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Resumo

As redes são uma estrutura genérica que permitem representar uma grande diversidade de
sistemas. Elas são modeladas por grafos matemáticos, que têm a capacidade de conter muitas
informações na sua topologia, mas esquematicamente são apenas entidades que de alguma forma
estão conectadas entre si. Essa simplicidade explica o porquê de existirem muitas áreas de
aplicação uma vez que as conexões são frequentes no mundo real. No entanto, analisar essa
arquitetura não é simples. Mesmo que a presença de certas entidades revele informação, é pouco
comparado com o que pode ser descoberto se os relacionamentos forem também considerados.

A presença de um subgrafo numa rede, e com que frequência ele aparece, pode ser indicativo
de algo extremamente importante. Por esse motivo, a identificação de padrões, e outras
características, são áreas relativamente bem exploradas nos últimos anos e mostra que será
uma área que continuará a crescer. No entanto, este problema de identificação e contagem de
subgrafos, algoritmicamente falando, é um obstáculo difícil sem uma solução polinomial conhecida.
Isso faz com que a maioria dos trabalhos combata o problema na forma mais simples, ignorando
características que podem e devem começar a ser consideradas.

Camadas são um novo aspeto que tem sido adicionado à estrutura. Estudar e adquirir
conhecimento sobre redes com essas características especiais é o principal objetivo desta tese,
principalmente através da deteção e contagem de subgrafos. No entanto, tudo o que conhecemos
até agora é diferente neste novo contexto, mesmo um simples subgrafo. Portanto, o trabalho
realizado deve ser aprimorado para acompanhar a evolução. Após um estudo cuidadoso dos
mais diversos métodos de análise de redes, este projeto definiu a sua abordagem através da
implementação de alguns conceitos matemáticos importantes e adaptando métodos clássicos.

Após analisar e mostrar algumas técnicas e ideias, que consideramos necessárias para este
trabalho, descrevemos em detalhe como obtemos os nossos próprios resultados. Primeiro,
contribuímos para a definição de conceitos numa área nova. Uma agregação para identificar
subgrafos, voltando atrás para uma redução que permite identificar classes isomórficas é o resumo
da abordagem. Permite-nos descobrir padrões que são mostrados com uma poderosa ferramenta
de visualização que nós desenvolvemos. Também apresentamos os nossos tempos de execução e
avaliamos o nosso processo em redes sintéticas que seguem modelos tradicionais adaptados.

Palavras-chave— multiplex, redes, subgrafos, padrões, motifs
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Abstract

Networks are a generic structure that allows representing a great diversity of systems. They are
modeled by mathematical graphs, which have the capacity to contain a lot of information in their
topology, but schematically they are only entities that somehow are connected to each other.
This simplicity explains why there are many areas of application since connections are frequent in
the real world. However, analyzing this architecture is not simple. Even if the presence of certain
entities reveals information, it is very little related to what can be found if the relationships are
considered.

The presence of a subgraph in a network, and how often it appears, may be indicative
of something extremely important. For this reason, the identification of patterns, and other
characteristics, are relatively well explored areas in recent years and shows that it will be an area
that will continue to grow. However, this problem of identification and counting of subgraphs,
algorithmically speaking, is a hard obstacle without a known polynomial solution. This causes
most of the works to fight the problem in its simplest form ignoring features that the networks
present and that can and should start to be considered.

Layers are a new aspect that is being added to the structure. Studying and gaining knowledge
about networks with these special features is the main goal of this thesis, especially by detecting
and counting of subgraphs. However, everything as we know it so far is different in this new
context, even a simple subgraph that is the basis of this work. Therefore, the work done should be
improved to follow this evolution of systems. After carefully studying the most diverse methods
of network analysis this project defined its new approach by implementing some important
mathematical concepts and adapting other methods.

After going through and showing some techniques and ideas, which we consider necessary
for this work, we describe in detail how we get our own results. First, we contribute to defining
concepts in a novel area. An aggregation to identify subgraphs followed by a backtrack to make
a reduction for identify isomorphic classes is the summary of our own approach. It allows us
to obtain and discover patterns, which we show in our results section, created with a powerful
visualization tool that we have developed. We also present our execution times and we evaluate
our process in synthetic networks through classical models adapted to contain layers.

Keywords— multiplex, networks, subgraphs, patterns, motifs
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Chapter 1

Introduction

Around the world there are complex structures that, for various reasons, need to be understood.
The composition itself can give important evidence, but certainly it is a small fraction of what
can be extracted. Therefore, these complex structures need a model representation capable of
embracing all their details so that they can then be studied in detail. Graphs are a good abstract
model that has been thoroughly studied, but there are still many open research problems.

1.1 Context

Many systems, from the most diverse areas, can be represented as networks which increases the
relevance of the network concept. This kind of organization, with relations being formed, can be
found easily. Perhaps we can only perceive it in a very limited set of systems, but if we look
around, we can find connections between a lot of entities. The concept is easily detected in social
networks, but they are everywhere [9]. The model is used in many fields, including sciences
like chemistry and biology [44]. It is also used to represent networks based on references, like
publications or web pages [57], and others, not so obvious, like the human brain [10]. Transport
systems are another one where the concept of network is easily applicable [24] as in Figure 1.1.

Figure 1.1: This map represents all the Metro lines in the city of Porto, from A to F, with some
of the stations indicated as blue circles and connections as black lines.

1



2 Chapter 1. Introduction

Graphs represent networks and they are simple structures with a very rich characterization
power on their topology. They are an abstract model to represent interactions between individual
components and these can contain as much data as necessary. In addition to the nodes and their
categories, there is other information, like the interactions and their types, that can tell us more
than if two units have a simple connection between them. Studying it as connected components
and not as individual elements allows finding the knowledge that may not be perceived at first.

Extracting information from graphs is an area known as graph mining, and the crucial
importance of this area can be explained by the wide variety of systems that are representable in
this way. Therefore, there is an attempt to extract information on various aspects. One core and
important primitive is to detect the presence of a subgraph in a graph and also count the number
of its occurrences. This is called a subgraph census and this is the basis of other important
measures. In particular, finding patterns that appear in the network more times than expected.

Each network can have a specific pattern, or a set of patterns, which can give us information
about what unusual things happen between the entities. We can understand unusual as something
that appears more than the normal, a network motif, or something else that does not appear so
frequently, an anti-motif. The patterns can be seen as a characteristic that identifies the type of
the network [35] and this can be important for tasks ranging from health to financial area such
as identifying diseases [13] and this is the reason why they are being used to study the networks.

The evolution of the networks means that the research done so far does not fulfill the
expectations. There are new features that come up with data growth that are being ignored.
Or, characteristics that already existed but were not analyzed due to the not advanced state of
the art. That is why it is urgent to think of new approaches to deal with the new demands of
networks. Even if the solution is an adaptation of old methods it is important to advance to
make sure that the study of the networks is not stopped and, fortunately, that is not happening.

1.2 Research Goals

Discovering all subgraphs in a network and identifying which are different from each other in
order to get the frequencies can be crucial tasks. Despite their importance, these tasks are very
limited by computational problems. Because of this, usually the search is focused on reduced
sizes in networks that have a large number of entities connected between them. This problem, of
counting subgraphs in networks, is a computationally hard task closely related to the subgraph
isomorphism problem, which is known to be NP-complete for general graphs [22]. To further
increase the difficulty of the problem, we are interested in a set of subgraphs, and not just one
specific subgraph. This is because in the general case we do not know before analyzing which
subgraphs are present and we are interested in all of them because anyone can be surprising.
Although the problems still exist, they have been reduced because of the research that has been
done in past years. However, almost all studied networks are represented as simple as possible
where the connections are single, static and unweighted and the entities are all of the same type.
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The focus until now is essentially on the simpler networks, which we call traditional or
classic networks. Nowadays, complex systems have been enriched with different features. The
entities can belong to different types and they connect to others in relationships that can also be
categorized. The networks can be divided into layers, with connections between them, and
all of this can change in time. The evolution brings the urgency for adaptations and all should
be considered because an aggregation to analyze it as a classic network leads to information loss.

A new form to represent the networks with more detail is a set of layers, which means a kind
of division of the network. We will study this new characteristic. The analysis of multilayer
networks is more than simply analyzing it in each layer with the tools that already exist and
then make individually conclusions. We are not interested in the subgraphs present in each layer
but in the subgraphs present in the complete network that is not an aggregated one. Actually, to
get metrics related to subgraphs, first it is necessary to define what they are in this new context.

New definitions need to be made to concretize the subgraph frequencies and then identify
motifs, but since this is a very recent area, many of them are still open. Because of that, we
have taken a calculated step and considered a specific type of multilayer network where the edges
between layers are very limited, when not ignored, and the set of nodes is the same in each layer.
The work done in this field is still scarce and very recent [8, 14, 15, 29, 53] and our main goal is to
contribute to this promising new area identifying and getting frequencies of subgraphs.

The research becomes more interesting knowing that a real application can be found.
It is possible if we think that some places have more than one mode of public transportation, as
in Figure 1.2. Exchanging transports, which might mean moving to another layer, may have a
cost that could be considered if it is significant. For example, in a certain station it can takes time
to walk from a metro platform to a train. Some recent studies take into account the presence of
multiple layers in transport systems [2], but not for analysis of subgraphs as we do in our work.

Figure 1.2: A multilayer network for urban transports. One layer corresponds to metro connections
(black lines) and the other to train (red lines). Other layers like bus could be added. The only
nodes, or entities, represented in the figure are the stations that are at the end of a line, the ones
that allow to diverge for different lines and those that have both connections of metro and train.
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1.3 Main Contributions

This project is centered in a special type of multilayer network. We are interested in
understanding better the information in a multiplex network and according to Kivelä et al. they
are “as edge-colored multigraphs, which are networks with multiple types of edges” [30]. This
simplification is possible if we consider that each layer corresponds to a certain color. Each
connection assumes the type that corresponds to the layer and the connections between the
nodes in the different layers, the sets are assumed to be equal, are very limited or totally ignored.

This transformation allows us to advance in solving the problem because it simplifies and brings
it closer to networks that are already known and studied. One of our contributions was to develop
an entire approach based on the development of new methods with the help of classical algorithms,
which we adapted to fulfill our purpose, and the application of mathematical theories. Therefore,
we can assume as our the complete strategy for analyzing multiplex networks, in
particular the search for subgraphs, even using some ideas and adaptations from other authors.

Identification of subgraphs is not possible if we do not know what a subgraph is in this new
context. Therefore, we had the need to redefine and clarify some concepts. Another
example is the isomorphism definition that must be expanded to contemplate the new dimension.

Find subgraphs is the first step when it comes to patterns and only then will come the exact
frequencies and the identification of motifs. Therefore, the predominant focus of this thesis is
being able to count subgraphs in multiplex networks, which has been widely achieved.

Moreover, we are able to show the subgraphs found in an explicit and clear way, by drawing
each one using layers or choosing a compact version. The way we present the results allows
anyone who wants to use the visualization tool to easily interpret the subgraphs found.

Finding motifs after counting on the original network requires generating random networks
that are as similar as possible to the original. This allows us to detect what should be considered
as normal since if a large number of networks are generated then we can safely know what is
expected. We present a novel method for generating random multiplex networks, which
is fully idealized for layers. Applying the methods of classic networks to each layer separately is
not enough because edges may overlap and it is not considered generating little similar networks.

Being in a recent area, we struggle with problems that would not happen in other well studied
fields, like the divergence of some concepts in the state of the art. Furthermore, the few real
networks already created led to the need to adapt classic network models with the layers.

The demand to get a set of networks was to be able to obtain experimental results. Our
focus was to compare the differences between the algorithms used and realize how scalable our
approach is. Synthetic networks were fundamental because they allow to use different parameters.

Still not done, but our intention is to make our source code available as soon as possible.
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1.4 Thesis Outline

This thesis is structured in five major chapters. A brief description for each one is presented
below.

Chapter 1 - Introduction. Provides a brief introduction to the research area, the context of
this topic, our research goals, our contributions, as well as the organization of the thesis.
In between, we provide two network images of our daily lives, where the second one is
multilayer.

Chapter 2 - Preliminaries. Introduces a common graph terminology that will be used
throughout the thesis. In particular, apart from classic networks, it presents the necessary
definitions of a multiplex network and the problems related to subgraphs in both contexts.
In addition, an overview of the work done in this area that is important to complete our
approach.

Chapter 3 - Approach. Establishment of the approach used to achieve the goals. Detailed
explanation of the methodology used through images and also some pseudo code. Two very
similar paths are followed, but each one has three fundamental steps to find subgraphs
that are explained in detail. Furthermore, our method to show the results in a way that is
visually clear.

Chapter 4 - Experimental Results. The results obtained by each method in a diverse
network set are detailed and discussed. In particular a complete section with random
networks followed by real networks. Visual results are also shown with interesting subgraphs
found.

Chapter 5 - Conclusion and Future Work. A perspective of the work done is given and
also what should be done to continue the work, with considerable improvements, and how
to expand this area.





Chapter 2

Preliminaries

In this chapter we present several concepts that are essential to better understanding others.
The notation used will be the same throughout the document. A network is defined using a
mathematical graph and this is the central subject of this section. Graph theory is a well explored
area, but the concept of multilayer and all specifications for this field is a little more uncertain.
For this reason, an overview is given that covers as much as possible.

2.1 Graph Terminology and Concepts

2.1.1 Single Layer

A graph G is composed by a tuple G = (V,E) where V is a set of vertices or nodes and E is
a set of edges connecting pairs of nodes. Each pair has the format (u, v) and u, v ∈ V (G), so
these two nodes are the endpoints of the edge in E(G) ⊆ V (G)× V (G). The size of the graph is
considered the size of the set V (G) and it is denoted by |V (G)|. A k-graph is a graph of size k.

The degree of a node u is the number of connections it has to other nodes, and that means
the number of times there is an edge in E(G) where one of the elements of the pair is the element
u. The neighborhood, denoted as N(u), is composed by the set of nodes that share an edge with
u, and they are also called adjacent nodes of u.

In undirected graphs the order is irrelevant since the nodes are connected in both directions,
but in directed graphs the edges are ordered pairs. Because of that, the definition of node degree
is divided in two. The indegree of u is the quantity of pairs of type (u,_) ∈ E(G). Similarly, the
outdegree is the amount of edges where u is the second element of the pair.

A subgraph Gk of a graph G is a k-graph in which V (Gk) ⊆ V (G) and E(Gk) ⊆ E(G).
This subgraph is said to be induced when ∀u, v ∈ V (Gk) : (u, v) ∈ E(G) implies (u, v) ∈ E(Gk)
and it is called connected if all pairs of nodes are connected by some sequence of edges. The
neighborhood of a subgraph Gk, denoted by N(Gk) is the union of N(u), ∀u ∈ V (Gk).

7
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2.1.2 Multiple Layers

A system consisting in multiple levels needs a special representation, more robust than the
normal, able to append layers to nodes and edges. We will present the most general notation,
capable of defining any type of network, and then specify the one that is the base of our project.
The most general concept, based on Kivelä et al. work [30], “allows each node to belong to any
subset of the layers” and allows connections between nodes of any layers.

A multilayer network is defined as a quadruplet M = (VM , EM , V, L). Starting by the end of
the tuple, the network needs a set of layers that is represented by the letter L, and, just like a
classic network, it needs a set of nodes V . But since not all nodes have to be present in a layer,
as well as edges, information given by the sets VM and EM is required.

