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Abstract

Analysis of intra- and inter-population diversity has become important for defining the genetic

status and distribution patterns of a species and a powerful tool for conservation programs, since

high levels of inbreeding could lead into a whole population extinction in few generations. In

this work, we combine next generation sequencing (NGS) with automatic computing to develop

a genomic-oriented tool for characterizing microsatellites (SSR) at the population level. Herein,

we describe a new Python pipeline, named Micro-Primers, designed to identify and design PCR

primers for amplification of SSR loci from a multi-individual enriched microsatellite library. The

pipeline takes as input just a FASTQ file containing sequences from NGS and returns a text

file with information regarding the microsatellite markers, including number of alleles in the

population, the melting temperature and the respective product of primer sets to easily guide

the selection of optimal markers for the species.

A dataset belonging to bats of the species Hiposideros vittatus from two different population

from Namibia and Botswana were used to evaluate its performance. Using a Intel-i7 Octacore

processor and with 64 GB of memory, it took Micro-primers less than 120 seconds to execute

the analysis, which would require not less than 24 hours to be complete if manual processes

were to be employed. No differences were found in the results obtained via manual process and

Micro-Primers.

The usage of this pipeline discards any kind of additional scripting and frees laboratories from

agonizing manual analysis of thousands of possible microsatellite candidates for their projects,

eliminating possible user bias while saving money and time.

Keywords : Bioinformatics, Next Generation Sequecing, Microssatellite, SSR, Pipeline,

Population Genomics
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Resumo

A análise da diversidade intra e inter-populacional tornou-se importante para definir a diversidade

genético e padrões de distribuição de espécies e uma ferramenta poderosa para programas de

conservação, uma vez que elevados níveis de consanguinidade podem levar á extinção de uma

população inteira em poucas gerações. Neste trabalho, combinamos Sequenciação de Nova Geração

(NGS) com computação automática para desenvolver uma ferramenta genomicamente orientada

para a caracterização de microsatélites a nível populacional. Nesta perspectiva, descrevemos

uma nova pipeline programada em Python, chamada Micro-Primers. Esta foi desenvolvida para

identificar e desenhar iniciadores para PCR para a amplificação de loci de microssatélites a

partir de uma biblioteca de microsatélites enriquecida, proveniente de múltiplos indivíduos. A

pipeline tem como ficheiro de entrada apenas ficheiros em formato FASTQ contendo sequências

provenientes de NGS e retorna um ficheiro de texto com informação a respeito dos marcadores

de microssatélites, incluindo o número de alelos na população, temperatura de fusão, e respetivo

tamanho dos conjuntos de iniciadores para facilmente guiar a seleção de marcadores ideais para

as espécies.

Um conjunto de dados de morcegos da espécie Hiposideros vittatus pertencentes a duas

populações diferentes da Namíbia e Botswana foram usados para avaliar o respetivo desempenho.

Usando um processador Intel-i7 com 64 Gb de memória, o Micro-Primers demorou apenas cerca

de 120 segundos para executar a análise, o que exigiria não menos de 24 horas para ser concluída

se processos manuais fossem empregues. Nenhuma diferença foi encontrada entre os resultados

obtidos pela pipeline e por processos manuais.

A utilização desta pipeline descarta a utilização de programas adicionais e liberta os

laboratórios de morosas análises a milhares de possíveis microssatélites candidatos para os

seus projectos, eliminando possível enviesamento do utilizador enquanto poupa recursos e tempo.

Palavras-Chave : Bioinformática, Sequenciação de Nova Geração, Microssatélites, Pipeline,
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Chapter 1

Introduction

1.1 Next Generation Sequencing

The first sequencing technology was described in 1977 and was named Sanger on behalf of

its inventor. This technology dominated the genomic research from the 80’s until 00’s and

still nowadays it is an important tool for getting the sequence of very complex and repeated

regions or to close genome holes. Sanger sequencing consists on copying several times the same

target DNA and infer the nucleotide that is added to the sequence at every single position.

The major breakthrough was when chain-termination technique appeared to stop the DNA

extension at random positions. The idea of this technique was to perform simultaneously the

sequencing in 4 separated reactions with the same reagents, the DNA template to be sequenced,

a DNA primer to start the amplification, a DNA polymerase to perform the DNA synthesis,

and deoxynucleotidetriphosphates (dNTPs) to be added at the end of the new sequence. The

only difference in the 4 reactions is the inclusion of modified di-deoxynucleotidetriphosphates

(ddNTPs) that will not allow to continue the elongation of the sequence since they lack of the

3’OH group required for the formation of the joint with the next nucleotide. Every different

reaction has a different di-deoxynucleotidetriphosphate (A, C, G or T) producing that in each

reaction any of the produced sequences will end at this particular nucleotide but in different

positions. The proportion of dNTP and ddNTP is crucial, since normal nucleotides of the same

nitrogenous base than the di-deoxynucleotide are required to get strands of different lengths. If

the proportion of ddNTPs is high all the strands will be prematurely stopped. Using a 4 lane gel

electrophoresis it is possible to identify the nucleotide order present in the original strand [2]

(Figure 1.1).

