Table 6). The Kappa value (κ) was 0.32 (P < 0.05). 

 

 

Table 5. Patnaik grading distribution 

Patnaik grading 

Observer G1 G2 G3 

1 0 32 23 

2 11 33 11 

3 2 37 16 

Final grade 0 39 16 
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Table 6. Patnaik agreement rates 

Patnaik agreement 

Grade n Agreement Disagreement 

G2 39 17 (43.6%) 22 (56.4%) 

G3 16 9 (56.25%) 7 (43.75%) 

∑ 55 26 (47.3%) 29 (52.8%) 

 

 

 

35 cMCTs were graded as Kiupel’s LG and 20 tumours were graded as HG (Table 7). 

The three pathologists attributed the same grade in 61.8% (n = 34) of the cases. HG had 

the highest disagreement rates (Table 8). The Kappa value (κ) was 0.46 (P < 0.05).  

 

 

Table 7. Kiupel grading distribution 

Kiupel grading 

Observer LG HG 

1 31 24 

2 33 22 

3 38 17 

Final grade 35 20 

 

 

Table 8. Kiupel agreement rates 

Kiupel agreement 

Grade n Agreement Disagreement 

LG 35 23 (65.7%) 12 (34.3%) 

HG 20 11 (55%) 9 (45%) 

∑ 55 34 (61.8%) 21 (38.2%) 
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5.2. VV 

The measurement of 58 point-sampled intercepts on average took approximately 15 

minutes per tumour. VV values ranged from 50.05 to 495.05 µm³. Table 9 and 10 illustrate 

VV values according to tumour grade. VV had similar results in G2 (VV = 145.63 ± 38.57 

µm³) and LG (VV = 139.58 ± 35.19 µm³), as well as in G3 (VV = 228.98 ± 88.60 µm³) 

and HG (VV = 222.89 ± 80.34 µm³). G3 and HG cMCTs had VV greater than 200 µm³ 

more frequently. 

 

Table 9.  Patnaik VV values descriptive statistics 

VV (µm³) according to Patnaik grading 

Results G2 G3 

Mean 145.63 228.98 

SD 38.57 88.60 

Median  150.70 212.06 

Maximum 222.72 495.99 

Minimum 50.05 131.11 

 

Table 10. Kiupel VV values descriptive statistics 

VV (µm³) according to Kiupel grading 

Results LG HG 

Mean  139.58 222.89 

SD  35.19 80.34 

Median 145.07 208.56 

Maximum 208.95 495.99 

Mininum 50.05 131.11 

 

5.2.1. Wilcoxon rank-sum test 

Differences in VV values according to tumour grade were tested using the non-

parametric Wilcoxon’s rank-sum test with 5% significance level (α = 0.05). These were 
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significant between G2 and G3 median values (P < 0.05), as well as between LG and 

HG (P < 0.05) (Charts 1a and 1b).  

 

 

 

 

Chart 1a. VV (MNV) vs Patnaik Wilcoxon’s rank-sum test 

Chart 2b. VV (MNV) vs Kiupel Wilcoxon’s rank-sum test 

 

5.2.2. ROC curve 

Receiving Operating Characteristic (ROC) curve was used to evaluate the 

discriminative power of VV between grades. The area under the curve (AUC) was 0.86 

(95% CI 0.75-0.97) in Patnaik grading. A cut-off value for G3 of VV > 174 µm³ is 

provided with 82.1% specificity (proportion of correctly identified negative 

observations) and 75.0% sensitivity (proportion of correctly identified positive 

observations) (Chart 2a). In Kiupel grading the AUC was 0.90 (95% CI 0.82-0.99). The 

cut-off value for HG was VV > 173.7 µm³ and had 88.6% specificity and 80.0% 

sensitivity (Chart 2b).  
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Chart  3a. VV (MNV) vs Patnaik ROC curve. 

Chart  4b. VV (MNV) vs Kiupel ROC curve 

 

 

5.3. Outcomes 

Table 11 reflects tumour grades of dogs treated after surgery (OC0 – n = 23) and dogs 

with progression of disease (OC1 – n = 8). The latter revealed either local recurrence (n 

= 5), regional lymph node metastasis (n = 3) or death related to disease (n = 7). Dogs 

treated after surgery were graded as G2/LG, except for one tumour graded as G3/HG. 

