
  

Evaluation of Aguieira 
Reservoir Water Quality: 
insights into parameters in 
addition to the Water 
Framework Directive 
 
 
 
 
Ivo Filipe Magalhães Pinto 
Mestrado em Ecologia e Ambiente 
Departamento de Biologia 

Ano 2018/2019 

 

Orientador  
Sara Cristina Ferreira Marques Antunes, Professora Auxiliar Convidada, Faculdade 
de Ciências da Universidade do Porto e Investigadora Auxiliar do CIIMAR (Centro 
Interdisciplinar de Investigação Marinha e Ambiental) 

 

Coorientador  
Olga Maria Oliveira da Silva Lage, Professora Auxiliar, Faculdade de Ciências da 
Universidade do Porto e Investigadora do CIIMAR (Centro Interdisciplinar de 
Investigação Marinha e Ambiental) 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Aberto da Universidade do Porto

https://core.ac.uk/display/286575114?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


FCUP 
Evaluation of Aguieira Reservoir Water Quality: insights into parameters in addition to the Water Framework Directive 

ii 

 

  

Todas as correções determinadas 

pelo júri, e só essas, foram efetuadas. 
O Presidente do Júri, 

 

Porto, ______/______/_________ 



FCUP 
Evaluation of Aguieira Reservoir Water Quality: insights into parameters in addition to the Water Framework Directive 

iii 

 

 

  

Dissertação submetida à Faculdade de Ciências da 
Universidade do Porto, para a obtenção do grau de Mestre 
em Ecologia e Ambiente, da responsabilidade do 
Departamento de Biologia, desenvolvida no âmbito do 
projeto POCI-01-0145-FEDER-029368, co-financiado pelo 
COMPETE 2020, Portugal 2020 e a União Europeia através 
do ERDF, e pela FCT através de fundos nacionais.  

“ReDEFine: a multi-scale and multi-tiered toolbox for 

assessing ecosystem quality of freshwater REservoirs: 

briDging the gaps of the watEr Framework dIrEctive 

approach” 

A presente tese foi desenvolvida sob a orientação científica 
da Doutora Sara Cristina Ferreira Marques Antunes, 
Professora Auxiliar Convidada do Departamento de Biologia 
da FCUP e Investigadora Auxiliar do CIIMAR (Centro 
Interdisciplinar de Investigação Marinha e Ambiental); e 
coorientação científica da Doutora Olga Maria Oliveira da 
Silva Lage, Professora Auxiliar do Departamento de 
Biologia da FCUP e Investigadora do CIIMAR (Centro 
Interdisciplinar de Investigação Marinha e Ambiental) 



FCUP 
Evaluation of Aguieira Reservoir Water Quality: insights into parameters in addition to the Water Framework Directive 

iv 

 

Agradecimentos 

Em primeiro lugar gostaria de agradecer à minha orientadora, a professora Sara 

Antunes. A minha jornada no lab 1.14 não começou agora e estou extremamente 

agradecido por ter acreditado novamente que eu seria capaz de realizar este enorme 

trabalho e em cada etapa ter-me desafiado a fazer mais e mais sem desistir. Sempre 

demonstrou uma enorme paciência, confiança, compreensão e disponibilidade quando 

precisei. Foi, sem dúvida alguma, a pessoas mais importante e fundamental ao longo 

desde trabalho, o meu sincero obrigado. 

Da mesma forma que não podia deixar de agradecer também à minha 

coorientadora, a professora Olga Lage, que apesar de ainda não termos realizado a 

parte científica do trabalho da sua área me ajudou imenso a clarear ideias, pensamentos 

e transmiti-los de forma muito mais clara, objetiva e científica, sem a sua ajuda esta 

dissertação teria sido bem mais difícil de realizar. 

Obrigado também ao professor Nuno Formigo, pelo acompanhamento ao longo 

deste mestrado, por todos os debates de ecologia quer nas suas aulas quer no seu 

gabinete. Pela companhia, boa disposição e todos os ensinamentos durante as várias 

saídas de campo ao longo do mestrado, especialmente durante este último ano da 

minha dissertação. Pelas suas visitas ao laboratório e sempre se preocupava comigo e 

brincávamos com o que eu estava a fazer tornando o trabalho em algo divertido e fácil. 

À Conceição, por me ter ajudado e ensinado a tomar conta e a ter paciência com 

as nossas Daphnia’s.  

Ao Fábio, por me ter acompanhado nas saídas de campo e me ter ajudado de 

enumeras formas no laboratório especialmente nesta fase final com os resultados.  

À Sandra, por dividirmos o minúsculo espaço que tínhamos no início e que cada 

vez está maior, por me ter ensinado o que era o mundo do fito e do zoo, por todos os 

momentos de arrumação que aquele laboratório sofreu e por toda a companhia e 

preocupação que teve para comigo desde o início.  

Ao Sérgio, pela grande ajuda na elaboração dos mapas até chegarmos ao mapa 

final. 

Por fim e não menos importante, à Sara, pela ajuda na organização do trabalho 

antes e depois das saídas e por todos os debates de como colocar os resultados e fazer 

a sua interpretação.  



FCUP 
Evaluation of Aguieira Reservoir Water Quality: insights into parameters in addition to the Water Framework Directive 

v 

 

O meu sincero obrigado a todos vós do lab 1.14, os que passaram e os que 

entraram agora, obrigado por me terem recebido novamente tão bem e por todos os 

momentos que passamos juntos, de outra forma este trabalho teria sido bem mais difícil 

de chegar ao fim. 

Aos meus meninos que o MEA me deu, Paulo, Zé, Chico, Bruna e Rita, entramos 

nisto juntos e saímos juntos. Obrigado por todos os momentos que passamos ao longo 

destes últimos anos, as rizadas até chorar, os stresses sem fim, os jantares pela noite 

dentro, os desabafos e confissões sem noção do local onde estávamos e com quem 

estávamos, pela companhia, boleias, ajudas e todos os nossos segredos. Foram os 

primeiros amigos a saber e isso teve uma enorme importância. Obrigado por me 

fazerem ver que apesar de a vida não ser um mar de rosas existi sempre coisas boas 

na nossa vida pelo que valem a pena lutar. 

Ao Filipe, por tudo aquilo que ele representa para mim desde que nos 

conhecemos. Por toda a ajuda que conseguiu dar, por todo o apoio, por todo o carinho, 

por me tirar daqui quando precisava, pelos jantares, cafés, caminhadas, noitadas e mais 

e mais. Não tenho palavras para agradecer e dizer tudo o que quero. O meu obrigado. 

Aos macacos, os meus meninos mais velhos, não preciso dizer nomes que vocês 

sabem bem quem são, obrigado por fazerem parte da minha vida ao longo de muitos e 

muitos anos. Por me verem crescer e me incentivarem a querer ser mais e que cada 

obstáculo é apenas uma pedra no caminho e que no fim irei criar aquilo que quero e que 

me satisfaz.  

A minha mãe por todo o esforço que fez ao longo destes anos para que eu 

conseguisse chegar aqui sem nunca me prendar. Ao meu pai, por me ter transmitido o 

gosto por esta área e o que ela significa para o homem. A minha irmã, cunhado e ao 

meu sobrinho, obrigado por todos os momentos felizes e que venham muitos mais. 

Nunca terei palavras e forma de vos agradecer a todos tudo o que fizeram e fazem por 

mim. Obrigado por tudo. 

A todos aqueles que não foram mencionados e que, de alguma forma, 

contribuíram para a realização deste trabalho. Muito obrigado! 

 

 

“Juntos no mesmo barco rumo ao infinito” 

GAPC  



FCUP 
Evaluation of Aguieira Reservoir Water Quality: insights into parameters in addition to the Water Framework Directive 

vi 

 

Resumo 

Para avaliar o potencial ecológico de massas de água artificiais, a Diretiva Quadro Água 

usa parâmetros específicos, mas ignora as funções ecológicas do ecossistema. Este 

trabalho teve como objetivo avaliar o funcionamento de uma albufeira utilizando 

ferramentas convencionais e ecotoxicológicas para avaliar a qualidade da água, indo 

além da abordagem da Diretiva Quadro Água. Foram definidos quatro locais de 

amostragem na albufeira de Aguieira (centro de Portugal) e parâmetros físicos, químicos 

e biológicos, impostos pela Diretiva Quadro Água, foram quantificados em dois períodos, 

outono de 2018 e primavera de 2019. Os resultados obtidos mostraram que no outono 

os locais A1, A2 e A4 apresentaram um potencial ecológico de moderado e o local A3 

um mau potencial ecológico. Na primavera os locais A1, A3 e A4 apresentaram um 

potencial ecológico de moderado e o local A2 um bom potencial ecológico. Estes 

estudos foram complementados por várias análises. O macrozooplâncton foi analisado 

e um conjunto de ensaios ecotoxicológicos (inibição do crescimento de Raphidocelis 

subcapitata e Spirodela polyrhiza e taxa de alimentação de Daphnia longispina e 

Daphnia magna) foram realizados usando amostras de água em três condições (sem 

filtração - NF, filtrada por poros de 1,2 μm - F1, e filtrado por 0,22 µm de poro - F2). A 

comunidade zooplanctónica (abundância relativa e grupos funcionais) mostrou ser um 

bom indicador na avaliação da qualidade da massa de água desta albufeira, estando 

esta fortemente relacionada com o estado trófico do ecossistema. Relativamente aos 

bioensaios, a inibição de crescimento da S. polyrhiza e da R. subcapitata mostraram ser 

sensíveis à massa de água desta albufeira apenas na amostragem do outono. Os 

bioensaios da avaliação na taxa de alimentação da D. longispina e D. magna mostraram 

alguma sensibilidade da avaliação da qualidade da massa de água da Aguieira, 

fornecendo informação adicional na avaliação dessa massa de água. Dessa forma, foi 

possível mostrar que a incorporação da dinâmica de zooplâncton e de alguns bioensaios 

na Diretiva Quadro Água são uma mais valia na avaliação do potencial ecológico das 

albufeiras.  