1



2 Chapter 1. Introduction

Figure 1.1: Illustration of a four lane electrophoresis containing fragments generated from Sanger sequencing. A example

DNA is sequenced using Sanger’s chain termination methodology, originating various reads with different lengths due to the

use of ddNTPs, which stop chain amplification when added by DNA polymerase. All possible combinations are shown at

(b). These fragments can be visualized using electrophoresis and the sequence is inferred by finding the lane in which the

band is present for a given site since the ddNTP corresponds to the base in that position. Adapted from Heather et al. [1]

.

This technique was revolutionary, since it enabled the sequencing of DNA strands with high

levels of accuracy, robustness and it is ease of use. A number of improvements were made to

Fred Sanger’s method, such as using fluorometric based detection allowing the use of one vessel

instead of four [3], and improved detection through capillary based electrophoresis [4]. All this

improvements lead to the creation of the first automated sequencing machines and protocols [1].

The evolution of this technique allowed scientist to obtain the first complete genomes of different

species, such as Escherichia coli [5], Arabidopsis thaliana [6], Drosophila melanogaster [7] and

most important, the completion of the human genome [8, 9].

Although Sanger method is still widely used, it has some disadvantages. Sanger sequencing

has low sensitivity, being unable to detect mosaic alleles below a threshold of 15 to 20 %,

it produces a low number of reads, important for studying somatic mutations. The cost for

sequencing a whole genome is very expensive, and can’t be used for parallel research of multiple

targets [10, 11].

Together with the previous technologies developed, new technologies were created. In 2005 a

new method was published called "Sequencing by Synthesis Technology" by 454 Life Sciences [12].

In this method a new strategy originated a great reduction of the necessary reaction volume and

allowed the parallelization of the process producing at the same time a huge number of different

sequences. This landmark paper started the now called Next Generation Sequencing (NGS) era.
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NGS, also known as high-throughput sequencing (HTS), includes a number of methods,

such as, template preparation, sequencing and imaging, and data analysis. Nowadays, there are

three main competing technologies: Illumina/Solexa sequencing, Roche 454 sequencing and Ion

sequencing from TermoFisher.

All NGS technologies need a library construction before the sequencing itself. A library is a

collection of cloned DNA or cDNA fragments, originated from the DNA or RNA samples to be

sequenced, joint to a known adapter, specific for the technology used. This adapter will be the

link to the surface where the sequencing will be performed or even can be used as flag to identify

different samples in the same sequencing run.

1.1.1 Illumina/Solexa

This technology was initially developed by Solexa which was after acquired by Illumina. It uses

a method called bridge amplification. Instead of using a bead-based emulsion PCR (ePCR),

a amplification reaction is performed on the base of a glass flow cell containing several lanes.

This flow cell is covered with specific oligos, complementary to those added to the library in the

preparation phase. The single stranded DNA (ssDNA) will bind to these oligos and bend in such

a way that the ssDNA is connected to the two oligos simultaneously forming a bridge, hence the

name. Priming begins at the priming binding site, located in the added adapters, and repeated

cycles of denaturation and extensions occurs. This will originate the clonal amplification of all

fragments along the flow cell, each composed of thousands of copies of a single fragment, resulting

in forward and reverse copies of the same fragment [13]. Next, the strands are cleaved and the

reverse strands are washed away, leaving only the forward strands, while the prime ends are

blocked to avoid any unwanted priming. The sequencing phase starts with the extension of the

primer sequencing. It consists of several cycles where in each one fluorescent-tagged nucleotides

with reversible terminators compete to be added in the growing strand. The remaining nucleotides

are washed away. Using lasers, the nucleotide is excited, emitting a unique emission frequency

that is measured, identifying the corresponding nucleotide. The reversible terminator is cleaved

and the cycle starts all over again. Each cluster is sequenced simultaneously, resulting in a

massive parallel process, producing each one a read, inferred from the reading of all the signals

for every single spot at each cycle. This process is called Sequencing-by-Synthesis (SBS). Now

that the forward read is complete, the primer ends are unblocked, the strands are again cleaved

but this time the forward strands, already sequenced, are washed away. A new SBS process
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begins sequencing now the reverse strands. The resulting data obtained is then analysed.

1.1.2 Roche 454

Small resin beads are deposit in a PicoTiter plate, a small plate containing millions of wells, each

one approximately 25 µm in diameter. These beads are covered with adapters, complementary

with the ones added to the DNA fragments in the library preparation. The DNA is denatured

and the ssDNA binds with the adapters. Due to the nature of the wells, only a single fragment of

DNA can be immobilized to each bead. These fragments pass then to a length extension phase,

in which each bead will contain a cluster of copies of the same fragment. After amplification,

a SBS phase follows. Although, similarly with the Illumina method, sequencing occurs when

a nucleotide binds with the template fragment but a different method for recognition is used.

This method is based in a enzyme cascade ending with detection of the emitted light. Nucleotide

bases, dNTP, are added in waves and if the DNA polymerase adds the nucleotide to the growing

chain, a single phosphate, Pi, is released. This phosphate will react with the enzyme luciferase,

present in the well. Both of them will react resulting in the products oxyluciferyn and light.

