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Abstract

The initial objective of this thesis was to study the angle dependence of the spectrum for
the regions of dominant AA-stacking in twisted bilayer graphene using a continuum method.
These regions are hexagonal, which means that we must first find a way to solve the Dirac-Weyl
equation in polygonal enclosures.
Due to the inexistence of analytical solutions of partial differential equations for most polygo-

nal enclosures, we replicate a method used originally in the study of flexural vibrations of regu-
lar polygonal plates. With this method, we obtain the low-energy eigensystem of Schrödinger’s
equation in polygons with hard boundaries, which we compare to existing exact theoretical
results, and to numerical diagonalization of the Laplacian operator.
To address the spectrum of the Dirac-Weyl equation in finite regions, we first review pos-

sible types of boundary conditions and generalize the polynomial method for two component
spinors. We were able to replicate an exact solution for a triangular flake with boundary
conditions such as found in graphene zigzag edges. We found, however that this is a very
special case, essentially equivalent to the solution of Schrödinger’s equation. We also studied
hexagonal and square shaped flakes with more general boundary conditions, which constitute
a non-trivial generalization of the polynomial method for two-component spinors.

Resumo

Esta tese tinha como objectivo inicial o estudo da dependência angular do espectro para as
regiões de stacking-AA dominante em grafeno twisted bilayer, utilizando para isso um modelo
de contínuo. Estas regiões são hexagonais, o que cria a necessidade de encontrar um métod
para a resolução da equação de Dirac-Weyl em regiões poligonais.
Devido à inexistência de soluções analíticas de equação diferenciais ás derivadas parciais

para a maior parte das regiões poligonais, replicamos um método utilizado originalmente
para o estudo de vibrações flexurais de placas poligonais encastradas. Com este método
conseguimos obter o sistema-próprio da equação de Schrödinger em polígonos com fronteiras
rígidas, soluções estas que comparamos com os resultados teóricos existentes, assim como com
diagonalização numérica do operador Laplaciano.
Para tratar o espectro da equação de Dirac-Weyl em regiões finitas, começamos por rever

as condições fronteira possívels, assim como generalizar o método polinomials para spinors de
dois componentes. Reproduzimos uma solução exact para um floco triangular com condições
fronteira como as encontradas em flocos de grafeno com fronteiras em zigzag. Concluímos, no
entanto, que este se trata de um caso especial, essencialmente equivalente à solução da equação
de Schrödinger. Também estudamos os flocos hexagonais e quadrados com condições fronteira
mais gerais, que constituem uma generalização não-trivial do método polinomial para spinors
de dois componentes.

Keywords: graphene, twisted bilayer, Dirac-Weyl, continuum, zero-energy, Schrödinger,
polynomial, edge-states
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1. Introduction

1.1. A Brief Overview of the Existing Literature and Our
Motivations

Ever since the discovery and isolation of graphene in 2004 by Geim and Novoselov [1, 2],
this material has been the focus of many theoretical and experimental studies. In particular,
the Dirac-cone structure that gives graphene massless fermions [2], leading to both fractional
[3] and unconventional integer [4, 5, 6] quantum Hall effects, ultrahigh carrier mobility, and
many other novel and interesting phenomena. In 2007 and 2012, Lopes dos Santos, Peres,
and Castro Neto [7, 8] discussed the renormalization of the Fermi velocity in twisted bilayer
graphene for low twist angles using a continuum model, as well as the the relation between
discrete energy levels at zero in regions of dominant AA-stacking (regions which display a
clear hexagonal structure) and the appearance of strong localization and dispersionless bands.
In these articles, the authors stated by reviewing with a more symmetry based approach the
geometric conditions for the presence of a commensurate structure, which is defined by the
appearance of a periodic moiré superlattice. These geometric conditions had previously been
considered by both Mele [9], and Shallcross et al [10]. The authors formulate the continuum
model by spatially-modulating the interlayer hoppings, which allows them to analytically define
its Fourier components, valid for small angles and any type of structure (commensurate or not).
Other authors also tackled the problem of the continuum model of twisted bilayer graphene,
among which we salient Bistritzer and MacDonald [11] that first measured the oscillations of
the Fermi velocity at the magic angles, and Shallcross et al [12].

More recently, the focus in twisted bilayer graphene has reemerged with the discovery of
superconducting states (with a critical temperature up to Tc ∼ 1.7K) at very specific angles
[13]. Among all the articles that attempt to explain this phenomena, we will emphasize works
from Peltonen et al [14], Lin and Tománek [15], Moon and Koshino [16], Zhang [17], and
Tarnopolsky et al [18], works which we will now briefly summarise.
Peltonen et al [14] utilize the previously mentioned continuum model’s Hamiltonian to first

study the normal state at low energy. Following from that, they introduce a Coulomb pseudo-
potential in a BCS-type [19] mean field model, with which the authors are able to derive
a self-consistency equation. This equation allows them to find a critical value for the order
parameter and, therefore, the mean-field critical temperature. This allows them to put an
upper bound on the transition temperature from 3K to 20K.

Lin and Tománek [15] construct a tight-binding Hamiltonian considering only three param-
eters extracted from both monolayer graphene and untwisted bilayer graphene. With this
model, the authors are able to reproduce the electronic structure of twisted bilayer graphene,
including the value of the first angle where the bands at the Fermi energy flatten (without an
overlap) and two gaps open, one on either side. The authors were also able to predict the next
two angles where this phenomena occurs again.
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2 1.1. A Brief Overview of the Existing Literature and Our Motivations

Moon and Koshino [16] utilize a tight-binding Hamiltonian similar to that of Tománek, in
which they introduce a uniform perpendicular magnetic field. The authors work through the
process of Peierls substitution [20], through which they are able to write the tight-binding
wavefunctions and diagonalize the Hamiltonian matrix. They finally study the energy spec-
trum, Hall conductivity and the band structure for several commensurate angles, as well as
describing the evolution from the semi-classical Landau levels to the fractal band structure,
for which they obtain the minimum magnetic field (as a function of the angle) required for its
formation.
Zhang [17] starts again by taking the continuum limit and recapitulating the moiré band

structure. With this model, the author focuses on the spatially modulated Dirac mass term
that appears from the interlayer hopping part of the Hamiltonian. This term generates a vortex
structure around the center of specific stacking regions, which form an emergent honeycomb
lattice. Projecting the Dirac Hamiltonian onto the subspace of the zero-energy states (zero
modes), the author obtains a tight-binding model on the emergent honeycomb lattice. Using
this effective Hamiltonian of the low-energy moiré band (which becomes extremely flat at the
magic angle), given by a Hubbarb model [21], the author is able to derive the existence of a
Mott insulating phase [22].
Tarnopolsky et al [18] start also from a continuum model, with which they solve the zero-

mode Dirac equation [23], finding that at exactly at the magic-angles (where the wavefunction
is zero at the center of BA-stacking regions) the obtained wave functions of the flat band
satisfy the zero-mode equation in the entire moiré Brillouin Zone and become localized in the
AA-stacking regions. The authors then study the dependence of the Fermi velocity on the
twist angle, which leads them to do perturbation theory in 1

θ (θ being the twist angle). This
perturbation theory reveals a certain periodicity in the magic angles, as well as a calculated
first magic angle extremely close to the one that is measured experimentally.
As the AA-stacking regions of twisted bilayer graphene appear to be fundamental in under-

standing the physics of this material, the focus of this thesis will be the development of an
analytical method to obtain their spectrum, using a continuum model. This method may be
adapted for other purposes in the future, for example including the presence of a magnetic
or electric field. As these regions are hexagonal, we will first attempt to find a way of solv-
ing differential equations on these sorts of polygonal enclosures. This proved to be quite a
challenge, as we were unable to find any exact solutions of the Dirac-Weyl equation [23, 24]
in bidimensional enclosures taking into account different boundary conditions in the existing
literature.
We found, however, a solution based on numerical integration of partial differential equations

in an article by Zarenia et al [25]. For us to be able to analyze and reproduce this article, we
would need to find a way to write functions that obey the necessary boundary conditions. As
such, we first tackle Schrödinger’s equation [26] as it is simpler to both visualize and impose
boundary conditions.
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1 Introduction 3

1.2. Structure of this thesis

The second chapter begins by attempting to solve Schrödinger’s equation in polygonal plate
enclosures. This method is necessary because, while some enclosures are trivial due to the
simplicity of performing separation of variables (square and circle, for example), others are
not so simple and require an intensive use of the group symmetries (the triangle [27], for
example), and for others like the hexagon no exact solution was found in the literature. To
obtain the spectrum of these non-trivial enclosures, we first attempt several approaches before
settling on the orthogonal plate function method, introduced by Liew and Lam [28], and Bhat
[29]. Using this technique, we first test it against the purely academic 1-dimensional infinite
potential well, with which we can verify its validity and rate of convergence. Afterwards,
we use its 2-dimensional generalization to compare against the exact results for the square
infinite potential well, as well as testing a pre-diagonalization approach by taking advantage
of the symmetries of the enclosure in question. We apply this technique to find the spectrum
for an hexagonal infinite well, which we compare against both the solutions from numerical
integration and the group symmetry separation method. To close the chapter, we study the
evolution of the spectra from the polynomial method as a function of the number of sides of
the enclosing polygon.
In the third chapter we begin by generalizing the orthogonal plate functions method so that

we can use it to work with Dirac billiards. For that, we begin by solving the 1-dimensional case
for arbitrary boundary conditions, which we then use to test the validity of the new method.
We also discuss the necessary changes when treating a boundary with generic orientation and
boundary conditions. Afterwards, we review Gaddah’s [30] solution for the triangular Dirac
billiards with boundary conditions equivalent to zigzag in the discrete. Following from this,
we utilize a modified version of our polynomial method developed for the Schrödinger problem
to obtain the spectrum and some of the lowest-energy eigenfunctions. After that, we work on
writing the Dirac-Weyl equation in polar coordinates so that we can treat the circular well
with infinite mass confinement boundary conditions.
In the fourth chapter, we utilize the polynomial approach to study the square with infinite

mass confinement in all of the edges. We study the convergence of the spectrum, and utilize the
Helmholtz equation to obtain the low-energy eigenfunctions. We then discuss the possibility
of having zero-energy states for the Dirac equation in a polygonal-enclosure.
In the fifth and final chapter, we return to the problem of graphene. After numerically

integrating the Dirac equation, we discuss the origin of exactly-zero energy states in tight-
binding models. We then discuss the validity of Zarenia et al [25]’s results. Following from that,
we apply the polynomial method for the zigzag-boundary hexagon and obtain its spectrum.
We then utilize the Helmholtz equation in the same system, where we obtain matching results.
Finally, we discuss the similarities between the results for the triangle and the hexagon, and
the equivalence of the two systems.
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2. Classical Regime: Schrödinger’s
Equation

We want to find a method of obtaining the low energy spectrum of an arbitrary (convex polyg-
onal) plane enclosure with Schrödinger’s equation. For that, we start by solving Schrödinger’s
equation in polar coordinates for the circle, where we find the well-known solutions given by
the Bessel Functions of the first kind [31].
Secondly, we attempt a decomposition of the enclosure into triangular wedges to simply the

treatment and facilitate the imposition of boundary conditions. After several manipulations
of the resulting equations, we arrive at the conclusion that we are simply doing a polynomial
fit and that there must be a simpler way of doing so.
After that, we apply the technique introduced by Liew and Lam [28] to the 1D infinite well,

where we find very quick convergence between this polynomial method and the exact result.
Following that, we compare the polynomial results for the square well with the exact energy
levels for different basis sizes in order to better study the convergence of this method. Finally,
we use this technique to obtain the spectrum of the hexagonal well. We also generate the
higher order polynomials for each 2D enclosure using their intrinsic symmetries, which allows
for a much faster calculation of the spectrum due to the orthogonality of different irreducible
representations (which diagonalizes the Hamiltonian matrix by blocks and significantly speeds
up the calculation of its eigenvalues).

2.1. Schrödinger’s Equation in Polar Coordinates

Starting from the regular expression of the time-independent Schrödinger’s equation for the
free particle (V (r) = 0),

− ~2

2m
∇2ψ (x, y) = Eψ (x, y) (2.1.1)

we need to re-write the Laplacian operator in polar coordinates

∇2f =
∂2f

∂r2
+

1

r

∂f

∂r
+

1

r2

∂2f

∂θ2
(2.1.2)

By direct substitution in Schrödinger’s equation, we get

− ~2

2m

[
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2

]
ψ (r, θ) = Eψ (r, θ) (2.1.3)

To solve this, we assume a complete set of functions that will have the form

ψm (r, θ) = Rm (r) Θm (θ) (2.1.4)
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2 Classical Regime: Schrödinger’s Equation 5

with
Θm (θ) = eimθ (2.1.5)

This gives us

−~2

2m

[
∂2Rm (r)

∂r2
Θm (θ) +

1

r

∂Rm (r)

∂r
Θm (θ) +

Rm (r)

r2

∂2Θm (θ)

∂θ2

]
= ERm (r) Θm (θ) (2.1.6)

Defining k2 = 2mE
~2 , and dividing by ψ, we get the two equations

∂2Θm (θ)

∂θ2
+m2Θm (θ) = 0 (2.1.7)

∂2Rm (r)

∂r2
+

1

r

∂Rm (r)

∂r
+

(
k2 − m2

r2

)
Rm (r) = 0 (2.1.8)

The solutions of the Θ equation are of the form e±imθ, and are single-valued only if m is an
integer. This quantum number is the Lz angular momentum.

The radial equation is a very well-known equation in mathematical physics, the Bessel
equation. We must solve it with two conditions:

1. The wave function must vanish at the wall (r = a);

2. The wave function must be finite at r = 0.

Fortunately, the Bessel equation has been thoroughly studied and its solutions are well known.
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6 2.1. Schrödinger’s Equation in Polar Coordinates

2.1.1. Energy Spectrum

As we saw previously, the solutions for Schrödinger’s equation in this boundary are just

ψm (qr) = eimθJm (qr) (2.1.9)

where Jm are the same Bessel functions as before. We want to find the zeros of these functions
for a specific r = R to satisfy boundary conditions. The order of the zero will be closely related
to number of nodes of the function. As the exponential will only create sinusoidal oscillations
around the circular boundary (breaking the θ symmetry and creating an angular modulation of
these modes), and we want the zeros of the modulus, we can focus only on the Bessel function
itself, i.e. finding qR so that

Jm (qR) = 0 (2.1.10)

Looking at four values of m ∈ [0, 3] (just for visualization) for the same range of qR as we
used before, we obtain Figure 2.1.1:
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Figure 2.1.1.: (Left) Plot of Jm with m ∈ [0, 3]

(Right) Energy Spectrum in units of ~2
2m

(
π
2

)2.
From this, we get the expected energy levels for the circular infinite potential well with

Schrödinger’s equation:

En,m =
~2

2m

(
kn,m
R

)2

(2.1.11)

where kn,m = (qR)n,m is the nth zero of the Bessel function Jm (qR).
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2 Classical Regime: Schrödinger’s Equation 7

2.1.2. Fourier Shape Transform

Suppose we have a region with a boundary defined by r (θ) and want to find the spectrum
of a free particle confined to such a region, i.e. with boundary condition ψ (r(θ), θ) = 0. Let
us write r (θ) = cρ (θ), where c is some length scale characteristic of the enclosure and ρ a
dimensionless function.
The wave function will be a superposition of plane waves with a given energy E

ψ(r, θ) =

∫ 2π

0
dϕf(ϕ)ei

−→q ·−→r (2.1.12)

where q in the case of Schrödinger’s equation is

q =
√

2mE/~2 (2.1.13)

In polar coordinates, we have

−→q · −→r = qr (cosϕ cos θ + sinϕ sin θ) = qr cos (ϕ− θ) (2.1.14)

To impose the boundary condition∫ 2π

0
dϕf (ϕ) eiqr(θ) cos(ϕ−θ) =

∫ 2π

0
dϕf(ϕ)eiqcρ(θ) cos(ϕ−θ) = 0 (2.1.15)

A complete set of functions of ϕ is

g (ϕ) =
∑
m

gme
imϕ (2.1.16)

where

gm =
1

2π

∫ 2π

0
dϕg (ϕ) e−imϕ (2.1.17)

For a function of two angular variables,

g (θ, ϕ) =
∑
m,n

gn,me
inθeimϕ (2.1.18)

where gn,m is the 2D-analogous of the previous Fourier amplitudes,

gn,m = (2π)−2
∫ 2π

0

∫ 2π

0
dϕdθg (θ, ϕ) e−inθe−imϕ (2.1.19)

As such,

ψ (r (θ) , θ) =
∑
m

gm

∫ 2π

0
dϕeimϕeiqcρ(θ) cos(ϕ−θ) =

∑
m,n

gmhn,−m (qc) einθ = 0 (2.1.20)

where

hn,m (qc) =

∫ 2π

0
dθ

∫ 2π

0
dϕe−inθe−imϕeiqcρ(θ) cos(ϕ−θ) (2.1.21)
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8 2.1. Schrödinger’s Equation in Polar Coordinates

The boundary condition is ∑
m

hn,−m (qc) fm = 0 (2.1.22)

The homogeneous linear equation (Equation 2.1.21) must have a non-zero solution given by a
linear combination of the coefficients fm. The eigenvalues are determined by the zeros of the
determinant of the matrix hn,m (qc),

dethn,m (qc) = 0 (2.1.23)

This matrix is infinite, but we can assume an approximation with a finite dimension and check
the evolution of the eigenvalues as the basis size increases.
To parameterize the edges of regular polygon as a function of only θ, we want to write r (θ) =

cρ (θ). To do this, we take the Fourier shape transform [32] of the polygon to parameterize
the edge. This transform has the coefficients

αj m+b =

(
m

π (jm+ b)
sin
( π
m

))2

(2.1.24)

where j is the summation index, m is the number of sides and b describes how the vertexes
are connected (basically connecting the bth neighbors). As such, we have the truncated series
up to order k

ρk (θ) =

∣∣∣∣∣∣
k∑

j=−k
αj m+be

i(jm+1)θ

∣∣∣∣∣∣ (2.1.25)

The +1 in the exponent can be factorized, as it has no dependence on the sum. Taking it out
of the sum, its modulus is just 1 so it vanishes.