 

Palavras-chave 

Ferramentas ecotoxicológicas, Potencial ecológico, Diretiva Quadro Água, Águas 

naturais, ecossistema lêntico  
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Abstract 

To assess the ecological potential of artificial water bodies, the Water Framework 

Directive uses specific parameters, but ignores the ecological functions of the 

ecosystem. This work aims to evaluate the functioning of a reservoir using conventional 

and ecotoxicological tools in order to evaluate the water quality, going thus beyond the 

Water Framework Directive approach. Four sampling sites were defined in Aguieira 

(centre of Portugal) reservoir and physical, chemical and biological parameters, imposed 

by the Water Framework Directive were quantified in two periods, autumn 2018 and 

spring 2019. The results obtained showed that in autumn sites A1, A2 and A4 presented 

moderate ecological potential and site A3 a bad ecological potential. In spring, sites A1, 

A3 and A4 presented moderate ecological potential and site A2 a good ecological 

potential. These studies were complemented by various analyses. The 

macrozooplankton was analysed and a set of ecotoxicological assays (growth inhibition 

of Raphidocelis subcapitata and Spirodela polyrhiza and feeding rate of Daphnia 

longispina and Daphnia magna) were performed using sampled water in three conditions 

(Unfiltered water - NF, filtered with 1.2 μm pore – F1, and filtered with 0.22 μm pore – 

F2). The zooplankton community (relative abundance and functional groups) showed to 

be a good indicator in the evaluation of the water quality of this reservoir, being strongly 

related to the trophic state of the ecosystem. For bioassays, the growth inhibition of S. 

polyrhiza and R. subcapitata showed to be sensitive to the water body of this reservoir 

only in the autumn sampling. The feeding rate assays of D. longispina and D. magna 

showed some sensitivity to Aguieira water body improving its evaluation. Thus, it was 

possible to show that the incorporation of zooplankton dynamics and some bioassays 

into the Water Framework Directive are assets in the assessment of the ecological 

potential of the reservoirs. 

 

 

Keywords 

Ecotoxicological tools, Ecological potential, Water Framework Directive, Natural 

waters, Lentic Ecosystem   
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Figure Index 

Figure 1 Map with the location of the sampling sites in the Aguieira reservoir, Coimbra. 

A1 – Aguieira: 40.341095 -8.194060; A2 – Falgaroso do Maio: 40.367190 -8.174523; A3 

– Granjal: 40.400969 -8.116986; A4 – Pinheiro de Ázere: 40.372849 -8.055293. 

Figure 2 Results of relative abundance (%) of groups of AGI for phytoplankton 

communities for each sampling site in the two seasons. Each texture represents the 

different phytoplankton groups. 

Figure 3 Results of relative abundance (%) and specific richness (∆) of zooplankton 

communities for each sampling sites in the two seasons. Each texture represents the 

different zooplankton groups. 

Figure 4 Results of relative abundance (%) of zooplankton functional groups for each 

sampling site in the two seasons taking into account filtering and feeding capacities 

according to Geller e Müller (1981) and Reid & Williamson (2010). 

Figure 5 Results of growth inhibition assay of R. subcapitata when exposed to different 

natural water conditions from the Aguieira reservoir (CTRL – Control treatment; NF – 

Unfiltered water; F1 – filtered with 1.2 μm and F2 – filtered with 0.22 μm). Sampling sites: 

A1, A2, A3 and A4. Different letters (a, b, c for spring; A, B, C for autumn) stands for 

significant differences between treatments (Tukey test, p<0.05) in each sampling period. 

Figure 6 Results of feeding rate of D. longispina and D. magna when exposed to different 

natural water conditions  from the Aguieira reservoir (CTRL – Control treatment; NF – 

Unfiltered water; F1 – filtered with 1.2 μm and F2 – filtered with 0.22 μm). Sampling sites: 

A1, A2, A3 and A4. Different letters (a, b, c for spring; A, B, C for autumn) stands for 

significant differences between treatments (Tukey test, p<0.05) in each sampling period. 

Figure 7 Results of growth inhibition assay of S. polyrhiza when exposed to different 

natural water conditions  from the Aguieira reservoir (CTRL – Control treatment; NF – 

Unfiltered water; F1 – filtered with 1.2 μm and F2 – filtered with 0.22 μm). Sampling sites: 

A1, A2, A3 and A4. Different letters (a, b, c for spring; A, B, C for autumn) stands for 

significant differences between treatments (Tukey test, p<0.05) in each sampling period. 

Figure 8 Results of chlorophylls a+b and carotenoid concentrations, of the S. polyrhiza 

after exposed of growth inhibition assay to different natural waters conditions (CTRL – 

Control treatment; NF – Unfiltered water; F1 – filtered with 1.2 μm and F2 – filtered with 

0.22 μm). Sampling sites: A1, A2, A3 and A4. Different letters (a, b, c for spring; A, B, C 
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for autumn) stands for significant differences between treatments (Pairwise t test, 

p<0.05) in each sampling period. 
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Table Index 

Table 1 Results of the general physical and chemical parameters (Sampling sites: A1, 

A2, A3 and A4; Sampling periods: Au - autumn and Sp - spring)., reference values 

according to INAG (2009a)); a Good/Moderate EP in northern reservoirs established by 

WFD were presented; DL – Detected Limit. Bold values stand for values outside the 

established thresholds. 

Table 2 Results of the specific pollutants and priority substances according INAG 

(2009a) and with Annex I of Legislative Decree No. 218 (Ministério do Ambiente do 

Ordenamento do Território e Energia, 2015). In the case of cadmium, reference values 

vary according to five classes of water hardness (Class 1: <40 mg CaCO3 /L; Class 2: 

40 mg to <50 mg CaCO3 /L; Class 3: 50 mg to <100 mg CaCO3 /L; Class 4: 100 mg to 

<200 mg CaCO3 /L and Class 5: ≥ 200 mg CaCO3 /L)). (Sampling sites: A1, A2, A3 and 

A4; Sampling periods: Au - autumn and Sp – spring; DL –Detected Limit). 

Table 3 Results obtained for the EQR of phytoplankton community. Reference values 

for calculation of EP and EQR normalized (below in parentheses) for each parameter for 

good/moderate EP according (INAG, 2009a), (Sampling sites: A1, A2, A3 and A4; 

Sampling periods: Au - autumn and Sp - spring). 

Table 4 Diversity and Equity Indexes: Shannon-Weaver (H' - diversity) and Simpson (E- 

equitability) indexes for the zooplankton community for each sampling site and season: 

Au - autumn and Sp - spring. 

Table 5 Classification of ecological potential for each site in each sampling according to 

WFD. Results of the sensitivity of zooplankton and bioassays in the evaluation of 

Aguieira reservoir water body. Sampling sites: A1, A2, A3 and A4. (+ present sensitivity; 

+ / - present some sensitivity; - no sensitivity). 
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1.  Introduction 

Reservoirs are artificial water bodies created by human activities (INAG, 2009a), such 

as the construction of a barrier (dam) in a river which breaks the connectivity of the lotic 

ecosystem (União Europeia, 2000). These changes modify the ecological processes 

upstream of the dam, like the nutrient cycle and the increase of organic matter 

accumulation  (Ackermann et al., 1973), changing the structure of biological communities 

and the functioning of the pre-existing ecosystem (Ward & Stanford, 1995; Simões et al., 

2015). The hydrological complexity of these systems favours the upstream dam 

accumulation of nutrients (e.g. phosphorus and nitrogen), which leads to the occurrence 

of eutrophication processes causing an abnormal growth of the primary producers that 

can compromise the quality and balance of the aquatic ecosystem (Herschy, 2012). 

The creation of these artificial structures creates reservoirs of freshwater, an 

important ecosystem which serve as water reserves for irrigation, consumption, 

recreation, tourism, among other activities. Over the past few years we have 

acknowledged a growing concern with the decreasing of the drinking water quality and 

availability (Johnson et al., 2001; Dudgeon et al., 2006). The decrease in water quality 

is mostly of anthropic origin due to intense agriculture, industrial production, domestic 

and urban waste, untreated and treated waste waters since the ETARs has no ability to 

remove many harmful compounds (World Water Assessment Programme, 2009). In 

order to minimize the reported impacts on these ecosystems, it is extremely important to 

understand their overall composition, structure and dynamics. Thus, it would be urgent 

to implement measures to ensure the protection of aquatic resources and assure water 

quality in these ecosystems (e.g. more specific treatments, population awareness and 

greater oversight). 

 Water Framework Directive 2000/60/EC (WFD) is an european water legislation 

released in 2000 by the European Union with the aim of standardizing the forms of 

monitoring and of management of the water bodies in all member states (União 

Europeia, 2000). The great objectives of WFD are to determine and define the 

“ecological status” of a natural water body (ex: rivers, transitional or coastal waters) or 

the “ecological potential” of an artificial water body (ex: reservoirs). 

In order to assess the ecological potential of an artificial water body (reservoir), 

the WFD is based on specific physical, chemical, biological and hydromorphological 

parameters. The results achieved allow to classify the water body in Ecological Quality 

Ratio (EQR) in a scale with five-classes: bad, poor, moderate, good or excellent. 

Relatively to the physical and chemical parameters imposed by this directive, only four 
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specific parameters, pH, oxygen, total phosphorus (P) and nitrate (NO3
-), have 

established reference values between the Good and Moderate classes to these water 

body. Regarding the biological parameters, only the analysis of the phytoplankton 

community is used in the characterization of reservoirs, being evaluated based on the 

Algae Group Index (AGI), % biovolume of Cyanobacteria, total biovolume and chlorophyll 

a concentration. The hydromorphological elements used are the hydrological regime and 

the morphological conditions, which guarantee the abiotic support for the biological 

communities that may occur (INAG, 2009a). In order to evaluate reservoirs, the WFD 

established a specific typology based on some characteristics such as geographical 

location and river course. This allows to represent three types of reservoir in Portugal: 

northern reservoirs (hydroelectric power plants in cold water, located in the northern 

region, in mountainous areas); southern reservoirs (irrigation / hot water supply, located 

in the southern region); and main reservoirs (located in the main courses of the rivers 

Douro, Tejo and Guadiana) (Pádua et al., 2005; INAG, 2009a). 

 The use of the WFD parameters for assess the water quality of artificial water 

bodies allows to determine the ecological potential of these ecosystems and to compare 

between artificial water bodies in order to improve the efficiency of its management. 