The simple idea of having one single set of layers is not enough to the most general case
because that limits the set of layers. An aspect is considered a dimension of the network. For
example, in a network where one of the aspects represents the type of the network, and the
other represents the time, we would need two sets of layers. To avoid confusion, the term
elementary layer is used for an element that is in these sets, so it is possible to represent the
network with several sets of elementary layers (any number d of aspects). The term layer is to
refer to a combination of elementary layers - one of each aspect. We can define the sequence
L = {L1, · · · , Ld} as a sequence of sets of elementary layers where each Li can be (α1, α2, α3, · · · ).

The presence of a node in an elementary layer is possible by combining the set of nodes
V and the set of elementary layers L1 × · · · × Ld. The set VM is composed by the node-layer
tuples in V × L1 × · · · × Ld such that the node has a copy in the elementary layer. The term
node-layer is used often and (u, α1, · · · , αd) represents node u on layer represented with d aspects
(α1, · · · , αd). The connections are not anymore between nodes but between node-layers tuples
because each edge can start and end in different layers. Once this information is contained in
the node-layers tuples the edge set EM is formed by VM × VM , a set of pairs of pairs.

A multilayer network M is considered undirected if for all edges of the type ((u, α), (v, β)) ∈
EM it is also true that ((v, β), (u, α)) ∈ EM . The graph is directed if this does not happen at
least once. It is important to separate the edges that connect nodes in different layers and those
that connect a pair that are in the same layer. Considering an edge ((v, α), (u, β)), intra-layer
edges occur when α = β and inter-layer when α 6= β. For the purposes of our project, self-edges
are disallowed by requiring that ((u, α), (u, α)) 6∈ EM . The concept of subgraph, as well as induced
and connected, are maintained with the difference of having node-layers instead of only nodes.

Kivelä et al. made the observation: “The first two elements in a multilayer network M yield
a graph GM = (VM , EM ), so one can interpret a multilayer network as a graph whose nodes are
labelled in a certain way”. This conclusion makes possible to predict that some specific multilayer
networks will have a similar representation as using a classic single layer network. This mapping
can be seen in Figure 2.1 and in particular a multiplex network, which we discuss below, are
represented as well as its conversion.
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Figure 2.1: Illustration of the idea of characterizing different types of network by finding ‘natural’
injective maps from one set of network structures to another. A multiplex network, its underlying
graph GM = (VM , EM ) and the correspondent edge-colored multigraph. Adapted from [30].

There are different specifications of multilayer and the difference between them arise from the
application of some constraints. One of them is the node-aligned and means that all the layers
contain all nodes making VM = V × L1 × · · · × Ld. Sometimes, this concept is forced, to easily
represent the network, using the padding method that adds empty nodes [16]. When the number
of aspects is zero the sequence L does not exist and the product V × L1 × · · · × Ld is impossible
which leads to VM = V . Because of that there will be two equal sets in the quadruplet and one
of them becomes redundant. Moreover, the set L is empty and unnecessary. When this happens
the multilayer network M reduces to a single layer network G = (V,E). When the number of
aspects is one and the concept of node-aligned is present redundancy also occurs. Considering k
to be the size of L1 and (α1, · · · , αk) the elementary layers, VM is the combination V × L1 but
this information is not necessary since all nodes are present and each one will form k tuples. In
this case, a network can be defined as a triplet M = (EM , V, L) where L = L1 and the concept
of elementary-layer becomes the same as layer.

The edges can have also one or more constraints. Two node-layer tuples (u, α) and (v, β) are
connected if and only if u = v. That is, the two node-layer represent the same node in different
layers, which we call coupling edges. The other option is when α = β and we are talking about
connections occurring in the same layer. A network that only contains this type of connections
is an intra-layer network. Connections to other layers can be omitted assuming only a relation
between copies of nodes. In this case, the representation of the edges can be different, instead of
two node-layers ((u, α), (v, α)) we can have another triplet (u, v, α) with the same information.
With this simplification, it is easy to perceive the parallel that exists between the representation
of the edge-colored graphs.

The definition of an edge-colored multigraph is a triplet G = (V,E,C), where V is the node
set, C is the color set (which is used for assign a type to each edge) and E, the edge set, is
contained in V ×V ×C. Forcing a node-aligned representation and presence of all coupling edges
or none, makes the system a multiplex network and the similarities with colored edges are found
considering that the set of layers L assumes exactly the same function as the set of colors C.
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2.1.3 Representation

2.1.3.1 Adjacency Matrices

Given a graph G it is possible to associate it to the adjacency matrix denominated as A(G) = GAdj ,
with size |V | × |V |, and GAdj [u][v] stores a value from the indicator function. This value can
be different according to the type of graph. Since the graph is representing a network N we
can conclude that A(N) = A(G) = GAdj . The values returned from the indicator function,
with arguments u and v indicating the index of the nodes, can be boolean and 1 occurs when
(u, v) ∈ E(G) and is 0 otherwise. The value may also represent the weight of the edge or some
label/color to identify the type of the connection. If self-edges are disallowed all the values in the
diagonal, from the top left corner to the bottom right corner, are zeros. This diagonal divides a
matrix and both parts are equal when the graph is undirected, making a symmetric matrix.

A multiplex network can be expressed as a combination of intra-layer adjacency matrices.
Once the network is node-aligned there are no representation problems. Technically, the node-
aligned constraint is not a need in the real network because this feature can be guaranteed by
adding nodes that are not adjacent to any other. The method is called padding and requires an
extra attention when studying the results. This information, that can lead to misunderstandings,
can be solved creating a new matrix of participation. The size required is |V |×|L| and in position
[u][α] there is a value 1 if the node u participates in the layer α, and 0 otherwise. Assuming
that the representations of the same node are always connected to each other, and that these
are the only ones that happen between layers, no representation is required for this type of
edges. However, they could be represented as an additional matrix of size |V × L| × |V × L|,
transforming this structure into the same one that is presented in section 2.1.3.2.

2.1.3.2 Supra-Adjacency Matrix

This special type of matrix is popular for representing multilayer networks. This data structure
is constructed by concatenating the intra-layer and the inter-layer adjacency matrices. In other
words, there will be L lines, each with as many rows as nodes in layer Li. In position i will
be present the intra-layer adjacency matrix and the other positions have matrices storing the
connections between the layer Li and all the others. In this representation, a line or a column
can be seen as the complete set of nodes contained in a layer. A new symbol could be used
to represent the pair (u, α). The supra-adjacency matrix that represents a multiplex network,
node-aligned and with all the coupling edges, yields a block-diagonal structure. The diagonal
contains the intra-layer adjacency matrices and all the other blocks correspond to the couplings,
with a special format, where only the diagonal is filled, forming identity matrices. Each block of
the construction for the general multilayer networks are not necessarily square matrices which
allows to represent the absence of nodes. The size needed to the representation is |V |2 × |L|2.
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Figure 2.2: A multiplex graph and its correspondent adjacency matrices for each layer and
supra-adjacency matrix.

2.1.3.3 Adjacency Lists

The choice of representation affects both the storage and computational time of algorithms to be
used next. The methods seen above have a big problem of space. The vast majority of real-world
network models are very sparse (they typically have a few connections of the total possible
connections for each node) [5]. For sparse graphs an adjacency list [25] would be preferable,
because the matrix will contain a lot of zeros. Briefly, in graph theory, an adjacency list is the
representation of all edges as an array of list of neighbors for each node [49].

Consider a classic single layer graph. For each node u ∈ V it is possible to construct a list
containing all nodes v such that (u, v) ∈ E. Such list is called an adjacency list for node u. Each
node has its own list, and a combination of all the lists is called an adjacency list of G. If the
graph is undirected, each edge (u, v) is represented twice. If G is directed, each edge (u, v) is
represented exactly once - node v appears in the adjacency list of node u.

The adjacency list of a classical graph has a much smaller memory footprint than the adjacency
matrix (|V | + |E| vs |V |2), although this difference may decrease as a graph becomes denser.
Another advantage is that adjacency list allows us to traverse the list of neighbors of node u in
O(|neighbors(u)|) (compared with O(|V |) when using matrices), which is much more efficient
for some algorithms that will be presented in the following chapter. When memory allows, one
can even have both data structures (lists and matrices) in memory and use one or the other
depending on the need graph operation.

Regarding multilayer networks, essentially any previously described matrix based graph
representation can be transformed into an adjacency list by converting each matrix row into a
list containing only its non-zero elements. The expected result will be a single list of node-layers
tuples or a combination of lists, replicating the concept for each layer as in Figure 2.2.
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Figure 2.3: A multiplex graph and its correspondent adjacency list. A list for each node instance.

2.2 Subgraph Patterns

Seeing a subgraph as a pattern allows us to think of a panoply of concepts for characterizing
networks. But, first we need to define the concepts before being used together. In this case, the
last goal is the identification of network motifs [34] and then we will discuss some past work in
this area. However, it is important to keep in mind that subgraph patterns go beyond this and
have other subareas such as frequent subgraph mining [27] and graphlet degree distributions [38].

2.2.1 Graph Isomorphism Problem

Isomorphism between two graphs occurs when there is a mapping between the nodes of the
two graphs. That is, when there is an edge between the two nodes of a graph that edge must
exist between the corresponding nodes of the other. Therefore, it consists in finding a bijection
between the sets of nodes that preserves the adjacencies.

Definition 2.2.1 (Graph Isomorphism). Given a graph G and a graph H, determine if it is
possible to obtain H after permuting the nodes of G.

The Graph Canonization problem is very similar and consists of find a name for each graph
ensuring that two equal names only occur when the graphs are isomorphic. This name is usually
called canonical labeling and, after find it, it is enough to solve the graph isomorphism problem
and that is why these two problems are connected.

Definition 2.2.2 (Graph Canonization). Given a graph G and a graph H find a label for each
one that are only equal when the graphs are isomorphic.

Figure 2.4: Three isomorphic graphs. The same set of ten nodes and the edges in different ways.
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2.2.2 Subgraph Census Problem

Another very important related graph primitive is to count the number of times subgraphs appear
in a given network. In particular, we want to know which subgraphs are present, with a certain
size, and how often each appears. Although deceptively simple in its formulation, the subgraphs
census concept lies at the core of several graph mining tasks.

Definition 2.2.3 (Subgraph Census). Given an integer k and a graph G, determine the frequency
of all different connected induced k-subgraphs in G.

In order to properly understand this concept, we also need to define what we mean by
frequency. We look for differences even if they are minimal. It is as simple as checking if there
are nodes or edges that are not shared between two subgraphs. All other edges and nodes can
overlap. Figure 2.5 illustrates this definition.

Definition 2.2.4 (Subgraph Frequency). Two occurrences of a subgraph, in a graph G, are
different if they have at least one node or edge different.

Figure 2.5: Three different networks. In the first one the frequency is five and in the others it is
one. The darker and dashed lines represent each match of the pattern. Adapted from [34].

Computing a subgraph census is a computationally very hard task. As said before, even
knowing if a subgraph appears at all (subgraph isomorphism problem) is already an NP-complete
problem [22]. Naturally, determining the exact frequency is even harder. Because of this, typically
this operation is limited to small subgraph sizes.

2.2.3 Network Motifs Problem

When analyzing networks and trying to discover what is characteristic of a specific graph, it is
important to understand what should be expected as "normal". In other words, we must take
care to establish a suitable null model that captures some features and satisfies a given set of
constraints establishing what should be considered unexpected. In the particular case of motifs,
the idea is to get the frequencies in a set of similar random networks to be the basis of comparison.
The most used similarity model is to keep the degree sequence, that is, to generate networks in
which all nodes preserve the same (in and out) degree [34], as exemplified in Figure 2.6. This
notion can be extended to colored graphs if we maintain the colored degree sequence [42].
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Figure 2.6: Two random directed networks preserving in and out degree. Adapted from [34].

Network motifs were initially defined by R. Milo et al. and were considered simple building
blocks of complex networks [34]. Discovering them is a very important task for creating network
signatures as we will see ahead because similar motifs are found in graphs representing networks
of the same family.

Usually, we do not know the motifs we will find. Because of that, the typically first step
consists in choosing a size k and then computing its k-subgraph census on the original network.
This results in obtaining all frequencies of subgraphs of size k. Other approaches might look for
a specific subgraph or a set of them.

In order to measure their over-representation, a set of similar random networks, according to
some null model, is generated and a k-subgraph census is computed on each random network.
After that, the frequencies of each subgraph type presented in the original network are compared
with the average frequencies of the same class in the random networks.

Those that are present in significantly higher frequency than in the original network can be
reported as motifs. Figure 2.7 illustrates this process. On the left we see the original network
and highlighted one of the subgraphs returned by the subgraph census function. This pattern is
the well-known feed-forward loop. For this pattern to be considered a motif, we compared its
frequency on both the original and the set of similar random networks, the four networks on the
right side, that preserve the indegree and outdegree of each node. This pattern was returned as
motif because in random networks it appeared at most once whereas in the original network it
occurred five times.

Definition 2.2.5 (Network Motifs). Small induced subgraphs that appear in a network with a
higher frequency than what would be expected, through the following parameters:

1. Prob(frandom(GK) > foriginal(GK)) ≤ P (Over-representation)

2. foriginal(GK) ≥ U (Minimum frequency)

3. foriginal(GK)− frandom(GK) > D × frandom(GK) (Minimum deviation)
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Figure 2.7: Representation of motif detection in a network. Adapted from [34].

The work presented in [35] by Milo et al. allowed to characterize networks based on motifs.
In order to do that, the presence of patterns of size three (triads) was studied in each of them.
It was used normalized z-score, which allows to compare the results obtained from networks of
different sizes, to measure the over-representation. Basically, the profile is a vector with the
normalized results for each of the subgraphs.

In Figure 2.8 the line represents zero (frequency exactly has expected). Points above the
line represent motifs, because they indicate subgraphs that appeared at frequencies higher than
expected. On the other hand, points below the line represent patterns that appear less than
what was expected. We can observe that different networks display very similar significance
profiles and they are already grouped in families of networks.

More details of the networks can be found in [35], but short names are indicative of their
type. “TRANSC” indicate transcription networks, “SIGNAL” indicates signal transduction
networks, “NEURONS” indicate synaptic connections and the names of languages indicate
networks constructed using word adjacency of different texts where two words are connected if
they are consecutive in one sentence.

A superfamily that is well understood is the last one, constituted by different semantic
networks, where identical profiles occur because words are linked by their synonyms, regardless
of the language. They have a very similar motif fingerpints. The other families require extra
knowledge in other fields, like biology, to understand, for example, that the presence of the
feed-forward loop as motif in some networks is expected.
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Figure 2.8: The triad significance profile of several networks. Adapted from [35].

2.2.4 Multiplex Problem

The definitions we gave are very basic and suitable for classic single layer networks, but with
the necessary changes, they can be applied to other network types, including aspects such as
weights, direction or colors. In multiplex networks, although it continues to be applicable, it is
more complex since there are subgraphs spanning different layers. Bearing in mind that this is
a recent area and that the definitions remain open and can easily be changed we will give our
point of view, which is the one we use in the project.

In order to extend the notions to multiplex networks we need to be careful on defining what
a subgraph is. Consider that a sequence of adjacent nodes defines a walk on a simple single layer
graph. The length of a walk is the number of edges it contains, considering that the next step
can be given from each of the nodes visited. A step is the basic component of a walk, that is, the
connection between two adjacent nodes. This walk is the process that allows to identify all the
subgraphs that are candidates for motifs.

But “how is a walk defined in multiplex networks?” [29]. In these type of networks, the
concept is necessarily different because a step can be done to another layer. That is, it is perfectly
natural for a step to occur between nodes in different layers [17]. However, it is also possible to
consider that each node is represented in different layers and that the next step can be given in
any of those without an intermediate step. In other words, we can reach one node in one layer
and leave the same node in another as exemplified in Figure 2.9.
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Figure 2.9: Representation of a subgraph in a multiplex network using a walk. In the second set
there was a jump between layers without taking a step. Thus, this subgraph is a triangle with
edge representation in two layers.