ρk (θ) =

∣∣∣∣∣∣
k∑

j=−k
αj m+be

i(jm)θ

∣∣∣∣∣∣ (2.1.26)

This expression clearly displays a θ → θ+ 2π
m symmetry: by direct substitution, the new factor

will just be ei2π·j = 1. A comparison of this series approximation is visible in Figure 2.1.2.

Figure 2.1.2.: Fourier shape transform of an hexagon with k = 1 (left) and k = 8 (right).
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2 Classical Regime: Schrödinger’s Equation 9

By manipulating Equation 2.1.21, and defining α = φ− θ, we find that

hn,m (qc) =

∫ 2π

0
dθ

∫ 2π

0
dϕe−inθe−imϕeiqcρ(θ) cos(ϕ−θ)

=

∫ 2π

0
dθ

∫ 2π

0
dαe−inθe−imθe−im(ϕ−θ)eiqcρ(θ) cos(ϕ−θ)

=

∫ 2π

0
dθe−inθe−imθ

∫ 2π

0
dαei(−mα+qcρ(θ) cos(α))

=
1

2π

∫ 2π

0
dθe−i(n+m)θJ−m [qcρk (θ)] (2.1.27)

What we want to find are the zeros of

det [hn,m (qc)] = det

[
1

2π

∫ 2π

0
dθe−i(n+m)θJ−m [qcρk (θ)]

]
(2.1.28)

Unfortunately, this method failed to provide a spectrum that was satisfactory for any matrix
size tested. As such, we need to find a different method to treat the edges.

2.1.3. More Suitable Coordinates?

Suppose now that we want to solve Schrödinger’s equation in a wedge with θ ∈
[
−π
n ,

π
n

]
and

x ∈ [0, a] with periodic boundary conditions ψ
(
x,−π

n

)
= ψ

(
x, πn

)
and ψ (a, θ) = 0, where n

is the number of sides of the polygon we want to decompose in triangular wedges, as seen in
Figure 2.1.3.

Figure 2.1.3.: Triangular wedge with the new coordinate system.
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10 2.1. Schrödinger’s Equation in Polar Coordinates

Defining a new coordinate system from the usual polar coordinates, we have

x = r cos θ

φ = θ (2.1.29)

with the inverse transformation

r =
x

cosφ

θ = φ (2.1.30)

In these new coordinates, the boundary conditions for s-type states (invariant under rotations)
are exactly the ones we are looking for:

ψ (a, φ) = 0 (2.1.31)

ψ
(
x,−π

n

)
= ψ

(
x,
π

n

)
(2.1.32)

We, however, lost the orthogonality between the coordinates. Therefore, we need to find the
metric. In polar coordinates, the invariant interval is

ds2 = dr2 + r2dθ2 (2.1.33)

Rewriting the infinitesimal segments in our new coordinates, we have

dr =
1

cosφ
dx+

x sinφ

cos2 φ
dφ (2.1.34)

by direct substitution, we get

ds2 =
1

cos2 φ
dx2 + 2

x sinφ

cos3 φ
dxdφ+

(
x2 sin2 φ

cos4 φ
+

x2

cos2 φ

)
dφ2

=
1

cos2 φ

[
dx2 + 2x tanφdxdφ+ x2

(
1 + tan2 φ

)
dφ2
]

(2.1.35)

The metric tensor can be obtained from this equality remembering that

ds2 = gµνdx
µdxν (2.1.36)

which gives us

gµν =
1

cos2 φ

[
1 x tanφ

x tanφ x2

cos2 φ

]
The inverse of this tensor, which we need to obtain the Laplacian operator, is given by

gµν =

[
1 − cosφ sinφ

x
− cosφ sinφ

x
cos2 φ
x2

]
(2.1.37)

10



2 Classical Regime: Schrödinger’s Equation 11

which, by direct application, gives us the expected result

gµρgρν = δµν (2.1.38)

With this, the Laplacian operator is obtain directly from its definition

gµν∂µ∂ν = ∂2
x −

2 sinφ cosφ

x
∂x∂φ +

cos2 φ

x2
∂2
φ

= ∂2
x −

sin (2φ)

x
∂x∂φ +

cos2 φ

x2
∂2
φ (2.1.39)

The problem we are now solving is

− ~2

2m

[
∂2
x −

sin (2φ)

x
∂x∂φ +

cos2 φ

x2
∂2
φ

]
ψ (x, φ) = Eψ (x, φ) (2.1.40)

with boundary conditions

ψ (a, θ) = 0

ψ
(
x,−π

n

)
= ψ

(
x,
π

n

)
(2.1.41)

The solution has the form

ψ (x, φ) =
∑
p

fp (x) eipnφ, p ∈ Z (2.1.42)

and the functions of x satisfy the boundary condition

fp (a) = 0 (2.1.43)

The fundamental question now is: can we find a reasonable answer with a variational func-
tion

ψ (x, φ) =
N∑
p=0

cp [xpn (a− x)]
(
eipnφ + e−ipnφ

)

=
N∑
p=0

cpϕ (x, φ) (2.1.44)

by choosing the coefficients cp? These fp functions are chosen for two reasons:

• they are zero at x = a, thus enforcing automatically the boundary condition of Equation
2.1.31;

• they present the same asymptotical behaviour has the Bessel functions (which we know
are the solutions for the circular well) in the neighbourhood of x = 0.

As these functions are bounded and will converge quickly (since they behave like Bessel func-
tions near the origin), we do not need to use an unreasonably large N to have their full
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12 2.1. Schrödinger’s Equation in Polar Coordinates

behaviour. We now want to find the energy levels for these wave functions. Applying each
one of the derivatives of the Laplacian operator to ψs, we have that

∂2
xψs (x, φ) =

N∑
p=0

apn−1cp

[
pn (pn− 1)

(x
a

)pn−2 (
1− x

a

)
− 2pn

(x
a

)pn−1
](
eipnφ + e−ipnφ

)
(2.1.45)

∂x∂φψs (x, φ) =

N∑
p=0

apncp

(x
a

)pn−1 [
pn
(

1− x

a

)
− x

a

] [
ipn

(
eipnφ − e−ipnφ

)]

∂2
φψs (x, φ) =

N∑
p=0

apn+1cp

(x
a

)pn (
1− x

a

)
(ipn)2

(
eipnφ + e−ipnφ

)
Multiplying by each respective geometric factor, we get

∇2ψs (x, φ) =

N∑
p=0

apn−1cp

{[(
pn (pn− 1)

(x
a

)pn−2 (
1− x

a

)
− 2pn

(x
a

)pn−1
)(

eipnφ + e−ipnφ
)]

+

+
(x
a

)pn−1
ipn

(
eipnφ − e−ipnφ

)(
1− pn

(
1− x

a

))(ei2φ − e−i2φ
2i

)
+

1

2
·
(x
a

)pn−2 (
1− x

a

)
(ipn)2

(
eipnφ + e−ipnφ

)(
1 +

ei2φ + e−i2φ

2

)}
(2.1.46)

This expression quickly became unwieldy, and we would need to fix not only the continuity in
the φ edges, but also the continuity of the derivatives in these same edges so that we could
glue them together (even if we added an angular momentum term).
We are essentially applying a polynomial fit and then solving a functional eigenvalue prob-

lem. As such, there must be a better way to apply these same principles to a simple polynomial
model.
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2 Classical Regime: Schrödinger’s Equation 13

2.2. A “New” Approach: Orthogonal Plate Functions

The problem of vibrations of plates of different shapes has been studied intensively throughout
history [33] for many applications in different fields of engineering. The obtained results were
usually for rectangular, circular, elliptical or triangular plates as the study for more general
plates was limited due to the implicit relation between the two variables describing the plate
geometry. In 1987, Bhat [29] wrote an article describing a method of applying characteristic
polynomials to create of functions with which one can solve the eigenvalue problem for more
general enclosures. Following from that, in 1990 Liew, Lam and Chow [34] study the con-
vergence of this method for a rectangular plate by comparing the obtained vibration modes
against the exact results. Finally, in 1991, Liew and Lam [28] formalize this method for dif-
ferent boundary conditions (i.e., edges with both φ = ∇φ = 0 versus edges with just φ = 0
versus free edges) and also by taking into account the thickness of the plates, the maximum
strain for a harmonic vibration, and the rigidity of the plate.
As we will utilize this method for the study of Schrödinger’s equation, we will first test it

for the simple case of the one-dimensional infinite potential well.

2.2.1. One-Dimensional Problem

Let us first consider the well-known problem of the one-dimensional infinite potential well of
size L. Let us also suppose that we want to write the solutions to this problem as a basis that
satisfies boundary conditions. The simplest polynomial that goes to zero in the edges is just

φ1 (x) = N1x (L− x) (2.2.1)

where N1 is a normalization factor obtained simply from setting∫ 1

0
dx (φi (x))2 = 1 (2.2.2)

We now define the pre-normalization functions through Gram-Schmidt orthogonalization [31]
as

φ̃i (x) = xi−1φ1 (x)−
i−1∑
j=1

〈xi−1φ1 (x) |φj (x)〉φj (x) (2.2.3)

where the scalar product is defined as

〈f1 (x) |f2 (x)〉 =

∫ 1

0
dxf1 (x) · f2 (x) (2.2.4)

After orthogonalization, we finally normalize each function

φi (x) = Niφ̃i (x) (2.2.5)

Because every function will have a factor φ1 (x) (by construction), they will immediately satisfy
boundary conditions.
The Gram-Schmidt process ensures that each new basis function will be orthogonal to all

13



14 2.2. A “New” Approach: Orthogonal Plate Functions

previous ones. As such, we have the orthogonality condition we were looking for

〈φi (x) |φj (x)〉 = δij (2.2.6)

In this basis, the Hamiltonian matrix is

Hij = − ~2

2m

∫ L

0
dxφi (x) ·

(
∇2φj (x)

)
(2.2.7)

or, in units of ~2
2m

π2

L2 as we will use throughout this thesis,

Eij = − 1

π2

∫ 1

0
dxφi (x) ·

(
∇2φj (x)

)
and taking its eigenvalues after truncating the basis at i = 12, we get

E = {1.0000, 4.0000, 9.0000, 16.000, 25.001, 36.004, 49.451, 65.192, 98.216, 128.45, 352.31, 466.90}
(2.2.8)

As we can see, the lowest energy values match the expected ones for the one-dimensional
infinite potential well. By increasing the number of polynomials used, we get better and
better values for the higher energies.

Comparing the exact solution for the free particle in the one-dimensional box with the one
obtained from this method, we obtain convergence, which is clearly observable in Figure 2.2.1.
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Figure 2.2.1.: Exact versus Orthogonal Plate Functions energies for a basis size of 10 polyno-
mials.

With this formalism it is also simple to modify the potential. For example, in the case of

14



2 Classical Regime: Schrödinger’s Equation 15

the harmonic potential inside the confining box

Eij = − 1

π2

∫ 1

0
dxφi (x) ·

(
∇2φj (x)

)
+

1

2
mω2

∫ 1

0
dxφi (x)

(
x− 1

2

)2

φj (x) (2.2.9)

which will change the energy eigenvalues. Defining α2 = m2ω2

2~2 , we have

Eij = − 1

π2

∫ 1

0
dxφi (x) ·

(
∇2 − π2α2

(
x− 1

2

)2
)
φj (x) (2.2.10)

Looking at the energy units, one would expect to obtain the harmonic oscillator spectrum
when

1

2
mω2π2 � ~2

2m

π2

L2
(2.2.11)

which reduces simply to
α2L2 � 1 (2.2.12)

Fixing L = 1, and setting α = 100, we obtain the spectrum

E′ = {0.5007, 1.5302, 2.6756, 3.7532, 4.8532, 6.0243, 7.2103, 9.8312, 12.235, 18.247, ...}
(2.2.13)

which, dividing by 2α due to the system of units we are using, translates into roughly the
spectrum for the harmonic oscillator, visible in Figure 2.2.2. Due to the massive harmonic
potential, the lowest energy states to not “feel” the potential from the walls, which makes it
so they converge extremely quickly to the exact values.
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Figure 2.2.2.: Exact harmonic oscilator versus Orthogonal Plate Functions energies for a basis
size of 12 polynomials.
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16 2.2. A “New” Approach: Orthogonal Plate Functions

2.2.2. Two-Dimensional Problem

In the case of the two-dimensional problem, we need to write a function ψi that is analogous
to the φi that was used in the 1D case. Obtaining the initial polynomial does not present any
problems: using the same logic as before, we can write it as

ψ1 (x, y) = N1

n∏
s=1

ϕs (x, y) (2.2.14)

where n is the number of sides of the polygon and ϕs (x, y) are the line equations for the sides
of the polygon. The normalization is defined the same way as before, but now taking into
account the specific area A we are integrating over

N1 =
1√∫∫

A dxdy (
∏n
s=1 ϕs (x, y))2

(2.2.15)

These two expressions are easily generalized for any number of dimensions, having just to
integrate over the hyper-volume element instead.

The energy functional matrix will be obtained in the same way,

Eij = − 1

π2

∫∫
A
dxdyψi (x, y) ·

(
∇2ψj (x, y)

)
(2.2.16)

To generate the higher order ψs, we need to generalize Equation 2.2.3. As we did in the 1D
case, we again apply Gram-Schmidt orthogonalization

ψ̃m (x, y) = fm (x, y)ψ1 (x, y)−
m−1∑
i=2

〈fm (x, y)ψ1 (x, y) |ψi (x, y)〉ψi (x, y) (2.2.17)

where the scalar product is the same as the one used before, but now in 2 dimensions:

〈φi (x, y) |φj (x, y)〉 =

∫∫
A
dxdyφi (x, y) · φj (x, y) (2.2.18)

The problem, now, is writing fm (x, y). The method utilized by Liew and Lam [28] sorts the
multiplying monomials fm according to the pattern{

1, x, y, xy, x2, y2, x2y, xy2, x2y2, x3, y3, x3y, xy3, x3y2, x2y3, x3y3, x4, y4, x4y, xy4, (...)
}

(2.2.19)
With this, we can define every ψm = Nmψ̃m and use it to calculate the energy spectrum for the
respective enclosure. The article mentioned above also includes a weighting function ε (x, y)
that they associate with the thickness of the plates, but they take it as being 1 as they study
uniformly thick plates. As it does not make much sense to talk about the “thickness” of a
bi-dimensional shape, we omit it (i.e., we just replace it with 1).

As Gram-Schmidt orthogonalization is highly inefficient, and scales with the basis size as
O
(
n3
)
, we would like to find a faster method. To do so, we utilize the “Orthogonalize[ ]”

16



2 Classical Regime: Schrödinger’s Equation 17

built-in method in Wolfram Mathematica R© with a list

{ψ1 (x, y) ∗ f1 (x, y) , ..., ψ1 (x, y) ∗ fn (x, y)}

where n is the size of the basis we want to create (we still need to normalize each element,
but the normalization run-time is negligible in comparison), and the intended inner product
function (in this case just the usual definition). This method is significantly faster than the
previous one, giving a ∼ 600% performance improvement for a basis with 10 functions. The
main problem with this approach is the drastically increase in memory usage (∼ 1000% more
for the same number of polynomials) which makes it completely unfeasible to expand the basis
size. As such, we will mainly use it for smaller basis sizes.
There are several significative optimizations that we can insert into this process. Despite

Gram-Schmidt orthogonalization being an inherently single-threaded procedure, we can accel-
erate it significantly by computing the sum

m−1∑
i=2

〈fm (x, y)ψ1 (x, y) |ψi (x, y)〉ψi (x, y)

in parallel. We can also greatly optimize the process of integration of the Hamiltonian matrix.
As we know this matrix to be Hermitian, we only need to integrate half of the matrix (and
the diagonal) and add its transpose. This cuts the elements that we need to calculate from
n2 to n(n+1)

2 , which is a very significant improvement. Still, the computation time of the
Hamiltonian grows as O

(
n2
)
with the basis size n. By parallelizing the sum in Equation

2.2.17, the computation time falls to about O
(
n1.5

)
.