However, the WFD focuses on the excessive evaluation of physical and chemical 

parameters, leading to a deficit in biological parameters. Indeed, the actual evaluation 

does not consider the functioning of the ecosystem, different temporal scales and 

responses at the individual organism level. Information about an indicator organism can 

shed light on the effect of stress on the ecosystem and provide warning signals. These 

disadvantages and a scarce bibliographical information about the ecosystem have led 

several authors to suggest other types of WFD approaches such as the assessment of 

the composition, abundance and age structure of the fish fauna present in the 

ecosystem. However, these parameters are under development in the second phase of 

the intercalibration exercise of WFD (Pádua et al., 2005; INAG, 2009a). On the other 

hand, several authors defended the analysis of the composition of other communities 

such as zooplankton, an important trophic level to assess water quality of lentic 

ecosystems (Caroni & Irvine, 2010; Jeppesen et al., 2011; Ejsmont-Karabin & Karabin, 

2013; Haberman & Haldna, 2014; García-Chicote et al., 2018). The composition of the 

bacterioplankton was also proposed as a sensitive bioindicator of the health of aquatic 

ecosystems (De Figueiredo et al., 2007; Llirós et al., 2014). More recently the use of 

bioassays, with standard and autochthonous species from different trophic levels were 

proposed since are more simple and quick tools to assess the water quality (Palma et 

al., 2010, 2016; Pérez et al., 2010; Mkandawire et al., 2014; Kungolos et al., 2015). 
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 Given the perception of the importance of the use of different biological tools, this 

work aimed to complement the assessment of Aguieira water quality in supplement to 

the conventional WFD parameters. Additionally, we intended to evaluate the sensitivities 

of other ecological parameters and tools for water quality assessment in a more 

integrative approach. In order to achieve this goal, the following specific parameters and 

tools were also evaluated: zooplanktonic community dynamics and the functionality of 

the ecosystem through different bioassays (Raphidocelis subcapitata, Daphnia spp. and 

Spirodela polyrhiza). 
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2.  Material and Methods 

2.1. Study Area 

The Aguieira reservoir is located in the centre of Portugal, at Coimbra district (Fig. 1), 

integrated in the municipalities of Carregal do Sal, Mortágua, Penacova, Santa Comba 

Dão, Tábua and Tondela. This reservoir is inserted in the intermediate section of the 

Mondego river, at the confluence of two secondary rivers, Dão and Criz. The Aguieira 

dam, occupying an area of about 2000 ha, started operating in 1981 with the purposes 

of energy production, irrigation and water storage (APA, 2007; Presidencia do Concelho 

de Ministros, 2007; INAG, 2011). The climate of this region is strongly influenced by the 

Mediterranean conditions being characterized by mild/cold winters and hot summers 

(APA, 2007; Geraldes et al., 2016a). In its vicinity there are food, textile, wood and cork 

industries. The surrounding landscape is dominated by eucalyptus, acacias, pines, 

agricultural soils, moors and bushes (Pedroso et al., 2007; Geraldes & Silva-Santos, 

2011). 

 For the accomplishment of the present work, four sampling sites were selected 

in the Aguieira reservoir. These sites are located along the bank of the reservoir and 

were selected based on the accessibility and in order to perceive the different impacts 

on the reservoir from the two rivers (Fig. 1). 

 

Figure 1 Map with the location of the sampling sites in the Aguieira reservoir, Coimbra. A1 – Aguieira: 40.341095 -

8.194060; A2 – Falgaroso do Maio: 40.367190 -8.174523; A3 – Granjal: 40.400969 -8.116986; A4 – Pinheiro de Ázere: 

40.372849 -8.055293. 
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2.2. Sampling Procedure 

Two sampling periods were carried out to conduct this study (autumn-Au -and spring-

Sp). In situ, and with the aid of a multiparameter probe (Multi 3630 IDS SET F) some 

general physical and chemical parameters were measured sub superficially: pH, oxygen 

(mg/L and %), conductivity (μS/cm) and temperature (°C). In addition, the transparency 

(m) was measured using a Secchi disk. 

 At each site, several water samples were collected and transported to the 

laboratory under thermal conditions (at 4 °C and in the dark) for further analysis. The 

samples included 1.5 L collected in glass amber bottles conserved with 1.20 g/L of 

Na2S2O3 for pesticides quantification, 1 L in glass bottles for others priority substances, 

120 mL in plastic bottles acidified to pH<2 with HNO3 for metals, and 120 mL in plastic 

bottles for nutrient analysis. Additionally, 500 mL of water were also collected in each 

sampling site and stored with 5 mL lugol for later quantification of the phytoplankton 

community, according to the INAG protocol (2009b). For conducting several laboratory 

bioassays and water physical and chemical parameters determination, 10 L of water 

were collected, in plastic bottles.  

 For the sampling of macrozooplankton communities, a hand net (150 μm mesh) 

was used. In each site three trawls were conducted to collect these communities. The 

zooplankton samples were stored in plastic bottles and preserved with 96 % ethanol for 

later laboratory analysis. 

 

2.3. Laboratory Procedure 

2.3.1. Physical and chemical parameters 

In the laboratory, water samples were used to determine the biochemical oxygen 

demand (BOD5) (APHA, 1989), chemical oxygen demand (COD) (ISO 15705), turbidity 

(Brower et al., 1997), alkalinity (NF EN ISO 9963-1), hardness, nitrites (NO2
-) (NF EN 

ISO 10304-1), nitrates (NO3
-) (NF EN ISO 10304-1), total nitrogen (Ntotal) (NF EN 25663), 

ammoniacal nitrogen (NH4
+), phosphates (PO4), total phosphorus (Ptotal) (NF EN ISO 

17294-2), and a set of priority substances defined in Directive 2008/105/CE of the 

Parlamento Europeu (2008). In addition, 17α-ethynylestradiol (SPE – LC/MS/MS (Neg.)) 

and diazepam (SPE – LC/MS/MS (Pos.)) were also quantified in order to perceive the 

impacts from anthropogenic activities in the aquatic ecosystem. 
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 Moreover, a water sample was filtered through a Whatman GF/C filter (47 mm 

diameter and 1.2 μm pore) and the filtrated was used for determination of dissolved 

organic carbon (DOC) determined indirectly through the colour of the water (CDOC - 

Coloured Dissolved Organic Carbon) (Williamson et al., 1999). Three filters with the 

seston of each sample was used to determine the total suspended solids (TSS) and the 

volatile suspended solids (VSS) contents in the water samples (APHA, 1989).  

 

2.3.2. Biological parameters 

2.3.2.1. Phytoplankton 

The protocol followed for the phytoplankton communities characterization was according 

to INAG (2009b). Each sample (500 mL) was placed in a sedimentation beaker and, after 

standing for one week, the supernatant was decanted and the pellet collected to falcon 

tubes (final volume <5 mL). The analysis of phytoplankton was performed in an optical 

microscope (Leica DM LB) in a Neubauer chamber and each sample was quantified in 

three replicates, counting at least 800 cells per replicate. Identification of the specimens 

was done using photographs, guides and specific identification keys; Baker (2012), 

Bellinger & Sigee (2015), and Błędzki & Rybak (2016). 

 The WFD proposes four indicators for assessing the EQR for phytoplankton 

based on composition and abundance - Algae Group Index (AGI) and Cyanobacteria 

biovolume %; and biomass - chlorophyll a concentration and total biovolume (INAG, 

2009b). For the latter parameter the protocol was adjusted according to other 

bibliographic information (e.g. Olenina et al., 2006). The phytoplankton community was 

expressed in EQR, relative abundance based in the groups formed for AGI. A group of 

others was defined when genus did not fit into either group of AGI. 

 

2.3.2.2. Zooplankton 

For the quantification of the zooplankton community in each sample a magnifying glass 

and a counting plate were used. For the identification of the Cladocera specimens the 

identification was done to the species level, while the organisms of Copepoda were only 

identified to the order. The ostracods and the nauplii found were also counted. The 

identification was made using identification guides as Alonso (1996), Amoros (1984) and 

Witty (2004). The results of the zooplankton community were expressed in relative 

abundance and based on the different functional groups. For this purpose, the organisms 



FCUP 
Evaluation of Aguieira Reservoir Water Quality: insights into parameters in addition to the Water Framework Directive 

7 

 

were grouped according to their food strategies (low efficiency, high efficiency and 

macrofilters) defined by Geller & Müller (1981). A group of organisms denominated by 

omnivores was added considering their general feeding capacity (e.g. Reid & Williamson 

(2010)). In addition, diversity index (Shannon-Weaver – H’) and equitability index 

(Simpson - E) were calculated. 

 

2.3.3. Bioassays 

2.3.3.1. Culture maintenance 

The monoculture of the microalgae Raphidocelis subcapitata was maintained in Woods 

Hole MBL medium (Stein, 1973). Culture in the exponential growth phase was renewed 

approximately every 7 days for a new medium (Pereira et al., 2009).  

 Cultures of the Cladocera water flea Daphnia longispina and Daphnia magna 

were continuously kept in the laboratory conditions for successive generations. Cultures 

were renewed on alternate days and were maintained in synthetic water medium "ASTM 

hard water" (ASTM, 1980), supplemented with a standard organic additive, Ascophyllum 

nodosum extract (Baird et al., 1988). Daphniids were fed with R. subcapitata at a rate of 

1.5x105 cells/mL/day for D. longispina and 3.0x105 cells/mL/day for D. magna. All 

neonates used in the bioassays were aged 4 and 5 days old, born between the 3rd and 

5th broods. 

 The floating aquatic plant Spirodela polyrhiza were grown and maintained in 

Steinberg medium (ISO 20079, 2005). The culture was renewed every week. 

 All cultures were maintained in a culture chamber (Incubator TC 445 S, 

Lovibond® Water Testing) under controlled conditions of 16hL:8hD photoperiod and a 

temperature of 20±2 ºC. More detailed rearing procedures can be found in Nunes et al. 

(2014a). 