This light will be detected by a camera in the machine and saved. Then, the nucleotides are

washed and a new cycle starts [12, 14]. This methods allows the addition of multiple nucleotides

of the same kind during a single cycle. The technology can detect the multiple additions by the

increase of the fluorescent signal intensity, although it can turn into a growth of homonucleotide

sequences, resulting in a higher error rate [15, 16]. Apart from this, 454 technology can produce

longer reads than Illumina with a high quality. Nevertheless, this type of sequencing is not

supported anymore and the reagents are not longer distributed, so it was replaced completely by

Illumina sequencing.

1.1.3 Ion Torrent Sequencing

This technology developed by Ion Torrent Systems Inc. and currently owned by TermoFisher,

differs from the traditional optic-based sequencers, such as the aforementioned Illumina and

Roche 454, on the use of a semiconductor-based approach. Although optic-based sequencers have

better accuracy, Ion Torrent sequencing allows lower sequencer costs, less power consumption and

higher scalability. During library preparation, adapters are added to DNA fragments that will

be later clonally amplified into beads via PCR. DNA fragments are bound to a single Ion Sphere

Particle on one side and are biotinylated on the other side. During enrichment process, the
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biotinylated side will be bind to magnetic beads that are coated with streptavidin. In this way all

empty beads that do not contain any DNA fragment will be washed away so only beads containing

template DNA are selected. These beads are pipetted into the semiconductor chip where only a

single bead fits inside every well. Remaining beads will be discarded by centrifugation, granting

that every well only contains a single bead. Sequencing in this technology proceeds in a similar

manner to Roche 454 but instead of using sensors to detect luminescence emitted by enzymes, it

detects pH changes in the solution, which means that every well is, in essence, a pH meter. The

dNTP are added in a step-wise fashion and if the current nucleotide is complementary to the

template DNA fragment, DNA polymerase will add it in the extending strand, releasing H+ and

di-phosphate. This proton will cause a shift in the pH in the solution, proportional to the amount

of nucleotides incorporated. The sensor, located in the bottom of each well, will transform this

signal from chemical to electrical and digitized. The solution is washed away and the cycle starts

again [17]. Such as Roche 454, each cycle can detect homopolymer stretches, leading to higher

error rates in this regions [15, 16]. The semiconductor nature also leads to faster and cheaper

rapid sequencing speed and low upfront and operating costs, since the detection is made on the

chip itself [18].

1.1.4 Different Technologies, Same Output

In the last decades, the development of various technologies and methodologies have led to the

advance in sequencing (more data together with a cost reduction). Nowadays, this evolution

does not seem to slow down but on the contrary. The price reduction since beginning of the 21st

century is well above the Moore’s Law prediction, allowing for the use the rapid development

of new methodologies for various fields such as evolutionary biology, phylogenomic, population

genomic or metagenomic. But progress never stops and the next generation sequencing is already

in development. This new technologies, developed by companies like Pacific Biosystems (PacBio)

and Oxford Nanopore Technologies, do not require amplification during library preparation,

enabling single molecule sequencing with much higher read length [19]. Returning to the current

available technologies, despite every technology having their own characteristics, they produce

the same information: DNA reads, and the way to express them is in the standard FASTQ

format. This is a text-based format for storing biological sequences, such as nucleotides and

amino acids. It is a variation of the already existing FASTA format with the inclusion of a

PHRED quality score for every single nucleotide. This value is defined in terms of the estimated

probability of error.
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QP HRED = −10× log10(Pe)

The quality scores are stored in ASCII, which allows it to be saved in a single character, an

efficient storage-saving method, with a high range of probabilities that can be converted to a

score between 0 and 126, representing all the characters in a normal keyboard. Since this format

is widely extended, most software/pipelines are simultaneously compatible with practically every

technology.

1.2 Microsatellites

Microssatellites, or SSRs (simple sequence repeats), are a subcategory of small tandem repeats

(1-6 base pairs) consisting of repeated DNA motifs present in eukaryotes and procaryotes that

occur in coding and non-coding regions. Their distribution throughout the genome is debated

although some studies show the non-random nature of their distribution [20]. What makes SSR

interesting is their special nature and their unusual high mutation rate. The mutation rate of

this DNA regions varies from specie to specie, but it is estimated to be between 10-3 to 10-6 per

cell generation [21]. Some variables can alter the mutation rates, being difficult to establish a

pattern across species. It is known that increased heterozygosity induces higher mutation rates,

as well as microsatellite length increase [22, 23].

Due to the nature of microsatellites, they are classified in four categories: perfect, imperfect,

interrupted and composite. Perfect pattern consists in a perfect repetitions of the motif (as

its own name indicates); an imperfect microsatellite contains a non matching base pair located

between the motif; an interrupted pattern contains in the SSR itself a small sequence that does

not match the motif sequence; and finally a composite one is formed by 2 different sequences

with different motifs next to each other [24].