17



18 2.3. Square Plane Enclosure

2.3. Square Plane Enclosure

2.3.1. Cartesian Coordinates

For this shape of enclosure, the solutions are trivial. As one can immediately apply separation
of variables, we just have

ψ (x, y) = sin (kxx) sin (kyy) (2.3.1)

where the bottom-left corner of the square has been defined as the origin. In the top-right
vertex (making the side of the square a), we have

ψ (a, a) = sin (kxa) sin (kya) = 0 (2.3.2)

If this condition is verified, the boundary condition in the edges x = a or y = a are immediately
satisfied. By the choice of the function basis, the edges with x = 0 or y = 0 already obey
to the desired boundary condition. Solving for kx and ky, this equation immediately gives a
quantization of kx,y

kx,y = nx,y
π

a
(2.3.3)

which, by direct application, gives the energy levels

Enx,ny =
π2

a2

(
n2
x + n2

y

)
(2.3.4)

Which reduces to the well-known spectrum of the infinite square well

E =
π2

a2
{2, 5, 5, 8, 10, 10, 13, 13, 17, 17, 18, 20, 20, 25, 25, 32, (...)} (2.3.5)

We will now compare this spectrum to the one we will obtain from the Orthogonal Plate
Functions formalism.

2.3.2. Orthogonal Plate Functions

We now want to apply the method described in Section 2.2 to this same enclosure. For
simplicity in writing the polynomials, we redefine the origin as the center of the square. The
lowest order polynomial that satisfies boundary conditions is given by

ψ1 (x, y) = N1

(
L2 − y2

) (
L2 − x2

)
(2.3.6)

Integrating Schrödinger’s equation as was described previously,

Eij = − 1

π2

∫∫
A
dxdyψi (x, y) ·

(
∇2ψj (x, y)

)
(2.3.7)

we get the ground-state’s energy
E = 2.026424 (2.3.8)

The 3D plot of −ψ1 (x, y) is visible in Figure 2.3.1, and has the shape that one would expect
given the symmetries of the enclosure in question. In Section A.1, we have the plots of ψi (x, y)

18



2 Classical Regime: Schrödinger’s Equation 19

with i ∈ [1, 8].

Figure 2.3.1.: Plot of −ψ1 (x, y) for the square enclosure.

To better analyze the convergence of this method, we want to plot the energies for different
numbers of polynomials.
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Figure 2.3.2.: Convergence of orthogonal plate functions method for different number of poly-
nomials against the exact solution.

As can be seen in Figure 2.3.2, the lowest energies obtained from the orthogonal plate
function method match almost perfectly with the exact solution starting at a very small basis
size, possibly due to the enclosure’s symmetries. It makes sense to try and generate the fm
functions taking into account the symmetries of the enclosure in question. If we do this, the
Hamiltonian will be diagonalized by blocks of each irreducible representation of the symmetry
group of the enclosure (discussed in Appendix A.2).
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20 2.3. Square Plane Enclosure

2.3.3. Orthogonal Plate Functions with C4v Group Symmetries

Seeing as we are dealing with a square enclosure, it makes sense to treat it using the symmetries
of the C4v group [35]. This group has 8 elements, and its character table is visible in Figure
2.3.3.

Figure 2.3.3.: Character table of C4v.

Here, C4 denotes rotations of ±π
2 , C2 = C2

4 , σv are the reflections on the two axis, and
σd are the reflections on the diagonal symmetry axis of the square. Defining the invariant
polynomial (the lowest order one that is zero on all boundaries) as

φ̃0 (x, y) =
(
1− x2

) (
1− y2

)
(2.3.9)

where the tilde (~) identifies an un-normalized function. The higher order polynomials will
be obtained by multiplication with a set of polynomials fn,i (x, y) that form irreducible repre-
sentations of C4v. Since φ0 belongs to A1 (is invariant under any symmetry operation), fmφ0

belongs to the same irreducible representation as fm. Here, the n denotes the order of this
polynomial, and the i is merely an identifier inside each order of polynomials. Trivially, for
n = 0 the only possible f is

f0 = 1 (2.3.10)

which belongs to A1.
For n = 1, there are only 2 possible first-degree polynomials. As we want them to be

orthogonal, we write

f1,1 = x

f1,2 = y (2.3.11)

which are elements of the irreducible representation E. With this knowledge, we can build
the higher order polynomials recursively by taking products of this representation E with the
existing lower order representations. From this point on, we will require the direct product
table for this symmetry group, reproduced in Table 2.3.4.

Figure 2.3.4.: Direct product table for C4v.

For n = 2, we want to calculate E ⊗E. Applying the basic properties of decomposition, we

20



2 Classical Regime: Schrödinger’s Equation 21

get
E ⊗ E = A1 ⊕A2 ⊕B1 ⊕B2 (2.3.12)

This presents us with a problem: there are only three 2nd order independent polynomials, but
we have four irreducible representations. It becomes clear which is the one we can ignore when
we write the three polynomials (obtained with regular multiplication of f1,1 and f1,2)

f ′2,1 = x2

f ′2,2 = y2

f ′2,3 = xy (2.3.13)

rearranging these, we get

f2,1 = x2 + y2

f2,2 = x2 − y2

f2,3 = xy (2.3.14)

which are all orthogonal amongst themselves. We can clearly see that f2,1 = x2 + y2 is
just the distance element, and is therefore obviously invariant under the action of any of the
elements of the group. As such, it belongs to A1. As f2,2 is invariant under x → −x and
y → −y transformations (i.e., the action of the two σv transformations) and changes signs
under (x, y) → (±y,±x) (i.e., the action of the two σd transformations), it must belong to
B1. As for f2,3, its properties of invariance are the inverse of those of f2,2. Therefore, it must
belong to B2. Why are there no elements in A2? For the simple reason that one cannot make
a 2nd degree polynomial that is not invariant under both σv and σd, i.e., an anti-symmetric
2nd order polynomial.

For n = 3, we again must apply E to each one of these representations. Again with the
assistance of the product table, we have that

E ⊗A1 = E

E ⊗B1 = E

E ⊗B2 = E (2.3.15)

Also, we will only have four 3rd order polynomials. The ones coming from the first product
are quite simple, as A1 is the invariant of the group:

f3,1 = x
(
x2 + y2

)
f3,2 = y

(
x2 + y2

)
(2.3.16)

Of the two remaining polynomials, one should come from each one of the remaining irreducible
representations:

f3,3 = (x+ y)
(
x2 − y2

)
f3,4 = (x+ y) (xy) (2.3.17)

21



22 2.3. Square Plane Enclosure

To see in which irreducible representation these fit, we can just apply the same procedure as
before. With that, we see that they are not invariant or anti-symmetric under either σv or σd.
As such, they can only belong to E, as expected.

Now finally onto n = 4. We are, again, applying E to itself, so we will have again Equation
2.3.12. As we are in 4th order, we will have five independent polynomials. Without any further
thought, we already know one of them:

f4,1 =
(
x2 + y2

)2 (2.3.18)

which obviously belongs to A1. Building the other fs from n = 2, we get

f4,2 =
(
x4 − y4

)
f4,3 = xy

(
x2 + y2

)
f4,4 =

(
x2 − y2

)2
f4,5 = xy

(
x2 − y2

)
f4,6 = x2y2 (2.3.19)

Unfortunately, we have one polynomial too many. Looking at the product table and at the
initial irreducible representations that were used to obtain these functions, we know that both
f4,2 and f4,6 belong in A1, along with f4,1. We can clearly see that these three functions are
not independent:

4 · f4,6 = f4,1 − f4,4 (2.3.20)

As such, the five functions will be f4,1 to f4,5, and their irreducible representations are

f4,1 → A1

f4,2 → B1

f4,3 → B2

f4,4 → A1

f4,5 → A2 (2.3.21)

We can repeat this process up to any order, and the functions will be (by construction)
orthogonal. Up to this order, the polynomials are grouped as

f0, f2,1, f4,1, f4,4 → A1

f4,5 → A2

f2,2, f4,2 → B1

f2,3, f4,3 → B2

f1,1, f1,2, f3,1f3,2, f3,3, f3,4 → E (2.3.22)

The polynomials will need to be orthogonalized amongst the same irreducible representation
between different orders, and then normalized. After that, we multiply each one by φ0 to then
insert into the energy functional and obtain the spectrum. By definition of the irreducible
representation, the Hamiltonian matrix will be diagonal by blocks of each representation.

22



2 Classical Regime: Schrödinger’s Equation 23

Applying this method, we obtain the energies

EA1 = {2.0000, 10.038, 20.691, 36.575}
EA2 = {24.317}
EB1 = {10.037, 36.571}
EB2 = {8.0123, 24.816}
EE = {5.0029, 5.0029, 14.603, 14.603, 21.328, 21.328} (2.3.23)

where the index denotes the irreducible representation of the generating polynomials. It is
quite noteworthy that some of the degenerate levels come from different irreducible represen-
tations. It makes sense that some energy levels’ degeneracy is separated between two different
representations. Let us consider, for example, the 2-times degenerate level E = 10: one of the
solutions is equivalent the expression (we are performing the expansion up to 6th order)

cos (3πx) cos (πy) + cos (πx) cos (3πy)

where the other one comes from

cos (3πx) cos (πy)− cos (πx) cos (3πy)

Clearly, the first expression has the symmetries of the representation A1, where the second
one has the ones from B1. In the case of the energy level E = 5, we have a different situation:
the two original functions are

sin (2πx) cos (πy) + cos (πx) sin (2πy)

sin (2πx) cos (πy)− cos (πx) sin (2πy)

which belong to the irreducible representation E.

This separation in irreducible representations has a few great advantages:

1. The solutions display more clearly the intrinsic symmetries of the problem at hand;

2. The computational time falls drastically: instead of diagonalizing a 15 × 15 matrix, we
are diagonalizing at most a 6× 6 one; also, we are skipping most of the Gram-Schmidt
Orthogonalization, which grows as O

(
n3
)
;

3. The degeneracy lifting due to an additional potential is more clearly seen, as most of the
degenerate levels are split between two irreducible representations.

Graphically, the spectrum translates to Figure 2.3.5.
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24 2.3. Square Plane Enclosure
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Figure 2.3.5.: Energy levels of a square infinite potential well compared between the exact
solution, the C4v block diagonalization and the “brute-force” approach.

Separating this spectrum by irreducible representations (due to the large difference in num-
ber of polynomials in each representation), we obtain Figure 2.3.6.
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Figure 2.3.6.: Energy levels C4v block diagonalization separated by irreducible representation.

We will now try to solve the hexagonal well problem, first with the “brute-force” method,
and then using the C6v symmetries.
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2 Classical Regime: Schrödinger’s Equation 25

2.4. Hexagonal Plane Enclosure

2.4.1. Orthogonal Plate Functions - Cartesian Coordinates

As we did in the case of the square enclosure, we again apply the method described in Section
2.2. The first wavefunction is

ψ1 (x, y) = N1

(
3L2

4
− y2

)[
L2 −

(
x− y√

3

)2
][

L2 −
(
x+

y√
3

)2
]

(2.4.1)

For simplicity, the side of the hexagon will be defined as 1 (we later multiply by it’s area to
get the expected results, A = 3

√
3

2 L2 where L is the side of the hexagon). N1 is calculated as
in the case of the square enclosure. The integrals over the area are performed to include only
the inside of the enclosure: ∫∫

A
dxdy →

∫ √
3

2
L

−
√
3

2
L
dy

∫ L− |y|√
3

−L+
|y|√
3

dx (2.4.2)

Integrating Schrödinger’s equation as was described previously, we get the ground-state’s
energy

E = 1.132806 (2.4.3)

The 3D plot of −ψ1 (x, y) is visible in Figure 2.4.1.

Figure 2.4.1.: Plot of −ψ1 (x, y) for the hexagonal enclosure.

In Appendix A.3 we have the plot of ψi (x, y) with i ∈ [1, 8].

Doing this calculation now with increasing order of multiplying-monomials, we obtain the
energy spectrum (considering different numbers of polynomials to perform the same compari-
son that was done for the convergence in the scenario of the square well).
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Figure 2.4.2.: Comparison of the energy levels of an hexagonal infinite potential well for dif-
ferent basis sizes with the solution from numerical integration.

As was visible in the case of the square enclosure, the lowest energy levels converge extremely
quickly, even for very small basis size. This can be clearly seen in Figure 2.4.2, where the first
3 energy levels have converged to the numerical integration solution for a basis size of 6.

2.4.2. Orthogonal Plate Functions - Hexagonal Coordinates

Cartesian coordinates are not the most natural choice to describe an hexagonal enclosure. As
such, we choose the two basis vectors

a1 = a

(
1

2
,

√
3

2

)
a2 = a

(
−1

2
,

√
3

2

)
(2.4.4)

a1a2

Figure 2.4.3.: New basis vectors.
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2 Classical Regime: Schrödinger’s Equation 27

We can describe any point as

r = x1a1 + x2a2 = xµaµ (2.4.5)

which means that both the inner domain and the boundary are easy to describe.

It is obvious that these coordinates are not orthogonal, but that is easily solvable. Taking
the inner product, we get

r · r = a2
(
x1x1 + x2x2 + 2x1x2 cos

(π
3

))
= gµνx

µxν (2.4.6)

which means that the metric is

g = a2

[
1 1/2

1/2 1

]
(2.4.7)

with inverse

g−1 = a−2

[
4/3 −2/3
−2/3 4/3

]
(2.4.8)

This means that the Laplacian is, by definition,

∇2 = gµν∂µ∂ν =
4

3a2

(
∂2

1 + ∂2
2 − ∂1∂2

)
(2.4.9)

and the area element is

d2σ =
√

det (g)dx1dx2 = a2

√
3

2
dx1dx2 (2.4.10)

Now let us look at the boundary. The six vertex coordinates are given by (starting at the
a1 vertex and going around counter-clockwise)(

x1, x2
)

= {(1, 0) , (0, 1) , (−1, 1) , (−1, 0) , (0,−1) , (1,−1)} (2.4.11)

For simplicity, we will now go back to using the notation(
x1, x2

)
→ (x, y) (2.4.12)

but we must remember that we are not working in Cartesian coordinates. The edge between
(1,−1) and (1, 0) is given by the equation

(x (λ) , y (λ)) = (1,−1) + λ (0, 1) (2.4.13)

which reduces to

x = 1

y = λ− 1 , λ ∈ [0, 1] (2.4.14)
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28 2.4. Hexagonal Plane Enclosure

Repeating this process for the other five edges, we get the equations for the six boundaries

x = ±1, y = ±1, x+ y = ±1

as such, the inner region is defined by the conjugation of the three conditions

|x| < 1, |y| < 1, |x+ y| < 1

Constructing the first polynomial that vanishes at the boundary in the same way as was
done in the case of Cartesian coordinates, we get

ψ1 (x, y) = N1

(
L2 − x2

) (
L2 − y2

) (
L2 − (x+ y)2

)
(2.4.15)

The method for generating the higher order polynomials will be in the same way as before.
The integrals over the region will now take the form∫

∑ d2σ → a2

√
3

2

∫ L

−L
dx

∫ min(L,L−x)

max(−L,−L−x)
dy (2.4.16)

As this region is invariant under a π
3 rotation, so should be the polynomials. In this coor-

dinates, a π/3 rotation is

a1 → a2 a2 → a2 − a1

which means that, for a general r

r = xa1 + ya2 → xa2 + y (a2 − a1) (2.4.17)

With this, the rotation matrix is [
x′

y′

]
=

[
0 −1
1 1

] [
x
y

]
(2.4.18)

and its inverse is [
x
y

]
=

[
1 1
−1 0

] [
x′

y′

]
(2.4.19)

As such, the transformation of any function of x, y is

f (r)→ g (r) = f
(
R−1 · r

)
= f (x+ y,−x) (2.4.20)

Applying this to our first polynomial, we get that ψ1 (x, y) is invariant under a π/3 rotation,
as expected:

ψ′1 (x, y) =
(

1− (x+ y)2
)(

1− (−x)2
)(

1− (x+ y − x)2
)

= ψ1 (x, y) (2.4.21)

Either one of these choices of coordinates must (and will) give out the same values. Hexago-
nal coordinates are more natural, while Cartesian coordinates should be faster computationally.
For comparison, we look at the energy levels for 9 polynomials in these two coordinates, as
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2 Classical Regime: Schrödinger’s Equation 29

well as the “exact” solution obtained by calculating the eigenvalues of the Laplacian operator
in Wolfram Mathematica R©

Ecartesian = {2.9084, 7.3717, 7.3718, 13.343, 13.389, 15.606, 20.888, 23.364, 32.450}
Ehexagonal = {2.9082, 7.3706, 7.3727, 13.379, 13.389, 15.587, 22.593, 22.866, 33.623}

EPDE = {2.9001, 7.3493, 7.3493, 13.155, 13.156, 15.199, 19.314, 21.344, 24.376} (2.4.22)

Finally, we compare the computational time for each other (separated between polynomial
generation and integration of the energy functional)

∆Tcartesian ∼ 1502.54 + 12243 (s) ∆Thexagonal ∼ 1273.5 + 17418 (s) (2.4.23)

It makes sense that the integration is faster in Cartesian coordinates, as in hexagonal coordi-
nates we also need to calculate crossed derivatives in the Laplacian. It is important to note
that these times were obtained without any optimizations from parallelization. The main is-
sue that comes from using hexagonal coordinates is the drastically increased memory usage
(∼ 5000% more) during the calculations, primarily due to the extra term in the Laplacian
(this extra term adds up for each order during the Gram-Schmidt orthogonalization, which
very quickly increases the necessary memory). When we add the optimizations that come
from the symmetry group to the generation of polynomials and the orthogonalization, the
computational time will surely fall drastically. Visually, these eigenvalues translate to Figure
2.4.4.
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Figure 2.4.4.: Comparison of the energy levels for the hexagonal well obtained through
both hexagonal and Cartesian coordinates, and from numerical integration of
Schrödinger’s equation.
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30 2.4. Hexagonal Plane Enclosure

2.4.3. Orthogonal Plate Functions with C6v Group Symmetries

We will now repeat the group theory treatment to this problem, but now using the C6v group
[35]. This group has 12 elements, and its character table is reproduced in Table 2.4.5.