 

2.3.3.2. Natural water conditions 

For conducting the bioassays to evaluate the water quality of Aguieira reservoir, three 

different water treatments were performed (NF, F1 and F2). Unfiltered water (NF) stands 

for natural water collected from the reservoir, with all components present at the sample 
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site. Water filtered through a Whatman GF/C filter of 47 mm diameter with 1.2 μm 

porosity (F1), in order to remove all suspended particles, phytoplankton and zooplankton 

communities. F2 depicted as water filtered through a sterile filter system with a porosity 

of 0.22 μm, to allow only the passage of dissolved compounds of the natural water 

sample. 

 

2.3.3.3. Raphidocelis subcapitata growth inhibition assay 

The growth inhibition assays with R. subcapitata followed the OECD (2006a) guidelines. 

The assay was performed in 24-well microplates, and MBL medium was used as a 

negative control. The natural water samples were evaluated under the three treatments, 

and a blank without algae addition was also measured. The assay was prepared with 

three replicates with algae addition at an initial concentration of 104 cells/mL (0.9 mL of 

the water sample plus 0.1 mL of algae that stands for an absorbance of 0.01 at =440 

nm). The assays were initiated after placing the 24-well microplates in a climatic chamber 

(Incubator TC 445 S, Lovibond® Water Testing) at 24±2 ºC with permanent light (≈7000 

lux). Every day the algal cultures were resuspended to avoid cell sedimentation using a 

micropipette. At the end of the assay (72 hours) the absorbance in each well was 

measured at λ=440 nm (UV-1600PC Spectrophotometer). The results were expressed 

in yield, calculated as the biomass (measured in absorbance) at the end of the test minus 

the starting biomass for each single vessel of controls and treatments, according to the 

protocol of OECD (2006a).  

 

2.3.3.4. Daphnia longispina and Daphnia magna feeding rate assay 

The feeding rate assessment of D. longispina and D. magna was conducted according 

to McWilliam & Baird (2002). For conducting this assay, 6-well microplates were used, 

where ASTM was used as a control and natural water in the different treatment were 

tested (see section 2.3.3.2.). For each water treatment a control (with water sample plus 

R. subcapitata), and five replicates with the same number of organisms (between three 

to five) plus R. subcapitata were prepared. Each replicate was conducted in 12.5 mL of 

each water treatment, and R. subcapitata was added at a concentration of 1.5x105 

cells/mL to D. longispina and 3.0x105 cells/mL to D. magna assays. The absorbance of 

each well was measured at λ=440 nm (UV-1600PC Spectrophotometer), prior to the 

addition of the organisms. The assays were initiated after the addition of the organisms 
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in each replicate. The microplates were placed in a climatic chamber (Incubator TC 445 

S, Lovibond® Water Testing) for 24 hours at 20±2 ºC in total darkness, to avoid algal 

growth. After this period the absorbances at λ=440 nm were measured, and the results 

were expressed in feeding rate according to Allen et al. (1995) equation. 

 

2.3.3.5. Spirodela polyrhiza growth inhibition assay 

In order to carry out the growth inhibition assay of S. polyrhiza, the protocols of OECD 

(2006b) and Nunes et al. (2014b) were followed. This assay was conducted in glass vials 

and the Steinberg medium was used as control and the three natural water treatments 

(see section 2.3.3.2.) were tested. For each treatment, 4 replicates were prepared in a 

final volume of 100 mL for each replicate. At the beginning of the assay, 9 fronds were 

added to each replicate and capped with perforated parafilm to allow gas exchange. The 

vials were placed in a climatic chamber (Incubator TC 445 S, Lovibond® Water Testing) 

for 7 days at 24±2 °C with permanent (≈7000 lux). At the end of the assay the final 

number of fronds was counted and the results were expressed in yield, calculated as the 

number of fronds at the end of the test minus the starting number of fronds for each 

single vessel of controls and treatments (OECD, 2006b). Additionally, a specimen with 

4 to 5 fronds of each replicate was collected for quantification of chlorophyll a, b, a+b 

and carotenoids according to Lichtenthaler (1987). Pigments extraction was performed 

in 1 mL of 96 % ethanol overnight, at −4 °C. In the day after, samples were thoroughly 

vortexed for about 30 s and centrifuged for 5 min at 4 000 rpm at 4 °C. The supernatants 

were used to quantify the different pigments, through spectrophotometry by measuring 

absorbances of the extracts at wavelengths of 470, 648.6 and 644.2 nm (UV-1600PC 

Spectrophotometer). The results were expressed in order to evaluate the photosynthetic 

performance of the organisms exposed, as well as the concentration of the different 

pigments. 

 

2.4. Statistical Analysis 

The relative abundance of the taxa identified for the phytoplankton and zooplankton 

communities was determined. The diversity index (Shannon-Weaver (H´)) and 

equitability index (Simpson (E)) were calculated for zooplankton communities. For the 

phytoplankton community, an additional analyse in terms of relative abundance based 

on the groups formed by the algae group index (AGI) was also performed. A group of 
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others was defined when genus did not fit into either group of AGI. The zooplankton 

community was functionally analysed and grouped according to the feeding strategies 

defined by Geller & Müller (1981). An omnivorous group was also defined considering 

the general feeding capacity (e.g. Reid & Williamson (2010)). 

The Ecological Quality Ratio (EQR) is an indicator of the current deviation from 

the reference conditions of a water body. For the phytoplankton characterization, the 

EQR calculation was performed following the equations presented in INAG (2009a). The 

conjugation of the EQRs for Algae Group Index (AGI), Cyanobacteria biovolume %, 

chlorophyll a concentration and total biovolume, reflects the ecological potential of that 

body of water, which may be: Excellent or Good (≥0.6), Moderate (≥0.4 and <0.6), 

Mediocre (≥0.2 and <0.4) or Bad (<0.2). 

The results of bioassays with R. subcapitata and S. polyrhiza are expressed in 

yield (OECD, 2006b, 2006a) as opposed to bioassays with D. longispina and D. magna 

which are expressed in feeding rate (McWilliam & Baird, 2002). For all bioassays, a one-

way ANOVA was conducted to test the differences in water treatments in each season. 

Previously, data were tested for normality by the Shapiro-Wilk test and for homogeneity 

of variances by the Levene test, as normality and homogeneity of data are conditions for 

unidirectional ANOVA application. When one-way ANOVA detected significant 

differences (p <0.05), a Tukey test was applied to discriminate differences between 

treatments. All the statistical analysis were done using vegan v.25-4 package of R 

software (Oksanen et al., 2019). When the results did not meet the ANOVA assumption, 

the data were analysed nonparametrically using Kruskal – Wallis and, when significant 

differences were found (p <0.05), a Pairwise t test was applied to discriminate significant 

differences between treatments. Statistical analyses were performed using the stats 

v.3.5.1 package from R software (R Core Team, 2018). All the data were plotted using 

package ggplot2 v3.1.0 of the same software (Wickham, 2016).  
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3. Results and Discussion 

3.1. Physical and chemical parameters 

A series of physical and chemical parameters were measured in four sampling sites (A1-

A4) in Autumn 2018 and Spring 2019, in Aguieira reservoir which are reported in Table 

1. Based on the values obtained, the ecological potential (EP) for these four sites was 

calculated (Table 1), and a good EP was observed for sites 1, 2 and 4 for both sampling 

periods, while site 3 only presented an EP of moderate. This latter result is due to the 

high concentration of total phosphorus (Ptotal) recorded in both sampling periods (INAG, 

2009a). The increase of fertilizers and manure in local agriculture, and the increase of 

untreated water discharges (urban and agro-industrial) were the main drivers for the 

accumulation of nutrients such as phosphorus and nitrogen in the water body (Table 1) 

(APA, 2007).  

Table 1 Results of the general physical and chemical parameters (Sampling sites: A1, A2, A3 and A4; Sampling periods: 
Au - autumn and Sp - spring)., reference values according to INAG (2009a)); a Good/Moderate EP in northern reservoirs 
established by WFD were presented; DL – Detected Limit. Bold values stand for values outside the established thresholds. 

   A1 A2 A3 A4 

 
INAG 

(2009a) 
DL Au Sp Au Sp Au Sp Au Sp 

pH 6-9  8.40 9.20 7.62 8.99 8.10 8.31 7.40 9.15 

O2 (mg/L) >5  8.79 11.90 7.97 12.40 9.89 11.30 7.36 12.20 

O2 (%) 60-120  106.3 119.4 94.4 124.9 112.0 112.1 89.0 125.2 

Ptotal (mg/L) ≤ 0.05 0.01 <0.01 0.01 0.03 0.01 0.22 0.09 0.03 0.02 

NO3
- (mg/L) ≤ 25 0.5 1.3 2.8 <0.5 3.3 <0.5 4.0 2.4 1.2 

Cond (µS/cm)   86.0 83.1 96.6 89.2 143.2 112.0 87.4 78.2 

Temp (°C)   24,5 14.4 23.2 15.0 21.0 15.2 24.5 15.5 

Secchi (m)   >2.0 2.5 >2.5 2.5 Bottom 2.0 >2.5 1.5 

Turb (m-1)   0.018 0.072 0.036 0.069 0.115 0.087 0.038 0.074 

BOD5 (mg/L)   0.81 0.55 0.77 0.86 3.88 0.42 0.48 1.12 

CDOC (m-1)   0.059 0.100 0.082 0.230 0.151 0.148 0.043 0.243 

TSS (µg/L)   8.24 13.45 10.09 19.05 312.50 11.08 10.75 17.50 

VSS (µg/L)   4.17 11.07 6.02 14.60 62.50 9.08 7.42 13.50 

COD (mg/L)  5 10 53 18 51 90 45 <5 50 

Alk (°F)  0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 

Hardness (°f)  0.5 22.1 1.6 1.7 1.7 1.8 1.9 1.8 1.6 

NO2
- (mg/L)  0.01 <0.01 0.04 0.02 0.07 <0.01 0.04 0.01 0.02 

NH4
+ (mg/L)  0.05 <0.05 0.07 <0.05 <0.05 <0.05 0.06 <0.05 0.09 

Ntotal (mg/L)  0.5 <0.5 <0.5 <0.5 <0.5 6.3 <0.5 <0.5 0.7 

Ecological Potential Good Good Good Good Moderate Moderate Good Good 
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Aguieira reservoir is being characterized as an eutrophic water body in the last 

decades (APA, 2007; De Figueiredo et al., 2007; Geraldes & Silva-Santos, 2011; INAG, 

2011; Vasconcelos et al., 2011), and this classification has been attributed due to the 

high concentration of Ptotal observed (APA, 2007; INAG, 2011). Indeed, this site also 

presented the highest differences of physical and chemical parameters of the four sites, 

with higher values of conductivity, turbidity, TSS, VSS, BOD5 and nitrogen (N), especially 

in autumn (Table 1). The other measured parameters are within the limit values for a 

good ecological potential, and even those that do not have reference values follow the 

general trend that has been observed for this reservoir, with an eutrophic state (INAG, 

2011). 