Remembering that a multiplex network is characterized by the presence of the same set of
nodes in each layer, the concept of subgraph explained above is easily understood. That is, since
there is an instance of each node in all layers it is natural that the transition between layers
can be discarded since when reaching a node in a given layer we can think that this node has
been reached in all layers. Even a subgraph of size two, which had only one format in a classic
network, can now have many shapes, depending on the number of layers, as shown in Figure 2.10.

Figure 2.10: All possibilities of subgraphs of size two from a multiplex network with three layers.

However, a new problem arises. When are two graphs isomorphic? Two graphs are said to
be isomorphic if after one permutation in one of them the other is obtained. This idea can be
expanded when layers are added because they also can be permuted but, in other way, they also
can be ignored. Looking at Figure 2.10 and trying to identify the isomorphic class of each of the
subgraphs, we realize that the definition needs to be adapted and clarified to this new context.

One of the options is to naturally expand the idea commonly used, that is, to apply a
permutation only on the nodes. Thus, in the tuple that represents them, the layers are retained
and the node itself can be changed. The name used to refer this isomorphism is node-isomorphism.

Layer-isomorphism, like the previous concept, is manifested only by changing one of the
elements of the node-layers tuples. In this case the relabel of the element of the tuple that
represents layers. Intuitively, these concepts may come together to form more general isomorphism.

Figure 2.11 shows subgraphs of size three, and the class to which they belong, in two types of
isomorphism. In one of them only the nodes are allowed to be permuted. In the right column we
see a more complex case where permutations of both tuple values, nodes and layers, are allowed.
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Figure 2.11: Isomorphism classes for multiplex networks with 3 nodes and 2 layers. We show
node isomorphisms in the left panel and node-layer isomorphisms in the right panel. The count
is the number of networks that are mapped to each class. Adapted from [29]

For motifs detection it is necessary to have other networks to compare the results obtained
from the network being studied. It is not possible to determine if a measurement is within the
expected range without comparing it with the same measurement in other contexts. Therefore,
a null model that captures some features and satisfies a given set of constraints establishing
what should be considered unexpected must be established. In networks with only one layer it
is usually chosen to maintain the different degrees of each node. In multiplex networks, it is
possible to think in the same way to generate the random networks. However, edges can now
connect nodes in different layers, and there are different definitions, such as local and global
degrees [7] that need to be taken into account.

Considering the degrees of nodes in a multiplex network the local degree assumes the same
degree definition as a single layer network but considering only each layer at a time. While the
global degree is the sum of the degrees of all instances of a node in the different layers. If the
null model only ensures that the global degree is maintained there may happen that a node with
links in all layers will have links in only one. Thus, the random networks to be generated can
be considerably different. Therefore, maintaining the local degree at each layer ensures a more
similar network and ensures that the global degree is maintained. In addition, to complete our
null model, the most natural thing to consider is that each generated network maintains the
same set of nodes in each layer.

However, as networks are more complex, models can take on new characteristics, in addition
to the degree of nodes, to ensure even bigger similarity. Since layers can be seen as an edge
characterization then this can be considered important in model generation. One idea, explained
in detail in the chapter 3, is to keep also the types of edges that exist. That is, take into account
the overlapping of edges in the different layers. If there is only one edge between two nodes that
is present in all layers, it can be a good idea to maintain this uniqueness.
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2.3 Related Work

This section shows some of the algorithmic ideas used to get frequencies and then discover motifs
in different networks. We give a more detailed explanation of some of the main exact, sequential
and general algorithms. We start by presenting the work in classical networks (including node-
colored networks) and we exemplify algorithms for different conceptual approaches. We also offer
a view of some of the latest work in the area of multiplex networks.

2.3.1 Single Layer Approaches

For the purposes of this work we are mainly concerned with exact subgraph census computations.
This is because at this phase this is an exploratory research and we are really keen on understanding
more perfectly the multiplex motif concept, without noise introduced on the computed frequencies.
However, we should note that several non-exact strategies exist for classic networks, that are
able to trade precision with execution time, returning approximate frequency values using
sampling [12, 40, 48, 56].

We also focus only on sequential algorithms that encapsulate the main ideas used to find
motifs and are more easily extendable to the multiplex case. We want to keep it simple whithout
extra complexity added by the parallelization itself. We should nevertheless point out that several
parallel approaches exist for the classic case [3, 46, 52], and we could consider in the long term
parallelizing our approach.

Finally, we concentrate our efforts on describing the more general approaches, again because
these are more suitable for extending to the multiplex networks. Some other classical network
census methodologies are however more focused only on certain subgraph types, for instance,
limiting to undirected and uncolored subgraphs up to a certain size. These methods can therefore
take advantage of specific analytical properties that can speedup the computation [1, 26, 33] but
it is not important for us at this first moment.

The currently existing exact methods can be divide into three different conceptual cate-
gories [40]. The first one, called network-centric computes a complete k-census of a network, by
enumerating all sets of k connected nodes and using isomorphism tests to determine the subgraph
type of each one. The second is focused computing the frequency of a single subgraph given and
is therefore called subgraph-centric. Computing a k-census would therefore imply calling this
method for each possible k-subgraph type. The third one is between the two previous approaches
and concentrates on a custom set of subgraphs defined at the beginning, so that the user can
indicate explicitly for which subgraphs he wants to have the frequency computed (it could be
just a single subgraph, all possible k-subgraphs, or anything in between). We present the well
known algorithms for each method category (network-centric: ESU and FaSE; subgraph-centric:
Grochow; set-centric: G-Tries) and somehow related and used in this project, but a recent and
complete survey can be read [47].
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2.3.1.1 Network-Centric

It is natural that the first algorithm to identify motifs appeared in the same year that the concept
was launched, 2002, and by the same authors in auxiliary notes to the original paper [34]. It
is a network-centric algorithm, basically a recursive backtracking search, that enumerates all
subgraphs with a determined size. It starts by choosing an edge and the two nodes that are its
the endpoints. Then, other nodes will be added if they have any edges for those nodes that are
part of the subgraph already selected. Whenever the size is achieved, the subgraph type (its
isomorphism class) is computed and its frequency is incremented. Due to subgraph symmetries,
the same subgraph could be found several times, and over-counting was avoided using specialized
data structures.

In 2005 progress was made with ESU, a new and more efficient algorithm that avoided the
before mentioned symmetry redundancy [55]. It begins by choosing a node (then it is executed
starting in all the others) that is added to the current subgraph being generated. It also keeps a
list with all the candidate future nodes. A node of this candidate list is then chosen to expand the
current subgraph, and each time this happens, the exclusive neighbors (neighbors that are not
shared by the other chosen nodes) are added to the list of candidates if they have a greater index
than the last chosen node. The fact that they are exclusive and the indexes guarantees that each
subgraph is enumerated exactly only once, avoiding redundancy. In the end, for each discovered
subgraph occurrence, a highly efficient third-party isomorphism algorithm called nauty [32] is
used to determine the subgraph type. Figure 2.12 gives an example of a search tree generated by
ESU.

Figure 2.12: Search tree of ESU algorithm looking for subgraphs with size 3. Adapted from [40].

The ideas of ESU were further improved in 2013 with FaSE [36] and Quatexelero [28],
that essentially use the same non-redundant enumeration mechanism, but improved upon
the isomorphism testing, avoiding one test per occurrences. This is possible grouping many
occurrences according to their topology, and doing one single isomorphism test per group, because
the subgraphs share identical structures.
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FaSE algorithm is based on the ESU and the idea is to take advantage of it adding one node
at a time. Whenever a transition occurs from one state to another by adding a new node, that
is, whenever it moves to another position in the search tree, this transition should be labeled.
That is, if each occurrence is labeled, the joining of labels can lead us to the final state.

As seen before, ESU creates a recursive search tree. Each node of this tree is a distinct state
that has two parameters: VS and VE . Therefore, if each state is distinct, the conditions are met
to create a unique label as well. Therefore, each time a recursive call is made, the identification
process can be performed through the current set of nodes.

When a new node is added it is stored the connections to nodes already in the set. Consider
now the undirected case, when adding the k-th node and using an adjacency list as data structure.
The size will be at most k − 1 integers where an integer is present if there is an edge to the node
with that index. For the adjacency matrix we will always have k − 1 boolean values.

Figure 2.13: Two different valid labels schemes on two example graphs. Blue nodes are the ones
being added. Adapted from [36]

.

2.3.1.2 Subgraph-Centric

In 2007 a different idea was implemented, and it does not care about the entire set of k-
subgraphs [23]. This new approach, by Grochow and Kellis, focuses only on the frequency of a
single given subgraph type and this allowed counting and obtaining larger motifs. Note that this
can still be used to obtain a k-census if we first generate all possible non-isomorphic k-subgraph
types (using for example the tools from [31]), and then calling the method individually.

The algorithm works essentially as a recursive backtracking process, but the search can be
highly pruned by fixing a order in which the nodes can be matched and then only exploring
the nodes that completely obey to the required connection to previously matched nodes. This
implies that when a set of k nodes matches the query subgraph, we are certain of its type and
no further isomorphism test is needed to identify the isomorphic class.

However, because of symmetries, the query graph can match multiple times to a single
subgraph of the network. This is avoided by calculating symmetry breaking conditions, which
ensure that a single match occurs. The technique of breaking conditions is made with the
application of constraints on the labeling of the nodes. The order is by increasing degree and
then by increasing neighborhood degree sequence.
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Figure 2.14: Search tree of Grochow and Kellis algorithm looking for subgraphs with size 3.
Adapted from [40]. To perform the census using this method we must find all subgraphs with a
certain size and then runs it for each one to determine its frequency.

2.3.1.3 Set-Centric

This section focuses on a methodology that is a mixture of the two above. That is, a method
that instead of searching for all the subgraphs of a network or searching only for a single one,
looks for a customized set of subgraphs as defined before. To complete this task, the g-trie was
specifically designed for storing and discovering subgraph frequencies [40, 43].

This structure is akin to a prefix tree (also known as trie), a well known in computer science
data structure to store words by taking advantage of words sharing equal prefixes. In this
particular case, several graphs can share identical substructures, that is, contain the same
subgraphs. When talking about this structure, special attention must be paid to the use of the
term node since, like the graphs, trees also have this element. Therefore, in this section the
larger structure will always be concatenated to the word node (trie or graph). Each trie-node
represents the connections of a graph-node to the graph-nodes already inserted in the parent
trie-node making each path in the tree correspond to a different subgraph. The connections
are stored as a boolean array and the concept is illustrated by Figure 2.15. Although there are
already algorithms to create the tree during execution [36], the initial version requires it to be
pre-computed. It is possible, for example, to add all the subgraphs with size k, or just a subset
of them. A subgraph is added at one at a time, starting with an empty tree, only the root (must
be empty since there are two possible beginnings, a graph-node with or without a connection
to itself). At each moment, the tree is visited to check if there is any trie-node containing a
graph-node with the same connections as the graph-node that is being inserted. In other words,
we look for trie-nodes that contain the same array of connections.
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Figure 2.15: A g-trie representing a set of 3 undirected graphs. Each trie-node adds a new
graph-node (in blue) to the already existing ones in the ancestor trie-nodes. The 0–1 boolean
arrays represent the connections to already existing graph-nodes. Two childs correspond to
different graph typologies that emerge from the same subgraph. Adapted from [40].

To ensure that g-trie leafs store different subgraph types, a canonical form is used to represent
a graph in a single way, that is, a unique string assigned to each topology. Therefore, two graphs
that are isomorphic must have the same canonical form and will always induce the same path
from root to leaf. G-tries use the customized canonical form that was developed having in mind
this usage, and therefore maximizes the amount of overlapping substructure, leading to a more
compressed representation and a small tree [43].

After the g-trie is built, the next step is to get the frequencies of the subgraphs stored in the
tree. The algorithm is based on a recursive procedure that expands subgraph sets that correspond
to a g-trie path. The properties of the g-trie itself guarantee an highly constrained search, and
symmetry breaking conditions ensure that each occurrence is only found once. G-tries can be
from on to two orders of magnitude faster than a network-centric algorithm such as ESU and a
subgraph-centric algorithm such as the one Grochow and Kellis.

One other advantage of this method is the calculation of frequencies in randomly generated
networks. After obtaining the subgraphs contained in the original network, we can construct
a g-trie containing only these subgraphs. So, when computing the frequencies on the other
networks, we are only spending time and space with the subgraphs that are important. Only
those that have been identified on the original network matter because of the definition of motif.

We should also note that g-tries have successfully been coupled with sampling to generate
an approximated version able to trade accuracy for speed [41]. Furthermore, parallel versions
of g-tries have been proposed for several different paradigms, including a distributed memory
implementations using MPI [45], a shared memory implementations for multicores [3] and a
MapReduce implementation with Spark [20].
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The amount of total different possible subgraphs grows exponentially as we introduce layers.
But, as we will see the multiplex networks can be transformed in graphs with colored nodes.
Thus, we now present the same structure but with the capacity to support this kind of graphs.
Even though it may not be a tool used to search for motifs it is an important data structure and
fundamental in this work. We are not limiting the information that we can obtain and although
we do not focus on this point, this structure is also able to handle colors on the edges. The
authors, in addition to the structure, also give clear definitions of colored motifs and how they
can be obtained.

The original approach contains in each trie-node the information relative to a single graph-
node. Therefore, the logical extension is to store in each child of the tree the color of the
graph-node that is being stored and to keep the connections to the graph-nodes in the same way
they were kept. That is, to the boolean array color information is added. To know the color of
the nodes of a subgraph, it is necessary to go through the g-trie, as to know the structure. This
is what allows to reduce the space needed to store a set of subgraphs. Figure 2.16 illustrates a
colored g-trie and how it stores some subgraph.

Figure 2.16: A g-trie storing 5 colored subgraphs, with 3 different node colors. Each trie-node
adds a new graph-node (inside the small square) to the already existing ones in the ancestor
trie-nodes. Adapted from [42].

Due to the combinatorial explosion that colors cause, the number of possibilities for subgraphs
of a certain size is much greater. Therefore, it might not possible to generate all the possibilities
and insert them into a g-trie as it was done in the classic version. However, one could build the
g-trie on the fly, dynamically inserting only the subgraph types that do appear in the network.
The occurrence of one subgraph remains different from another if they do not share at least
one node and it is enough that the color of a node is not the same even if all the connections
are. This has been successfully applied to colored networks and shown to provide new insight,
identifying new motifs that were previously indistinguishable with uncolored version [42].Colors
leads to a new concept of the similar random network. The idea of maintaining the degree of
each node has been adapted to this new context. Thus, each node maintains the degree of edges
that connect to nodes of a certain color. That is, each edge connects nodes of the same color.
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2.3.2 Multiple Layers Approaches

The approaches used for multiplex networks are scarce and too specific - unless there is one that
is not of our knowledge. That is, the results obtained are usually about a very particular context
and it is hard to compare with our work where we tried to be as general as possible. Sometimes
the work is focused on small size motifs and some of them do not search for subgraphs with more
than three nodes. Furthermore, there are projects that consider a certain subgraph format, which
they are interested like a feed forward-loop, without worrying about other structures. There are
important and central definitions, like multiplex subgraph, that are not equal to ours. However,
we provide some information about what exists in this area because there are some ideas that
have been reused.