Figure 2.4.5.: Character table of C6v.

Here, C6 denotes rotations of ±π
3 , C3 = C2

6 , C2 = C4
6 ; σv are the reflections on the three

axis that pass through the vertices, and σd are the reflections on the three axis that pass
through the faces. Defining the invariant polynomial (the lowest order one that is zero on all
boundaries) as

φ̃0 (x, y) =

(
3

4
− y2

)(
1−

(
x− y√

3

)2
)(

1−
(
x+

y√
3

)2
)

(2.4.24)

where the tilde (~) identifies an un-normalized function. As previously, the higher order
polynomials will be obtained by multiplication with a set of polynomials fn,i (x, y) that form
irreducible representations of C6v. As the treatment is entirely analogous to the one performed
for the case of the square enclosure, we have moved it to Appendix A.4.

Up to sixth order, the polynomials are grouped as

f0, f2,1, f4,1, f6,1 → A1

f3,3, f5,3 → B1

f3,4, f5,4 → B2

f1,1, f1,2, f3,1, f3,2, f5,1, f5,2, f5,5, f5,6 → E1

f2,2, f2,3, f4,2, f4,3, f4,4, f4,5, f6,2, f6,3, f6,4, f6,5, f6,6, f6,7 → E2 (2.4.25)

These polynomials will need to be orthogonalized amongst the same irreducible representation
between different orders, and then normalized. After that, we multiply each one by φ0 to then
insert into the energy functional and obtain the spectrum. This method significantly speeds
up the calculations, as we only integrate (at most) a 12× 12 matrix instead of a 28× 28 one
(considering the same total number of polynomials).

Comparing against both the results from numerical integration of Schrödinger’s equation,
as well as the results for the “brute-force” Orthogonal Plate Functions (considering the same
number of polynomials), we can see (Figure 2.4.6) that taking into account the symmetries
of the enclosure allows the eigenvalues to remain closer to the solution obtained by partial
differential equation numerical integration up until a higher eigenvalue index.

30



2 Classical Regime: Schrödinger’s Equation 31
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Figure 2.4.6.: Comparison of the energy levels for PDE numerical integration, C6v symmetry
analysis and “brute-force” orthogonal plate functions.

It makes sense why the C6v spectrum is different from the standard OPF method, as the
group symmetry approach goes in crescent order of multiplying polynomial, which is a different
ordering procedure than the one used by Liew and Lam [28]. We plot the different irreducible
representations separately in Figure 2.4.7 so that we can better understand the number of
polynomials used in each point of the figure.
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32 2.5. Increasing the Number of Sides

2.5. Increasing the Number of Sides

As a final analysis of the Schrödinger problem, one interesting point is the comparison of the
spectra of these enclosures while keeping the area constant. Starting by the triangle, where
we have an analytical solution by both Li and Blinder [36], and Gaddah [27], we increase the
number of sides to the square, then the hexagon and finally the circle, as it is equivalent to
the limit of the number of sides going to infinity. The polynomial treatment for the triangle
is analogous to the previous examples, so we will not include it.
As we define the integration region as a function of the length of a side, it is useful to write

the area as a function of this same length. For a regular n-sided polygon, the area is given by

An =
L2

4
× n

tan
(
π
n

) (2.5.1)

Fixing A = 1, we obtain (expanding in Taylor series for large n)

L2 = 4×
tan

(
π
n

)
n

≈ 4
π

n2
+

4

3

π3

n4
+ ... (2.5.2)

We now have all that we need to analyze the evolution of the spectrum as we increase the
number of sides while keeping the area constant. Considering a basis size of 91 for the three
polygons (truncating at the 45th eigenvalue so that we only compare values that have almost
converged), we obtain Figure 2.5.1.
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Figure 2.5.1.: Comparison of the energy levels for different numbers of sides (with constant
area).
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As we can see, the energy eigenvalue decrease with the number of sides of the polygon. This
makes sense, as we are converging towards the result for the circle. Plotting the evolution of
the first three different eigenvalues as a function of 1

n , we obtain Figure 2.5.2.

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35

(Number of Sides)
-1

0

10

20

30

40

50

60

70

80

E
n
er

g
y 

(h_
2
/2

m
)

First Eigenvalue

Second Eigenvalue

Fourth Eigenvalue

Figure 2.5.2.: Comparison of the first three different energy levels as a function of the inverse
of the number of sides of the polygon.

2.6. Final Considerations

As we have seen in these previous chapters, this method works extremely well, and has rea-
sonably fast convergence. We have been able to replicate the exact solution for both the case
of the square well as well as the 1D well with great accuracy. After verifying the validity
of this method with those well-known cases, we obtained the low-energy eigenvalues for the
hexagonal well, which match closely with the ones obtained by numerical integration of the
Laplacian operator. We have also verified the possibility of pre-diagonalizing the Hamiltonian
matrix by taking into account the different irreducible representations of the point-group that
represents the intrinsic symmetries of the spacial enclosure in question.
We analyzed the behaviour of the spectra as the number of sides was increased, obtaining

the quick convergence towards the eigenvalues of the circular well problem (i.e., the zeros of
the Bessel functions).
Having closed this part, the fundamental question now is “Can we apply the Orthogonal

Plate Function method to a problem that has an intrinsic spinorial behaviour?”
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3. Relativistic Regime: the Dirac-Weyl
Equation

Having solved the classical problem, we now want to jump to electron in graphene, where
they are governed by the Dirac-Weyl equation. As such, we must find a way to generalize this
polynomial method to generalize this method for spinorial particles.
First, we will discuss boundary conditions, extending the orthogonal plate function method

to Dirac billiards, and we will solve some illustrative examples of 1D billiards with different
boundary conditions.
Next, we will review the treatment performed by Gaddah [30] of the triangular billiard

by means of the C3v symmetry, which we replicate using the Helmholtz equation and our
polynomial method.
Finally, we will study the Dirac-Weyl equation in polar coordinates, where we will look at

the necessary conditions for the existence of confined states in a circular enclosure and the
spectrum of such an enclosure.

3.0.1. Dirac-Weyl Equation in Graphene – General Hamiltonian

In graphene, electrons behave as ultra-relativistic massless particles near the Dirac points K
and K′ [2]. The low-energy effective Hamiltonian near these points is given by

H =

(
HK 0
0 HK′

)
(3.0.1)

where

HK = ~vFσ · p
HK′ = ~vFσ∗ · p (3.0.2)

and σ represents the Pauli matrices [37]

σ = (σx, σy) =

((
0 1
1 0

)
,

(
0 −i
i 0

))
(3.0.3)

which means that the Hamiltonian can be written as

H = −i~vF


0

∏
− 0 0∏

+ 0 0 0
0 0 0

∏
+

0 0
∏
− 0

 (3.0.4)
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3 Relativistic Regime: the Dirac-Weyl Equation 35

where ∏
±

= ∂x ± i∂y (3.0.5)

These operators act on the Dirac spinor

Ψ =


ϕA
ϕB
ϕA′

ϕB′

 (3.0.6)

where the A, B indexes are referring to the sub-lattices, and the prime denotes the Dirac point
(K or K′).
In the following chapters we will perform the treatment of the equation always considering

only the K valley.

35



36 3.1. Extension of Orthogonal Plate Functions to Dirac Billiards

3.1. Extension of Orthogonal Plate Functions to Dirac Billiards

To replicate the procedure used for the case of Schrödinger’s equation, we now want to create a
polynomial method of obtaining the eigenstates and the energy levels of polygonal enclosures
using Dirac’s equation. As such, we first start by obtaining the exact solution for the 1D
billiards [38], which we use to check the validity of the polynomial results. After that, we
generalize the boundary conditions by comparison with the work from Berry and Mondragan
[39] and discuss important aspects of this polynomial method. Finally, we use it to obtain
the spectrum of square billiards with uniform boundaries, as well as hexagonal billiards with
zigzag-like boundaries.

3.1.1. One-Dimensional Billiards

3.1.1.1. Boundary at y = 0

We are considering the Dirac-Weyl equation

~vFσ ·
(
∇
i

)
Ψ = EΨ, (3.1.1)

with a confining boundary at y = 0, and assuming the solution is confined to y > 0.

Figure 3.1.1.: Confining to y > 0 at a straight boundary.

The probability current operator is given by

j = vFΨ†σΨ = vF 〈σ〉. (3.1.2)

For us to have confined states, we must require that no current cross the boundary, or

〈σy〉boundary = 0. (3.1.3)

This means that the spinor at the boundary must be an eigenstate of some component σu =
σ · u, where u = cos θez + sin θex[

cos θ sin θ
sin θ − cos θ

] [
φA
φB

]
= η

[
φA
φB

]
η = ±1, (3.1.4)
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3 Relativistic Regime: the Dirac-Weyl Equation 37

or

cos θφA + sin θφB = ηφA

φB
φA

=
η − cos θ

sin θ
. (3.1.5)

Simple trigonometric identities lead to

φB
φA

=
2 sin2 (θ/2)

2 sin (θ/2) cos (θ/2)
= tan

(
θ

2

)
η = 1, (3.1.6)

or
φB
φA

= − 2 cos2 (θ/2)

2 sin (θ/2) cos (θ/2)
= − 1

tan
(
θ
2

) η = −1. (3.1.7)

Denoting t = tan (θ/2), [
φA
φB

]
=

1√
1 + t2

[
1
t

]
η = 1 (3.1.8)[

φA
φB

]
=

1√
1 + t2

[
−t
1

]
η = −1 (3.1.9)

give the form of the spinor at the boundary, y = 0. The parameter t is real and can vary from
t ∈ [−∞,+∞] . The second case is obtained by the replacement t → −1/t in the first, or by
changing θ → π − θ. So it is not a different solution and we can keep only[

φA
φB

]
=

1√
1 + t2

[
1
t

]
(3.1.10)

Specific boundary conditions (BCs) are:

• t = 0 or t→∞ {
t = 0, φB = 0 〈σz〉 = 1(zigzag-like)
t→∞, φA = 0 〈σz〉 = −1(zigzag-like)

(3.1.11)

In this case the spin is along z at the boundary.

• t = ±1
φA = ±φB (3.1.12)

In this case the spin points along x.

Berry and Mondragan [39] show that latter case corresponds to infinite mass confinement. In
other words, they claim that Equation 3.1.12 is obtained from(

~vFσ ·
∇
i

+m(r)σz
)

Ψ = EΨ (3.1.13)

with m = 0 in the confined region and m→ ±∞ outside.
The boundary condition is basically a condition of continuity of the spinor at the boundary.

When m→∞, the two spinor states σz = ±1 have energies ±∞. We may reason that, at the
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38 3.1. Extension of Orthogonal Plate Functions to Dirac Billiards

boundary, a finite energy requires a mean 〈σz〉 = 0 ; also 〈σy〉 = 0 (no current). This requires
the spinor to be an eigenstate of σx, the eigenvalues being ±1.

These heuristic consideration notwithstanding, the essential point is that confinement of
finite energy states requires a gap, which, for hard boundaries, should be infinite. We can
therefore ask if we can obtain other types of BCs.

Suppose that the Hamiltonian also has a scalar potential with the same mass scale:

~vFσ ·
(
∇
i

)
Ψ +m(r) (σz − cos θ) Ψ = EΨ (3.1.14)

with m(r) = 0 in the confining region and m (r)→∞ outside. Choosing y coordinate normal
to interface in the forbidden region, and trying Ψ(x, y) = exp(ikxx)Φ(y)

(−i~vFσy∂y + ~vFkxσx) Φ = [E −m (σz − cos θ)] Φ. (3.1.15)

In spinor components,

∂yφB − kxφB = − [E −m (1− cos θ)]

~vF
φA (3.1.16)

∂yφA + kxφA =
[E +m (1 + cos θ)]

~vF
φB. (3.1.17)

A confined state requires

φB (y) = Beκy (3.1.18)
φA (y) = Aeκy (3.1.19)

with κ > 0. Therefore,

(κ− kx)B = − [E −m (1− cos θ)]

~vF
A (3.1.20)

(κ+ kx)A =
[E +m (1 + cos θ)]

~vF
B. (3.1.21)

As m→∞, we can drop E compared to m, and kx compared to κ,(
B

A

)2

=
m (1− cos θ)

m (1 + cos θ)
=

sin2 (θ/2)

cos2(θ/2)
(3.1.22)

The boundary condition becomes

B

A
= ± tan

(
θ

2

)
= ηt η = ±1 (3.1.23)

But
κB =

m (1− cos θ)

~vF
A (3.1.24)

which means that η is the sign of m.
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3 Relativistic Regime: the Dirac-Weyl Equation 39

In summary, the boundary condition has the form

φB = tφA (3.1.25)

where t ∈ [−∞,+∞] and the ket at the boundary has the form of Equation 3.1.10. Note that
Equation 3.1.26 fixes the normal current to the edge at zero.

Ψ†σxΨ =
2t

1 + t2

Ψ†σyΨ = 0 (3.1.26)

Ψ†σzΨ =
1− t2

1 + t2

3.1.1.2. Gaddah and t = 0

For Gaddah’s [30] situation (t = 0), we must be careful when applying Equation 3.1.21.
Dropping (again) kx when compared to κ, and E when compared to m, we have

κ
A

B
=
m (1 + cos θ)

~vF

Simplifying, this reduces to

κ =
m (1 + cos θ)

~vF
t, (3.1.27)

which means that, if we take the t→ 0 limit first, we obtain simply

κ = 0. (3.1.28)

This means that the states are not confined, which is not acceptable. As such, the order of
the limits is fundamental, and will separate physical from non-physical solutions.

3.1.1.3. General Boundary

Figure 3.1.2.: Arbitrary boundary.

For a boundary with a more general orientation, we can still use as x′, y′ the coordinates along
the boundary and orthogonal to it. Our spinor at the boundary should still have in these

39



40 3.1. Extension of Orthogonal Plate Functions to Dirac Billiards

coordinates

Ψ†σx
′
Ψ =

2t

1 + t2
(3.1.29)

Ψ†σy
′
Ψ = 0 (3.1.30)

Ψ†σzΨ =
1− t2

1 + t2
(3.1.31)

meaning it should be rotated from the one in Equation 3.1.26,

Ψ = e−iασz/2
1√

1 + t2

[
1
t

]
=

1√
1 + t2

[
e−iα/2

eiα/2t

]
leading to a boundary condition

φB
φA

= eiαt (3.1.32)

For a boundary along y = 0 with y′ pointing inwards we α = π/2 so the boundary condition
would be

φB
φA

= it (3.1.33)

Suppose we have a square. The boundary conditions would read

φB
φA

= t South (3.1.34)

φB
φA

= it East (3.1.35)

φB
φA

= −t North (3.1.36)

φB
φA

= −it West (3.1.37)

This naturally assumes the same confining environment around the square domain (m(r) =
m, θ fixed). One can always consider the more general case where t is different at different
boundaries, where these equations would still hold.

3.1.2. One-Dimensional Examples

To illustrate the polynomial method, we consider two straight boundaries at y = ±L/2 and
write Dirac’s equation for the spinor Ψ(y) in the region inside (m = 0)

− i~vFσy∂yΨ = EΨ (3.1.38)

or

−~vF∂yψB = EψA (3.1.39)
~vF∂yψA = EψB (3.1.40)
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3 Relativistic Regime: the Dirac-Weyl Equation 41

To simplify the dimensionality of this problem, we will work in units of ~vF . This means
that our equations now read

−∂yψB = εψA (3.1.41)
∂yψA = εψB (3.1.42)

Clearly
− ∂2

yψB(A) = ε2ψB(A) (3.1.43)

and the solutions are

ψB = Aeiqy +Be−iqy (3.1.44)

ψA = Ceiqy +De−iqy (3.1.45)

Without loss of generality, we can take q > 0 and ε = sq with s = ±1. To determine the
constants A to D, we require that this forms a solution of Dirac’s equation and satisfies the
boundary conditions

ψB
ψA

= t y = −L/2 (3.1.46)

ψB
ψA

= −t y = L/2 (3.1.47)

Dirac’s equation implies

− iq
(
Aeiqy −Be−iqy

)
= sq

(
Ceiqy +De−iqy

)
(3.1.48)

or

D = isB C = −isA (3.1.49)

The boundary conditions are

eiqL/2
(
A+Be−iqL

)
= −teiqL/2

(
C +De−iqL

)
(3.1.50)

e−iqL/2
(
A+Be+iqL

)
= te−iqL/2

(
C +De+iqL

)
(3.1.51)

or

(A+ tC) + (B + tD) e−iqL = 0 (3.1.52)

(A− tC) + (B − tD) eiqL = 0. (3.1.53)

Using Equations 3.1.49, this becomes a 2× 2 homogeneous system for A and B.