The majority of SSRs are located in non-coding regions and are relatively rare in protein-

coding regions in primates, plants and other clades [25–27]. The relative absence of SSRs in

protein-coding proteins can derive form a negative selection against frame shifting mutations [28]

and the ones located in the coding region are mostly compose of trinucleotide or hexanucleotide

motifs, mitigating the frame shift adjustment.
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1.2.1 Mutations Mechanisms

As already mentioned, the mutation rates in SSRs are higher than point mutations in other

coding loci which influences its abundance and functions effects associated with the mutations

rates. The causes are not well-known but various theories have been proposed to explain SSR

instability such as replication slippage and recombination.

1.2.1.1 Replication Slippage

Replication slippage is a replication error that occurs during DNA replication where the template

DNA strand and the nascent, that is just growing, suffer from a shift that makes the two strands

are different. This phenomena normally happens in highly repetitive areas such as microsatellite

regions. This can be caused by the dissociation of one DNA strand from the other, either

template or nascent, and rebinding in a different position [20, 29]. As a result, a loop is formed

that may cause a contraction or expansion of the SSR, but with a higher bias for expansion [30].

If this error is not detected by DNA repair mechanisms, this event will form a new allele at

the SSR loci just copied. The length and purity of the SSR can affect to the mismatch repair

mechanisms. Longer and purer have higher mutations rates than shorter and impure SSR [20, 29].

This can be credited to the difficulty of detecting slippage at highly repetitive loci [31]. These

events occurs frequently, but if the reparation mechanisms is defective it can result in sequences

with tandem repeats becoming prone to mutations, as in tumor tissues, which means that high

SSR instability has a pivotal role in carcino-genesis and other genomic diseases such as fragile X

syndrome, Friedreich’s ataxia and myotonic dystrophy [32, 33].

1.2.1.2 Recombination

DNA recombination was also shown to influence microsatellite mutations. It consists on the

exchange of genetic material between chromatids and in eukaryotes this usually takes place

during meiosis with chromatids from both parents and in procaryotes in mitosis involving sister

chromatids. Although reciprocal exchange of DNA is the most common form, commonly known

as cross-over events, non-reciprocal transfer, or gene conversion, has been shown to increase SSR

instability, leading to the expansion or contration of SSR [34]. The influence of this mechanism in

SSR mutation is under debate, since observations seem to point that this phenomenon does not

influence mutability as much as in minisatellites. Minisatellites consist, in the same manner as
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microsatellites, of tandem repeats but with repeats of greater length (7 and above base pairs) [35].

In some studies, no significant relation between recombination rate and SSR mutability was found

in humans and Drosophila melanogaster [36, 37]. However an association between microsatellite

occurrence and regions of high recombination rate has been observed in Saccharomyces cerevisiae

and humans. To conclude, it seems that SSRs distribution is associated with recombination, not

as a consequence, but rather because repetitive sequences are involved in recombination [29].

However the regions called recombination hotspots, so called because in this regions there are

significant higher rates of recombination relatively to the rest of the genome should be taken in

consideration. Studies suggest that SSRs can act as recombination hotspots, giving origin to

gene conversion events. To back this hypothesis, several SSR were found to be over-represented

or strongly associated with recombination hotspots [38–40].

1.2.1.3 Indel Slippage

Indel is the INsersion orDELetion of bases in the genome. It is differentiated from point mutation

phenomenons since it does not involve the substitution of a nucleotide. Zhu et al showed that

indel-like events tend to duplicate short sequences [41]. Dieringer and Schlotterer proposed a

mechanism called indel slippage or length independent slippage, a new class of mutation not

encapsulated by standard slippage. Since standard DNA slippage is length dependent, that is,

for it to happen, sequences must have a length greater than 8 base pairs [42, 43], indel slippage

is by the contrary, length independent, which explains how low repeat sequences emerge [44].

As evidence, it was observed that insertions often copy the flanking sequence, creating a short

SSR [29, 41].

1.2.2 Biological Function

To the best of our knowledge, not much is known about the biological function of SSRs. When

first described, SSR where classified as non functional DNA due to their unstable nature. The

repeat variations were also believed to be neutral with no phenotypic expression, except when

associated with neurodegenerative diseases in humans[45]. Nowadays is acknowledged that SSR

function is associated with its position on the genome.

When present in the 5’ terminal end of a mRNA, also known as 5’- UTR (untranslated

region), it may act as protein binding site and improve gene expression when located downstream
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from the cap site [46]. In animals, they can also have a significant role in different expression

profiles of housekeeping genes (responsible for the maintenance of basic cellular function) and

tissue-specific genes [47]. In plants, even with high presence in 5’-UTR regions, their function is

not well studied but different SSR types might play different roles in different gene regions [20].

If it is present in the other end of the mRNA,that is, in 3’-UTR they can cause DNA slippage,

provoking health disorders and when located in introns, their can take part in the transport and

alternative splicing of mRNA, as well as, in conjunction with SSRs located in 5’-UTR, regulating

transcription [48].

They are also known for affecting gene expression when located in the promoter or intergenic

regions. Their instability can lead to variation in gene expression thanks to changes in transcription

factor linkage sites, even to gene silencing. Furthermore, because of their repetitive nature they

can alter or modify the secondary structure of the DNA, via the formation of loops or altering

the chromatin structure [49].