Concerning some specific pollutants and priority substances the results are 

shown in Table 2. Only the metals were carried out in both seasons, being the remaining 

compounds only measured in the autumn (the worst-case scenario, after the hot 

season). The specific pollutants, that were possible to quantify, presented higher 

concentrations in the autumn sampling, except for copper and zinc in A1. A2 presented 

the highest metal concentrations in both samples, except for arsenic, which presented 

the highest concentrations at the sites farthest from the dam. However, when compared 

to the limit values imposed by the legislation ((INAG, 2009a) and the Annex I of 

Legislative Decree No. 218/2015 (Ministério do Ambiente do Ordenamento do Território 

e Energia, 2015)), the here-obtained results are always below these limits, i.e., reflecting 

a good / excellent (G/E) EP for all the sampling sites. According to data from “Serviço 

Nacional de Informação de Recursos Hídricos (SNIRH)” (no data) monitoring network, 

for the operating stations located in this reservoir during the period from 2001 to 2013, 

specific pollutants were always low. Concerning the priority substances, the same 

pattern, for compounds quantified in both seasons, was also observed, with higher 

concentration in autumn sampling with some exceptions namely in A1 site. When 

comparing the results obtained with the limits imposed ((INAG, 2009a) and the Annex I 

of Legislative Decree No. 218/2015 (Ministério do Ambiente do Ordenamento do 

Território e Energia, 2015)), all substances monitored were in the range of the reference 

values for a good/excellent EP for the Aguieira reservoir. Moreover, when the values 

obtained for the several priority substances (e.g. arsenic, mercury, lead, anthracene and 

aldrin) were compared to the SNIRH (no data) data, the results were similar .  

The two pharmaceutical drugs, indicators of anthropogenic activities and not 

included in the WFD pollutant list of priority substances, Diazepam and Ethinylestradiol, 

were also quantified (Table 2). However, they could not be quantified because since they 

were below to the detection limit of the equipment. 
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Table 2 Results of the specific pollutants and priority substances according INAG (2009a) and with Annex I of Legislative Decree No. 218 (Ministério do Ambiente do Ordenamento do Território e 
Energia, 2015). In the case of cadmium, reference values vary according to five classes of water hardness (Class 1: <40 mg CaCO3 /L; Class 2: 40 mg to <50 mg CaCO3 /L; Class 3: 50 mg to <100 
mg CaCO3 /L; Class 4: 100 mg to <200 mg CaCO3 /L and Class 5: ≥ 200 mg CaCO3 /L)). (Sampling sites: A1, A2, A3 and A4; Sampling periods: Au - autumn and Sp – spring; DL –Detected Limit). 

    A1 A2 A3 A4 

 INAG (2009a) DL 218/2015 DL Au Sp Au Sp Au Sp Au Sp 

Calcium (mg/L)   1 63.0 3.8 4.5 3.8 4.5 5.1 4.9 4.1 

Magnesium (mg/L)   0.5 16.0 1.5 1.6 1.8 1.7 1.6 1.4 1.3 

Iron (µg/L)   1 36 45 220 57 360 110 190 71 

Manganese (µg/L)   0.05 3.26 4.34 14.2 4.78 65.7 12.8 29.2 6.04 

Arsenic (µg/L) 50  0.01 1.77 0.93 2.13 0.93 2.95 1.48 3.34 2.2 

Cadmium (µg/L)  

≤0.45 (Class 1) 
0.45 (Class 2) 
0.6 (Class 3) 
0.9 (Class 4) 
1.5 (Class 5) 

0.01 0.07 0.02 0.02 0.01 0.06 0.01 0.01 0.03 

Copper (µg/L) 100  0.15 0.74 2.37 2.87 0.98 2.19 0.99 2.42 0.85 

Mercury (µg/L)  0.07 0.01 <0.01 0.02 0.04 0.02 0.02 0.02 0.02 0.02 

Nickel (µg/L)  34 0.2 <0.2 0.6 1.1 0.6 0.9 0.4 0.8 0.3 

Lead (µg/L)  14 0.1 1.0 0.5 1.0 0.2 0.7 0.2 0.4 0.6 

Zinc (µg/L) 500  0.9 1.4 6.7 16.0 12.8 14.2 6.7 11.0 6.8 

Anthracene (µg/L)  0.1 0.01 <0.02  <0.01  <0.02  <0.01  

Benzo (a) pyrene (µg/L)  0.27 0.005 <0.01  <0.005  <0.01  <0.005  

Fluoranthene (µg/L)  0.12 0.01 <0.02  <0.01  <0.02  <0.01  

Naphthalene (µg/L)  130 0.05 <0.10  <0.05  <0.10  <0.05  

Aldrin (µg/L)  Not applicable 0.01 <0.01  <0.01  <0.01  <0.01  

-endosulfan (µg/L)   0.01 <0.01  <0.01  <0.01  <0.01  

Dieldrin (µg/L)  Not applicable 0.01 <0.01  <0.01  <0.01  <0.01  

Endosulfan (total) (µg/L)  0.01 0.02 <0.02  <0.02  <0.02  <0.02  
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-Endosulfan (µg/L)   0.02 <0.02  <0.02  <0.02  <0.02  

Endrin (µg/L)  Not applicable 0.01 <0.01  <0.01  <0.01  <0.01  

HCH Alpha (µg/L)   0.005 <0.005  <0.005  <0.005  <0.005  

HCH Beta (µg/L)   0.01 <0.01  <0.01  <0.01  <0.01  

HCH, gamma – Lindane (µg/L)   0.001 <0.001  <0.001  <0.001  <0.001  

HCH Epsilon (µg/L)   0.001 <0.001  <0.001  <0.001  <0.001  

Hexachloro-1,3-butadiene (µg/L)  0.6 0.02 <0.02  <0.02  <0.02  <0.02  

Hexachlorobenzene (HCB) (µg/L)  0.05 0.005 <0.005  <0.005  <0.005  <0.005  

Isodrin (µg/L)  Not applicable 0.01 <0.01  <0.01  <0.01  <0.01  

Chlorfenvinphos (µg/L)  0.3 0.02 <0.02  <0.02  <0.02  <0.02  

Chlorpyrifos-ethyl (µg/L)  0.1 0.005 <0.005  <0.005  <0.005  <0.005  

Dichlorvos (µg/L) 0.001 7x10-4 0.005 <0.005  <0.005  <0.005  <0.005  

Atrazine (µg/L)  2 0.005 <0.005  <0.005  <0.005  <0.005  

Atrazine-desethyl (µg/L)   0.005 <0.005  <0.005  <0.005  <0.005  

Desethyl-terbuthylazine (µg/L) Without EQO  0.005 <0.005  <0.005  <0.005  <0.005  

Irgarol (Cybutryne) (µg/L)  0.016 0.005 <0.01  <0.01  <0.01  <0.01  

Terbuthylazine (µg/L) Without EQO  0.005 <0.005  <0.005  <0.005  <0.005  

Terbutryn (µg/L)  0.34 0.005 <0.005  <0.005  <0.005  <0.005  

Alachlor (µg/L)  0.7 0.005 <0.005  <0.005  <0.005  <0.005  

Diuron (µg/L)  1.8 0.005 <0.005  <0.005  <0.005  <0.005  

Isoproturon (µg/L)  1 0.005 <0.005  <0.005  <0.005  <0.005  

Linuron (µg/L) 1.0  0.005 <0.005  <0.005  <0.005  <0.005  

Cypermethrin (µg/L)  6x10-4 0.08 <0.08  <0.08  <0.08  <0.08  

Tebuconazole (µg/L)   0.005 <0.005  <0.005  <0.005  0,019  
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Aclonifen (µg/L)  0.12 0.04 <0.04  <0.04  <0.04  <0.04  

Bifenox (µg/L)  0.04 0.08 <0.08  <0.08  <0.08  <0.08  

Dicofol (µg/L)  Not applicable 0.05 <0.05  <0.05  <0.05  <0.05  

Quinoxyfen (µg/L)  2.7 0.05 <0.05  <0.05  <0.05  <0.05  

Chloroalkanes C10-C13 (µg/L)  1.4 0.15 <0.30  <0.30  <0.30  <0.30  

Pentachlorophenol (PCP) (µg/L)  1 0.02 <0.04  <0.04  <0.04  <0.04  

Tributyltin cation (µg/L)  0.0015 0.00005 <0.00005  <0.00005  <0.00005  <0.00005  

Diazepam (µg/L)   0.05 <0.05  <0.05  <0.05  <0.05  

Ethinylestradiol (µg/L)   0.02 <0.02  <0.02  <0.02  <0.02  

Ecological Potential G/E G/E G/E G/E G/E G/E G/E G/E 
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3.2. Phytoplankton community 

Through the analysis of the phytoplankton community (Table 3) a good (Sp A2 and A3), 

moderate (Au A1, A2, A4 and Sp A1, A4) or bad (Au A3) EP values were obtained. These 

results highlight that the autumn sampling, done after a very hot summer, was conducted 

at low levels of water.  

Table 3 Results obtained for the EQR of phytoplankton community. Reference values for calculation of EP and EQR 
normalized (below in parentheses) for each parameter for good/moderate EP according (INAG, 2009a), (Sampling sites: 
A1, A2, A3 and A4; Sampling periods: Au - autumn and Sp - spring). 