(1− ist)A+ (1 + ist)Be−iqL = 0 (3.1.54)

(1 + ist)A+ (1− ist)BeiqL = 0 (3.1.55)
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42 3.1. Extension of Orthogonal Plate Functions to Dirac Billiards

A non-zero solution requires

det

[
(1− ist) (1 + ist)e−iqL

(1 + ist) (1− ist)eiqL
]

= 0 (3.1.56)

which means that
(1− ist)2 eiqL − (1 + ist)2e−iqL = 0 (3.1.57)

or simply

tan (qL) =
2st

(1− t2)
(3.1.58)

For the limit case of t = 1

cos(qL) = 0 =⇒ qL = (2n+ 1)
π

2
(3.1.59)

When t = 0 (ψB = 0 in both edges)

sin (qL) = 0 =⇒ qL = nπ (3.1.60)

3.1.2.1. Solution for t = 1

The energies are

εn = s (2n+ 1)
π

2L
= s

π

2L
, s

3π

2L
, s

5π

2L
, . . . (3.1.61)

and the solutions are

A = −(1 + is)

(1− is)
Be−iqL (3.1.62)

A

B
= −eisπ/2e−i(2n+1)π/2 = (−1)n+1 is−1 (3.1.63)

For s = 1
A

B
= (−1)n+1 (3.1.64)

For s = −1
A

B
= (−1)n (3.1.65)

If we consider the states of the conduction band (s = 1), we get

φ
(0)
B = A sin

( π
2L
y
)

(3.1.66)

φ
(0)
A = −1

ε
∂yψB = −A cos

( π
2L
y
)

(3.1.67)
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3 Relativistic Regime: the Dirac-Weyl Equation 43

These functions obey the imposed boundary conditions, as one can see

φ
(0)
B (−L/2)

φ
(0)
A (−L/2)

=
−A sin (π/4)

−A cos (π/4)
= 1 (3.1.68)

φ
(0)
B (L/2)

φ
(0)
A (L/2)

=
A sin (π/4)

−A cos (π/4)
= −1 (3.1.69)

and the first excited state will be given by, according to the the obtained relation,

φ
(1)
B = A cos

(
3π

2L
y

)
(3.1.70)

φ
(1)
A = −1

ε
∂yψB = A sin

(
3π

2L
y

)
(3.1.71)
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44 3.1. Extension of Orthogonal Plate Functions to Dirac Billiards

3.1.3. The Polynomial Method

3.1.3.1. Uniform Boundary Conditions t = 1

Let us now use this exact solution as a guide to a polynomial approximation. Imposing the
boundary condition t = 1, the parities of φA and φB will be opposite. Because of this, we
choose

ψB = − y

L/2
A (3.1.72)

ψA = A (3.1.73)

as the simplest way to satisfy BCs. For the valence band we would swap A and B. We
normalize the spinor∫ L/2

−L/2
dyΨ†Ψ = |A|2

∫ L/2

−L/2
dy
[

1, −2y
L

] [ 1

−2y
L

]
= 1

which gives us

Ψ =

√
3

4L

[
1

−2y
L

]
(3.1.74)

The average energy is

〈ε〉 = −i 3

4L

∫ L/2

−L/2
dyΨ†σy∂yΨ = − 3

4L

∫ L/2

−L/2
dy

(
−2

L

)
=

3

2L
(3.1.75)

This is already close to the exact value

ε0 =
π

2L
(3.1.76)

In Figure 3.1.3 we show a comparison between the exact solution and this variational estimate.

Figure 3.1.3.: Comparison between exact solution and first order polynomial approximation.
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3 Relativistic Regime: the Dirac-Weyl Equation 45

To generate higher order polynomials, we take

Ψ0 = A

[
1

−2y
L

]
(3.1.77)

and multiply by a polynomial in y

Ψ = A

[
1

−2y
L

]
P(y)

Because the factor Ψ0 always remains, the boundary conditions will still be satisfied.

As an example, choose P(y) = y. The resulting spinors are

Ψ0 = A

[
1

−2y
L

]
Ψ1 = B

[
y

−2y2

L

]

and we have that

〈Ψ0|Ψ1〉 = 0

Now, we can write a 2× 2 matrix

〈Ψi| Ĥ |Ψj〉 i, j = 0, 1

which we diagonalize to refine the obtained energy value. In this case, however, parity implies

〈Ψ1| Ĥ |Ψ0〉 = B∗A(−i~vF )

∫ L/2

−L/2
dyy

(
− 2

L

)
= 0

But in the next order

Ψ2 = C

[
y2

−2y3

L

]
the only necessary Gram-Schmidt orthogonalization is between Ψ2 and Ψ0, and the matrix
full matrix becomes

〈Ψi| Ĥ |Ψj〉 =

 1.5 0 0.381881
0 4.16667 0

0.381881 0 6.41667



It is important to note that, so that we obtain sensible energies when we increase the basis
size, we must also consider the negative-energy (valence band) states both when generating the
basis through Gram-Schmidt orthogonalization and when integrating the Hamiltonian matrix.
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46 3.1. Extension of Orthogonal Plate Functions to Dirac Billiards

These can be obtained, for the situation of the uniform boundary conditions, by

Φn = σxΨn =

(
ψB
ψA

)
(3.1.78)

This can be seen by explicitly applying σx to the Hamiltonian (as they anti-commute, and
(σx)2 is just the identity matrix):

σxHσx (σxΨ) = E (σxΨ)

−Hσxσx (σxΨ) = E (σxΨ)

−H (σxΨ) = E (σxΨ)

H (σxΨ) = −E (σxΨ) (3.1.79)

With this, we can clearly see that the boundary conditions remain the same:

ψB
ψA

= ±1 =⇒ ψA
ψB

=
1

±1
= ±1

Considering a basis size of 16 (8 positive- and 8 negative-energy states), we obtain a spectrum
(Figure 3.1.4) which is in good agreement with the exact solution.
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Figure 3.1.4.: Comparison between the exact solution and the polynomial eigenvalues for the
uniform boundary condition.

We also analyze the convergence of the first three energy levels as the basis size increases
(Figure 3.1.5).
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Figure 3.1.5.: Convergence of the three lowest energy eigenvalues.

Comparing now the wave-function of the lowest-energy mode with the exact solution (Figure
3.1.6), we see that the convergence of this state is extremely fast, with it precisely matching
the exact solution (as expected by the energy eigenvalue).
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Figure 3.1.6.: Comparison between the exact solution (full lines) and the lowest-energy poly-
nomial eigenfunction (dots) for 16 polynomials.
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3.1.3.2. Non-Uniform Boundary Conditions

The previous considerations assume the the medium confining the fermions is uniform. In
other words, t is constant. But we can envisage situations in which it varies from boundary
to boundary. For instance we could have t = 0 at y = L/2 (φB = 0) and t = +∞ at
y = −L/2 (φA = 0), the BCs corresponding to zigzag edges [40]. A ket that satisfies the
imposed boundary conditions is

Ψ0 = A

[
L/2 + y
L/2− y

]
(3.1.80)

It is important to note that, due to the change of BCs relatively to the uniform situation,
the negative-energy state will no longer be obtained by applying σx to this ket, as it would
switch the boundary conditions for their inverse. Instead, we obtain it by applying σz as only
switches φB → −φB and does not affect the boundary conditions (−1 · 0 = 0). Explicitly,
because σ2

z = Id and
σzHσz = −H (3.1.81)

σzHσz (σzΨ) = E (σzΨ)

−H (σzΨ) = E (σzΨ)

H (σzΨ) = −E (σzΨ) (3.1.82)

As such, the negative-energy state will be

Φ0 = σzΨ0 = A

[
L/2 + y
− (L/2− y)

]
(3.1.83)

The exact solutions are easily guessed

φA = A sin (q(y + L/2))

φB =
1

sq
∂yφA = sA cos (q(y + L/2)) (3.1.84)

Imposing the boundary condition φB(L/2) = 0, we require that

cos (qL) = 0 =⇒ qnL = (2n+ 1)
π

2

Remarkably, this is the same spectrum as we obtained for t = 1.

In Figure 3.1.7 we compare the exact solution and the lowest order polynomial approxima-
tion.
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3 Relativistic Regime: the Dirac-Weyl Equation 49

Figure 3.1.7.: Comparison between exact solution and first order polynomial approximation.

As seen previously, the spectrum is the same as the one for the uniform solution, visible
here in Figure 3.1.8.
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Figure 3.1.8.: Comparison between the exact solution and the polynomial eigenvalues for the
non-uniform boundary condition.

Comparing now the wave-function of the lowest-energy mode with the exact solution (Figure
3.1.9), we see that the convergence of this state is extremely fast, with it precisely matching
the exact solution (as expected by the energy eigenvalue).
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Figure 3.1.9.: Comparison between the exact solution (full lines) and the lowest-energy poly-
nomial eigenfunction (dots) for 16 polynomials.

3.1.3.3. Uniform Boundary Condition with t = 0

The problem for t = 0 in both boundaries has a different spectrum (Equation 3.1.60). In
particular, this one has an exactly zero-energy state that is easily written as

Ψ0 (y) =

[
1
0

]
(3.1.85)

It is important to note that the polynomial approximation will not generate this state. Dirac’s
equation implies that the parity of the two components is opposite, for E 6= 0. The simplest
choice of non-zero function for ψB that satisfies the required boundary conditions is

ψB (y) =

(
L

2
− y
)(

L

2
+ y

)
=
L2

4
− y2 (3.1.86)

As such, a simple choice for the starting state in our polynomial method would be (non-
normalized)

Ψ1 c (y) =

[
y

L2

4 − y
2

]
Ψ1 v (y) = σz ·

[
y

L2

4 − y
2

]
(3.1.87)

Higher order states would then be generated as before,

Ψi c,v = yi−1Ψ1 c,v (3.1.88)

with the necessary Gram-Schmidt orthogonalization afterwards.
The obtained spectrum, including the single-zero energy state, is visible in Figure 3.1.10.
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Figure 3.1.10.: Spectrum for the 1D t = 0 problem with 15+15 polynomials compared against
the exact solution.

Looking at the two eigenfunctions with lowest (positive) energy with their respective eigen-
values, we have Figure 3.1.11. These are compared against the exact solution of Equation
3.1.60.
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Figure 3.1.11.: Plots of (left to right) Ψ1 c, Ψ2 c
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3.2. Exact Solution of the Triangular Enclosure Using C3v

Symmetry

In this section, we will be reviewing the treatment used by Gaddah [30] so that we can
compare his solutions against our polynomial method. In his paper, the author wants to
find analytical solutions to the Dirac equation in a triangular enclosure using the boundary
condition equivalent to the discrete zigzag boundary. This boundary condition fixed the spinor
element relative to the termination sub-lattice (in this case ψA) as zero in the boundary. With
our polynomial method, this is equivalent to setting t = ∞. As the system is triangular, the
edges will have the same sub-lattice termination, which implies that the boundary conditions
will be the same.
The author discusses the necessary conditions for the hermiticity of the Dirac Hamiltonian,

followed by treating the problem with the system’s C3v innate symmetries. Doing this, both
the spectrum and the electron probability density are obtained analytically. As we only want
to compare the author’s results against the ones from our method, we will skip the formal
treatment of the problem, and only focus on the results.
The billiard system is defined as Figure 3.2.1.

Figure 3.2.1.: Equilateral triangular billiard of side L and height h =
√

3
2 L, n1, n2, n3 are the

unit vectors normal to the sides of the triangle.

The obtained spinor is given by (ignoring any multiplicative constants)

Ψ(±,j)
n1,n2

(−→r ) =

(
1
0

)
φ(j)
n1,n2

(−→r ) +

(
0
1

)
~c

En1,n2

(∂y − i∂x)φ(j)
n1,n2

(−→r ) (3.2.1)

where φ(j)
n1,n2 (−→r ) is given by

φ(j)
n1,n2

(x, y) =



C1

{
− sin [q (n2 + 2n1)x] sin

[√
3qn2y

]
+ sin [q (n1 + 2n2)x] sin

[√
3qn1y

]
+

+ sin [q (n1 − n2)x] sin
[√

3q (n2 + n1) y
]}
, j = 1

C2

{
− cos [q (n2 + 2n1)x] sin

[√
3qn2y

]
− cos [q (n1 + 2n2)x] sin

[√
3qn1y

]
+

+ cos [q (n1 − n2)x] sin
[√

3q (n2 + n1) y
]}
, j = 2

(3.2.2)
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3 Relativistic Regime: the Dirac-Weyl Equation 53

After this, we want to analyze the spectrum of this equation, as well as obtaining some
visualizations of the wave functions (for clarity, we will use density plots).

The spectrum will be given by

E(±)
n1,n2

= ±4π

3L
~c
√(

n2
1 + n2

2 + n1n2

)
(3.2.3)

where n1,2 have to satisfy

n2 > n1 > 0, j = 1

n2 ≥ n1 > 0, j = 2

Due to this relation, every state with n1 6= n2 will be, at least, 2× degenerate.

To visualize the probability density of the wave functions, we need to first write the full
Dirac spinor:

Ψ(±,j)
n1,n2

(−→r ) = N (±)
n1,n2

[
φ(j)
n1,n2

(−→r ) |↑〉+ χ(±,j)
n1,n2

(−→r ) |↓〉
]
, ∀j = 1, 2 (3.2.4)

where |↑〉 and |↓〉 are the usual eigenvectors of the Pauli spin operator

|↑〉 =

(
1
0

)
|↓〉 =

(
0
1

)
(3.2.5)

S =
~
2

(
1 0
0 −1

)
(3.2.6)

For n2 > n1 > 0, there are two Dirac spinors Ψ
(±,1)
n1,n2 and Ψ

(±,2)
n1,n2 with the same energy eigen-

value. For the case where n2 = n1, the only allowed spinor is Ψ
(±,2)
n1,n2

(
Ψ

(±,1)
n1,n2 would be zero).

N
(±)
n1,n2 is the normalization constant given by

N (±)
n1,n2

=
1√
2

As before, χ(±,j)
n1,n2 is given by

χ(±,j)
n1,n2

= η(±)
n1,n2

(∂y − i∂x)φ(j)
n1,n2

(3.2.7)

with
η(±)
n1,n2

=
1

± 4π
3L

√(
n2

1 + n2
2 + n1n2

)
By substitution on Ψ, we obtain the general solution

Ψ(±,j)
n1,n2

(−→r ) =
1√
2

φ(j)
n1,n2

(−→r ) |↑〉 ± 3L

4π
√(

n2
1 + n2

2 + n1n2

) (∂y − i∂x)φ(j)
n1,n2

(−→r ) |↓〉

 , ∀j = 1, 2

(3.2.8)
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The relativistic probability density ρ(±,j)
n1,n2 can be written from φ

(j)
n1,n2 by simple substitution,

which gives

ρ(±,j)
n1,n2

(x, y) = Ψ(±,j)†
n1,n2

Ψ(±,j)
n1,n2

=
(
N (±)
n1,n2

)2
[(
φ(j)
n1,n2

(x, y)
)2

+
(
η(±)
n1,n2
∇φ(j)

n1,n2
(x, y)

)2
]
(3.2.9)

By construction of the wave functions, each of these probability densities will have the sym-
metries of the triangle.
In Figure 3.2.2 we visualize the obtained spectrum.
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Figure 3.2.2.: Energy levels obtained by Gaddah for the zigzag-like triangular billiards.

This symmetry-inspired method presents a gap between − 4π
3L~vF

√
3 and 4π

3L~vF
√

3. The
density plots for the normalized relativistic probability densities were done in Wolfram Math-
ematica R© and can be seen in Appendix B.2.
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3.3. Triangular Enclosure With the Polynomial Method

The solution that Gaddah presented [30] is essentially the one for Schrödinger’s equation:
Gaddah imposes the Dirichlet boundary condition in one of the sub-lattices, and then solves
the Helmholtz equation for that same spinor element, taking the square root of the energy
eigenvalues in the end. As the eigenvalues are known, the missing spinor element can be
obtained directly by applying the Dirac operator and dividing by the specific eigenvalue.
This means that we can apply our polynomial method exactly as was done in the case of
Schrödinger’s equation, with the only difference being that we are now solving for E2.
We will first redefine the enclosure as centered at the origin, as seen in Figure 3.3.1.

Figure 3.3.1.: Triangular billiard of side L = 1.