In a more wide prespective they can have an effect in species adaptation and evolution. Being

one of the most mutable site in the genome they can quickly generate novel variation to aid specie

survival and adaptation to hostile environments. In fast growing organisms, such as bacteria,

the maintenance of numerous SSRs can lead to relative high variability, helping with the rapid

response to environmental changes and compensation for the loss of genetic diversity due to

genetic drift and selection. We can infer that such events can also occur in other organisms, such

as plants and animals, but to a lesser extent [49].

1.2.3 Microsatellite Genesis and Death

The generation of new SSRs is still controversial although the consensus is that, at least, two not

mutually exclusive phenomenons can originate new SSRs: de novo SSR, and adopted SSRs.

de novo SSRs can be created when a sequence lacking a clear tandem arrangement suffers a

mutation, creating a proto-SSR, a short sequence containing 2 to 4 repetitions of the same motif.

These mutations can occur as a result of a base substitution and indel-like events, such as the

previously mentioned indel slippage [41, 50].

Adopted SSRs, on the other hand, take advantage of mobile elements present in the genome.

These are a type of genetic material capable of moving through the genome, that is, pieces of

sequence able to being integrated in a new site within the cell of origin, wich are very common in
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eukaryotic cells [51]. It is believed that these sites contain one or more sites predisposed to the

formation of SSR, thus favoring the dispersion of SSRs through out the genome [29]. SSRs were

shown to be associated with mammal SINE and LINE elements, a subclass of mobile elements.

These elements have adenin-rich regions sensitive to reverse transcription errors (process where

RNA from retrotransposons, such as SINE and LINE, are converted into DNA to be integrated

back to the genome), which in turn can lead to the genesis and expansion of A-rich proto-SSRs,

should slippage occur [50]. Other proposed mechanisms were also the extension of the 3’ end

of retrotranscripts, instead of mutation of retrotransposons, in a similar process to mRNA

polyadenylation [52].

During its "life" contractions and extensions affect the SSR but, when in equilibrium, the

SSR is maintained although a combination of two processes can lead to the "death" of the SSR.

If a mutation interrupts the motif repeat it can lead to SSR stabilization by inhibiting the

formation of mutational intermediates, such as loops, blocking slippage events and/or by altering

intermediates so it can be more easily detected and repaired [53]. Successive interruptions can

significantly alter the SSR turning it in a blend of unique DNA sequences that includes only

short segments of the original repeat array. Large deletions can also occur on this interruptions

what would lead to the loss of large sections of the SSRs, accelerating the process of degeneration.

The death of a SSR is a slow and multi-phasic process that can last multiple generations and

needs a very drastic set of circumstances to happen. Because of this, is believed that the death

rate is much lower than the birth rate, which explains the enrichment of SSRs in eukaryotic

organims [29, 50]. The final result is a collection of random and scrambled DNA, very similar

to the sequences that are believed to originate SSRs in the first place. This observation drove

to the creation of the SSR life cycle hypothesis in which a dead SSR locus could potentially

resuscitate [50].

1.2.4 Applications

The high levels of polymorphism in SSRs, in junction with its multi-allelic nature, codominant

inheritance, small length, extensive genome coverage, relative abundance and requirement for

only a small amount of starting DNA, allowed its successfully application to a wide variety of

research fields and practical disciplines [54].
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1.2.4.1 Gene Mapping

One of the major fields in which SSRs are heavily used is genetic mapping. Genetic mapping

consists in the localization of genes underlying phenotypes on the basis of correlation with DNA

variation, without the need for prior hypotheses as opposite to the candidate gene approach [55].

In eukaryotes, the process of meiosis will split each pair of chromosomes between the two sister

cells, the two gametes. Genes that are not located in the same chromosome are inherited

independently, where genes located on the same chromosome are inherited together. Even so,

if cross-over occurs, it can result in the physical exchange of genetic material between two

homologous chromosomes. As such, genes that are located closely to each other have high

probability of being inherited together, that is, the more closely a gene or marker is located

to other, the higher the "linkage" between them is. When SSRs are located in gene coding

regions (and as such "linked" to the gene), they directly show the location of the associated

gene within the linkage map, often representing genetic variations associated with significant

phenotypes. They can also be very useful in marker assisted selection (MAS) in commercial

important species [56, 57]. If they are present in non-coding regions, they are very helpful in

building a dense linkage map framework into which coding markers are incorporated [56, 58].

1.2.4.2 Individual Identification

SSRs represent codominant single-locus markers. The SSRs present in an individual genome are

a combination of two alleles, one from the male parent and the other from the female parent.

As such, and using a panel of several SSR loci, a unique combined SSR genotype profile can be

produced for each individual tested, perfect for paternity and relatedness analysis of natural

populations [58]. They can also be used in forensic science, since its small size makes them

relatively more resilient in degraded DNA. For example, SSRs remain relatively stable in bone

remnants and dental tissue, providing the basis for the successful application of ancient DNA

for molecular analysis. Its utility can also be extended to illegal poaching, food fraud and other

economical crimes [58–61].