For detecting and analyzing multiplex motifs in large-scale corporate networks [51] the first
step done was reduce the graph resulting in a weighted graph. As an intermediate step, the
multiplex network is transformed into one with several types of connections between the nodes
where each layer corresponds to a different edge type as explained in the Figure 2.1. Then occurs
a process which consists of adding the different edges between two nodes by creating a binary
label. First an order of the different types of edges (same as layers) present in the network is
fixed. Then the creation of the string is to iterate over the types of the edges, in the fixed order,
and concatenate 1 case the edge exists between two nodes and 0 otherwise. This binary label,
with the size equal to the number of layers, can be interpreted as a weight where this encodes
edges types. All the steps are shown in Figure 2.17. One problem is that the ability to represent
weighted multiplex networks is lost. Another problem is that when a subgraph is identified and
then transformed the most effective isomorphism test, nauty [32], does not support weighted
networks.

Figure 2.17: Multiplex subgraph encoding: from multiplex graph to multi-edge, to binary labeled,
weighted representation and colored network. The process of creating the binary label occurs
with the most natural order, first the layer A and then the B. Adapted from [51].
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However, the workaround can be done using colored nodes, as nauty suggests in its manual,
a solution that consists in transforming the network into a network with colored nodes, which
is done by the authors. This being done in this exact way limits the isomorphism tests since
the tool will only recognize the set of nodes as possible to be exchanged. Moreover, this work
focuses only on a particular two layer network built with data from a database where the final
result is not provided.

The same authors, for the random model used a network where each type of edges is modeled
separately, fixing the degree of nodes for each type of edges (layer). Therefore, it is only the
process used for classical networks applied for each layer individually. In addition, since one of the
layers is bipartite, they had to categorize the nodes to ensure that the random networks retained
this characteristic. Falling once again into the particularity of this network and forgetting the
more general case.

However, this problem of being too specific is quite common. There are other works that
use very particular null models because it makes sense in analyzing certain networks. As is the
case of [8] in which for the analysis of brain networks by considering networks with two layers,
anatomical and functional, they preserve the total degree at each layer, but they also keep fixed
the number of connections towards regions in the same brain hemisphere and those towards the
other hemisphere.

There are others where the network analyzed is "small and tight" [50] and where the motifs
is not the most important analysis and did not show important results having just a few lines
describing it. Furthermore, the framework used only allows to search for triadic motifs. This
information is given by the authors of the study, since the authors of the framework does not
make any reference to the ability to detect motifs but only other network related features as well
as their visualization [19].

The methods used also vary and there is research based on mathematical formulas to compute
the "number of all possible 3-node multilayer subgraphs" [58]. As stated earlier, there are works
that do not use the same definitions. Even the most central primitive of this project, subgraphs,
is different in [39]. It is a natural consequence of dealing with an emerging area and proof of this
is the three papers cited in this page that were presented this year, during the elaboration of
this thesis.

Two thesis were also defended, whose background is also multilayer networks. "Construction
and multilayer motif analysis of temporal fMRI brain networks" and "Graphlets in multilayer
networks", with the same advisor, proves that the area is being studied by others. Although these
have a stronger theoretical part than practical they came up with a new algorithm, MESU, that
is an improvement of ESU for multilayer concept. The basic idea is to have another extensible
list of layers, which combined with nodes, allows us to deal with tuples. However, its efficiency is
not demonstrated by running times or the number of subgraphs discovered per second.

Despite scarce practical applications, there are extremely well-developed theoretical concepts.
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In 2018 Kivelä et al. introduced a complete formalism in [29] to extend the concept
of isomorphism to all general multilayer network types, establishing a reduction capable of
transforming these into equivalent classic networks. To the best of our knowledge, no work has
already taken advantage of these more mathematical ideas to produce specialized algorithms for
counting subgraphs.

The idea behind graph reduction is also to reduce the problem of the multilayer network
isomorphism to a problem of graph isomorphism. This is one of the main problems of graph
theory requiring special attention in network science and it is imperative to count the occurrences
of a subgraph in a larger network. The reduction is useful because allows to make the problem
of getting the frequencies of subgraphs computable using software that is already developed.

All the mathematical theories were put on paper by the author and should be read for more
details. The author also proposes what should be the way to identify the isomorphism between
two multilayer networks. The suggested reduction is a linear function of the size of the multilayer
network, which is favorable for the practical part of the problem because the complexity becomes
the same as solve the problem in a classic graph.

The techniques used are based on the two situations that must occur in order to detect an
isomorphism: their underlying graphs need to be isomorphic (underlying graph results from the
first two sets of the quadruplet, GM = (VM , EM )) and permutations that occur in each layer are
connected to permutations that occur in other layers. In addition, one may want another kind of
isomorphism where layers can also be exchanged to get another isomorphic graph.

The first problem is solved by coloring the nodes of the underlying graph according to the
layer to which they belong, allowing only exchanges between them. The second problem is solved
by adding extra nodes. A supernode for each node v ∈ V , connecting the node-layers tuples that
the first element is the same that the supernode. That is, when there is a permutation of node
labels on a layer, it occurs in the same way in the others.

Thus, the same technique, illustrated in Figure 2.18, can also be applied to allow permutations
between layers by adding a supernode for each layer making the color (to identify the layer)
redundant information. That is, with the extra nodes it is no longer necessary to color the nodes
differently depending on the layer, since this distinction is now made with these new supernodes.

Figure 2.18: A multiplex network with two layers and three nodes and the correspondent
node-colored network with supernodes. Adapted from [29].
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Approach

Here we present the practical work we have done divided into three main categories. Since this
is sequential work, motif detection does not happen without subgraph counting, we first show
the steps taken to compute census in a multiplex network and only after that the method we use
to generate random networks. We also briefly show the output of our approach. There are two
paths to get the results, but both are explained in detail.

3.1 Subgraph Census

As we saw earlier, it is possible to apply a transformation to a multiplex graph to obtain a graph
represented differently, in more than one way. Basically, networks are transformed, somehow
reduced, to apply the more classical tools that exist. This transformation is not a simple
aggregation because it would lead to information loss. In our case, after doing this to make the
census easier, we go back to recover what we lost.

3.1.1 Finding Classic Subgraphs

The search methods we use build a subgraph by adding one node at a time. We are looking for
induced subgraphs, which means that if we add a node to a subgraph all the connections in the
original multiplex graph, between the nodes already added and the new node, must also be added
to this subgraph being constructed. Therefore, to find subgraphs with a certain number of nodes,
in the first phase it is indifferent by which of the layers two nodes are connected. Quite simply,
once we find a motif in the aggregated network, we go back to the original multiplex network
to verify which edges actually exist between the set of nodes found. The need to consider all
the edges that exist in the original multiplex network is because the subgraphs detected in the
aggregated network do not show what is going on in reality. That is, there is missing information
that can be important in the analysis, for example, to know if the edges that form a triangle are
all in one layer or in several.

29
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So, to make the census process easier and simpler, it is necessary to create an extra matrix
that we call overlap matrix. The required size is |V | × |V | because we want to know if a node is
connected to each other in any layer. Therefore, a node no longer has multiple instances and the
result is a new graph with the same set of nodes but single layer. For that we needed boolean
cells that are set to true only if one node has edges to another node in either layer of the original
multiplex network or in the set of layers we want to consider for analysis.

Figure 3.1: A multiplex network with three layers and the network obtained after the aggregation.
Also the two types of subgraphs present in the overlap network from which it is not possible to
obtain valuable information.

Network construction of Figure 3.1 is not an execution time bottleneck as this process can be
done during edge reading and construction of the original network. Doing this apart, what may
be needed for finding motifs if the same technique is used, requires traversing all edges to ensure
that the construction of the graph is correct. Using adjacency matrices, all values are initialized
to zero, or false, and they change to positive if an edge between two nodes exists and is the first
edge between these nodes to be processed.

Algorithm 1 makeOverlap: Algorithm for create overlap network from graph G
1: procedure OVERLAP(G, M)
2: reset(M)
3: for all edges e of G do
4: a← InitialPoint(e)
5: b← FinalPoint(e)
6: if M [a][b] = False then
7: M [a][b] = True

8: end if
9: end for

10: end procedure

This algorithm is linear according to the number of edges that exist. If this list does not exist
and the information is stored in a matrix, or similar data structure, then the runtime gets worst
because we have to iterate over all possible node connections and not just the ones that actually
exist. But, once we get this network we are in a position to use a algorithm that already exists
to find subgraphs. In our work we used ESU and then improved with ideas from FaSE, both
explained earlier and remembered below.
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The first algorithm we used is able to return all subgraphs that exist only once. This is a
great guarantee because our main interest is to understand what types of subgraphs are in the
multiplex networks that we are studying. As it is not a well explored area, execution time is not
the main initial factor. That is, we prefer exact results over approximations. The choice to start
facing the problem was this algorithm because, despite being one of the oldest, it is conceptually
simple and still provides a state-of-the art enumeration of connected subsets of nodes.

The ESU algorithm begins from each node (line 2) where the order is not important. That is
the first node of the subgraph being generated (first argument in line 4). It also keeps a list with
all the candidate future nodes (line 3 and 15). One of this candidates is chosen to expand the
the current subgraph (line 13) and it is added to the list with the nodes already found (line 14).
Then, the exclusive neighbors are added to the list of candidates if they have a greater index
than the last chosen node (line 15). The exclusive neighbours are the ones that are not shared
by the other chosen nodes. The fact that they are exclusive guarantees that each subgraph is
enumerated exactly only once, avoiding redundancy.

Algorithm 2 ESU MP: Algorithm for computing the frequency of subgraphs of size k in
multiplex graph G

1: procedure ESU(G, k)
2: for all node v of G do
3: V ′

ext ← {u ∈ N(v) : u > v}
4: extend({v}, V ′

ext)
5: end for
6: end procedure
7: procedure extend(Vs, Vext)
8: if |Vs| = k then
9: supra ← makeSupra(G,Vs)

10: label ← canonicalLabeling(supra) . nauty
11: Increment(label)
12: else
13: for all node v in Vext do
14: V ′

s ← Vs ∪ {v}
15: V ′

ext ← Vext ∪ {u ∈ Nexc(v, Vs) : u > Vs([0]}
16: extend(V ′

s , V
′

ext)
17: end for
18: end if
19: end procedure

When the subgraph has already reached the desired size (line 8) then we proceed to the
next step. In our strategy we need to call another algorithm (line 9) that we developed and will
explain in the next section, to deal with the several layers of the multiplex graphs (we go back to
the original network to reconstruct the subgraph found). Then nauty is used to determine the
subgraph type, as in the original version [55]. However, taking advantage of the ideas developed
by another algorithm called FaSE, the calls to calculate isomorphic classes can be drastically
reduced.
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The main idea of this algorithm is to take advantage of ESU method creating a label every
time a node is found. As seen before, the algorithm creates a recursive search tree. Each node
of this tree is a distinct state that has two parameters: VS and Vext. Therefore, if each state is
distinct, the conditions are met to create a unique label as well. Therefore, each time a recursive
call is made, the identification process can be performed through the current set of nodes. So, if
each occurrence is labeled, the joining of labels can lead us to the final state.

Once a label is created at a time it is intended to have a data structure that is efficient
in storing it. Moreover, it is intended that this structure take advantage of the hierarchical
relationship that exists between the labels created, that is, labels created from a recursive call
share the labels created before in that path. A tree complies with the demands and naturally
fits to the idea of having an hierarchical identification of common topology. The data structure
we use is a g-trie, which can be thought of as “prefix trees for graphs”.

The algorithm 3 does not have very significant differences from ESU. There is a need to
initialize a g-trie that will store the labels that are being created (line 2). The first insertion
occurs from the root (third argument in line 4) and whenever an insertion occurs the last insertion
point is returned (line 19). It will be from there that new descendant labels will be inserted
recursively. In the end, the frequencies of each subgraph are stored at g-trie leafs and, differently
from ESU, the increment of the isomorphic class should reflect this (line 9 and 14).

However, two different leafs may correspond to the same isomorphic subgraph type, and it
is still necessary to obtain a canonical label to disambiguate and ensure that the final results
reflect the real frequencies of each class. This is the point that brings unequivocal advantages
to the algorithm, because the call to an algorithm that detects isomorphisms is not made for
each subgraph as in ESU but for a set of subgraphs that correspond to the same leaf saving
computational time.

As explained in ESU, our approach requires an extra algorithm to handle the presence of
layers. In both algorithms, when a reference to the creation of a supra-adjacency matrix appears,
it is relative to the reduction we make to turn the multiplex isomorphism problem in a classical
isomorphism problem, which we explain in the next section 3.1.2. Also the creation of labels in
FaSE (line 19) will be explained in the same section because we choose to do the same reduction
every time a node is added and not just at the end.

The purpose of performing the transformation whenever a label is created is to save execution
time. That is, as it is a recursive function whose purpose is to take advantage of the hierarchy,
so reducing the subgraph during the creation of layers will make this method not so impactful
because reductions can be reused. However, the problem arises in terms of memory because the
generated g-trie is much larger since it will save the information about the connections between
the set of nodes in all the layers.
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Algorithm 3 FaSE MP: Algorithm for computing the frequency of subgraphs of size k in
multiplex graph G

1: procedure FaSE(G, k)
2: initGTrie(T )
3: for all node v of G do
4: extend({v}, {u ∈ N(v) : u > v}, T.root)
5: end for
6: for all l in T.leafs() do
7: supra ← completeSupra(l.Graph)
8: label ← canonicalLabeling(supra) . nauty
9: IncrementValue(label, l.count)

10: end for
11: end procedure
12: procedure extend(Vs, Vext, current)
13: if |Vs| = k then
14: current.count++
15: else
16: for all node v in Vext do
17: V ′

ext ← Vext ∪ {u ∈ Nexc(v, Vs) : u > Vs[0]}
18: V ′

s ← Vs ∪ {v}
19: current′ ← current.insert(newLabel(G,Vs, current))
20: extend(V ′

s , V
′

ext, current
′)

21: end for
22: end if
23: end procedure

3.1.2 Reducing a Multiplex Subgraph

The idea behind our code flow is just to include the layers after finding out that a particular set
of nodes forms a subgraph of the desired size. So, after that, we go back to the original network
to check in detail the connections that exist between them. The reduction can now be applied to
the subgraph and then it allows to calculate its isomorphic class using already developed third
party tools.

However, as we have seen that in the FaSE algorithm a g-trie is built on-the-fly and therefore
the methods used are necessarily different. Whenever a node is added by the algorithm, the
connections it has to others already added are reduced and introduced in a specific label which
will then, at the end, have a direct correspondence to the new data structure, which will be a
supra-adjacency matrix. Then we just need to complete the matrix adding the supernodes.

Normally the number of layers and the sizes of motifs allowed are not very large so in
computational issues this transformation is not problematic but it should not be neglected either
because it is performed many times. However, building the supra-adjacency matrix in ESU
requires iterating over the possible node set connections for each layer. The new position in the
matrix is calculated (line 6 of the next algorithm).
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Algorithm 4 makeSupra: Algorithm for create supra-adjacency matrix
1: procedure makesupra(G,VS , S)
2: for l = 0 to |L| do
3: for a = 0 to |Vs| do
4: for b = 0 to |Vs| do
5: if G.hasEdge(Vs[a], Vs[b], L[l]) then
6: S[a+ l ∗ |Vs|][b+ l ∗ |Vs|] = True

7: end if
8: end for
9: end for

10: end for
11: supernodes(S)
12: end procedure
13: procedure supernodes(S)
14: for l = 0 to |L| do
15: for v = 0 to |V | do
16: S[v + l ∗ |V |][v + |L| ∗ |V |] = True

17: S[v + |L| ∗ |V |][v + l ∗ |V |] = True

18: if isomorphism.permuteLayers() then
19: S[v + l ∗ |V |][l + (|L|+ 1) ∗ |V |] = True

20: S[l + (|L|+ 1) ∗ |V |][v + l ∗ |V |] = True

21: end if
22: end for
23: end for
24: end procedure

The last thing to do is add the supernodes (line 11). The "small matrices" produced by the
supra-adjacency matrix to represent the extra nodes have a special format. The supernodes
representing the other nodes, if they are ordered, will always produce diagonal matrices. For
the layers the matrices will have a row or column completely filled if all set of nodes are present
in a layer that is assumed by us in multiplex networks. All of these formats can be seen in the
Figure 3.2. The last two sections of rows and columns, colored with yellow and green, represent
the supernodes. They can have different sizes because the first must be the size of the subgraph
to represent each node. The last section, which is placed at the end because it may not exist,
must have the size of the layer set. In this particular case the size is the same.