Writing the vertex coordinates for a general L, as well as the equations for the edges, we
have that

A =
L

2

(
−1,− 1√

3

)
B =

L

2

(
0,

2√
3

)
C =

L

2

(
1,− 1√

3

)
yAB =

√
3

(
L

3
+ x

)
yBC =

√
3

(
L

3
− x
)

yCA = − L

2
√

3

and that the integration region is given by∫∫
A
dxdy →

∫ L√
3

− L
2
√
3

dy

∫ L
3
− y√

3

−L
3

+ y√
3

dx

As we chose zigzag-like BCs, we have that the sub-lattice termination is the same in all
three edges. As such, we have the Dirichlet boundary condition

φA = 0 (3.3.1)

Because of this boundary condition, this is a Helmholtz problem for φA with Dirichlet boundary
conditions, and the solution for φB will be obtained by simply applying the Dirac operator
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56 3.3. Triangular Enclosure With the Polynomial Method

(and dividing by the energy eigenvalue)

φB (x, y) = −i~vF
E

(∂x + i∂y)φA (x, y) (3.3.2)

As such, a function written as (including a normalization constant N0)

φA (x, y) = N0

[
L√
3

+
(√

3x− y
)] [ L√

3
−
(√

3x+ y
)] [ L

2
√

3
+ y

]
(3.3.3)

satisfies the imposed boundary conditions.
Therefore, the partial differential equation whose eigenvalues we are now looking for is

−∇2ψA (x, y) = ε2ψA (x, y) (3.3.4)

which should give us the same spectrum as Equation 3.2.3.
Performing the density plots of the φA,B terms of this spinor, we obtain Figures 3.3.2.

Considering that these are simply the first polynomial approximation to the wavefunctions,
these density plots are already extremely similar (after swapping the sub-lattices) to the ones
obtained by Gaddah [30] visible in Appendix B.2 (the top-middle and top-right density plots
visible in the first page of the appendix in question).

Figure 3.3.2.: Density plot of |φA|2 (left) and |φB|2 (right) for the triangular enclosure with
zigzag-like boundary conditions.

Taking the eigenvectors of the Hamiltonian (with a basis size of 10 polynomials) and multi-
plying them by the basis, we obtain the φA eigenfunctions of the system. Applying the Dirac
operator (Equation 3.3.2), we immediately get the φB (x, y) eigenfunctions. We can then plot
the modulus of the second, third and fourth eigenfunctions for each spinor element, obtaining
Figure 3.3.3.
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Figure 3.3.3.: Density plots of (left to right, top to bottom) |φA1|2, |φB1|2, |φA2|2 and |φB2|2
for the triangular enclosure with zigzag-like boundary conditions.
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These density plots (obtained for 15 polynomials) are already almost identical to the ones
Gaddah presents (Section B.2). We diagonalize the Hamiltonian matrix for a basis of 120
polynomials and compare the obtained spectrum with the previously mentioned exact result.
In Figure 3.3.4 we plot the positive non-diverging part of the spectrum for comparison.
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Figure 3.3.4.: Spectrum of the zigzag-like-BCs triangular graphene dot with 120 polynomials
compared against Gaddah’s exact solution.

The plot in Figure 3.3.4 shows us that our polynomial method is able to replicate the exact
solution found by Gaddah. The apparent deviation for higher eigenvalue indexes is due to
the truncation of the basis, which does not invalidate our results. We find the gap to be
approximately

∆ ≈ 2× 7.26
~vF
L

which matches almost exactly with Gaddah’s gap of

∆exact = 2× 4π

3

~vF
L

√
3 (3.3.5)

A few extra density plots of the eigenfunctions for the A sub-lattice are available in Appendix
B.3. As the basis was truncated at 10 polynomials, the higher order eigenfunctions have not
yet converged to their expected behaviour.
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3.3.1. Analysis of this problem

As we have observed, this problem adds nothing new to our understanding of Dirac’s equation
in finite enclosures. Due to the Dirichlet boundary conditions, it reduced to Schrödinger’s
equation, for which our polynomial method already works.
One question remains: we can write solutions to the Dirac-Weyl equation that have an

exactly-zero eigenvalue. In this case, as we are fixing

φA = 0

(∂x − i∂y)φB = 0 (3.3.6)

in the edges, we can define a new coordinate system

z = x+ iy

z̄ = x− iy (3.3.7)

which means that Equation 3.3.6 changes to

φA = 0

∂zφB = 0 (3.3.8)

This lets us write a solution that respects both of as any function (normalized by N) of the
form

Ψ (z̄) = N

[
0

f (z̄)

]
. (3.3.9)

This gives us an uncountable number of zero-energy states, which raise a question: what is
the meaning of these states? This is a question that remains unanswered.
We will now solve the Dirac equation in polar coordinates with infinite-mass boundary

conditions (t = 1) as a stepping stone towards applying our polynomial method to polygonal
enclosures.
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60 3.4. Dirac-Weyl Equation in Polar Coordinates

3.4. Dirac-Weyl Equation in Polar Coordinates

As the geometry of the problem in question favours polar coordinates, we need to re-write the
Dirac-Weyl equation. Starting from its general form [23] in one of the Dirac points (K), we
have

~vF
(
σ · ∇

i

)
ψ = εψ (3.4.1)

Rearranging the terms, we have (
σ · ∇

i

)
ψ = sqεψ (3.4.2)

where
qε =

|ε|
~vF

(3.4.3)

and s = ±1 is the band index (i.e., the sign of ε).

In polar coordinates, the gradient operator is

∇ = er
∂

∂r
+ eθ

1

r

∂

∂θ
(3.4.4)

and the unit vectors are

er = (cos θ, sin θ)

eθ = (− sin θ, cos θ) (3.4.5)

Using this, we get (
σ · ∇

i

)
= −i

[
σr

∂

∂r
+ σθ

1

r

∂

∂θ

]
(3.4.6)

where

σr =

[
0 e−iθ

eiθ 0

]
and

σθ =

[
0 −ie−iθ
ieiθ 0

]
(3.4.7)

Applying this equation to the general 2-spinor

ψ =

(
ψA
ψB

)
(3.4.8)

we get

e−iθ
∂

∂r
ψB − ie−iθ

1

r

∂

∂θ
ψB = isqεψA

eiθ
∂

∂r
ψA + ieiθ

1

r

∂

∂θ
ψA = isqεψB (3.4.9)
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3 Relativistic Regime: the Dirac-Weyl Equation 61

Let us define the solutions to this equation in the form

ψA = eimθfA (r)

ψB = ei(m+1)θfB (r) (3.4.10)

By direct substitution, we get

eimθ
∂

∂r
fB − ieimθ

1

r
i (m+ 1) fB = isqεe

imθfA

ei(m+1)θ ∂

∂r
fA + iei(m+1)θ 1

r
imfA = isqεe

i(m+1)θfB (3.4.11)

which simplifies (by factorization of the exponentials) to

∂

∂r
fB +

1

r
(m+ 1) fB = isqεfA

∂

∂r
fA −

1

r
mfA = isqεfB (3.4.12)

Defining the new variable u = qεr, we have

∂

∂u
fB +

(m+ 1)

u
fB = isfA

∂

∂u
fA −

m

u
fA = isfB (3.4.13)

These equations are quite familiar. From the definition of the recursion relations for the Bessel
functions, we have

d

dz
Jν (z) +

ν

z
Jν (z) = Jν−1 (z)

d

dz
Jν (z)− ν

z
Jν (z) = −Jν+1 (z) (3.4.14)

As s2 = 1, we can multiply the first relation by is and redefine ν → ν + 1, as well as multiply
the right-hand side of the second equation by s2 and factorize −1 = i2, and we get

d

dz
[isJν+1 (z)] +

ν + 1

z
[isJν+1 (z)] = isJν (z)

d

dz
Jν (z)− ν

z
Jν (z) = is [isJν+1 (z)] (3.4.15)

which gives us the solutions for Equation 3.4.13:

fA (r) = Jm (qεr)

fB (r) = isJm+1 (qεr) (3.4.16)
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62 3.4. Dirac-Weyl Equation in Polar Coordinates

With this, we get the 2-spinor

ψε (r, θ) =

[
eimθJm (qεr)

isei(m+1)θJm+1 (qεr)

]
(3.4.17)

The current operator is defined as

j = vFψ
†σψ (3.4.18)

In polar coordinates, we have (by direct application of σr and σθ) the components

jr = vFψ
†
[

0 e−iθ

eiθ 0

]
ψ (3.4.19)

and

jθ = vFψ
†
[

0 −ie−iθ
ieiθ 0

]
ψ (3.4.20)

To have a confined state at r = R, we must have zero radial current, i.e. no electrons cross
to the outside of the boundary. Expanding jr, we get

jr = e−iθψ∗AψB + eiθψ∗BψA

= 0 (3.4.21)

which implies that, seeing as the second element of the right-hand side is just the complex
conjugate of the first element,

e−iθψ∗AψB +
(
e−iθψ∗AψB

)∗
= 0 (3.4.22)

which simplifies to
Re
[
e−iθψ∗AψB

]
= 0 (3.4.23)

This requires that either
ψB = Cei

π
2 eiθψA, C ∈ R (3.4.24)

or
ψA = 0 (3.4.25)

Infinite mass confinement implies (as we will see further ahead in Equation 3.1.12) that C = 1
[39, 41], which in turn simplifies to

ψB = ieiθψA (3.4.26)

Replacing the eigenstates found in Equation 3.4.17, we get that either

ψA = 0⇔ ψB = 0 (3.4.27)

or that
isJm+1 (qεR) = iJm (qεR) (3.4.28)
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3 Relativistic Regime: the Dirac-Weyl Equation 63

which (rearranging the terms) means that the valid energy levels will be the ones given by

ε = qε~vF (3.4.29)

where qε obeys the condition for the absence of normal current to the edge given by Equation
3.4.30

Jm+1 (qεR)

Jm (qεR)
= s (3.4.30)

This is the same condition that we found for the infinite mass confinement with our polynomial
(t = 1).

3.4.1. Circular Boundary

From what we obtained in the previous section, we now need to find the energy values for
which the condition Equation 3.4.30 is satisfied. According Bourget’s hypothesis [42] (proved
in 1929 by Siegel [43] for m up to 4), for any two integers n ≥ 0 and m ≥ 1, the functions
Jn (x) and Jn+m (x) have no common zeros other than the one at x = 0, which prevents any
0
0 situations. Because of this, the condition from Equation 3.4.27 can be ignored.
As we are dealing with a circular boundary, the radius is just a constant R and we have

Equation 3.4.30
Jm+1 [qεR]

Jm [qεR]
= s (3.4.31)

As an example, for m = 0 we have the left side of Figure 3.4.1.
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Figure 3.4.1.: Comparison betweenJ1(x)
J0(x) and J12(x)

J11(x) .

The allowed energy levels will be the ones where the ratio crosses the red or green lines. As
Bourget’s hypothesis also states that the zeros of Jm are situated between the zeros of Jm+1.
Because of this, when we consider more and more orders of Bessel functions (increasing m),
the first values of qεR where the ratios cross ±1 will be further ahead, i.e., at higher and higher
energies. As such, the contributions from higher order Bessel functions will not disrupt the
lower energy levels. For clarity, we compare between m = 0 (left side) and m = 11 (right side)
in Figure 3.4.1.
The plots for each ratio are displayed in Section B.1.
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64 3.5. Finishing Remarks

3.5. Finishing Remarks

In this chapter, we begin by working on generalizing the boundary conditions for Dirac’s
equation. This generalization was easily verifiable as correct for the 1-dimensional well, as
we were able to find exact analytical solutions to use as a comparison. After knowing these
boundary conditions and their relation with lattice terminations, we redefined the polynomial
method for use in these kinds of systems. This required a reworking of the way we created
the conduction- and valence-band states, and both their relation with each other and with the
boundary conditions.
After this, we reproduced the results from Gaddah [30] for the exact solution for the trian-

gular billiards. We compared these results against the spectrum obtained from the Helmholtz
equation, finding the same features in both curves.
Finally, we solved the Dirac-Weyl equation for the circular flake with infinite-mass boundary

conditions with the assistance of Bessel functions.
The final chapters of this thesis will be our attempt to generalize this method for two-

dimensional systems that cannot be reduced to a Schrödinger problem, as well as the applica-
tion of the generalized method to the hexagonal flake with zigzag-like boundary conditions.

64



4. Two-Dimensional Generalization of our
Polynomial Method

In this final chapter, we will apply the polynomial method to both a square with uniform
boundaries and an hexagon with zigzag-like boundaries so that we obtain their spectra. We
analyze the results we obtain, as well as their origin and validity.
After that, we utilize the Helmholtz equation to study the spectrum of each of these enclo-

sures, and discuss the obtained eigenvalues and eigenfunctions.
Finally, we discuss the validity of the continuum results by Zarenia et al [25] and the reason

why the exactly zero-energy states appear in these systems.

4.1. The Uniform-Boundary Square

How can we extend the previous considerations to a square domain where we impose t = 1
boundaries (i.e., the equivalent to infinite-mass confinement [39])? For a strip along y limited
at x = ±L/2 we would have a state

Ψ0 (x, y) =

√
4

3L

[
1

2ix
L

]
Therefore, a state that satisfies boundary conditions at all edges can be written as

Ψ0 (x, y) = N0

[(
L2

4
− x2

)(
1

−2y
L

)
+

(
L2

4
− y2

)(
1

2ix
L

)]
(4.1.1)

States of the form
Ψ0P (x, y) (4.1.2)

are, by construction, states that satisfy BC.
We need to be careful when treating this enclosure. While the part of the spinor that satisfies

the BCs on the y = ±L
2 edges can be acted upon by σx to obtain the negative-energy state,

the x = ±L
2 part is not quite so simple. If we simply act on it with σx, we will be switching the

two edges (because if φBφA = ±i, then φA
φB

= ∓i). As such, we must generate the corresponding
state by also taking the complex conjugate of the initial state, which will not affect the BCs
in the y-axis and will fix this issue in the x-axis.

σxΨ∗ (4.1.3)

This transformation will leave the boundary conditions intact, and will change ε → −ε (as
seen in Equation 3.1.79). As such, the orthogonalization process will be performed in a cycle
given by Equations 4.1.4-4.1.5 (ignoring the normalization step for each of the functions, which
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66 4.1. The Uniform-Boundary Square

will be done in between each orthogonalization step). Using this sorting method, the Ψis with
even i will be the positive energy functions, and the odd is will be the negative energy ones.
The Pis are defined as in the Equation 2.2.19, with the only difference of each element of the
list appearing twice.

Ψi = PiΨ0 −
i−1∑
j=0

〈PiΨ0|Ψj〉Ψj (4.1.4)

Ψi+1 = Pi+1 (σxΨ∗0)−
i∑

j=0

〈Pi+1 (σxΨ∗0) |Ψj〉Ψj (4.1.5)

Knowing this, we can obtain the spectrum for different numbers of polynomials, which we
display in Figure 4.1.1.
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Figure 4.1.1.: Comparison of the spectrum of the uniform-BCs square billiard with increasing
number of polynomials.

We will now attempt to treat this problem with the Helmholtz equation, which should be
reasonably faster computationally.
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4 Two-Dimensional Generalization of our Polynomial Method 67

4.1.1. Polynomial Method with Helmholtz Equation

As an attempt to accelerate convergence, we will now treat this problem using the Helmholtz
equation. Applying the Dirac operator to itself, we obtain the matricial equation

H†HΨ = −~2v2
F (−→σ · −→p )

† · (−→σ · −→p ) Ψ

= −~2v2
F

(
∂2
x + ∂2

y 0

0 ∂2
x + ∂2

y

)
Ψ (4.1.6)

As this operator is diagonal, the expected value of the energy (squared) for a state shall be
given by the sum of the expected values for both spinor components. I.e.,

〈Ψi|H†H |Ψj〉 = 〈ψi,A|
(
−~2v2

F∇2
)
|ψj,A〉+ 〈ψi,B|

(
−~2v2

F∇2
)
|ψj,B〉 (4.1.7)

Doing this instead of working only with the Dirac Hamiltonian should allow us to increase the
basis size further.
The initial polynomials are defined as before (Equation 4.1.1), and we want to study the

eigenvalues of H†H in this basis, which will be positive by definition. Taking the square root
of the obtained eigenvalues, we compare these for different numbers of polynomials in Figure
4.1.2.
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68 4.1. The Uniform-Boundary Square

The density plots of first three eigenfunctions (left to right, |Ψ (x, y)|2 = |ψA (x, y)|2 +

|ψB (x, y)|2, |ψA (x, y)|2 and |ψB (x, y)|2
)
of this system are visible in Figure 4.1.3.

Figure 4.1.3.: Density plots of |Ψ (x, y)|2, |ψA (x, y)|2 and |ψB (x, y)|2 for the first three energy
levels of the infinite-mass confined square.