1.2.4.3 Phylogeny

SSRs can be also used to infer phylogenetic relationships at levels bellow species level or

recently diverged species since its variation evolves significantly more quickly that other genomic
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regions. However, homoplasy can occur, undermining the confidence of the inferred phylogenetic

hypotheses [58]. Homoplasy is a shared character, or in this case SSR, that did not arise from

a common ancestor due to convergence or parallelisms. In other words, homoplasy is a false

homology [62]. The primers used for SSR amplification can also be problematic since primers

from one taxon my not work in other taxa. As an alternative, the flanking regions are useful to

establish phylogenetic relationships between species and families since they evolve at a much

slower rate than the number of repeats in a SSR [58, 63]. For studies of different populations of

the same species in short geographical distances, SSRs are ideal, being used to study panmixia,

fragmentation, hybridisation, population structure and others [58, 64–66].

1.2.4.4 Conservation efforts

Endangered species will have small and/or declining populations, causing the inevitable loss

of genetic diversity and inbreeding. Inbreeding reduces reproduction and survival rates and

loss of genetic diversity, reducing the ability of populations to endure environment changes

and to evolve and contributing to extinction risk, specially in small populations of threatened

species [67]. Conservation strategies focus on using biparental polymorphism of nuclear DNA to

reflect characteristics to cope with environment conditions. In this manner, SSRs can be utilized

to avoid crossbreed between very close individuals, avoiding the production of weaker generations

and the accumulations of older and harmful alleles and to encourage the breeding of different

populations to improve species fitness and survival in particular habitats.
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State of the Art

2.1 SSR_Pipeline

SSR_Pipeline [68] is a python coded Pipeline design to identify simple SSRs presents in FASTQ

formatted files. Given the high volume of data produced by illumina platforms, compressed

files, such as gzip, can also be used as input. The workflow of this pipeline allows filtering of

subsets of pair-end sequences that do not pass illumina quality control. Next, using a python

coded implementation of FLASH, both pair-end sequences, R1 and R2, are merged together

into a single DNA sequence. After, using a custom script, a SSR search is made. The user can

stipulate the motif size, minimum repetitions and flanking regions size to be used by the SSR

search algorithm. If only this script is used, it can also accept FASTA formatted files as input.

Since the number of SSRs detected by this pipeline can be huge, no primer design options are

performed.

2.2 GMATA

Genome-wide Microsatellite Analyzing Tool Package (GMATA) [69] is a package created for SSR

mining, statistics analysis and plotting with added options as well for marker analysis. The long

DNA sequences to be used, in FASTA format, are chunk in a more appropriate size to increase

mining speeds. Using Perl regular expression patterns, basic SSR motif library will be created.

This library will be later used for SSR greedly research, using Perl pattern matching algorithm.

At this point the user can adjust the parameters to be used, such as motif size and number

13
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of motif repetitions. An option for highlighting microssatelites in the target DNA sequence

is also available. After the search, a statistical classification and summarization is computed.

With all this information, the primers are designed by extrating the flanking segments of the

detected SSRs and parsing them to Primer3 [70]. The resulting primers are saved in NCBI’s STS

format. Finally a e-PCR is executed to verify if any primer polymorphism exists. This pipeline

is available for most of the popular operative systems such as MAC OS, Linux and Windows 7, 8

and 10. A GUI is also available but it can also be executed through command-line.

2.3 Full_SSR

Full_SSR [71] is a simple pipeline created for SSR search and Primer design. It was programmed in

Perl and consists of two modules. The first one, SSR_Search, creates a library of all combinations

of 2 to 5 nucleotides. Then, it searches for all the combinations present in the motif library in

the fasta file input. The output from this module returns the sequence ID as well as the length,

start position, end position, motif, number of motif repetitions of the detected SSR. The second

module Primer_Design, uses a modification of BioPerl package, parsing the significant results to

Primer3. No further processing is made. This simplified pipeline is only compatible with Linux

operating systems.

2.4 SSR-Primer Generator

SSR-Primer Generator (SSRPG) [72] is a web application for identifying SSRs, design primers

and for homology-based search of in silico amplicons from a DNA sequence dataset. Using a JRE

(Java runtime Environment) it analyze Multi-FASTA files in search of SSRs using SPUTNIK [73].

It returns a summary file of the found SSRs that includes the repeat types identified, the motifs

involved, positions, length, repeat scores, and flanking regions. Then, this information is parsed

to Primer3 [70] for primer design. In this pipeline, Primer3 settings file is set by default and

cannot be modified by the user. The resulting primers are filtered to increase their stability by

discarding primers pairs with simple repetitive DNA sequences and cross-homologous primer

pairs showing high sequence similarity. Finally, primers are parsed into BLASTX to discover

if the resulting amplicons are related to protein-coding regions. The output is presented in a

HTML file containing the SSRs, SSRs-primers and BLAST results.