No connection between nodes of different layers is added in this project, but the matrix
supports it. In fact, right now there is a lot of space that is wasted in the matrix because there
are many positions that will always be filled with the false value (see in the Figure 3.2 the empty
squares that exist between the different layers). It would be possible to mitigate this memory
problem, through minor adjustments in our source code, but we prefer to leave this extension
open for further research by us or others interested in this area. Thus, it is clear that the work
to study multilayer networks with all types of edges, including between nodes of different layers,
can start from this point and the necessary adaptations are not so many. Unfortunately, the
duration of this work did not allow us to explore in that direction.
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Figure 3.2: A supra-adjacency matrix with supernodes represented by yellow and green section.

The goal of the supernodes is to match the multiplex subgraph with the new classic graph.
Thus, a supernode is added for each node index and all instances of a node must be connected to
the same supernode. The purpose is to allow the calculation of different isomorphisms. These
extra nodes are sufficient to calculate node-isomorphism because they guarantee that whenever
two nodes swap in one layer they also swap in the others. However if we also want to calculate
layer-isomorphism we need to add a supernode for each layer. All nodes present in a layer must
have connections to the supernode that represents the corresponding layer. This allows the layers
to permute with each other.

As it is shown in the Figure 3.3 the node-layer isomorphism leads to a smaller number of
isomorphic classes. The result is expected since layer permutations allow us to group subgraphs
that would not be possible just by exchanging nodes. As we see in the figure, there are five
isomorphic classes in the left column. We highlight the two triangles that are of the same type
because it is possible to map the nodes of one in the nodes of the other and where there is a
connection in each layer. All other subgraphs have only two edges. The difference to the right
column is that if these two edges are in different layers then it is possible to consider them
isomorphic because the layers can exchange between them.

Figure 3.3: Two different types of isomorphism of subgraphs with size 3 from multiplex network.
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While in the ESU algorithm the supra-adjacency matrix is created after finding the whole
subgraph, in the FaSE algorithm a label is created and inserted whenever a new node is found.
We use a g-trie to store these labels because we can easily cross the tree performing a jump or
deepening. However, to do this we must have a technique that allows the subgraph to be rebuilt.
This is necessary so that in the end the supra-adjacency matrix can be built and only supernodes
need to be added by reusing the implemented method.

This process can be divided into several steps. One for each node that is added. In fact,
these steps are the same of FaSE because this function is called each time a node is found by the
main algorithm. The idea is that in the end, after joining all the labels that were created, in the
right order, it will be possible to have all the information that allows to rebuild the subgraph.
These labels, from the root of the g-trie to the leaf, must be enough without the need to use the
original graph.

Therefore, based on the idea of the algorithm that creates the label in the original FaSE, it
also only stores the connections of the node being inserted to the nodes that were previously
added. Our big difference is that we multiply this process by the amount of layers that exist in
the original network. Thus, we perform a concatenation of each label that results from each layer.
We just need to know exactly what each position corresponds to. The colors of the Figure 3.4
helps to easily understand this concept.

Putting it in another way, but that may be more intuitive, this process can be seen as
extending each matrix that corresponds to the subgraph in each layer. In step one extends the
edge of node one to itself. It has three positions of memory because of the three layers. In the
second step happens exactly the same but there is another detail. The extension is done starting
with column number two and then concatenated also row two in the second half of the label. In
this example they are the same because it is undirected, but it works with directed graphs.

Figure 3.4: The label, divided by steps, built for the subgraph in the left using the algorithm
FaSE. The colors in the label indicate a boolean position that has been set to true and it
corresponds to the layer.
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Algorithm 5 newLabel: Algorithm for create new label for FaSE algorithm
1: procedure newLabel(G,Vs, newNode, label)
2: nodes_size← |Vs|
3: label_size← |Vs| ∗ |L|
4: pos_label← 0
5: for l = 0 to |L| do
6: for i = 0 to |Vs| do
7: if G.hasEdge(Vs[i], newNode, l) then
8: label[pos_label] = 1
9: else

10: label[pos_label] = 0
11: end if
12: if G.hasEdge(newNode, Vs[i], l) then
13: label[pos_label + label_size] = 1
14: else
15: label[pos_label + label_size] = 0
16: end if
17: pos_label + +
18: end for
19: end for
20: end procedure

It is important to note that in the algorithm 5 there is little information that is constantly
repeated. That is, when we are concatenating a column with one row the last position of each
one is the same. Therefore, for each layer, in each step, a matrix position is repeated. It is the
position that indicates the connection of a node to itself and that could be ignored in our work.
Once again we have maintained this characteristic to keep our code base as general as possible.
The problem of repeating the matrix position could be solved with some hard coding but it is
easier to understand the way we did.

Our simple idea starts by calculating the size of the label if we only consider that the graph
is indirect. That is, the size we calculate will actually be double. However, we use this value as
an offset. So when we iterate over the possible edges between the nodes we can check the two
way connections and build the label.

We recall that when we reach the end of the enumeration of subgraphs by FaSE algorithm
we have a g-trie with labels that were recursively inserted. Thus, by obtaining a complete one,
we can reconstruct the corresponding subgraph. All we need is to go through the label, from
the first position to the last, and make a conversion that is the opposite of what is done by the
above algorithm. Once we know the transformation we have done then we are also able to undo
it. As stated earlier, after this we only need to add the supernodes setting the correct positions
of the last columns and rows of the supra-adjacency matrix.
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3.1.3 Get Isomorphic Classes Frequencies

When we reach this stage, using the ESU or FaSE algorithm, we are in the same situation. We
have a supra-adjacency matrix representing a subgraph. In fact, in ESU we have a matrix for
each subgraph found and in FaSE we have a matrix for each g-trie leaf created temporarily to
store the labels. Therefore, the two existing paths converge at this stage and this step is exactly
the same in both. We just need to be careful about how many subgraphs each leaf represents so
that we do not get the count wrongly.

For the calculation of isomorphic classes a third party algorithm is used because it guarantees
us to solve our problem with the best known time. Nauty "is a set of procedures for determining
the automorphism group of a node-colored graph, and for testing graphs for isomorphism" [32].
The supra-adjacency matrix is a colorful graph and it supports these graphs so we just have to
understand how the call is made. The user guide provided is not very intuitive and so we present
our explanation here.

As input nauty requires to know the connections between the nodes. In fact, a new replica
of our matrix is built, but in the format accepted by the algorithm. In addition, as a colored
graph, colors must be provided through an array as explained below. We have to be especially
careful about the different isomorphism we want to discover. This is because when we are using
node-isomorphism to calculate the isomorphic classes the supernodes representing the layers
have not been added and therefore there is no distinction between layers. Therefore, it must
be stated that each layer has a different color. This is done by setting to true the position that
corresponds to the last node of each layer. In the other type of isomorphism it is indicated that
all nodes are of the same color except for supernodes. Thus, the array that provides the colors
should be like exemplified in Figure 3.5.

Figure 3.5: The arrays representing the color of the nodes in a way nauty can read it. The
positions are boolean and must be true at the last node of each set of nodes of the same color.

Nauty returns a canonical way of representing the subgraph, that is, two subgraphs that
have the same isormophic class also have the same label. Therefore, a g-trie is used to store
the returned classes because the same classes will correspond to the same leaf and it is possible
to compress the information in the same way it is done with subgraphs. The total number of
leafs represents the isomorphic classes and the number of subgraphs is obtained by summing the
count present in each leaf.
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3.2 Network Motifs

Since we are already able to count subgraphs in a multiplex network we can then move on
to motif detection. What we have to do now is count subgraphs but in randomly generated
networks. For this, it is necessary to obtain a null model capable of absorbing all the necessary
characteristics so that it can then be affirmed that a subgraph present in the original network is
over-represented or not.

The standard procedure is to use a Markov-Chain method that has a procedure for rewiring
edges from the original network as it is described in Figure 3.7. Starting with the original graph,
a pair of edges (a, b), (c, d) is repeatedly swapped by (a, d), (b, c). This allows to preserve the
degree (in and out) of the nodes if we ensure that the degree of a is the same of the degree of c
or the degree of d.

The process described above is what we use for our null model one where we maintain the
degree of edges on each node and doing this for each layer separately. That is, when two pairs
of different connected nodes are found they can exchange as happened in layer A of Figure 3.6
where the edges (1, 2) and (3, 4) changed to (1, 3) and (2, 4). An identical situation happened in
layer B but in the last one it was not possible to exchange edges.

Figure 3.6: Two transformations of a network according to two different null models. The left
network is transformed into the middle one according to model one. The right network is obtained
from the middle network according to model number two.

The difference for the second model is that all layers are considered when looking for edges
to exchange. If we consider the middle network of Figure 3.6 to apply the model only the edge
between (1, 3) and the edge (2, 4) have the same set of connections (layer A and B) and therefore
it was the only exchange that was made. We can think about this as categorizing edges and just
exchanging edges that are of the same type. Therefore, the edges that are only present in one
layer will keep this type while the edges that are in more than one will be of a new type that is
created using the several layers.
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Figure 3.7: Two different edge exchanges of a multiplex network according to two different null
models. The first one takes each layer into account separately while the second looks at all the
layers at the same time.

3.3 Showing Results

A visualization tool can be useful for identifying and understanding subgraphs present in multiplex
networks, especially in this area where subgraph types are not as well known as the classic ones.
So, one of our concerns since the beginning was to have available methods that let us to manage
the results, to easily search for interesting patterns and show them in a explicit and clear way
where the different isomorphic classes are easily distinguished.

First of all, before focus on the visual part of the results, we must ensure that the user has
the possibility to choose a range of variables that interfere with the results. We are talking about
things like choosing the type of the isomorphism, node or node-layer, the most appropriate null
model, which we have two options, the set of layer to consider during the analysis and the most
basic of all, but importantly, the size of the subgraphs.

Results are shown in a sequence of html pages and the first one shows only numbers about
the results obtained. From the number of subgraphs found, the number of different isomorphic
classes identified to the execution time of the algorithm. In fact, an overview is made of the
characteristics of the network and the variables that led to the results to ensure that in their
interpretation there are no mistakes.

All this information is presented in a box system that facilitates whenever it is decided to
introduce or remove any data. That is, it is only necessary to add a box or remove without really
worrying about where to add this info. We just have to decide the order in which it is entered,
before or after other important statistics. Moreover, the boxes may have more than a certain
size that allows to have an ever-aligned layout as we will see in section 4.2.



3.3. Showing Results 41

Then we can start thinking about the other pages. If we want all subgraphs on the same
page or how many we want on each. Whether we want to sort in ascending or descending order.
Choose to see all the results or just a few and how many. Hide or show subgraphs that exist
in random networks but do not exist in the original network. All of this allows to have custom
results that may be important for a specific application or to assist in the analysis of the results
obtained.

In short, the results consist of a first page of presentation, which have all respective numeric
results from the network and the execution itself, followed by other pages with the sequence of
subgraphs or motifs that were found by the algorithm. These patterns can be represented in one
of two ways. They are drawn in expanded or compact form and they consist of what the name
implies. The differences between the two versions can be seen in Figure 3.8 where both sides
represent the same subgraph.

On the left side each layer is represented separately and there is no need for use colors on the
edges (only present to facilitate the correspondence between the two subgraphs and in reality
the edges in this option are white). In the compact version one edge is divided by the number of
connections that exist between the two nodes in all layers and each segment is painted with a
distinct color. This strategy is fundamental for networks with many layers that might not all be
visible on the screen at the same time.

Figure 3.8: Multiplex subgraph with two layers and its correspondent compact version.

As said before, using html pages to show the results made us choose to use a vector drawing
tool supported by all modern browsers. This means no extra tools are needed and therefore
easy to display the subgraphs. Scalable Vector Graphics allows to draw various shapes that are
sufficient for the representation of networks. Circles for representing nodes and lines for edges
are the main and fundamental to achieve the goal. However, the way they are used by us makes
the graph representation quite clear and explicit.

Although this part of the results presentation may be neglected by many researchers, it is of
great importance to our project. Contrary to what would be expected in other works this part
began to be thought and developed early because it played a fundamental role in this thesis. It
was instrumental in helping us understand multiplex networks. We are sure that this intuitive
representation gives, even to the people who are not minimally connected to the area, the ability
to understand what is going on.
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Experimental Results

In this chapter we present the results we obtained after applying our approach to two different
data sets. One of them contains synthetic networks built through various models. The other is
formed by real networks where we try to have a diverse set to ensure better conclusions. We
have done several experiences to understand how our approach behaves. The most important
are in this chapter, divided into sections.

4.1 Computer Environment

All experimental results were obtained on a two core machine with AMD Opteron(TM) Processor
6274 where CPU max frequency is 2200 MHz. It has 8 GB of RAM. All code was developed
in C++ and compiled with gcc 7.4.0. We use the version 2.6 of nauty as external package for
computing isomorphism groups of graphs.

4.2 Visual Aspect

In the first page the important numerical results such as network information (number of nodes,
edges and layers), number of subgraphs found and number of different isomorphic classes are
shown. Furthermore, all the details that originated the numbers. That is, the arguments that
were passed to the program before its execution such as subgraph size, isomorphism type and
the method used. In addition the runtime on the original network is shown. When the main goal
is motif detection then new boxes are added to give average runtime information on randomly
generated networks. Therefore, the box format, exemplified in left side of Figure 4.1, allows at
anytime to show more information if desired maintaining always an aligned format. The last box,
which have an arrow pointing to the right, allows to go to the next page, the first one showing
the subgraphs found.

43
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Figure 4.1: Output example of our approach where html is produced by our program. The first
page on the left and an example of the subgraphs on the other pages on the right.

The subgraphs found can all be shown on the same page if desired, otherwise they are shown
on multiple pages to not overload the browser rendering all vector shapes. Drawing the layers,
as in right panel of Figure 4.1, is a clear view of the subgraph because the layers are explicitly
drawn separately. However, there is also a compact version where only one layer is represented
and colors are used to distinguish the edges. The compact version was developed because it
could not be practical to see a subgraph with many layers and it is explained in 3.3.

4.3 Synthetic Networks

One of our biggest difficulties was finding real networks with layers to use to test our approach.
Therefore, one of our biggest needs was the generation of networks capable of following the
characteristics we intended. Using models that already exist for classic networks we adapted them
to the context of layers (more than generating a classic network multiple times and considering
each one as a layer). Then we were sure we had networks from where we could obtain experimental
results.
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4.3.1 Models

Erdõs-Rényi

Erdõs-Rényi (ER) is a model for generating random graphs [21], which includes an edge
between two nodes with a certain probability. Therefore, in each model, according to the desired
number of nodes, we iterate over all the pairs of nodes and each edge is included in the graph
with probability independent from every other edge. All networks from Figure 4.2 were generated
with 50 nodes as parameter. However, when the probability is too low, this number may be
lower because there may be some who has no connection to any other. This happens in the
left network. In the others it is possible to verify that, the greater the probability, the network
becomes denser.

Figure 4.2: Display of three graphs generated with the ER model. The probability increases
from left to right.