Additional plots for |Ψ (x, y)|2, |ψA (x, y)|2 and |ψB (x, y)|2 are available in Appendix B.4.
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4 Two-Dimensional Generalization of our Polynomial Method 69

4.2. Zero-Energy States in 2D

The question remains: are there zero-energy states for the Dirac equation in a polygonal
enclosure?
States with exact zero energy are solutions of

−i (∂x − i∂y)ψB = 0

−i (∂x + i∂y)ψA = 0 (4.2.1)

These equation can be solved by a change of variables

z = x+ iy z̄ = x− iy

which means that

∂x =
∂z

∂x
∂z +

∂z̄

∂x
∂z̄ = ∂z + ∂z̄

∂y =
∂z

∂y
∂z +

∂z̄

∂y
∂z̄ = i (∂z − ∂z̄)

Adding and subtracting the two together, we obtain

(∂x − i∂y) = 2∂z

(∂x + i∂y) = 2∂z̄ (4.2.2)

In these coordinates, the zero energy condition becomes

∂zψB = 0

∂z̄ψA = 0 (4.2.3)

The general solution to these equations is simply

ψB = f (z̄) = f (x− iy)

ψA = g (z) = g (x+ iy) (4.2.4)

So the general solution for zero-energy states is

Ψ (x, y) =

[
g (x+ iy)
f (x− iy)

]
(4.2.5)

As one cannot define a non-trivial function of only z (or z̄) that is zero along a straight line,
it appears that boundary conditions can almost never be satisfied with this choice of ket.
Consequently, no zero-energy states are possible using the Dirac-Weyl equation in a polygonal
enclosure, except in a very specific case. This situation was discussed in Section 3.3.1, and is
specific of the problem where t = 0 (or t =∞) in all the boundaries.
A more specific example of impossibility of finding these states with different boundary

conditions will be presented in the next subsection.
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70 4.2. Zero-Energy States in 2D

4.2.1. Zero-Energy States in a Square with Uniform Boundary Conditions t = 1

As seen previously, a zero-energy state has the form

Ψ (x, y) =

[
g (x+ iy)
f (x− iy)

]
(4.2.6)

Assuming that f, g have no singularities in the desired domain, one can expand them in a
polynomial series

f (x− iy) =
∑
n

fn (x− iy)n

g (x+ iy) =
∑
n

gn (x+ iy)n (4.2.7)

Re-defining (for simplicity) the square as having sides y ∈ [0, 1], x ∈ [0, 1], we first consider
the side with y = 0. The imposed boundary condition (t = 1) will require

f (x) = g (x)

or, considering the expansion of f, g,∑
n

fnx
n =

∑
n

gnx
n (4.2.8)

As we are dealing with a finite range of x, this implies

fn = gn (4.2.9)

Therefore,
ψB
ψA

=
f (x− iy)

f (x+ iy)
(4.2.10)

On the west side (x = 0, y ∈ [0, 1]) the imposed boundary condition will be

ψB
ψA

= −i

Therefore, ∑
n

fn (−iy)n = −i
∑
n

fn (iy)n (4.2.11)

Rearranging the terms, ∑
n

[
(−i)n + in+1

]
fny

n = 0

Multiplying by in, we obtain∑
n

[
1 + i2n+1

]
fny

n =
∑
n

[1 + i (−1)n] fny
n = 0 (4.2.12)

This is only possible if fn = 0. The only zero-energy state is the state with zero wave-function.
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5. Hexagonal Graphene Flake with
Zigzag-like Boundaries

In this final chapter, we begin by numerically integrating the Helmholtz equation with the
specific boundary conditions in question. After that, we discuss the origin of exactly-zero
energy states in tight-binding, as well as the size-dependence of the spectrum in a continuum
model. We compare these results against the ones found by Zarenia et al [25], and discuss the
validity of the authors’ results.
Finally, we attempt to apply our method to the continuum-analogous of an hexagonal

graphene flake with zigzag boundary conditions. We utilize both the Dirac and the Helmholtz
equation, obtaining the spectrum and the lowest-energy eigenfunctions. We finally compare
the obtained spectrum and eigenfunctions to those from both the exact and polynomial ap-
proximation of the triangular enclosure, observing an apparent equivalence between the two.

5.1. Eigenvalue Calculation through Partial Differential
Equation Numerical Integration

Starting from the Dirac-Weyl equation, we manipulate it to obtain (again)

−
(
∂2
x + ∂2

y

)
ϕA = ε2ϕA −

(
∂2
x + ∂2

y

)
ϕB = ε2ϕB (5.1.1)

As we know the boundary conditions for this kind of quantum dot, we can work on finding
the energy levels.

Figure 5.1.1.: Hexagonal graphene flake with zigzag boundary conditions.

From Figure 5.1.1, and defining the red/blue dots as the A/B sub-lattices, respectively, we
can insert the eigenvalue problem into a numerical integrator (Wolfram Mathematica R©, for
example). It is important to note that, in each boundary, not only are the termination wave-
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72 5.1. Eigenvalue Calculation through Partial Differential Equation Numerical Integration

functions zero, but also the derivatives of the other sub-lattice points’ wave functions, i.e., in
one of the A-terminated edges, we have the boundary conditions

ϕA = 0 −i
[
∂x′ − i∂y′

]
ϕB = 0 (5.1.2)

Plotting the first 256 energy eigenvalues, we obtain Figure 5.1.2, where negative eigenvalue
indexes are used to represent the states of negative energy.

-256 -192 -128 -64 0 64 128 192 256

Eigenvalue Index

-1,5

-1,2

-0,9

-0,6

-0,3

0

0,3

0,6

0,9

1,2

1,5

E
n
er

g
y 

(e
V

)

Conduction Band
Valence Band

Figure 5.1.2.: First 256 energy levels.

We now want to compare these energy levels against the ones obtained from a tight-binding
model. Building an hexagonal graphene dot with Pybinding [44] is quite simple, taking only
5-6 lines of codes. After that, we use exact diagonalization of the Hamiltonian to calculate the
energy levels. To increase the number of graphene lattices and, consequently, the accuracy of
the energy eigenvalues, we use a very large hexagonal enclosure (∼ 1000 graphene lattices).
Plotting the two together, we obtain Figure 5.1.3.
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Figure 5.1.3.: (Left) Energies of an hexagonal graphene dot with zigzag-like boundaries.
(Right) Tight-binding density of states.
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5 Hexagonal Graphene Flake with Zigzag-like Boundaries 73

As we can see, there is a clear difference between the two, as we do not obtain the flat
region at zero-energy for the continuum Hamiltonian. For the energies obtained from the
tight-binding Hamiltonian, we obtain the density of states in the right-hand side using KPM
[45]. This density of states is the one we expected, with the Dirac peak formed due to the flat
spectrum.
We will now attempt to use our polynomial method to treat this problem by taking into

account the treatment for the boundary conditions developed in Section 3.1.3.2.

5.1.1. Exactly-Zero Energy States in Tight-Binding

In tight-binding there are states of exactly zero energy. This is due to an asymmetry in the
sub-lattices, created when one cuts the graphene sheet into the desired polygonal flake. The
asymmetry created translates into a difference in the number of A and B sub-lattices. This
is more clearly seen in the edges of Figure 5.1.4. There is a total of 3 × 6 red sites in the
boundary, while the blue sites in the edge only sum to 3 × 5. The exact amount of sites in
each sub-lattice will depend linearly on the boundary length (i.e., on the size of the polygon).
How does this create states of exactly zero energy?

Figure 5.1.4.: Hexagonal graphene flake with zigzag boundary conditions.

The wave functions of each sub-lattice form a basis of linearly-independent vectors, where
the number of elements of this basis is the number of sites for the particular sub-lattice in
question. The Hamiltonian is a linear operator that transforms states of the A sub-lattice into
states of the B sub-lattice, which means that it must transform each of the basis vectors of
one of the basis into a vector of the other. This is where the zero energy states come from: if
a linear operator applied on m linearly independent vectors transforms them into n linearly
independent vectors, with n < m, then the difference of dimensions must be the same as the
kernel of the transformation. This is clearly observable in the article by Potasz et al [46],
where the authors find 4 states of exactly zero energy and the difference in sub-lattices is also
exactly 4. As the authors claim, one can control the amount of zero energy states by changing
the system size.
When one takes the continuum limit to obtain the Dirac-Weyl equation for the movement

of electrons in graphene, the only remaining length scale will be the 1
L dependence in the value

of each energy levels. This is a mere re-scaling of the energy units, which does not change
the overall shape of the curves. The number of states will not change with the system size,
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74 5.1. Eigenvalue Calculation through Partial Differential Equation Numerical Integration

by contrast with tight-binding where the number of states is completely determined by the
system size. The spectrum in a continuum model will behave as

E = f (n1, n2, ...)
~vF
L

(5.1.3)

where n1, n2, ... are the quantum numbers that govern the system (exactly what Gaddah found
in Equation 3.2.3).

5.1.2. Zarenia’s Results – a Critique

Knowing this, why do the features of the curves for the continuum model obtained by Zarenia
et al [25] (Figure 5.1.5) change when the system size is increased?
The authors observe a scaling of the number of energy levels with Ns, which is defined as

being the number of atoms in each side of the dot, and is using to obtain the length L of the
sides of the dot (Equation 5.1.4).

L =
√

3 (Ns + 1) a (5.1.4)

where a is the lattice parameter of graphene. As we discussed previously, the number of states
in continuum model is fixed, and therefore does not depend on the system size. Zarenia,
however, finds two unexpected phenomena: firstly, the authors find states of exactly-zero
energy; secondly, the number of states increases with Ns and, therefore, with L. Neither of
these behaviors should happen, as observed in our numerical integration (Figure 5.1.2).

Figure 5.1.5.: Continuum spectrum of a zigzag-like hexagonal graphene flake as obtained by
Zarenia et al [25].

As their numerical calculations were performed with COMSOL R© by discretizing the region
through a mesh to perform integration by finite-elements, a new length scale was introduced
into the problem: the ratio between the mesh and the system size. This mesh acted as a
pseudo-lattice, with a number of sites (and therefore states) increasing as the system size
increased. This what introduced the size dependence on the number of states obtained.
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5 Hexagonal Graphene Flake with Zigzag-like Boundaries 75

5.2. Applying the Polynomial Method

For us to employ the polynomial method discussed in Section 3.1, we must first discuss the
boundary conditions necessary to take into account when building the first polynomial.

Figure 5.2.1.: Basis vectors and identification of the edges.

Employing the formula (Equation 3.1.32) for the rotated edge j (still in Cartesian coordi-
nates) (

φB
φA

)
j

= teiαj (5.2.1)

we have to apply it to the three edges

y =
√

3x±
√

3L y = ±
√

3

2
L y = −

√
3x±

√
3L (5.2.2)

It is important to note that the pairs of opposing edges are not equivalent: in one, t = 0; in
the other, t =∞. In Cartesian coordinates, therefore, the first polynomial will be given by

Ψ0 (x, y) = N0


[√

3L
2 + y

] [
L+

(
x− y√

3

)] [
L−

(
x+ y√

3

)][√
3L
2 − y

] [
L−

(
x− y√

3

)] [
L+

(
x+ y√

3

)]  (5.2.3)

and the integration region will be∫∫
A
dxdy →

∫ √
3L
2

−
√
3L
2

dy

∫ L− |y|√
3

−L+
|y|√
3

dx

Knowing this, we can obtain an approximation to the low-energy spectrum by taking the
eigenvalues of the Hamiltonian matrix

Hij = −i
∫ √

3L
2

−
√

3L
2

dy

∫ L− |y|√
3

−L+
|y|√
3

dxΨ†i (σx∂x + σy∂y) Ψj (5.2.4)

The negative-energy polynomials will be obtained as was in the case in the 1D non-uniform
BCs (Equation 3.1.83). We can finally create the set of basis function that we will use through
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76 5.2. Applying the Polynomial Method

Gram-Schmidt Orthogonalization by taking two cycles according to Equations 5.2.5-5.2.6

Ψi = PiΨ0 −
i−1∑
j=0

〈PiΨ0|Ψj〉Ψj (5.2.5)

Ψi+1 = Pi+1 (σzΨ0)−
i∑

j=0

〈Pi+1 (σzΨ0) |Ψj〉Ψj (5.2.6)

where Pi is defined in the same way as in the Schrödinger problem (Equation 2.2.19), with the
only difference of each element of the list appearing twice (exactly the same as in the Dirac
square-billiards problem).
Afterwards, we diagonalize the Hamiltonian matrix and obtain the spectrum of this regime

for several different numbers of polynomials, visible in Figure 5.2.2.
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Figure 5.2.2.: Evolution of the spectrum of the zigzag-like-BCs hexagonal graphene dot with
different numbers of polynomials.

These curves appear to be converging, although very slowly. This is observable in the
behaviour of the 36 × 2, 66 × 2, and 91 × 2 curves, where the lowest eigenvalue appears to
already have converged. The two next eigenvalues also appear to be following this trend (66×2
and 91× 2 spectra), although an increase in polynomial number would be required to analyze
this further. As such, we will now attempt to treat this problem as an Helmholtz problem.
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5 Hexagonal Graphene Flake with Zigzag-like Boundaries 77

5.3. Polynomial Method with Helmholtz Equation for the
Hexagonal Graphene Flake

In this section, the treatment performed in Section 4.1.1 will be replicated for the case of
the hexagonal graphene flake with zigzag-like edges, as an attempt to use a larger number of
polynomials. In principle, the obtained solution will be the same as the one we arrived at
for the case of the triangular enclosure. This is because the imposed boundary conditions are
equivalent to Dirichlet boundary conditions in two larger triangles for each spinor element.
As an example, ψA will be zero in the three edges of the hexagon defined by

y = −
√

3L

2
, y =

√
3 (x+ L) , y =

√
3 (−x+ L)

which means that it will also be zero in the larger triangle defined by these same edges. Visually
this translates to Figure 5.3.1, where the dashed edges of the hexagon are those where ψA is
“free”. An identical behaviour for ψB is visible in this same figure, which results in the same
larger triangle but now inverted in the y-axis. As such, the convergence of the eigenvalues of

EA i,j = 〈ψi,A|
(
−~2v2

F∇2
)
|ψj,A〉 EB i,j = 〈ψi,B|

(
−~2v2

F∇2
)
|ψj,B〉 (5.3.1)

will be immediate.
It is important to note that we will need to scale the energies according to the areas of the

two polygons, as the triangle will have 1.5 times the area of the original hexagon.

Figure 5.3.1.: Boundary conditions for ψA will be equivalent between the hexagon and the
larger triangle.

The procedure will be exactly the same as in Section 4.1.1. Defining the initial polynomial
as before (Equation 5.2.3), we want to study the eigenvalues of H†H in this basis, which will
be positive by definition. Taking the square root of the obtained eigenvalues, we compare
these for different numbers of polynomials in Figure 5.3.2, as well as against the numerical
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78 5.3. Polynomial Method with Helmholtz Equation for the Hexagonal Graphene Flake

eigenvalues obtained in Section 5.1. Comparing the non-diverging eigenvalues (with a scaling
factor of

√
Ahex
Atriang

due to the different system sizes) against the results obtained for the triangle
using Helmholtz equation (Section 3.3), we obtain Figure 5.3.3.
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Figure 5.3.2.: Comparison of the spectrum of the zigzag-like BCs hexagonal billiard with in-
creasing number of polynomials.
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Figure 5.3.3.: Comparison of the spectrum of the zigzag-like-BCs hexagonal billiard against
the exact solution for the triangle.
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As a final note, we compare (Figure 5.3.4) the density plots of first three positive energy
eigenfunctions (only the ψA component, as the ψB is simply an inversion) of the hexagon with
the ones obtained previously for the triangle (Section 3.3), highlighting the corresponding
region. Additional plots for |Ψ (x, y)|2, |ψA (x, y)|2 and |ψB (x, y)|2 are available in Appendix
B.5.

Figure 5.3.4.: |ψA,j |2 for the hexagon (top) and for the triangle (bottom) j ∈ {1, 2, 3}.

Further analysis of this hexagon-triangle symmetry will be necessary to check if it is possible
to use a modified version of the exact solutions for the triangle to write the exact solutions for
the zigzag-like hexagon.