2.5. SSR Locator 15

2.5 SSR Locator

This Perl/Delphi codded utility [74] integrates SSR searches, occurrence frequency for motifs and

arrangements, primer design, and PCR simulation against other databases. Firstly, a SSR search

is performed in FASTA formatted files using a similar algorithm to MISA [75] and SSRIT [76]

with minor changes. A Delphi script eliminates overlaps of 2 adjacent SSRs. The resulting output

is parsed then to Primer3 for primer design and after a Virtual-PCR the annealing sites are

found for the two primers. Flanking regions and primer sequences are moved to a new variable

that will be aligned with the original amplicon to check the correspondence in the sequences

predicted.

2.6 Limitations

Although each program tries to facilitate and automatize SSR search and primer design, there

are several limitations on the reviewed and available software. These limitations result in part

due to the different purposes for which the software was created for. As an example, Full_SSR,

SSR-Primer Generator and SSR Locator were created to use data already published rather than

raw data. Next follows a more detailed description of the most important limitations detected.

First difference between both programs is found in the input file type. Only SSR_Pipeline

accepts files obtained directly from next generations sequencing (NGS) technologies as input. On

the contrary, some protocols only accept FASTA files, what means that data obtained from NGS

technologies need to be pre-processed, which results in time wasting and manual interference.

SSR_pipeline has a very simplistic approach to SSR search and the output resulting from

the analysis is hard to read/analyze without the use of a custom script. Also the lack of further

processing and primer design limits the usefulness of this tool. Full_SSR and SSR Locator also

have the same limitations as SSR_pipeline, having a very simplistic nature without any kind of

filtering, not being suitable for the task at hand.

In SSR-Primer Generator the user is restricted from altering primer3 settings, that is, it

cannot be changed, preventing the tool from shaping to user needs. The later stages of this

software also illustrate its focus on associating SSRs to gene expression.

GMATA is most similar software in purpose to Micro-Primers but it contains a great amount
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of output files that, for the current objective, does not provide any useful information, moreover,

it increases run time and computational power. It also has a major flaw, also present in the

remaining software.

There is the possibility that different alleles found are, in fact, the same SSR. An allele is

every single variation of DNA in the same genetic regions. No reviewed software performs, for

example, an allele clusterization to truly identify each individual SSR exiting in the population

sample.

Although some of these programs could be adapted to create primers for the found SSR,

still it should be necessary to include extra manual steps to reduce the volume of data to single

SSR loci since none of them take into account the multiple alleles every SSR has. This process

would result in a extra time and resources consumption and would fail on the purpose of being

an automatic pipeline. The set of limitations above mentioned were the main motivation for the

creation of Micro-Primers.
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Motivation and Methods

Nowadays, it can take up to months, for laboratories and researches to analyze and select SSR

primers for their projects. It requires them to run several times a primer detection software

without any kind of pre-processing and to select by hand the individual candidates. Without

clustering or knowing the number of available loci, most amplifications are inefficient, time

consuming and more resources are wasted on reagents. The goal of this work is to design and

implement a novel tool, named Micro-Primers, that automatically executes the screening of

SSRs in a set of raw sequences generated by RAD-seq (technology where sequence fragments are

generated by restriction enzyme that cuts always in a particular pattern, leaving in both ends

a known sequence [77]) and to design primers for SSR amplification. The necessary software

to search and create primers for the SSRs already exists and are widely used in the scientific

community. However, as those programs are meant to be used individually, each program has

its own specific input and output. For example, to combine the output of a program A with

the input of another program B, researches must format manually the output of A so it can

suit the input of B. Thus, this restriction forces researchers to continuously be aware of the

execution progress, to format each output manually and to select possible candidates from a

database of thousands of unique sequences. Micro-Primers tool provides a framework, where

those programs are aggregated sequentially in a single automated pipeline, that deals with the

low-level communication details between them.

17
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3.1 Micro-Primers composition

Micro-Primers pipeline was written in Python version 3.6 and consists basically in two different

scripts: (i) install.py that includes all necessary pre-requisites for a proper installation of

Micro-Primers, and (ii) micro-primers.py, the pipeline itself. Analysis settings are described

in the config.txt file, where parameters can be modified by the user accordingly to his own

particular needs. The folder software, provided together with the Python scripts, contains

all the scripts and external software employed by micro-primers.py with all the external

programs needed for a correct execution.

3.2 Input Files

In order to run Micro-Primers, users only need to provide two FASTQ files corresponding to both

ends of a pair-end sequencing. Samples should come from a pool of (untagged) individuals of the

same species so the microsatellite selection can be optimized. SSR selection will be performed

based on the number of alleles of each SSR loci, so the more heterogeneous is the sample, the

better will be the final result. Reads must come from a microsatellite library built using a

restriction enzyme and following an enrichment protocol such as the one described in [78]. The

idea behind the enrichment protocol after digestion is to have a random representation from

the whole genome where the target SSR motifs will be the most represented strands in the

final library. A fragment size selection is then performed on the enriched library to keep only

fragments of an average length lower than the maximum sequencing length so both paired-ends

reads overlap when merged later on. The final fragment size is important for microsatellite

screening and must comprise the full SSR pattern (variable in length) and the two flanking

regions with fair length for primer design.