  A1 A2 A3 A4 

 Reference 
values 
(EQR) 

Au Sp Au Sp Au Sp Au Sp 

Chl a (mg/m3) 
2 

(0.21) 

6.03 
(0.33) 

29.24 
(0.07) 

11.22 
(0.18) 

34.02 
(0.06) 

1202.48 
(0.002) 

11.29 
(0.18) 

3.82 
(0.53) 

31.00 
(0.06) 

Biovolume 
Total (mm3/L) 

0.36 
(0.19) 

10.77 
(0.03) 

62.99 
(0.02) 

67.92 
(0.01) 

115.17 
(0.003) 

268.49 
(0.001) 

165.43 
(0.002) 

13.46 
(0.03) 

35.39 
(0.01) 

% Biovolume 
Cyanobacteria 

0 
(0.91) 

0.29 
(1.00) 

1.24 
(0.99) 

1.36 
(0.99) 

1.02 
(0.99) 

91.82 
(0.08) 

1.56 
(0.98) 

24.80 
(0.75) 

5.61 
(0.94) 

AGI 
0.1 

(0.97) 

86.65 
(0.79) 

20.34 
(0.95) 

97.36 
(0.76) 

5.14 
(0.99) 

166.07 
(0.59) 

8.63 
(0.98) 

37.79 
(0.91) 

36.67 
(0.91) 

EQR 0.6 0.56 0.52 0.49 0.73 0.11 0.78 0.47 0.47 

Ecological Potential Moderate Moderate Moderate Good Bad Good Moderate Moderate 

 

The bad EP classification recorded in the autumn in A3 sample (Table 3) must 

be due to a cyanobacterial bloom of Microcystis (EQR for % biovolume of Cyanobacteria 

≈ 92%), that led to the worst EQR value (0.11) registered. Moreover, in autumn, Chl a 

concentration in site A3 exceeded 1000 mg/m3 and Cyanobacteria biovolume accounted 

for over 90 % of the total biovolume which are reflected in the AGI index (> 150). This 

index assigns weights and compares groups of algae characteristics of eutrophic zones 

and groups associated with less productive environments (Catalan et al., 2003). In 

spring, however, this site showed a good EP, with a reduction of Chl a content to ≈ 11 

mg/m3 and a <2 % Cyanobacteria biovolume, resulting in a lower AGI value (≈ 9). 

Overall, sites A1, A2 and A4 followed a similar pattern, with the highest values of 

Chl a concentration of ≈ 30 mg/m3, higher total biovolume and lower % of cyanobacterial 

biovolume in the spring season (Table 3). AGI tendency to decrease in spring with the 

exception of A4, reflected the decrease of phytoplankton abundance typical of eutrophic 

zone groups. Bellinger and Sigee (2015) already demonstrated that high nutrient 

availability, temperature increase and light conditions that occur in spring and summer 

favour growth and diversity of the phytoplankton community. 

Since the 1990s, Aguieira reservoir has been characterized by high frequency of 

cyanobacterial blooms (Vasconcelos et al., 1996, 2011; APA, 2007), with the genera 

Microcystis, Anabaena, Gomphosphaeria and Synechococcus being the most frequently 
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recorded in this reservoir (Figueiredo et al., 2012). The accumulation of nutrients in the 

water body (e.g. phosphorus and nitrogen), also recorded in this study specifically in A3 

sample (Table 1), promotes an excessive growth of phytoplanktonic organisms, namely, 

Cyanobacteria (APA, 2007). The increase of nutrients in this aquatic ecosystems (Table 

1 and 2) with a consequent high concentrations of Chl a in almost all sites (Table 3) 

induces an high trophic state, which is situated between the mesotrophic and the 

eutrophic states as describe in INAG (2011). Moreover, eutrophic reservoirs promote the 

development of macro-chlorophytes and Cyanobacteria which are unpalatable for 

zooplankton community as well as the occurrence of toxins, breaking the links in the food 

chains, which become less complex and diverse (APA, 2007). Furthermore, the 

cyanobacterial overgrowth in freshwater ecosystems may release to the water harmful 

toxins that can be consumed by humans, and other aquatic and terrestrial organisms 

with noxious consequences (Graça et al., 2002; Figueiredo et al., 2012).  

Figure 2 shows the relative abundance of AGI groups obtained in the present 

study. In the autumn sampling, a high difference between sites was recorded. In A1 and 

A2, colonial Chlorococcales were the dominant group (≈ 95%), while in A3 

Cyanobacteria was the most abundant group (≈ 98%). A4 showed a similar abundance 

of the two previous groups (≈ 45% and ≈ 50%, respectively) which represents almost 

95% of the phytoplankton in the sample. In the spring sampling, an increase of 

Cyanobacteria group in all sites was observed, representing more than 60% of the 

phytoplankton recorded. Colonial Bacillariophyceae and Others (standing for species not 

represented in AGI) also presented higher abundances in all sites. The genera 

Chroococcus, Synechocystis and Synechococcus, which are not included in the AGI 

calculation, have now been included in this analysis, resulting in a high abundance of 

the cyanobacterial group. 

Indeed, Oliveira & Monteiro (1992) already observed the existence of a spatial 

phytoplankton gradient in Aguieira reservoir. The high concentration of Cyanobacteria in 

Dão river (Santa Comba Dão) is usually four times higher than the observed near to the 

dam, probably due to the agricultural and urban activities. Moreover, the Plano de 

Ordenamento da Albufeira da Aguieira (APA, 2007) also states that the results of 

phytoplankton analysis showed a phytoplankton gradient, with values of 29.3% of 

Cyanobacteria near de dam, 49.4% in Tábua (Mondego river) and 93.8% in the Santa 

Comba Dão (Dão river). Our data corroborates the results previous mentioned from the 

90's regarding A3 location (very close to Santa Comba Dão) and A4 location (near 

Tábua). 
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3.3. Zooplankton community 

Figure 3 shows the relative abundances of zooplankton for the four sites in both sampling 

seasons. In autumn the highest abundant organisms were Diaphanosoma, 

Ceriodaphnia, Calanoida and Cyclopoida, followed by Chydorus and Bosmina, although 

these presented different proportions between sites. Site A3 showed a more distinct 

zooplankton community with a high abundance of Ceriodaphnia quadrangular. In spring 

season, Daphnia group was dominant in almost sites, except for A2 where Calanoida 

was the dominant group. The groups Calanoida, Cyclopoida and the genus Bosmina 

showed a high abundance in this season. Regarding the richness values (Fig. 3), an 

increase was recorded for all sites in spring season. A2 and A3 showed the highest 

richness in both seasons. 

 

Figure 2 Results of relative abundance (%) of groups of AGI for phytoplankton communities for each sampling 
site in the two seasons. Each texture represents the different phytoplankton groups. 
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Zooplanktonic community can change according to the phytoplankton community 

and other nutrients available (Jeppesen et al., 2000, 2011; Geraldes & Silva-Santos, 

2011). Indeed, several authors already demonstrated that the zooplanktonic community 

can be related to the trophic state of the water body (Geraldes & Silva-Santos, 2011; 

Haberman & Haldna, 2014; Pociecha et al., 2018). Aguieira is classified as a eutrophic 

reservoir, so typical species can occur, such as the case of the genus Bosmina. In fact, 

Bosmina, is a tolerant species described for eutrophic ecosystems (Beaver et al., 1999; 

Jensen et al., 2013), which represents about 10% of the species recorded in our 

samples. Also, copepods such as cyclopoids are indicators of eutrophic environments 

(Beaver et al., 1999), and these organisms may have eating habits ranging from large 

particles to filamentous algae (Fryer, 1957; Beaver et al., 1999) which are characteristics 

of seston in eutrophic conditions. In contrast, the macrofiltration herbivores, such 

Daphnia spp., tend to decrease in abundance in eutrophic conditions. Geraldes & Silva-

Santos (2013) and Geraldes et al. (2016b, 2017) observed that the genus Daphnia 

appears in high abundance when Cyanobacteria are in lower abundance in Aguieira 

reservoir. According to Geller & Müller (1981), the genus Daphnia, a low efficient filter 

feeding organism, presents a peak of abundance in spring and a lower peak in autumn 

in eutrophic temperate lakes. It is also in the spring, when all phytoplankton groups start 

to increase mainly due to the high light period, that more available food occurs for 
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Figure 3 Results of relative abundance (%) and specific richness (∆) of zooplankton communities for each 

sampling sites in the two seasons. Each texture represents the different zooplankton groups. 
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zooplankton. However, a high relative abundance of Cyanobacteria group in all sites was 

observed (Fig. 2). 

The genus Diaphanosoma also showed high abundance in the autumn sampling 

(Figure 3). These organisms are more abundant in hot summer months (Geraldes et al. 

(2016a), and, although our samplings were collected in autumn, the recorded 

temperature was still high (Table 1), which may explain the high abundance of this 

organism. The genus Ceriodaphnia also showed high abundance, especially at A2 and 

A3 sites in the autumn sampling. This genus is strongly related to the Ptotal concentration. 

In fact, an increase of small cladocerans occurred when an increase of phosphorus 

concentration in water was observed in lakes in Denmark (Jeppesen et al., 2000, 2011). 

The here-obtained results showed the same trend with an increase of small Cladocera 

in A2 and A3 (Figure 3) coincident with the highest Ptotal values, (Table 1). In the identified 

taxa, an occurrence of a non-native species of the Portuguese water bodies was 

recorded. Bosmina coregoni was observed in all sites in both seasons. Indeed this is a 

non-native species, recently described for Portuguese water bodies (Geraldes & Alonso, 

2014). B. coregoni tends to present the maximum abundance in winter as observed in 

the work of Geraldes & Silva-Santos (2011) and Geraldes et al. (2016a) in Aguieira 

reservoir. However, in the present study the occurrence of this species was recorded in 

both seasons for all sites, namely in site A4.  

Jeppesen et al. (2011) in studies in Denmark, Estonia and UK, observed always 

a decrease in zooplankton richness, especially in Cladocera group, with an increase of 

Ptotal concentration. This means that, under eutrophic conditions, the richness of 

zooplankton tends to be lower. This situation was also recorded in the here-presented 

data in autumn, when the concentration of Ptotal was higher and the lowest number of 

microzooplankton species was observed, and the high trophic state was recorded. In two 

reservoirs, Poções and Camalaú, in the Paraíba River basin, northeastern Brazil, 

Azevedo et al. (2015) positively related hypereutrophic conditions to high richness values 

of zooplankton. However, this was mainly due to the higher number of rotifer species 

observed, which have a wider trophic plasticity and high tolerance to these conditions. 