Dogs of OC1 had tumours of all 4 grades. 

 

 

Table 11. Outcome and tumour grade assignment 

Outcome results  

OC0 (n = 23) 

Patnaik 22 G2 1 G3 

Kiupel 22 LG 1 HG 

OC1 (n = 8) 

Patnaik 4 G2 4 G3 

Kiupel 2 LG 6 HG 
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Table 13 reflects VV of cMCTs treated with surgical removal only. The mean (± SD) was 

VV = 148.48 µm³ (± 36.33 µm³) in dogs of OC0 and VV = 198.87 µm³ (± 47.88 µm³) in 

dogs of OC1 (Table 12).  

 

 

Table 12. Outcome VV values descriptive statistics 

VV (µm³) according to outcome 

 Results OC0 OC1 

Mean  148.48 198.87 

SD  36.33 47.88 

Median 150.70 176.59 

Maximum 242.26 297.63 

Minimum 76.25 152.76 

 

 

Wilcoxon rank-sum test revealed significant difference (P = 0.002) between VV values 

of different outcomes (Chart 3). A ROC curve analysed the discriminating power of VV 

estimations between surgically treated cMCTs and those revealing progression (AUC = 

0.86, 95% CI 0.72-0.99). A cut-off value for OC1 of VV > 167.7 µm³ is provided with 

78.3% specificity and 87.5% sensitivity (Chart 4). 

Tumours that recurred and/or metastasized (OC1) had VV > 152 µm³. These included a 

4 G2 (VV = 152, 174, 179 and 209 µm³) and 2 LG (VV = 152 and 209 µm³). Also, one 

G3/HG (VV = 242 µm³) was treated after surgical removal alone (OC0). The small 

number of animals with progression of disease may have influenced these results, 

however, these results suggest that cMCT VV values are divided into two groups 

independent of tumour grade: 1) VV < 152 µm³ - cMCTs of benign behaviour; 2) VV > 

152 µm³ - overlap between cMCTs of OC0 and OC1.  

 

 



   

33 

 

 

Chart 5. VV vs Outcome Wilcoxon’s rank-sum test 

 

 

 

Chart 6. VV vs Outcome ROC curve 
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Table 13 represents surgical margins’ descriptive statistics. Wilcoxon rank-sum test 

revealed differences between margins of OC0 and OC1 were not significant (P > 0.05) 

(Chart 5). 

 

 

Table 13. Surgical margins descriptive statistics 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chart 7. Surgical margins (cm) vs OC Wilcoxon’s rank-sum test 

Surgical margins (cm) 

OC0 

Mean 0.9478 

SD  0.842 

Median 0.6 

Maximum  3 

Minimum 0.2 

OC1 

Mean  0.775 

SD  0.8648 

Median 1 

Maximum  2 

Minimum  0 
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6. Discussion 

The purpose of this study was to evaluate the prognostic significance of VV in cMCTs. 

VV was compared with tumour grade and outcome results and when cut-off values were 

established, higher grading and likelihood of progression of disease revealed close VV 

values (VV > 174 µm³ and 168 µm³, respectively).  

Histological grading was evaluated from both microscopical and digital slides. Some 

slides were affected by scanning, which may have contributed to interobserver variability. 

Patnaik grading had a fair statistical concordance among the three pathologists (κ = 0.32) 

(71). In this case, the final grade was based on the one assigned by at least two 

pathologists. The final grades did not include G1, however, some tumours (n = 13) had a 

classification of G1 assigned by one pathologist. All three pathologists agreed in the 

diagnosis of only 43.6% G2 (17 out of 39). Patnaik grading scheme is based on cellularity, 

mast cell differentiation, granulation, location and mitotic count. One study suggests that 

association of this system with low agreement rates in G1 and G2 may be due to 

intratumoral heterogeneity, subjective criteria, or even inability to distinguish or 

determine grade characteristics (72). This ambiguity is associated with the location of the 

tumour - G1 is confined to the dermis and G2 extends to the subcutis. Some studies also 

found lack of differences in survival time between the latter (42,45). There is some 

evidence that in a situation where a tumour is borderline between G1 and G2, pathologists 

tend to opt for G2 (45). One study found no association between tumour depth and 

prognosis, reinforcing the need to reformulate cMCT grading scheme (73). A higher 

agreement rate in the assignment of G3 was expected. Only 56.25% of the tumours were 

diagnosed as G3 by the three pathologists (9 out of 16). One possible explanation for the 

low agreement is the mitotic count of G3, which includes tumours with 3 to 6 mitotic 

figures per hpf. cMCTs have relatively low mitotic counts and there is evidence that based 

on this criterion alone, a lot of G3 would not be graded as such (45).  