We consider that in this particular case no adaptation to the layers is required. Since it is a
totally random model then the generation of several networks where each one is assumed as a
layer is perfectly natural because the multiplex will keep exactly the same randomness as the
classic one. In the experiments, this model will be referred as ER_MP.

Barabási-Albert

The Barabási-Albert (BA) model is an algorithm for generating scale-free networks [4] whose
degree distributions follows the power law where most nodes have few connections and some
nodes have a high number of edges, which we call hubs. They are generally more resistant to
accidental failures but vulnerable to coordinated attacks. The network grows by adding new
nodes over time and these new nodes connects to existing nodes in the network with probability
proportional to the degree. Therefore, they are more likely to connect to hubs. The power-law
degree distributions is a property widely observed in many natural systems including the internet,
citation networks, and some social networks. Out of curiosity, the algorithm is named for its
inventors Albert-László Barabási and Réka Albert and not only for the first author whose first
name is the same as the last name of the second.
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The three networks in the picture vary from one to another because they have a different
attachment parameter. That is, in the first case, each node that is added only connects to
another node (network where the presence of a single hub is easily visible). In the second case,
each of the new nodes connects to two others and in the third to three. This characteristic is
especially noticeable in nodes that are represented on the outside of the circle.

Figure 4.3: Display of three graphs generated with the BA model. Each has 50 nodes and a
parameter of attachment between 1 and 3, from left to right.

The networks presented in Figure 4.4 are our attempts to have a model, adapted from BA,
which includes the layers. They all have an attachment parameter equal to one and the presence
of two layers (orange and blue). The green color represents the edges that are present in both
layers. This is the way we found to get our networks visually using the Gephi tool [6].

Figure 4.4: Display of three graphs adapted from the BA model. Each has 50 nodes and a
parameter of attachment m = 1.

In the first case we only allow a new node, which is being added to the network, to connect
to the other nodes in a particular layer. That is, considering the initial edge in both layers,
colored in green, it is from there that the new nodes connect but always by the same layer. The
attachment that is made takes into account the layer and it is like first extending one layer and
then another. This does not imply that there is no overlap, but the truth is that the hubs of one
layer are unlikely to be the same as in another. We truly believe that this model is very identical
to generating the Barabási-Albert model twice and considering each one as a different layer.
Therefore, we had the need to change and bring it closer to what we think are the real networks.
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The second adaptation is already closer to what we want and closer to our definition of
subgraph. That is, from a node, the network can be expanded in each of the different layers.
However, with this happening in this way, it is ensured that there is no edge overlap (beyond
the initial subgraph that is added to the two layers) and that is why the evolution for the third
model emerges.

Considering the need for more overlapping edges we decided to go through the edges generated
and with a certain probability add that edge in all the layers. This is the final model that we
will be using throughout the rest of this chapter. We will refer to it as BA_MP.

Watts–Strogatz

The Watts–Strogatz (WS) model is an algorithm that produces networks considered small-
world [54] where most nodes can be reached from every other node by a small number of steps.
Short average path lengths and high clustering are two properties that can be found here.

The basic idea is to get an argument, as a parameter, that indicates how many neighbors
should have a node. This argument is assumed to be even to ensure that there are as many
neighbors on the right as on the left. After creating this chain we guarantee the high clustering
property. Then going through all these edges and with some probability removing them and
rewire to other nodes, found randomly, we grant the other property, short average path, because
we are connecting sets of nodes that are far away.

Figure 4.5: Display of three graphs generated with the WS model. Each has 15 nodes and 6
neighbors (half for each side of the circle). The probability of rewiring increases from left to
right.

In the left of the Figure 4.5 it is possible to see a network that follows the first feature where
all nodes are connected to the same number of neighbors where half are on each side. This causes
that peculiar structure. There is no edge removed and connect to another node because the
probability is zero. However, in the central network this already happens on some edges (visible
through the inside of the circle) while the probability in the last case was close to one and almost
all edges were changed.
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If we consider the network generated without the rewiring process and if we think of several
networks of this type to create the multiplex network we realize that the overlap of edges will be
total. Even with the rewiring process, although it may not be total, it will be very high and
therefore we consider that it is not an effective way to represent multilayer networks. This is
why we thought of an adaptation, presented in the Figure 4.6, where colors represent the same
as in previous models. Orange and blue one layer each and green the edges present in both.

Figure 4.6: Display of a graph adapted from the WS model. It has 15 nodes and each node had
6 neighbours before the rewiring process.

Our main idea is to first create all possible combinations of layers and assign an index
to each one. Then in the next phase generate a classic network according to the WS model.
After it, iterating over all created edges, randomly choose an index, which matches one of the
combinations, and add the edge to the layers present in the combination. Thus we guarantee the
same model but in multiplex with a well distributed edge overlap. This is the adaptation of the
model that we will be using, and we will refer to it as WS_MP.

4.4 Models Fingerprint

In order to ensure that the adaptations of the models explained above are within expectations,
we conducted a series of experiments with the ultimate goal of confirming the identity of each
one of the different models. The work consisted in the generation of synthetic networks according
to the models ER_MP, BA_MP and WS_MP. We used different parameters, varying the number of
layers and the number of nodes. Then, we count subgraphs on different networks to see if these
patterns could be seen as differentiating elements.

In fact, the metric used in this case was not the frequency but the concentration. This
allows comparing values of networks whose size is different since the frequency alone would be
incomparable because larger networks would have higher frequencies. This value is obtained
by dividing the frequency of a given subgraph by the total number of subgraphs found in the
complete network. Other agnostic metrics relative to the size of the network could be used, but
this is enough to show what we want.
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We choose to show the subgraphs of size four and with the highest concentration in each
of the networks, resulting in the set of ten shown in the bottom of the Figure 4.7. The results
presented are for two layer networks (orange and green color). Note that these subgraphs would
not be detected in classic tools, or at least would not be distinguishable. The first and last three
all have the same structure and the rest have another structure. Therefore, this would result in
only two detected subgraphs.

The first network of each model consists of 500 nodes. The next double the first, and the
third also double the second with 2000 nodes. The concentration graphs are practically the same
in networks of the same family, as expected. Also as expected, it is the types of subgraphs that
appear where, for example in BA_MP networks, subgraphs [4-7] occur because of the presence of
hubs. Therefore, we can conclude that the models we generate are sufficiently different to be
used as a basis for analysis in our other experiments.

Figure 4.7: Networks fingerprint using subgraph concentration. A set of 10 subgraphs and 3
networks of each model.

4.5 Comparing Algorithms

We now want to show the differences that exist between the two variants of our approach, the ESU
method and the FaSE. However, in order to better interpret the results, we consider important to
look at some networks numbers such as the occurrences of subgraphs and the different isomorphic
classes. These numbers then play a fundamental role in the runtime because the algorithms are
enumeration based, which means that they must list all subgraphs and networks with more will
take more time.



50 Chapter 4. Experimental Results

The main objective of showing the next three tables is to start thinking about what will be
expected as the behavior of the algorithms through these numbers. The big difference between
the ESU method and the FaSE is the number of calls to a method that returns the isomorphic
class. The first one does an isomorphism test for each subgraph found, so the number of calls is
equal to the number of occurrences. The second encapsulates the subgraphs before the call and
so the number will be smaller.

This reduction of calls may be indicative of the expected gain and that is what we want to
prove. Therefore, we show the different amount of calls between methods (in first and second
column sections of the tables), which is the main and biggest problem of all this work. The
tables are in ascending order of Reduction (ESU calls divided by FaSE calls) section. That is,
the first table, which refers to the WS_MP model, shows a slight decrease of calls where the orders
of magnitude are lower when compared with the other models.

The comparison can and should be made with the other two tables because bigger differences
are noted in Table 4.2 and even more in Table 4.3. Therefore, the FaSE method is expected to
bigger improvements in networks generated through ER_MP model than in networks generated
using other different models. But, it is expected to be better than ESU in all cases.

We also want to share how difficult it can be to show results in this context as layers add a
new dimension to classic works. If we want to show only some numbers it is not possible because
they will necessarily be too many.

L N
Occurrences/ESU Calls FaSE Calls Reduction
3 4 5 3 4 5 3 4 5

2

0500 6129 30020 167317 45 1011 11019 1,4x102 3,0x101 1,5x101

1000 12400 61636 349747 45 1248 15171 2,8x102 4,9x101 2,3x101

2000 24918 125309 722304 45 1559 20417 5,5x102 8,0x101 3,5x101

4000 49848 250606 1444310 45 1881 27702 1,1x103 1,3x102 5,2x101

8000 99760 502494 2901765 45 2234 37561 2,2x103 2,2x102 7,7x101

3

0500 6252 31379 182915 412 6010 58424 1,5x101 5,2x100 3,1x100

1000 12327 61040 356602 436 9068 92148 2,8x101 6,7x100 3,9x100

2000 24612 121782 734633 441 13147 146085 5,6x101 9,3x100 5,0x100

4000 50192 254453 1443411 441 18082 228180 1,1x102 1,4x101 6,3x100

8000 99967 505068 2910618 441 24879 345762 2,3x102 2,0x101 8,4x100

4

0500 6241 31519 182938 1132 14972 135621 5,5x100 2,1x100 1,3x100

1000 12507 62978 362585 1686 23495 247632 7,4x100 2,7x100 1,5x100

2000 24950 125441 721591 2453 35778 421010 1,0x101 3,5x100 1,7x100

4000 49659 248519 1425675 3333 56455 682468 1,5x101 4,4x100 2,1x100

8000 99421 499575 2881513 3733 91205 1094944 2,7x101 5,5x100 2,6x100

Table 4.1: Subgraph occurrences and isomorphism tests in networks generated with WS_MP.
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L N
Occurrences/ESU Calls FaSE Calls Reduction
3 4 5 3 4 5 3 4 5

2

0500 7964 102004 1537342 36 496 6391 2,2x102 2,1x102 2,4x102

1000 17812 287336 5674721 37 531 7289 4,8x102 5,4x102 7,8x102

2000 46081 1320933 48759292 45 697 10205 1,0x103 1,9x103 4,8x103

4000 98596 3549800 174567364 45 725 11202 2,2x103 4,9x103 1,6x104

8000 198237 6399619 287005594 45 733 11691 4,4x103 8,7x103 2,5x104

3

0500 9437 166335 3370142 153 3307 63906 6,2x101 5,0x101 5,3x101

1000 20321 443706 11905870 164 3905 79105 1,2x102 1,1x102 1,5x102

2000 44388 1223680 44251833 172 4554 94054 2,6x102 2,7x102 4,7x102

4000 82022 1838539 56986244 171 5293 85378 4,8x102 3,5x102 6,7x102

8000 208135 8319608 484153974 189 5496 121755 1,1x103 1,5x103 4,0x103

4

0500 8716 135215 2468242 504 16338 365674 1,7x101 8,3x100 6,7x100

1000 19389 367315 8555848 519 19237 564962 3,7x101 1,9x101 1,5x101

2000 42397 984640 29256993 531 20677 753286 8,0x101 4,8x101 3,9x101

4000 94714 2782787 109164361 560 22197 893388 1,7x102 1,3x102 1,2x102

8000 185377 5320620 211109317 569 22866 947165 3,3x102 2,3x102 2,2x102

Table 4.2: Subgraph occurrences and isomorphism tests in networks generated with BA_MP.

L N
Occurrences/ESU Calls FaSE Calls Reduction
3 4 5 3 4 5 3 4 5

2

0500 24942 324411 4859704 25 289 3923 1,0x103 1,1x103 1,2x103

1000 198690 5159970 154442188 32 541 9739 6,2x103 9,5x103 1,6x104

2000 1544969 79211486 N/A 39 865 N/A 4,0x104 9,2x104 N/A

4000 12490927 N/A N/A 42 N/A N/A 3,0x105 N/A N/A

8000 99818031 N/A N/A 44 N/A N/A 2,3x106 N/A N/A

3

0500 50855 934461 19639536 106 2189 46227 4,8x102 4,3x102 4,2x102

1000 424189 15932264 684763476 165 4886 153176 2,6x103 3,3x103 4,5x103

2000 3452422 261823578 N/A 188 8853 N/A 1,8x104 3,0x104 N/A

4000 27836834 N/A N/A 253 N/A N/A 1,1x105 N/A N/A

8000 221389736 N/A N/A 318 N/A N/A 7,0x105 N/A N/A

4

0500 95481 2376048 67048834 303 9122 277415 3,2x102 2,6x102 2,4x102

1000 760923 37900182 N/A 509 22453 N/A 1,5x103 1,7x103 N/A

2000 6086921 606586567 N/A 727 55822 N/A 8,4x103 1,1x104 N/A

4000 48171241 N/A N/A 1077 N/A N/A 4,5x104 N/A N/A

8000 387301814 N/A N/A 1395 N/A N/A 2,8x105 N/A N/A

Table 4.3: Subgraph occurrences and isomorphism tests in networks generated with ER_MP.

In the last table (4.3) it is not possible to present all the results (N/A) because of
computational limitations explained below. However, the existing data is sufficient to realize
that it is in this model that there is a bigger reduction of calls.
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The reduction that occurs in the number of calls to nauty is so significant in the original
method that they are able to make it two to three orders of magnitude faster than ESU. However,
the previous tables (together with the following) aim to show that in this new context this may
not always happen. The presence of layers means that there are a greater number of subgraph
possibilities, exponentially, and this makes subgraph encapsulation, before the calls, not able to
aggregate such a large number of subgraphs.

However, as we saw above, this can continue to happen in a certain type of networks. The
network in which the subgraphs were structurally most similar to each other was ER_MP (least
calls). This brings us back to section 4.4 and we realize that quite possibly this is connected to
subgraph concentrations. That is, as can be seen in the Figure 4.7 the highest concentration of a
subgraph in this network is above 35% followed by 3 close to 20%. Inversely, the WS_MP network
has no concentration above 10%.

The conclusion that can be drawn from this is that since subgraphs are more concentrated,
then the FaSE algorithm will aggregate those subgraphs and consequently reduce the number of
isomorphism tests. We will now see if this is actually synonymous with a faster algorithm. In
short, we want to conclude that the algorithm can continue to be used for multiplex networks,
speeding up the process, even if there are differences between networks. We think they are
connected to the amount of isomorphism tests and these are less in networks where subgraphs
have higher concentrations.