Indeed, Moss et al. (2003), related the higher abundance of larger zooplankton species 

(e.g. Cladocera) with better trophic conditions, which is in agreement with our results. 

Diversity and equitability Indexes values for zooplankton community are shown 

in Table 4. High diversity values for all sites in both seasons (> 1) were observed. Site 

A2 presented the highest diversity values for both seasons (Au=1.78 and Sp=1.89). 

Regarding equitability, were obtained low values (< 0.44), representing low equitability. 
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Site A2 showed the highest equitability values for both seasons (> 0.40). Site A3 showed 

less diversity and equitability in both seasons (Table 4). In fact, site A3 had some 

regularly cyanobacterial blooms, which can release toxins to the water body affecting 

higher trophic levels. On the other hand, this site also showed high concentrations of 

Ptotal. As mentioned earlier, eutrophic conditions lead to the proliferation of phytoplankton 

with poor quality for zooplankton diet, making the zooplanktonic community simple and 

less diverse. Situation observed in our results in A3 site (the worst EP recorded - Tables 

1, 3), especially in the autumn, when the lowest zooplankton diversity was recorded 

(Table 4 and Fig. 3). 

Table 4 Diversity and Equity Indexes: Shannon-Weaver (H' - diversity) and Simpson (E- equitability) indexes 
for the zooplankton community for each sampling site and season: Au - autumn and Sp - spring. 

 

 

 

The relative abundance of zooplankton functional groups is shown in Figure 4. In 

the autumn period, a high abundance of high efficiency filter feeding organisms (e.g. 

Ceriodaphnia, Chydorus, and Diaphanosoma) was recorded. Indeed, these organisms 

are described as dominant in warm months, usually expected in summer months (Geller 

& Müller, 1981; Jensen et al., 2013). Actually, in the autumn sampling period, high water 

temperature values were recorded (Table1) with high light intensity, variables 

responsible for the high abundance of these organisms. In the spring season, a 

replacement of zooplankton functional groups was observed with an increase of the low 

efficiency filter feeding organisms (e.g. Bosmina and Daphnia) in detriment of those 

previously observed in higher abundance (high efficiency filter feeding capacity). These 

results were expected once these organisms tend to have higher abundance in months 

when the temperature starts to rise and the days start to get longer (Geller & Müller, 

1981; Jensen et al., 2013). In the present study, the abundances of low efficiency filter 

feeding organisms are essentially due to the high abundance of Daphnia spp. that have 

been observed in all sites of Aguieira reservoir. Geraldes & Silva-Santos (2011) in the 

same reservoir, observed, in September 2010, high abundances of Chydorus, 

Diaphanosoma and Ceriodaphnia, three organisms with high efficiency filter feeding, 

which are in accordance with our results obtained in the autumn sampling. In the same 

study in March 2010, higher abundances of two low efficiency filter feeding organisms, 

Bosmina and Daphnia, were observed. Indeed, these are the same genera recorded in 

the present study with higher abundances in spring season. 

 A1 A2 A3 A4 
 Au Sp Au Sp Au Sp Au Sp 

H’ 1.59 1.57 1.78 1.89 1.32 1.32 1.52 1.67 

E 0.44 0.26 0.42 0.40 0.20 0.19 0.35 0.31 



FCUP 
Evaluation of Aguieira Reservoir Water Quality: insights into parameters in addition to the Water Framework Directive 

22 

 

Figure 4 Results of relative abundance (%) of zooplankton functional groups for each sampling site in the two seasons 

taking into account filtering and feeding capacities according to Geller e Müller (1981) and Reid & Williamson (2010). 

 

3.4. Bioassays 

Figure 5 shows the results of the growth inhibition assay of the alga Raphidocelis 

subcapitata, for the two sampling periods. In autumn samples, a significant increase in 

growth of R. subcapitata (Table A1) in F2 water (Aguieira water filtered with 0.22 μm 

where all suspended material and organisms were removed) for all sites was recorded. 

Although the lowest increase of growth was obtained for A3 water, this was not significant 

(Table A1) when compared to the control group. Indeed, site A3 was already classified 

with the worst ecological potential, according to WFD metrics, for physical, chemical and 

the biological parameter (phytoplankton community). Moreover, a bloom of 

Cyanobacteria was observed at this site in autumn period (Table 3). For the other water 

treatments, NF and F1 (NF = unfiltered water of the reservoir; F1 = the 1.2 μm filtrated 

water in which suspended material, phytoplankton and zooplankton were removed), a 

significant decrease (Table A1) of algae growth was observed for all sites. 

ln spring water samples, a significant decrease (Table A1) of algal growth was 

recorded for all water treatments and sites (Fig. 5). Note that algae growth was always 

higher in spring samples. Pérez et al. (2010) in unfiltered natural waters from Alqueva 

reservoir, always observed lower algae growth rates throughout the year comparing to 

the control group. When looking at their results in the same period of our results, we 

observe the same pattern, with higher growth rates in spring season and lower growth 

rates in autumn (Fig. 5). Pérez et al. (2010) linked the presence of herbicides such as 
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atrazine, simazine, terbutylazine, and metholachlor (used in agriculture practices) to the 

low growth rates recorded. However, in the present study, these pesticides were 

detected in low concentrations according to INAG (2009a) and the Annex I of Legislative 

Decree No. 218/2015 (Ministry of Environment for Spatial Planning and Energy, 2015). 

Figure 5 Results of growth inhibition assay of R. subcapitata when exposed to different natural water conditions from the 

Aguieira reservoir (CTRL – Control treatment; NF – Unfiltered water; F1 – filtered with 1.2 μm and F2 – filtered with 0.22 

μm). Sampling sites: A1, A2, A3 and A4. Different letters (a, b, c for spring; A, B, C for autumn) stands for significant 

differences between treatments (Tukey test, p<0.05) in each sampling period. 

 
The results of Daphnia longispina feeding rate assay are shown in Figure 6. In 

autumn samples, a significant decrease of the feeding rate (Table A1) was observed for 

all water treatments from sites A3 and A4, and for NF and F1 waters from A1 and A2, 

respectively. This lower feeding rate in NF may reflect that phytoplankton community 

was not palatable for D. longispina. Indeed, the zooplankton community appeared in low 

abundance in autumn (Fig. 3 and Table 4). In the spring sampling, the results of the 

feeding rate assay for D. longispina were similar to the control group, with few 

exceptions. All water treatments from site A2 showed a significant decrease in the 

feeding rate (Table A1). However, in A1, A3 and A4 a significant decrease of the feeding 

rate (Table A1) was only observed for the F1 water treatment.  

In the Daphnia magna autumn assays (Fig. 6), a significant decrease of the 

feeding rate (Table A1) was observed for NF water for all sites, and for all treatments in 

site A3. Regarding the spring samples, similar results were observed in almost water 

treatments and sites. This assay demonstrated sensitivity for the assessment of natural 

waters conditions, being more noticeable in the autumn samples. Orlowicz (2012) in Old 
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Gurham Reservoir, observed that the presence of phytoplankton with poor quality for 

Daphnia diet such as Cyanobacteria and large filamentous or colonial algae, may lead 

to lower feeding rates. Furthermore, it is known that Daphnia prefers smaller organisms 

such Chlorella and Raphidocelis and organic detritus including protists and bacteria in 

its diet (Ebert, 2005). 

Figure 6 Results of feeding rate of D. longispina and D. magna when exposed to different natural water conditions  from 
the Aguieira reservoir (CTRL – Control treatment; NF – Unfiltered water; F1 – filtered with 1.2 μm and F2 – filtered with 
0.22 μm). Sampling sites: A1, A2, A3 and A4. Different letters (a, b, c for spring; A, B, C for autumn) stands for significant 
differences between treatments (Tukey test, p<0.05) in each sampling period. 

Daphnia longispina Daphnia magna 
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Figure 7 shows the results of Spirodela polyrhiza growth inhibition assay. In 

autumn samples a significant decrease of the growth was observed in NF for all sites 

(Table A1). F2 treatment also induced a significant decrease of S. polyrhiza for waters 

from sites A2 and A4 (Table A1). In spring, a significant decrease of growth was also 

observed in all water treatments and sites, but without significant differences between 

water treatments (Table A1). In general, the autumn sampling presents the worst EP 

(three sites with Moderate EP and one with Bad EP) when compared to spring sampling 

(two sites with Good EP and two with Moderate EP) (Table 1, 2 and 3). However, the 

same tendency in both seasons was observe, with a significant decrease of growth in 

almost treatments and sites (Table A1), which means that the results of this assay do 

not reflect the difference observe in the final EP. 

The decrease in growth may be due to the lack of nutrients in the natural waters, 

important parameter for development of macrophyte (Table 1). On the other hand, the 

possibility of toxins from Cyanobacteria species, such as the bloom of Microcystis 

observed in A3 in autumn, may have been the factor that conditionate the growth of S. 

polyrhiza (Mohamed, 2017). Romanowska-Duda et al. (2002) on the Sulejow reservoir 

in Poland, observe that the high toxic and cytotoxic effect of blue-green algal blooming, 

Microcystis aeruginosa, reduced the number of fronds about of 50%. Henry-Silva et al. 

(2008) observed in their work that low concentrations of nitrogen and phosphorus, as 

Figure 7 Results of growth inhibition assay of S. polyrhiza when exposed to different natural water conditions  from the 
Aguieira reservoir (CTRL – Control treatment; NF – Unfiltered water; F1 – filtered with 1.2 μm and F2 – filtered with 0.22 
μm). Sampling sites: A1, A2, A3 and A4. Different letters (a, b, c for spring; A, B, C for autumn) stands for significant 
differences between treatments (Tukey test, p<0.05) in each sampling period. 
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well as temperatures below 15 °C or above 30 °C, induced a significant decrease on 

macrophyte growth. Junk & Piedade (1997) observed, in a study of ecology of aquatic 

macrophytes in the Amazon floodplain, that when nutrient concentrations were low the 

growth of macrophyte was slower. 