Kiupel grading had a moderate statistical concordance among the three pathologists (κ = 

0.46) (71). Kiupel grading is based on cellular atypia, mitotic count and number of 

multinucleated cells in 10 hpf. 23 out of 35 were diagnosed as LG by the three 

pathologists, corresponding to 65.7%. Only 55% of the tumours had consistent 

assignment of HG (11 out of 20). These results agree with association of this grading 

scheme with greater consistency than Patnaik grading (42,45,46,66), however, one 
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possible explanation to the observed variability is the subjectivity associated with the 

selection of fields based on higher mitotic activity and karyomegaly.   

Wilcoxon sum-rank’s test revealed statistical differences between G2 and G3 VV median 

values (P = < 0.05), as well as LG and HG (P < 0.05). Apart from 4 G2 graded as HG, 

G2 corresponded to LG, as well as G3 and HG. These groups also had close median VV 

values. Patnaik grading had moderately accurate discriminative power between G2 vs G3 

(AUC = 0.86). Kiupel grading, on the other hand, indicated highly accurate discriminative 

power between LG and HG (AUC = 0.90) (74). These results agreed with previous studies 

suggesting the superior prognostic value of Kiupel grading  (42,45,46,66). Despite the 

greater specificity and sensibility in Kiupel grading, the cut-off values provided for G3 

and HG are similar (VV > 173,8 µm³ and VV > 173,7 µm³, respectively). 

Follow-up data was collected from medical histories, which may have added a source of 

bias to this study. Local recurrence, nodal metastasis and death related to disease were 

the main criteria used for evaluation of cMCT malignancy. We were not able to accurately 

evaluate lymph node metastasis by histopathology in all animals - some animals had only 

suspected lymph node involvement due to clinical enlargement. Also, information 

regarding survival time or progression-free interval was unavailable for some tumours. 

Regardless, 7 out of 8 animals died or were euthanised due to clinical signs related to 

cMCT disease. The remaining dog had local recurrence. Additionally, statistical analysis 

revealed that surgical margins did not significantly interfere with the progression of 

disease (P > 0.05).  

The discriminative power of VV between tumours of benign behaviour (OC0) and 

tumours with progression of disease (OC1) was moderately accurate (AUC = 0.86). A 

small number of G2/LG is included in OC1, which agrees with evidence of a need to 

monitor LG, since a small number tends to recur and/or metastasise (42). A cut-off value 

for tumours with OC1 is provided (VV > 168 µm³). Despite the similarity observed 

between the latter and tumour grade’s cut-off values, there was some overlap between 

OC0 and OC1 VV values. These results suggest that greater VV values are associated with 

worse prognosis, however, the small number of animals with progression of disease may 

have influenced these results. A larger study is required to confirm these preliminary 

results.  
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Due to the retrospective nature of this study, VV was estimated in approximately VUR 

sections from previously embedded cutaneous biopsies. The selection of fields was 

performed so at least 50 intercepts were measured per tumour. For efficiency reasons, 

fields demonstrating mostly areas of necrosis and collagen fibres were disregarded. The 

map widget available on NDPI view software permitted a standardization of the selection 

of fields, as well as an even distribution of fields proportional to the cross-sectional area. 

However, the reproducibility of VV is related to the little effect of the lowest sampling 

levels, such as differences between fields of view or the precision of each measurement. 

One study even found that a subjective selection of fields of areas showing greater atypia 

had little interference in breast cancer VV, suggesting that this technique does not require 

great histopathology experience from the operator (75). The greatest impact on VV 

estimations is due to biological differences between patients (10).  