L N
Runtime FaSE(s) Runtime ESU(s) Speedup

3 4 5 3 4 5 3 4 5

2

0500 0,003 0,029 0,298 0,044 0,293 2,065 12,83x 10,11x 6,94x
1000 0,007 0,051 0,490 0,087 0,605 4,273 12,87x 11,96x 8,72x
2000 0,014 0,094 0,886 0,175 1,222 8,800 12,82x 12,98x 9,93x
4000 0,028 0,191 1,508 0,367 2,519 17,812 13,04x 13,17x 11,81x
8000 0,060 0,366 2,806 0,714 5,055 39,416 11,94x 13,82x 14,05x

3

0500 0,010 0,150 1,898 0,075 0,506 3,884 7,40x 3,36x 2,05x
1000 0,015 0,236 3,090 0,145 0,975 7,325 9,96x 4,13x 2,37x
2000 0,023 0,361 5,012 0,292 1,924 14,391 12,65x 5,32x 2,87x
4000 0,041 0,579 8,133 0,604 4,079 30,533 14,61x 7,05x 3,75x
8000 0,081 0,945 13,151 1,242 8,045 64,009 15,34x 8,52x 4,87x

4

0500 0,029 0,508 6,319 0,116 0,812 6,932 3,96x 1,60x 1,10x
1000 0,046 0,801 11,315 0,229 1,578 13,312 5,00x 1,97x 1,18x
2000 0,071 1,242 19,039 0,458 3,092 25,282 6,48x 2,49x 1,33x
4000 0,109 2,011 30,717 0,917 6,115 48,510 8,40x 3,04x 1,58x
8000 0,165 3,337 49,952 1,843 12,210 95,691 11,18x 3,66x 1,92x

Table 4.4: Runtimes of ESU and FaSE algorithms in network generated with WS_MP model.
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L N
Runtime FaSE(s) Runtime ESU(s) Speedup

3 4 5 3 4 5 3 4 5

2

0500 0,004 0,052 0,844 0,054 1,012 19,310 12,83x 19,48x 22,87x
1000 0,010 0,141 3,094 0,120 2,893 74,114 12,28x 20,59x 23,95x
2000 0,025 0,608 25,904 0,313 13,653 703,894 12,61x 22,46x 27,17x
4000 0,057 1,805 102,547 0,671 37,269 >30m 11,75x 20,65x N/A

8000 0,130 3,525 187,023 1,372 67,486 >30m 10,52x 19,15x N/A

3

0500 0,008 0,162 3,939 0,109 2,669 68,673 13,49x 16,50x 17,44x
1000 0,016 0,335 10,175 0,234 7,070 245,930 15,11x 21,11x 24,17x
2000 0,032 0,820 33,738 0,515 19,659 934,170 16,29x 23,96x 27,69x
4000 0,074 1,331 46,915 0,969 29,681 >30m 13,15x 22,30x N/A

8000 0,162 5,972 418,647 2,482 136,557 >30m 15,28x 22,87x N/A

4

0500 0,018 0,567 15,697 0,160 3,233 74,491 9,11x 5,70x 4,75x
1000 0,027 0,831 28,179 0,353 8,723 255,741 13,11x 10,50x 9,08x
2000 0,045 1,364 54,445 0,770 23,337 876,066 17,25x 17,11x 16,09x
4000 0,089 2,924 139,519 1,738 66,514 >30m 19,60x 22,75x N/A

8000 0,176 5,413 255,926 3,414 129,012 >30m 19,38x 23,83x N/A

Table 4.5: Runtimes of ESU and FaSE algorithms in network generated with BA_MP model.

L N
Runtime FaSE(s) Runtime ESU(s) Speedup

3 4 5 3 4 5 3 4 5

2

0500 0,011 0,150 2,492 0,184 3,161 61,118 17,02x 21,03x 24,52x
1000 0,101 2,868 91,842 1,583 53,877 1785,615 15,65x 18,79x 19,44x
2000 0,821 52,324 >30m 12,959 911,435 >30m 15,78x 17,42x N/A

4000 7,654 >30m >30m 111,055 >30m >30m 14,51x N/A N/A

8000 74,951 >30m >30m 898,356 >30m >30m 11,99x N/A N/A

3

0500 0,027 0,557 13,745 0,642 15,133 387,981 23,98x 27,19x 28,23x
1000 0,258 10,280 488,142 5,951 276,065 >30m 23,08x 26,85x N/A

2000 2,496 193,393 >30m 52,592 >30m >30m 21,07x N/A N/A

4000 22,188 >30m >30m 429,689 >30m >30m 19,37x N/A N/A

8000 202,385 >30m >30m >30m >30m >30m N/A N/A N/A

4

0500 0,059 1,793 61,878 2,011 61,230 >30m 33,94x 34,15x N/A

1000 0,532 29,734 >30m 18,248 1054,027 >30m 34,27x 35,45x N/A

2000 5,094 499,324 >30m 153,938 >30m >30m 30,22x N/A N/A

4000 42,683 >30m >30m 1248,073 >30m >30m 29,24x N/A N/A

8000 378,918 >30m >30m >30m >30m >30m N/A N/A N/A

Table 4.6: Runtimes of ESU and FaSE algorithms in network generated with ER_MP model.

Table cells containing ’>30m’ information correspond to processes that were terminated
because the execution time exceeded 30 minutes and therefore those containing ’N/A’ are those
where is not possible to calculate speedup.
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Therefore, what can be concluded from the six tables presented above is that there is a
connection between the number of isomorphism tests and the execution speed of the algorithm.
The fact is, this was the conclusion of the authors of FaSE algorithm. However, with the addition
of layers this could not happen since the exponential growth of different subgraphs could lead to
their encapsulating, before calling nauty, so small that it became insignificant and without any
gains compared to ESU.

What can easily be proved is that there is always a gain from FaSE over ESU, in the Tables 4.4,
4.5 and 4.6, even in this new context . This improvement is because of the difference between
the amount of isomorphism tests made by each. On the WS_MP network, on average, these tests
were reduced by 1,25x102, the BA_MP network by 1,81x103 and the ER_MP by 1,64x105. This
reduction (with the orders of magnitude increasing) is inverse by improvements that were on
average 7.47x, 17.28x and 22.63x following the same order.

Another connection we want to make is between isomorphic tests reductions (which happens
because subgraphs are first stored in a g-trie and those that are structurally the same correspond
to the same leaf and therefore the same test) and the concentration of subgraphs. All subgraphs
with relevant concentrations of networks with two layers are shown in the Figure 4.7 (the other
subgraphs have values near zero). We realize, as said before, that networks with the highest
concentration are the ones where FaSE has the most improvement.

If we go back and look closely at the Tables 4.1, 4.2, and 4.3 we realize in which networks
there is a bigger concentration of subgraphs. Not comparing the type of network, but the amount
of layers. That is, as can easily be observed, the orders of magnitude of the reductions are higher
in networks with two layers (which is expected since the increase of subgraphs is exponential
with layers). This is why the presented fingerprint is from the networks with two layers because
it is more evident.

Now we detail the parameters we used to generate each of the networks. In ER_MP network
as probability of connection between two nodes we use 1%. If we increase this value, it would
also increase the overlap of edges which would lead to different concentration values. However,
with 10%, the most present graphs would be the same but with lower concentration values. In
the BA_MP model, we used an attachment parameter of 2 (not making the network too small or
too dense as ER_MP). The subgraphs found are the same because the topology of this network.

In the last case we used a network with 3 neighbors on each side and a rewiring probability
of 20%. We experimented with the double neighbors and with different probability values. The
subgraphs found are practically the same and with similar concentration values. Therefore, we
decided to present the values of three models that we consider sufficiently different to compare.
Each with its own topology and different subgraph quantities to understand the behavior of the
algorithms.

For the sake of those who are reading this thesis it is not possible to present all the values
because the parameters are so many, resulting in so much data, that it is not a good idea to
present everything here. But we still have more three tables.
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4.6 Runtime Behavior

We saw earlier how one algorithm behaves relative to another. However, we want to evaluate the
performance individually and we will do it to FaSE. We want to understand how scalable it can
be. We assure that our machine is not a five star but we are very comfortable with it since the
results are quite satisfactory and keeping in mind that they could be even more.

Importantly, once again, the algorithm is based on the enumeration of subgraphs. This
means that this is a process from which it can not escape. Therefore, graphs that contain more
occurrences will necessarily take longer because they must all be considered to calculate the
exact frequency. Another important detail is that these occurrences refer to the overlap network.

The first two sections of the Tables 4.7, 4.8 and 4.9 were already contained in the previous
tables. However, we put it back here because it is these numbers that allows to calculate what we
want to highlight. Our algorithm maintains a constant ratio with very close orders of magnitude.
Depending on the model and with the increase of layers there is a slight variation of behaviors.

Models WS_MP and BA_MP create networks with very similar numbers of subgraph occurrences
in the different layers. That is, due to the way it is generated, they maintain an identical structure
independent of the layer differing only by how many layers are distributed the edges. This is
why there is a slight decrease in the ratio with increasing layers. The occurrences are similar in
the overlap network but more runtime is required to reconstruct each subgraph.

L N
Occurences Runtime FaSE(s) Graphs/Sec

3 4 5 3 4 5 3 4 5

2

0500 6184 30707 173826 0,003 0,030 0,299 5,5x107 9,6x107 1,7x106

1000 12354 61315 347744 0,007 0,051 0,489 5,5x107 8,3x107 1,4x106

2000 24786 123866 708962 0,014 0,093 0,846 5,5x107 7,5x107 1,2x106

4000 49761 249723 1436261 0,028 0,191 1,508 5,6x107 7,6x107 1,1x106

8000 99705 501766 2894590 0,060 0,366 2,814 6,0x107 7,3x107 9,7x107

3

0500 6189 30787 175926 0,010 0,150 1,876 1,6x106 4,9x106 1,1x105

1000 12448 62471 362514 0,015 0,234 3,056 1,2x106 3,7x106 8,4x106

2000 24819 124110 725798 0,023 0,360 4,974 9,4x107 2,9x106 6,9x106

4000 49999 252279 1447058 0,045 0,580 8,147 9,0x107 2,3x106 5,6x106

8000 99920 504139 2911786 0,082 0,940 13,142 8,2x107 1,9x106 4,5x106

4

0500 6263 31740 184078 0,029 0,514 6,413 4,6x106 1,6x105 3,5x105

1000 12399 61914 353826 0,045 0,797 11,023 3,7x106 1,3x105 3,1x105

2000 24770 123605 706503 0,071 1,249 18,832 2,9x106 1,0x105 2,7x105

4000 49923 251524 1453277 0,109 2,006 30,898 2,2x106 8,0x106 2,1x105

8000 99658 501387 2892922 0,164 3,341 49,944 1,6x106 6,7x106 1,7x105

Table 4.7: Subgraphs found per second in network generated with WS_MP model using FaSE.
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L N
Occurences Runtime FaSE(s) Graphs/Sec

3 4 5 3 4 5 3 4 5

2

0500 8953 144951 2749850 0,005 0,069 1,416 5,2x107 4,8x107 5,2x107

1000 19381 382443 9388452 0,010 0,179 4,883 5,4x107 4,7x107 5,2x107

2000 44603 1216333 43112113 0,024 0,567 23,088 5,4x107 4,7x107 5,4x107

4000 97266 3342397 158009576 0,056 1,706 94,200 5,8x107 5,1x107 6,0x107

8000 210526 8482889 494737974 0,135 4,830 312,850 6,4x107 5,7x107 6,3x107

3

0500 9380 164468 3360745 0,008 0,160 3,958 8,6x107 9,7x107 1,2x106

1000 20784 462667 12679959 0,016 0,346 10,614 7,6x107 7,5x107 8,4x107

2000 46170 1330374 50183307 0,033 0,883 37,622 7,1x107 6,6x107 7,5x107

4000 91880 2642269 103388195 0,075 1,828 82,281 8,2x107 6,9x107 8,0x107

8000 204779 7684994 412661990 0,161 5,502 354,443 7,8x107 7,2x107 8,6x107

4

0500 8812 135461 2428987 0,018 0,570 15,228 2,0x106 4,2x106 6,3x106

1000 20828 445876 11472611 0,028 0,898 31,698 1,3x106 2,0x106 2,8x106

2000 46708 1277417 43599044 0,048 1,603 68,554 1,0x106 1,3x106 1,6x106

4000 101531 3493515 156790144 0,095 3,487 186,159 9,3x107 1,0x106 1,2x106

8000 194800 6402993 296271341 0,191 6,202 339,171 9,8x107 9,7x107 1,1x106

Table 4.8: Subgraphs found per second in network generated with BA_MP model using FaSE.

L N
Occurrences Runtime FaSE(s) Graphs/Sec

3 4 5 3 4 5 3 4 5

2

0500 24511 316266 4617683 0,011 0,145 2,389 4,4x107 4,6x107 5,2x107

1000 197641 5124396 152099919 0,098 2,836 90,139 5,0x107 5,5x107 5,9x107

2000 1549359 79561466 >30m 0,842 53,062 >30m 5,4x107 6,7x107 N/A

4000 12515543 >30m >30m 7,723 >30m >30m 6,2x107 N/A N/A

8000 99897617 >30m >30m 74,502 >30m >30m 7,5x107 N/A N/A

3

0500 51489 949208 20004633 0,027 0,568 13,985 5,3x107 6,0x107 7,0x107

1000 420464 15721812 672846663 0,257 10,163 480,632 6,1x107 6,5x107 7,1x107

2000 3440376 260557281 >30m 2,486 192,688 >30m 7,2x107 7,4x107 N/A

4000 27630410 >30m >30m 22,243 >30m >30m 8,1x107 N/A N/A

8000 221100753 >30m >30m 206,086 >30m >30m 9,3x107 N/A N/A

4

0500 96115 2404564 68229486 0,059 1,796 62,157 6,1x107 7,5x107 9,1x107

1000 755209 37449765 >30m 0,537 28,336 >30m 7,1x107 7,6x107 N/A

2000 6036297 598987400 >30m 4,966 498,308 >30m 8,2x107 8,3x107 N/A

4000 48189368 >30m >30m 42,882 >30m >30m 8,9x107 N/A N/A

8000 387764843 >30m >30m 380,132 >30m >30m 9,8x107 N/A N/A

Table 4.9: Subgraphs found per second in network generated with ER_MP model using FaSE.

The generation of model ER_MP is completely random in each layer which makes the
occurrences of subgraphs much larger than in other models. That is, with the increase of
layers, also increase the subgraphs and therefore the previous effect is not verified.
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4.7 Comparison with Related Work

Everything we have seen so far lacks something as important as confirmation of the results. If
regarding runtime is more or less obvious how to turn a timer on and off then we need to have a
solution that allows to confirm subgraph frequencies. We do not know any available work that
does the same as ours, so we had to workaround for find a viable comparison and confirm that
we are getting correct values.

The idea used was the same as we used earlier for the network visualization tool. A new
color is used for represent two nodes that are connected in more than one layer. In fact this is a
solution that becomes unfeasible because a new color is required for each combination of the
layer set. If for two layers we only need one extra color for three we would already need seven
colors in total.

However, this is enough for our purpose. We present a small example in the Figure 4.8 of our
output compared to the output of the FANMOD tool [56]. The two columns are the original
output in html format produced by both methods. They found the same subgraphs and have the
same frequency values. The classes are defined with node isomorphism since the other tool is not
prepared for isomorphism considering layers.

Figure 4.8: Subgraph frequencies compared with another method. Both original outputs are in
html format. Results obtained from a BA_MP network with 50 nodes and m = 1.

Although our algorithm is considerably faster we consider it is not fair to compare our tool
with another whose purpose is not to do the same as us. However, we would have liked to
compare ourselves to others if it had been possible but we do not know any source code or tool
capable of doing the same.
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4.8 Subgraphs Injection

Since we have already shown the ability to generate different synthetic networks, how our
algorithms behave in terms of runtime, the difference between them and that we get correct
values of frequencies we need to prove the ability to detect motifs. For this, we decided to use
the subgraph injection technique in a given network and check the output differences. We will
also use this section to show that the different types of isomorphism are calculated correctly and
the effect of a different null model.

We generated a network with 500 nodes and 2 layers according to the BA_ML model. Any of
the models presented above could be used but we chose this one due to the type of subgraph we
will add and how we can do it. We just need to go to a hub or to the end of a path, and connect
two nodes in both layers that are the endpoints, which are not connected between them. Knowing
that this addition of a subgraph will always change the original count of other subgraphs as well,
we tried to minimize this problem with this strategy present in Figure 4.9.

Figure 4.9: Subgraph injection method. Search for a subgraph like the one on the left. Two
edges on the orange layer and none on the green layer. Then, between the two nodes that have
no connection yet, add edges in both layers.

We added 200 edges to the network, i.e. 100 triangles of this type. However, the count may
not reflect this because due to the connection to other adjacent nodes that may form some
extra triangles (in our case just one more). What is certain is that the subgraph on the left
of the Figure 4.9 will have a smaller frequency, while the other has more. In this particular
injection, count differences are not significant and are reflected in a slight increase of subgraphs
that contain an overlapping edge.