According to several studies (Eaton et al., 1995; Yan & Zhou, 2011; Nunes et al., 

2014b) changes in pigment composition such as Chl a + b and carotenoids may serve 

as an indicator of the general physiological status of photosynthetic organisms. The 

capacity of macrophytes for bioaccumulation and biotransformation of toxins may lead 

to decreased photosynthetic capacity and changes in plant pigment composition 

(Mohamed, 2017). In here-presented results (Fig. 8), a significant decrease in the 

content of photosynthetic pigments of S. polyrhiza exposed to natural waters was 

observed for all treatments and sites for both sampling periods (Table A1). However, no 

significant differences between water treatments were recorded (Table A1), which 

means that the photosynthetic performance of S. polyrhiza did not change due to the 

different water treatments. 
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Zooplankton community is not part of the WFD biological assessment for water 

quality in reservoirs. However, this community has shown to be sensitive in all sites 

sampled and very important in the assessment of the quality of water bodies (Table 5). 

The natural dynamic of the structural and functional of the zooplankton community clearly 

Figure 8 Results of chlorophylls a+b and carotenoid concentrations, of the S. polyrhiza after exposed of growth inhibition 
assay to different natural waters conditions (CTRL – Control treatment; NF – Unfiltered water; F1 – filtered with 1.2 μm 
and F2 – filtered with 0.22 μm). Sampling sites: A1, A2, A3 and A4. Different letters (a, b, c for spring; A, B, C for autumn) 
stands for significant differences between treatments (Pairwise t test, p<0.05) in each sampling period. 

Carotenoids Chlorophylls a+b 

C C 

C 
c bc 
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showed the existence of differences between sites and throughout the two seasons 

(Table 5). This evaluation also showed the tendency of this reservoir to eutrophic 

conditions, which implies poor quality of the water. In this way, the analysis of 

zooplankton community provides a more realistic scenario of water quality since respond 

to changes in water reservoir, while almost physical and chemical parameters only give 

momentary information. However, the zooplankton evaluation does not allow us to make 

a classification by ranges, such as provides the WFD approach. Therefore, this biological 

parameter proves to be fundamental in the assessment of the water quality of a reservoir 

in complement of WFD. Moreover, the combination of the three parameters: physical 

and chemical, phytoplankton and zooplankton, will permit a stronger evaluation of an 

artificial water body allowing a more accurate and realistic determination of the ecological 

potential. 

R. subcapitata and S. polyrhiza bioassays only showed sensitive results in the 

autumn sampling (Table 5). Indeed, these bioassays should be repeated in other 

seasons and different water pressures, in order to better understand the information that 

they may provide. The photosynthetic pigments of S. polyrhiza exposed to natural waters 

did not show sensitive results in order to discriminate water conditions. D. longispina and 

D. magna assays showed a similar trend throughout the two sampling periods, although 

not showing a clear specific pattern, but evidencing an existence of sensitivity to the 

different treatments, especially in the autumn for D. magna.  

The use of bioassays has several advantages like the use of standard species. 

However, some difficulties may be recognised since biological organisms can have 

different responses along the year due to biological clocks (Noordally & Millar, 2015). 

Although they are standard organisms several studies already demonstrated the 

variability of responses (Palma et al., 2010), fact that was also observe in this study (Fig. 

5, 6, 7 and 8). Pereira et al. (2009) noted that uncontrollable variations in laboratory 

methods and the use of different cultures may explain unexpected results. Moreover, the 

fact of working with natural waters makes the interpretation of the results even more 

difficult, due to a diverse of confounding factors (e.g. competition, predation, toxin 

concentrations). Moreover, from the results obtained in the bioassays it is not possible 

to define a range of values about the ecological state of the water body. On the other 

hand, the use of species from different trophic levels to assess water quality, may provide 

more realistic scenarios and results, since different species have different water 

sensitivities. Burton & Macperson (1995) already demonstrated that species metabolic 

processes respond differently to the same stress, providing additional and 



FCUP 
Evaluation of Aguieira Reservoir Water Quality: insights into parameters in addition to the Water Framework Directive 

29 

 

complementary information. In addition, sensitive bioassays provide faster data when 

compared to chemical compound determination and community characterization.   

Table 5 Classification of ecological potential for each site in each sampling according to WFD. Results of 
the sensitivity of zooplankton and bioassays in the evaluation of Aguieira reservoir water body. Sampling 
sites: A1, A2, A3 and A4. (+ present sensitivity; + / - present some sensitivity; - no sensitivity). 

 A1 A2 A3 A4 
 autumn spring autumn spring autumn spring autumn spring 

Physical and 
chemical 

parameters 
Good Good Good Good Moderate Moderate Good Good 

Specific 
pollutants and 

priority 
substances 

Good/ 
Excellent 

Good/ 
Excellent 

Good/ 
Excellent 

Good/ 
Excellent 

Good/ 
Excellent 

Good/ 
Excellent 

Good/ 
Excellent 

Good/ 
Excellent 

Biological 
parameters 

Moderate Moderate Moderate Good Bad Good Moderate Moderate 

         

Ecological 
Potential 

Moderate Moderate Moderate Good Bad Moderate Moderate Moderate 

         

Zooplankton + + + + + + + + 
         

Bioassays         

R. subcapitata + - + - + - + - 

D. magna + + / - + + / - + + / - + + / - 

D. longispina + / - + / - + / - + / - + / - + / - + / - + / - 

S. polyrhiza + - + - + - + - 
         

Pigments of 
S. polyrhiza 

- - - - - - - - 

+ the parameter presented sensitivity for the evaluation of the water body. 
+ / - the parameter presented some sensitivity for the evaluation of the water body. 
- the parameter did not present sensitivity for the evaluation of the water body. 
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4. Conclusion 

Based on the WFD metrics, our results showed that the Aguieira reservoir was, in 

general, characterized by having a poor ecological potential, especially in autumn when 

it revealed the worst results (Table 5). These results were a consequence of a low quality 

of biological parameters, especially the phytoplankton, due to the occurrence of 

cyanobacterial blooms and the Ptotal concentration, recorded in levels higher than the limit 

imposed by law specially in site A3. 

For the other ecological parameters and tools, not considered in the WFD metrics 

(Table 5), only the zooplankton community analysis showed sensitivity in the water body 

evaluation. The bioassays with R. subcapitata and S. polyrhiza presented sensitivity only 

in the autumn sampling, unlike the D. longispina and D. magna assays showed some 

sensitivity in both samples. The analysis of S. polyrhiza pigments did not discriminate 

the water quality of Aguieira reservoir. 

Further research is needed in order to better understand the effects of waters 

from reservoirs have on the standard organisms in the bioassays. In D. magna and D. 

longispina assays, quantification of biomarkers such as oxidative stress biomarkers 

should be considered. In the S. polyrhiza assay, biomarkers quantification (e.g. 

malondialdehyde content, proline content), quantification of fresh weight as well as final 

dry weight might be important parameters for the assessment of water quality. Regarding 

the zooplankton community, the quantification of biomass by species may also be 

another important factor on the status of this community, as the analysis of others groups 

of zooplankton such rotifers. Furthermore, bacterioplankton should not be neglected as 

it is of great added importance in mineralization of organic matter and in zooplankton 

diet, which may explain the results obtained by the zooplankton composition of functional 

groups (Geller & Müller, 1981). Also important is the ichthyofauna composition, some of 

which are predators of large cladocerans leading to the existence of a top-down pressure 

in the trophic chain. Moreover, the quantification of specific biomarkers (e.g. enzymatic 

systems of detoxification;  neurotransmission biomarkers) in local ichthyofauna can 

provide more information about the state and pressures on the ecosystem. Another point 

of view, and in order to complement the whole ecosystem assessment, the composition 

of the surrounding landscape should be analysed in order to understand the potential 

external contributions that may influence the quality of the water body. 

  

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/detoxification
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6.  Appendix 
 

Table A1 Results of statistic analyse of one-way ANOVA and Kruskal – Wallis ANOVA (*) for the bioassays, 
carotenoids and Chl a+b. Sampling sites: A1, A2, A3 and A4. 

   d.f. F P 

R. subcapitata 

autumn 

A1 3, 11 70.06 < 0.001 
A2 3, 11 29.68 < 0.001 
A3 3, 11 6.95 0.007 
A4 3, 11 25.07 < 0.001 

spring 

A1 3, 15 185.40 < 0.001 
A2 3, 15 173.30 < 0.001 
A3 3, 15 131.50 < 0.001 
A4 3, 15 261.00 < 0.001 

D. longispina 

autumn 

A1 3, 9 8.04 0.007 
A2 3, 12 9.87 0.002 
A3 3, 15 15.90 < 0.001 
A4 3, 14 23.40 < 0.001 

spring 

A1 3, 14 40.80 < 0.001 
A2 3, 14 8.46 0.002 
A3 3, 14 105.80 < 0.001 
A4 3, 13 8.47 0.002 

D. magna 

autumn 

A1 3, 11 6.34 0.009 
A2 3, 12 9.06 0.002 
A3 3, 13 21.53 < 0.001 
A4 3, 14 8.26 0.002 

spring 

A1 3, 14 6.03 0.007 
A2 3, 12 259.10 < 0.001 
A3 3, 13 58.62 < 0.001 
A4 3, 14 18.95 < 0.001 

S. polyrhiza 

autumn 

A1 3, 16 5.29 0.010 
A2 3, 16 14.02 < 0.001 
A3 3, 15 10.82 < 0.001 
A4 3, 15 6.59 0.005 

spring 

A1 3, 16 42.04 < 0.001 
A2 3, 14 21.73 < 0.001 
A3 3, 16 21.58 < 0.001 
A4 3, 15 41.60 < 0.001 

Carotenoids 

autumn 

A1 3, 16 98.47 < 0.001 
A2 3, 16 23.93 < 0.001 
A3 3, 16 33.80 < 0.001 
A4 3, 16 46.14 < 0.001 

spring * 

A1 3, 16 14.10 0.003 
A2 3, 16 15.19 0.002 
A3 3, 15 15.30 0.002 
A4 3, 15 14.29 0.003 

Chl a+b 

autumn 

A1 3, 16 93.20 < 0.001 
A2 3, 16 36.26 < 0.001 
A3 3, 16 55.93 < 0.001 
A4 3, 16 86.63 < 0.001 

spring * 

A1 3, 16 15.01 0.002 
A2 3, 16 15.31 0.002 
A3 3, 16 15.49 0.002 
A4 3,14 13.21 0.004 

 

 