VV estimation owes much of its strength to the fact that it combines information about 

tumour size and its variation (76). Regarding that this is a volume-weighted estimation, 

size is favoured, and larger nuclei have thus greater influence in the final value. VV also 

provides information about pleomorphism, one of the most dominant features when it 

comes to tumour grading. VV also provides knowledge of three-dimensional nuclear size 

with no assumptions about shape, one of the most elusive structures to quantify (10).  

Lastly, is a quick and inexpensive technique applicable to routine histopathology. 

In relation to the absolute VV values observed in this study, they ranged between 50 µm³ 

to 496 µm³. These are similar to previous estimations of VV in human tumours such as 

ductal carcinoma of the breast (103 – 734 µm³), lobular carcinoma of the breast (115 - 

301 µm³) or cutaneous malignant melanoma (99 – 466 µm³) (10,25,26). Regardless, this 

study provides the first cMCT VV estimation, therefore the reproducibility of the provided 

estimations needs to be investigated. This study found a close association between VV 

and tumour grade, suggesting that VV provides an unbiased and objective means of 

diagnosis of G3/HG cMCTs. In the future, additional studies including a larger number 

of animals demonstrating progression of disease are needed to validate these preliminary 

studies. It is also necessary to evaluate VV of other MCTs, such as subcutaneous MCTs 

or MCTs located at mucous membranes, in order to investigate if VV is influenced by 

tumour location.  
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7. Conclusion 

The stereological estimation of VV is a simple and quick technique, easily applied in 

routine histopathology with no extra equipment or cost. The manual estimation takes 

about 15 minutes per tumour and provides reproducible information about nuclear size. 

This study provides evidence of the prognostic value of VV in canine mast cell tumours. 

These preliminary results suggest that VV may objectively improve the early detection of 

G3/HG cMCTs with a cut-off value of VV > 174 µm³. A study involving a larger number 

of animals is required to confirm these results. 
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STEREOLOGICAL ESTIMATION OF MEAN NUCLEAR VOLUME AS A 

PROGNOSTIC FACTOR IN CANINE MAST CELL TUMOURS 

M. Casanova*, S. Branco*, I. Veiga† and P. Faísca‡ 

*Departamento de Medicina Veterinária, Universidade de Évora, Évora, Portugal, †Institut für 

Tierpathologie, Vetsuisse Bern, Bern, Switzerland and ‡Histopathology Unit, Instituto 

Gulbenkian de Ciência, Oeiras, Portugal 

 

Introduction: Cutaneous Mast Cell Tumour (MCT)’s Patnaik and Kiupel grading schemes rely 

on qualitative and semi-quantitative features susceptible to inter-observer variability. 

Stereological estimation of volume-weighted mean nuclear volume (MNV) provides information 

about both size and variability of nuclear size, which has been proven to have a prognostic value 

in other solid tumours. The objective was to compare MNV with MCT grade and biological 

behaviour. 

Materials and Methods: 56 MCTs were graded according to Patnaik and Kiupel by consensus 

of three experienced pathologists. Clinical history of dogs treated with surgical excision alone 

was collected with a minimum follow-up period of one year (n=31). MNV was estimated using 

the point-intercept method on vertical sections in 10 microscopic fields, with an approximately 

constant distance proportional to overall sectional area. Animals were divided according to 

outcome: (group 1) no recurrence; (group 2) local recurrence, lymph node or distant metastasis. 

Statistical analyses of results were performed by the Mann-Whitney U Test and Receiver 

Operating Characteristics (ROC) curve. 

Results: MNV of low-grade (n=35) and high-grade (n=20) was 139.6 (±35.2) μm³ and 222.9 

(±80.4) μm³, respectively. MNV of grade II (n=39) and grade III (n=16) was 145.6 (±38.6) μm³ 

and 229.0 (±88.6) μm³, respectively (P<.0001, Mann-Whitney U test). An optimal cut-off value 

of MNV>169 μm³ (81% sensibility and 78% specificity) was shown to differentiate MTCs with 

a more aggressive behaviour (group 2). 



   

ii 

 

Conclusions: The present study suggests that estimation of MNV on routine histological sections 

may objectively improve the detection of more aggressive MCTs. 
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