Figure 4.10: Subgraph injected in the network, A. The subgraph B is isomorphic to A if we
consider the node-layer isomorphism.

Both subgraphs of Figure 4.10 (they are different in node isomorphism but equal in node-
layer) have a frequency of 7 in the original network. The highest frequencies are in the order of
thousands and there are others in the hundreds. Therefore, we can say that they are subgraphs
whose presence is insignificant. The purpose of this experiment is to verify if with the injection
they appear as motifs. We injected a quantity of subgraphs in which the frequency remains very
low compared with the other frequencies.
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It is possible to confirm that all the numbers obtained are as expected as shown in the
Table 4.10. The frequency of class A or B in node-layer isomorphism (they are the same) is equal
to the sum of the classes if we consider the layers are differentiated as in node isomorphism.
Notice that the injection process was made only with the type A, which is reflected in the values.

Frequencies
Node Node-Layer

A B A or B
before 7 7 14
after 108 7 115

Table 4.10: Subgraphs frequencies before and after the injection process.

Being certain that our injection of subgraphs was well done we want to affirm that our
methods are able to return the inserted subgraph as motif of the new network. We recall that
the frequency of some subgraphs is in the order of thousands and our subgraph has a very low
frequency (the concentration value remains below the 1%) so we need other metric and we used
z-score, which is defined as this equation. z-score = (foriginal − frandom)/σ(foriginal)

In the original network the subgraph has a z-score below zero (with both null models) which
makes sense given its almost nonexistence. This happens in both types of subgraphs and will
continue to happen to B because this one has not been injected. However, after the process the
values are different. In the null model one, where edge exchanging occurs layer-by-layer, the
subgraphs with the highest frequency also have the highest z-score.

With the same model, the value of the subgraph injected increased to positive values and
is the fourth with the highest value. In the first three positions, two are the most represented
subgraphs, and only one is a special case. In the null model two, developed by us for multiplex,
the highest z-score refers to the subgraph we injected. In the second position, the special case
also returned by the other null model.

Z-Scores
Null Model One

A B A or B
before -1,33 -1,22 -1,61
after 10,41 -2,99 5,07 (4th)

Null Model Two
A B A or B

before -0,30 0,22 -0,07
after 25,55 -0,45 20,39 (1st)

Table 4.11: Subgraphs z-scores, before and after, with two null models.

After the experience we can say that both models meet the expectations and return the
subgraph as motif. However, we are more satisfied with the second null model because it was
able to return it in the first position without losing other important subgraphs. Therefore, the
model we had thought fits this new context.
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4.9 Real Networks

Since we have already evaluated our approach in synthetic networks, with real networks we have
done a different work that is not focused in the same aspects, and here will focus more on an
application view, showing some of the insight that can be gained by using an approach such as
ours. We graphically present the most interesting subgraphs that we found. First, we detail the
networks we used, some of which were created by ourselves due to the difficulty of finding diverse
real networks.

4.9.1 Description

london network Nodes are transport stations in London and edges are routes between stations.
Underground, Overground and DLR are the layers considered. This network was found
at [17].

porto network Nodes are transport stations in Porto and edges are routes between them
using Bus or Metro lines. A layer built by us and another by a student from the same
department.

referees network Nodes are football referees from Viana do Castelo, a northern city of
Portugal, where this thesis’s author was born. Two referees are connected if they refereed
a game together last season (18/19). Layers are the formation age levels of the players.

students network Nodes are students from this department since 2014. They are connected
to courses if they studied it in one of the five years. It is a bipartite graph and the layer
refers to the years.

flights network The network is composed by thirty-seven different layers each one correspond-
ing to a different airline operating in Europe. Each node represents one airport. This
network was found at [11].

arxiv network The multiplex consists of layers corresponding to different arXiv categories.
To restrict the analysis it is only included papers with "networks" in the title or abstract.
This network was found at [18].

4.9.2 Subgraph Census

The Table 4.13 shows how many occurrences there are of each subgraph size. This number does
not depend on the method used, ESU or FaSE, and we confirmed that the results are the same
in both. Naturally, the larger the size of the subgraph, the more occurrences that exist in a
network. As expected, the growth is exponentially. In networks london, porto and referees
the average growth rate is 2.9, 3.0 and 11.5 per layer.
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Network Nodes Edges Layers Directed
london 369 882 3 No
porto 1024 2663 2 Yes
referees 131 2220 4 No
students 443 10900 5 No
flights 450 7176 37 No
arxiv 14488 118052 13 No

Table 4.12: Real networks used to test our approach and the features of each.

Network Subgraph
Size

Occurrences
Isomorphic
Classes

Type One

Isomorphic
Classes

Type Two

london

3 737 13 6
4 1680 45 22
5 4567 150 79
6 13581 477 285
7 42102 1442 970
8 133347 4211 3111
9 428173 12069 9588

porto

3 2331 39 36
4 5807 287 276
5 17891 1683 1658
6 63215 8538 8482

referees

3 4966 317 71
4 55231 6519 2348
5 652632 105291 52971

students
3 559049 349 28
4 56581790 14799 1983

flights 3 101144 11794 181

arxiv 3 313829 9067 456

Table 4.13: Occurrence of subgraphs and isomorphic classes of real networks.

The last two columns have the number of isomorphic classes that were found in each network.
Class one represents node isomorphism where only nodes can be exchanged to verify that two
structures are equal. The last column contains the values of isomorphic classes of type two. That
is, where layers can also be exchanged.

The results in the Table 4.13 were all calculated in less than 30 minutes and we opted to
stop searches of subgraphs that exceeded this time.
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As explained before, the number of isomorphic classes of the node-layer isomorphism will be
necessarily smaller. In the case of the transportation networks the difference is small and that is
because they have their own topology where each layer can be much different from the others
with few overlapping points.

It should be noted, again, that our work goes beyond running times. Multiplex networks
have not yet been the subject of intensive study and the realization of this thesis allows to clarify
and develop new concepts. Furthermore, now we can know the subgraphs that are present in the
networks in a simple way that was not possible before. We searched for subgraphs of various
sizes and show the ones we consider most interesting.

Figure 4.11: Subgraphs found in students network. The three most frequent subgraphs on the
right side and the most surprising, in the fifth position, on the left. The subgraphs present on
right, by representation issues, do not contain empty layers.

The subgraphs shown in Figure 4.11 were found in the students network. The network is
composed by students from the computer science department of the Faculty of Sciences of the
University of Porto and the courses of the same department, where each student is connected to
the courses they attended. Therefore, this network is bipartite. Each layer represents the school
year since 2014 until now forming a set of five layers.

Since students are connected to different courses in different years, it is normal that the
most represented subgraphs are of the type shown on the right side of the figure. That is, a
student with a "normal" academic path will be connected to a node representing the courses of
one year and in another layer connected to another node. Therefore, the three most represented
subgraphs have this pattern but in different layers. Another expected pattern is for a student
to have connections to different courses in the same year because it necessarily happens. This
pattern is the fourth with the highest frequency.
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However, the surprise comes in fifth position. The pattern discovered by our approach
indicates that there are many students who are connected to one course in one year and in the
next year again. That is, students often fail courses in this department. In particular, it is more
common fail it in the second year than first what makes it even more interesting. The subgraphs
in this figure refer to node isomorphism.

We know there are other ways to get this information, such as students failure rates, but we
want to prove the functionality of our approach.

Another result that proves the practicality of our work is the subgraph obtained in the referee
network. This network represents the set of referees of the Viana do Castelo football association
and two referees are connected together if they refereed any game together in the 18/19 season.
The layers refer to the ranks that exist in football, under15, under17, under19 and seniors. For
context, referees usually have teams and they officiate together for an entire season and are only
replaced by someone if they are unavailable on a weekend.

Figure 4.12: Subgraphs found in referees network. The most represented subgraphs and a
schematic representation of this particular network.

Since referees normally officiate together, the network formed is expected to be similar to the
one schematically drawn in the Figure 4.12. In the network it is possible to see the formation
of triangles with connections in all layers. Moreover, there are edges between one element of a
triangle and two other nodes of another triangle that occur when one referee replace another in a
different team. This figure represents the compact version of our approach and not the expanded
one. That is, the layers are represented by colors on the edges.

Therefore, if we order the subgraphs with size three obtained by the number of edges, we
first get the subgraph with all the connections which is represented on the right side of the
Figure 4.12. The frequency corresponds to the number of referee teams in activity. However, the
most frequent subgraph are the two represented in the left panel due to the specific topology of
this network.

Another network analyzed was the flights network in europe where each node represents an
airport. Each layer represents an airline. The results presented in the Figure 4.13 represent
isomorphic classes from node-layer isomorphism, that is, it does not matter the airline itself.
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The most frequent subgraphs are the lines, not the triangles. In other words, this is due to
the existence of hubs where usually two larger airports are connected and then connected to
smaller airports around them, which do not have connections to larger airports that are far away.
Therefore, this network is similar to BA_MP. In addition, the second flight (edge) is more often
done by a different airline being the most represented subgraph in the whole network. Subgraphs
where edges overlap, that is when there are more than one airline flying between two airports, are
less frequent. This leads to the conclusion that there is not much competition but may be due
again to hubs where connections to smaller airports are usually only made by domestic airlines.
Analyzing the frequencies of the triangles, it appears that the existence of a triangle in which all
connections are made by the same airline, A, have half the frequency of B.

Figure 4.13: Subgraphs found in flights network. The subgraphs with the highest frequency
and the most common triangles.

In the Figure 4.14 are represented subgraphs of two distinct networks but of the same type,
transportation. On the left are subgraphs of the London network where node-layer isomorphism
was used. On the right are two expanded subgraphs of the network of Porto city where the
upper layer shows the Bus and the lower layer the Metro lines. In this particular subgraph the
direction of the edges is not represented because in all of them it occurs in both directions and
this is the way we use to represent this type of edges. Moreover, this is a directed network that
proves that our tool is capable of handling this type of network.

The most frequent subgraphs are the ones that are contained in a single layer. This is
expected because most stations usually have only one type of transport. These subgraphs also
indicate that there are more lines without diverging than finding a station that is connected
to other three. Moreover, stations containing more than one transportation method are more
frequent in the middle of a line than at the end. In the city of Porto it is possible to verify that
one of the subgraphs most represented, A, with edges in the two layers, is a metro connection
joining two stations with bus lines. The other subgraph, B, has the same isomorphic class as the
fourth in the city of London.
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Figure 4.14: Subgraphs found in transportation networks. On the left the city of london and
on the right the porto city.

4.9.3 Network Motifs

The motifs shown in the Figure 4.15 were captured in the London city transportation network. In
this network there is a layer that stands out, with more connections compared to the others. The
layer that aggregates all the underground lines is clearly denser than the other two, the layers
with connections by overground and by dlr. Another important point is that, being a transport
network, the overlap of connections is low. This has a key role when generating random networks
and discovering subgraphs there because, as in the original network, there are many connections
that are only made in one layer. Random networks were obtained using null model one where
the edges of each layer are randomly exchanged.

Figure 4.15: Motifs found in london network. On the left the motifs of size five and on right
the motif with size three.

Therefore it is not surprising that the two highest z-score motifs belongs only to one layer,
with no edges in the others. It is possible to think that this analysis could be done with single
layer tools but it is not true. These tools did not tell us if the returned subgraphs would actually
be the same when considering multiple layers because there would always be the possibility of
edges overlapping. Thus these doubts go away with our method. What is surprising about the
first two subgraphs is that they both contain a triangle in their substructure. In fact, the second
contains two triangles. The presence of triangles, more than expected, is confirmed because this
subgraph is the one with the highest z-score when analyzing subgraphs of size three.
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Looking at the results obtained in the referee networks, Figure 4.16, we see that the most over-
represented subgraphs are those that are also more frequent because the special characteristics
of the network, as explained in the schematic network of Figure 4.12, make that there are too
many edges to two nodes that are connected in all layers. Knowing that the isomorphism of this
image is node-layer then we see that the two motifs found represent a referee who sporadically
replace one member of the team in one or two ranks.

However, knowing that the network contained a considerable number of triangles in which
there were edges at all layers, we were not satisfied with the results because we were convicted
that this one is a motif. Surprisingly, in many randomly generated networks such subgraph
was never found and therefore could not be detected as a motif. That is for this cases that we
developed a new null model. To our satisfaction, this subgraph became the one with the highest
z-score.

Figure 4.16: Motifs found in referees network. On the left the using null model one and on
left the motif found with null model two.



Chapter 5

Conclusions

Our initial time was spent in a careful study of the existing research, allowing a good grasp on
the existing state-of-the-art. This helped in establishing the central points to produce a work
plan capable of leading towards the proposed goal. I remember that our initial target was to get
subgraphs in multiplex networks, and this was completely achieved without spending much more
time compared to classical network algorithms if we consider that we have layers making the
problem difficult.

That is the point we want to make. We get the frequencies of these new subgraphs in these
new networks accurately and correctly. However, as we like to do good and better work, we try
to improve our first attempt using a new algorithm. We have adapted FaSE expecting significant
runtimes reductions. Taking advantage of the subgraphs have substructures that are equivalent,
it is able to discard most of the isomorphism tests required to identify each isomorphic class,
which is the main bottleneck.

However, the presence of layers makes the similarities between the subgraphs much smaller.
Then, the reduction of isomorphic tests is not as significant as in classical networks. Another
problem is that these subgraphs have much larger sizes which increases the memory usage.
Therefore, the improvements that existed do not allow us to be fully satisfied and lead us to look
at what can be done to achieve even more positive results in section 5.1.

Still, we are convinced of the important work we have done. First, we apply mathematical
theories, which involves the super nodes, that we are unaware of having been used so far to
prove their practical validity. We used novel concepts, like multiplex subgraph, and come up
with novel ideas, namely a new null model or the new network models all adapted for multiplex.
This allowed us to go around the problem and obtain, visualize and analyze subgraph patterns
in networks with new features so unexplored but totally promising. This is proved by the huge
number of articles, focused on networks with layers, published during the realization of this
thesis.
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5.1 Future Work

While we firmly believe we have made a valid contribution and advanced the state-of-the art in
this topic, there are many areas in which our approach can be improved. We finish this thesis
precisely by giving a list of some possible ideas for future work.

Multilayer
Because of their slightly smaller complexity when compared to fully general multilayer
networks with any number of aspects, multiplex were our top priority. During development
we had this in mind and therefore with slight changes we believe that it is possible to be
able to analyze the most general networks.

Memory
It is necessary to guarantee a representation of the network in an effective way, so that the
problems of computation do not begin here. Some results cannot be expanded because of
this. The idea is to compare the memory used in different representations and test a new
hybrid approach [37].

Datasets
Unfortunately, data sets that meet these characteristics are still scarce, which implied an
additional effort during the project in collecting new real data sets. We want to expand
our repository, with better networks.

Runtimes
Improve the implementation runtime. Our idea will be to study more and better the valid
options to use with multilayer networks. We need to understand which ones can work
best with these networks or to develop a new labeling function for FaSE that guarantees a
greater overlap of substructures. Moreover, we would like to consider approximate schemes
(that allow to trade precision for better execution time) and parallel approaches (that
would leverage the power of multiple processors and high performance systems to obtain
considerable speedups).

Visualization
Despite the good work done to visualize the subgraphs found we believe that there are
significant improvements that can and should be made. Mainly, the creation of a tool
that dynamically changes the options that allow modifying the way results, which were
calculated before, are displayed.

Publishing
Given that we want our work to be helpful for other researchers, we are thinking on
producing at least one scientific publication describing our approach.
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