79



6. Conclusions and Future Work

Throughout this thesis, we worked on the generalization of a polynomial method so that we
were able to study the spectrum of hexagonal regions of twisted bilayer using a continuum
model. This polynomial method reproduced with remarkable precision the exact and numerical
results for the Schrödinger problems.
When it came to the generalization for the case of Dirac’s equation, we hit a roadblock

regarding the imposing of boundary conditions. As such, the study of relativistic systems was
delayed and, ultimately, we were unable to apply this method to bilayer graphene systems.
After generalizing the polynomial method, we replicated two exact solutions for 1-dimensional
systems, as well as studying a third 1D problem which presented an easily-obtainable zero-
energy solution.
The straightforward generalization of this method to bidimensional problems worked. We

were able to study a square with infinite-mass confinement boundary conditions, as well as a
triangle and an hexagon with zigzag-like boundaries. The obtained solutions for the hexagon
presented an apparent equivalence with the ones for the triangle, for which an analytical
solution existed in the literature.
The agreement with the known solutions from the existing literature was very satisfactory,

but we would like to find a way to optimize this process. The computation time of both
the Gram-Schmidt process and the Hamiltonian matrix elements grew quite rapidly, which
stopped us from increasing the basis size past a certain amount.
A solution to the ever-increasing computation time could be to re-write the code utilized

into a more low-level programming language, such as Python or C/C++, instead of utilizing
Wolfram Mathematica R© to perform numerical calculations.
For the future, we hope to further generalize this approach, first to AA- and AB-stacked

bilayer graphene systems, and then finally for twisted bilayer graphene. To do this, we will
need to study the necessary boundary conditions for confined states in these systems. Another
point that will require further study will be the zero-energy states, and their meaning in this
continuum approach.
Additionally, there is no a priori reason that prevents us from studying different properties

of the systems we utilized. For example, optical response or the effects of a magnetic field.
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A. Appendix

A.1. Plots of ψi (x, y) with i ∈ [1, 8] for the Square Enclosure

Figure A.1.1.: Left to right, top to bottom: ψi (x, y) with i ∈ [1, 8].
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A.2. Block Diagonalization of the Hamiltonian Matrix

For a system governed by the Schrödinger equation, the symmetries of the Hamiltonian will
be obtained from the symmetries of the specific potential profile. In the problems we consider,
this profile will define specific regular polygons, which will redirect us to the point-group that
characterizes this polygon.
Therefore, the most obvious and sensible way for us to generate higher-order polynomials in

by taking into account the different irreducible representations of the point-group in question.
What we want to demonstrate is the orthogonality between functions belonging to different
irreducible representations. This orthogonality will ensure that the Hamiltonian matrix will
be diagonal in blocks, which significantly reduces the computation time. This section heavily
relies on the group theory book by Dresselhaus et al [47].
As the product of two different irreducible representations is, by definition, zero, what we

need to show is that both the Laplacian and the initial polynomial belong to the identity
representation (usually denominated A1). The Laplacian will affect only the calculation of
the Hamiltonian matrix elements, while the starting polynomial ψ0 will enter in both the
Hamiltonian matrix elements and the Gram-Schmidt process.
The Laplacian is a scalar operator invariant under any rotation or reflection, and there-

fore invariant under any operation of the point group in question. Therefore, it transforms
according to the A1 representation.

For the initial polynomial ψ0, we only need to note that it is zero in all the edges (i.e., obeys
the imposed Dirichlet boundary conditions). Because of this, and as the action of each of the
elements of the group can be seen as an exchange of boundaries, we know that ψ0 must belong
to the identity representation. As an example for clarity, for the square infinite potential well,

ψ0 (x, y) =
(
L2 − x2

) (
L2 − y2

)
= L4 − L2

(
x2 + y2

)
+ x2y2

= −L2
(
x2 + y2

)
+ x2y2 + const (A.2.1)

The first term in Equation A.2.1 is the distance element, which immediately belongs to the
identity representation. The second term is invariant under any ±π

2 rotation, as well as under
any x → −x, y → −y or x, y → ±y, x reflection, which means that it also belongs to the
identity representation. This was shown for the case of the square enclosure, but is easily
extended to any regular polygonal enclosure.
By direct application of Schur’s Lemma[48], we know that the scalar product of functions

belonging to irreducible representations F,G will only be non-zero if F⊗G contains the identity
representation, which only happens if F = G.
As such, and by direct application of each of these facts, we know that a function generated

by the product of a polynomial belonging to any of the irreducible representations (generically
denoted as R) will only have non-zero projections upon functions that belong to that same
representation (i.e., the Gram-Schmidt process will not mix functions of different irreducible
representations). Applying this same fact to the different matrix entries of the Hamiltonian,

Hij = −
∫∫

Ω
dxdy ψi∇2ψj (A.2.2)

82



A Appendix 83

we can see that, denoting F,G as the irreducible representations containing ψi,j , respectively,
(in the following, ∼ means “belongs to”)

ψi∇2ψj ∼ F ⊗A1 ⊗G
∼ F ⊗G (A.2.3)

From this, we know that ψi∇2ψj ∼ F ⊗ G only contains the A1 irreducible representation if
(and only if) F = G. This means that the integral in Equation A.2.2 will only be non-zero
when F = G (again, by Schur’s Lemma). As such, this guarantees that the Hamiltonian
matrix will be diagonal by blocks, which is exactly what we wanted to show. �
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A.3. Plots of ψi (x, y) with i ∈ [1, 8] for the Hexagonal Enclosure

Figure A.3.1.: Left to right, top to bottom: ψi (x, y) with i ∈ [1, 8].
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A.4. C6v Group Symmetry Treatment of the Hexagonal
Enclosure

The C6v group has 12 elements, and its character table is reproduced in Table A.4.1.

Figure A.4.1.: Character table of C6v.

Here, C6 denotes rotations of ±π
3 , C3 = C2

6 , C2 = C4
6 ; σv are the reflections on the three axis

that pass through the vertices, and σd are the reflections on the three axis that pass through
the faces. Defining the lowest order polynomial (that is zero on all boundaries) as

φ̃0 (x, y) =

(
3

4
− y2

)(
1−

(
x− y√

3

)2
)(

1−
(
x+

y√
3

)2
)

(A.4.1)

where the tilde (~) identifies an un-normalized function, we know that it belongs to the A1

representation (shown in Equation 2.4.21). As such, the product of a function f belonging
to the irreducible representation X with this polynomial will also belong to the irreducible
representation X.

Analogously to the treatment for the C4v point-group, the higher order polynomials will be
obtained by multiplication with a set of polynomials fn,i (x, y) that form irreducible represen-
tations of C6v.

Trivially, for n = 0 the only possible f is

f0 = 1 (A.4.2)

which belongs to A1.

For n = 1, there are only 2 possible first-degree polynomials. As we want them to be
orthogonal, we write

f1,1 = x+ y

f1,2 = x− y (A.4.3)

which are elements of the irreducible representation E1. From this point on, we will require
the direct product table for this symmetry group (Table A.4.2).
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Figure A.4.2.: Direct product table for C6v.

For n = 2, we have to be more careful than in the case of the C4v group. Taking the direct
product, we get

E1 ⊗ E1 = A1 ⊕A2 ⊕ E2 (A.4.4)

and we will have three polynomials. As the E2 irreducible representation is bi-dimensional
and the Ais are one-dimensional, one of the elements must be ignored due to the symmetries
of the shape in question. By direct product of the f1,is, we have three polynomials

f1,1 × f1,1 = x2 + y2 + 2xy

f1,1 × f1,2 = f1,2 × f1,1 = x2 − y2

f1,2 × f1,2 = x2 + y2 − 2xy (A.4.5)

Reorganizing these equations so that they are invariant under the action of each of the irre-
ducible representations, we have

f2,1 = x2 + y2 + xy

f2,2 = x2 + y2 + 4xy

f2,3 = x2 − y2 (A.4.6)

again, these expressions were not yet normalized, but they are already orthogonal amongst
themselves. In what irreducible representation do each of them fall into? Obviously, f2,1 must
be in A1 since it is the invariant distance in this space. We now need to classify f2,2 and f2,3.
They must belong to E2, as it is the only bi-dimensional irreducible representation we have in
this order. Also, they are neither symmetric nor anti-symmetric under σv or σd, so they must
belong to this group.

In n = 3, we will have four polynomials. Applying the direct product between E1 and
A1 ⊕ E2, we get

E1 ⊗ (A1 ⊕ E2) = E1 ⊕ (E1 ⊕B1 ⊕B2) (A.4.7)

Since A1 is invariant,

f3,1 = (x+ y)
(
x2 + y2 + xy

)
f3,2 = (x− y)

(
x2 + y2 + xy

)
(A.4.8)

belong to E1. Let us define two 3rd order polynomials that are orthogonal between each other
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x2y + xy2

x2y − xy2

Orthogonalizing these with f3,1 and f3,2, we get

f3,3 = x2y + xy2

f3,4 =
2

3
x3 + x2y − xy2 − 2

3
y3 (A.4.9)

Do these functions belong to E1, or do they belong to B1 and B2? Taking their scalar product
with f1,1 and f1,2 we get the matrix[

〈f3,3|f1,1〉 〈f3,4|f1,1〉
〈f3,3|f1,2〉 〈f3,4|f1,2〉

]
=

[
0 0
0 0

]
(A.4.10)

This shows that these polynomials cannot be in E1, because E1 ⊗ E1 contains an identity
representation, and the integral over the volume of the identity cannot be zero. As f3,3 is even
under the reflection that swaps (x, y)→ (y, x) and f3,4 is odd under this same reflection, f3,3

must belong in B1 and f3,4 in B2.

Let us now look into n = 4, where we will have five polynomials. From the direct product
table, we know that

E1 ⊗ E1 = A1 ⊕ E2

E1 ⊗B1 = E2

E1 ⊗B2 = E2 (A.4.11)

The A1 polynomial will be, as in the case of the C4v group, the distance element square

f4,1 =
(
x2 + y2 + xy

)2 (A.4.12)

As such, the four remaining ones must be in an E2 irreducible representation. Two of them
will come from linear combinations of products of f1,1 and f1,2 with f3,1 and f3,2:

f4,2 = f1,1 × f3,1 − f1,2 × f3,2

f4,3 = f1,1 × f3,2 + f1,2 × f3,1 (A.4.13)

For the last two, we take the product of f1,1 and f1,2 with f3,3, and then orthogonalize both of
them against f4,2 and f4,3. From this process, we arrive at (ignoring the normalization factors)

f4,2 =
(
x2 + y2 + xy

) (
x2 + y2 + 4xy

)
f4,3 =

(
x4 + x3y − xy3 − y4

)
f4,4 =

(
27x4 + 143x3y − 143xy3 − 27y4

)
f4,5 =

(
9x4 − 71x3y − 178x2y2 − 71xy3 + 9y4

)
(A.4.14)

For n = 5, we know we will have six polynomials. Taking again direct products of E1 with
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the irreducible representation of the polynomials of n = 4, we get

E1 ⊗A1 = E1

E1 ⊗ E2 = B1 ⊕B2 ⊕ E1 (A.4.15)

From this decomposition, and as we know that E1 is bi-dimensional, we will have 4 polynomials
coming from both E1s, and 1 coming from each of B1 and B2. The first two are quite simple,
as they come from applying the two elements of E1 to the square of the metric:

f5,1 = (x+ y)
(
x2 + y2 + xy

)2
f5,2 = (x− y)

(
x2 + y2 + xy

)2 (A.4.16)

Now regarding the other four: one will have to be symmetric under σv, one will be anti-
symmetric under the same reflection, and the last two will not be either. Calculating them
the same way as was done before, we get

f5,3 = xy (x+ y)
(
x2 + y2 + xy

)
f5,4 = (x− y)

(
x2 + y2 + xy

) (
2x2 + 2y2 + 5xy

)
(A.4.17)

From observation of the form of these last two polynomials, we know that f5,3 must belong
to the B1 irreducible representation, and f5,4 must belong to B2. For the last two, we repeat
the same process that we used for the 4th order, obtaining the two final polynomials for this
order, which belong to E1.

f5,5 = xy (x+ y)3

f5,6 = xy (x− y) (x+ y)2 (A.4.18)

Finally, let us obtain the n = 6 polynomials. There are seven of them, and we can obtain
them in multiple ways. For simplicity, we will act with n = 3 in itself. The group products
are the same as before, as we want to calculate

(E1 ⊕B1 ⊕B2)⊗ (E1 ⊕B1 ⊕B2) = (A1 ⊕ E2)⊕ (A1 ⊕ E2)⊕ (A1 ⊕ E2)⊕A2 (A.4.19)

Due to the symmetries of the problem, we will not have an anti-symmetric polynomial. There-
fore, due to the dimensions of the irreducible representations, we will have one polynomial from
A1 and 6 (2+2+2) from E2. The term that belongs in A1 is again the distance in our coordinate
system

f6,1 =
(
x2 + y2 + xy

)3 (A.4.20)

Now, using the exact same procedure as before with f3,1 and f3,2, we get

f6,2 = xy
(
x2 + y2 + xy

)2
f6,3 =

(
x2 − y2

) (
x2 + y2 + xy

)2 (A.4.21)

The final four polynomials that all belong, by construction, to the irreducible representation
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E2, are given by

f6,4 = xy (x+ y)2 (x2 + y2 + xy
)

f6,5 = xy
(
x2 − y2

) (
x2 + y2 + xy

)
f6,6 = x2y2 (x+ y)2

f6,7 = (x− y)2 (2x+ y)2 (x+ 2y)2 (A.4.22)

We can repeat this process up to any order, and the functions will always be (by construction)
orthogonal. By definition of the irreducible representations, and as the Laplacian operator
belongs also to the A1 representation, the Hamiltonian matrix will be diagonal by blocks,
with each block belonging to one irreducible representation, which significantly shortens the
calculation time.
Up to sixth order, the polynomials are grouped as

f0, f2,1, f4,1, f6,1 → A1

f3,3, f5,3 → B1

f3,4, f5,4 → B2

f1,1, f1,2, f3,1, f3,2, f5,1, f5,2, f5,5, f5,6 → E1

f2,2, f2,3, f4,2, f4,3, f4,4, f4,5, f6,2, f6,3, f6,4, f6,5, f6,6, f6,7 → E2 (A.4.23)
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B. Appendix

B.1. Behaviour of Jm+1[qεR]
Jm[qεR] = s for m ∈ [0, 5]
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Figure B.1.1.: Jm+1[qεR]
Jm[qεR] = ±1 for m ∈ [0, 5].
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B.2. Density Plots of
∣∣∣ρ(+,j)
n1,n2 (x, y)

∣∣∣2, ∣∣∣φ(j)
n1,n2

∣∣∣2, and ∣∣∣χ(+,j)
n1,n2

∣∣∣2 for the
Triangular Billiard

Figure B.2.1.: Left to right, top to bottom:
∣∣∣ρ(+,2)
n1,n1

∣∣∣2 , ∣∣∣φ(2)
n1,n1

∣∣∣2 , ∣∣∣χ(+,2)
n1,n1

∣∣∣2 with n1 ∈ {1, 2, 3}.
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92 B.2. Density Plots of
∣∣∣ρ(+,j)
n1,n2 (x, y)

∣∣∣2, ∣∣∣φ(j)
n1,n2

∣∣∣2, and ∣∣∣χ(+,j)
n1,n2

∣∣∣2 for the Triangular Billiard

Figure B.2.2.: Left to right:
∣∣∣ρ(+,1)
n1,n2

∣∣∣2 , ∣∣∣φ(1)
n1,n2

∣∣∣2 , ∣∣∣χ(+,1)
n1,n2

∣∣∣2 with (n1, n2) = {(1, 2) , (1, 3) , (2, 3)}.
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Figure B.2.3.: Left to right:
∣∣∣ρ(+,2)
n1,n2

∣∣∣2 , ∣∣∣φ(2)
n1,n2

∣∣∣2 , ∣∣∣χ(+,2)
n1,n2

∣∣∣2 with (n1, n2) = {(1, 2) , (1, 3) , (2, 3)}.
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94 B.3. Density Plots of |ψA (x, y)|2 for the Lowest Energy Eigenfunctions of the Triangle

B.3. Density Plots of |ψA (x, y)|2 for the Lowest Energy
Eigenfunctions of the Triangle

Figure B.3.1.: Density plots of |ψA (x, y)|2 for the triangular billiards (energy increasing left
to right, top to bottom).
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B.4. Density Plots of |Ψ (x, y)|2, |ψA (x, y)|2 and |ψB (x, y)|2 for the
Lowest Energy Eigenfunctions of the Square

Figure B.4.1.: Density plots of |Ψ (x, y)|2, |ψA (x, y)|2 and |ψB (x, y)|2 for the first three energy
levels of the infinite-mass confined square (energy increasing top to bottom).
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96
B.4. Density Plots of |Ψ (x, y)|2, |ψA (x, y)|2 and |ψB (x, y)|2 for the Lowest Energy

Eigenfunctions of the Square

Figure B.4.2.: Density plots of |Ψ (x, y)|2, |ψA (x, y)|2 and |ψB (x, y)|2 for the second three
energy levels of the infinite-mass confined square (energy increasing top to bot-
tom).
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Figure B.4.3.: Density plots of |Ψ (x, y)|2, |ψA (x, y)|2 and |ψB (x, y)|2 for the third three energy
levels of the infinite-mass confined square (energy increasing top to bottom).
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B.5. Density Plots of |Ψ (x, y)|2, |ψA (x, y)|2 and |ψB (x, y)|2 for the Lowest Energy

Eigenfunctions of the Hexagon

B.5. Density Plots of |Ψ (x, y)|2, |ψA (x, y)|2 and |ψB (x, y)|2 for the
Lowest Energy Eigenfunctions of the Hexagon

Figure B.5.1.: Density plots of |Ψ (x, y)|2, |ψA (x, y)|2 and |ψB (x, y)|2 for the first three en-
ergy levels of a zigzag-like hexagonal graphene flake (energy increasing top to
bottom).

98



B Appendix 99

Figure B.5.2.: Density plots of |Ψ (x, y)|2, |ψA (x, y)|2 and |ψB (x, y)|2 for the second three
energy levels of a zigzag-like hexagonal graphene flake (energy increasing top to
bottom).

99



100
B.5. Density Plots of |Ψ (x, y)|2, |ψA (x, y)|2 and |ψB (x, y)|2 for the Lowest Energy

Eigenfunctions of the Hexagon

Figure B.5.3.: Density plots of |Ψ (x, y)|2, |ψA (x, y)|2 and |ψB (x, y)|2 for the third three en-
ergy levels of a zigzag-like hexagonal graphene flake (energy increasing top to
bottom).
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