3.3 Alleles

There is the possibility that different alleles found are in fact the same SSR. An allele is every

single variation of DNA in the same genetic region. In microsatellites, they correspond to different

number of repeats of the same pattern in the tandem sequence. Because of this, it is necessary

for each SSR found to be clustered, each representing the different alleles found in the sample for
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a given SSR. The number of alleles found for each SSR is meaningful since it may indicate that

the specific SSR is well-established in the population. Thus, the higher the number of alleles is

for a SSR, the less number of SSRs is needed to characterize a population or individual.

Normally an allele with low frequency in the sample is discarded. If, during a normal analysis,

the number of qualifying alleles is low, it is possible to re-run the analyses and obtain meaningful

alleles. The simultaneous presence of few alleles with a large variation of motif repetitions can

suggest the presence, in the natural populations, of individuals with alleles with motif repetitions

between those found. Micro-Primers allows the execution of a special search where, if activated,

the difference between the alleles with lowest and highest repetitions for each SSR is calculated,

thus ignoring the total number of alleles found. Those whose difference is above or equal to the

user defined minimum, move along the pipeline normally. It’s recommended to only use this

option after an unsuccessful or below expectations run.

3.4 Workflow

In the initial stage, all input files are pre-processed (Figure: 3.1–I). Firstly Trimmomatic [79] is

used to remove technology specific adapters, left-overs from the sequencing. Then, Cutadapt [80]

follows which again removes left-over adapters, this time belonging to restriction enzymes adapters,

remainders of library preparation. These programs, Trimmomatic and CutAdapt, already use

fastq format and, as such, there is no need for any kind file processing. As a result of the pair-end

sequencing technology, the reads obtained are divided into forward reads and reverse reads, which

allow a more effortless and precise alignment [81]. Since the protocol followed does not require

any kind of sequence alignment, these two complementary reads must be combined into a single

sequence. For this, FLASH [82], a fast-computational tool, is used to merge the pair-end reads

into a single sequence. With this concludes the pre-processing phase.

Next, all sequences are filtered. Both ends of each sequence are analysed in search for the

enzyme restriction pattern. Only sequences containing the restriction enzyme pattern will be

exported to a new FASTA formatted file (Figure 3.1–II). FASTA is a text-based format for

representing either nucleotide or protein sequences. This format starts with a unique line, starting

with the symbol greater-than (">"), with a sequence descriptor (ID) which contains a summary

description of the sequence. In this pipeline, since the sequences derive from FASTQ format files,

the sequence identifier will be identical to those present in the original input file. The following



20 Chapter 3. Motivation and Methods

lines represent the sequence, which represent the same standard IUB/IUPAC nucleotide code as

the FASTQ. The original sequencer IDs are big and complex and, as such, new numerical ID

must is added to each sequence for easier identification. This is done by a custom script, add id

calculate length (Listing 4.19). It will add a unique integer followed by a underscore "_ " to each

sequence ID. The addition of an underscore will allow to easily split the ID from the original

identifier, while saving the sequence description which can be useful for the user. This script

will also calculate additional parameters, necessary for later filters (Figure 3.1–III). In this case,

sequence length is computed.

Afterwards, sequences are ready to be parsed to MISA [75]. It is a Perl script used for

identification and location of microsatellites in nucleotide sequences. MISA will output a matrix

containing for each sequence (i) ID + sequence description; (II) SSR found; (III) SSR type; (IV)

SSR Motif and number of motif repetitions; (V) SSR start position; (VI) SSR end position.

Following the SSR search, parameters previously computed are attached to the SSR matrix

using length merger (Listing 4.20). This additional data will be used to evaluate if regions

surrounding the SSR, also called flanking regions, are long enough to accommodate SSRs primers

for SSR amplification. This constitutes the second filter in Micro-Primers (Figure 3.1–V). It is

important that filters along the pipeline are added since not every SSR found can be a proper

candidate for future amplification. For example, SSRs with complex patterns or of large size

cannot be of interest to the researcher and their presence can significantly slow the pipeline.

Each filter should have a range of values and thresholds that can be altered, giving the user total

control to select which SSR best suits his needs.

Since multiple alleles can be in fact the same SSR (Section 3.3), further processing is needed.

Each allele found should be clustered so each individual SSR can be identified as unique. It is

known that different SSRs can have the same motif. To avoid false positives, only the flanking

regions are used for clustering. Thus, split (Listing 4.21), is used to extract the SSRs from the

original sequences (Figure 3.1–VI). Subsequently, a clustering with all the flanking regions is

performed by CD-HIT [83, 84] (Figure 3.1–VIII). CD-HIT can handle huge datasets with millions

of sequences and can be hundreds of times faster than other more common methods, such as

BLAST. The result of this process will be a reduction of the redundancy. Every single sequence

will be assigned to a cluster and the number of elements of every cluster is calculated. This two

new features will be added to the SSR matrix using add cluster info.

After clustering, non-polymorphic SSRs might be present in the sample being useless for
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individuals or population identification. For that reason all SSR clusters move through the third

and final filter (Figure 3.1–IX) where they are evaluated to verify if the number of alleles is above

user specifications (Listing 4.15).

Given the nature of SSRs, only a single representative from each cluster is needed for primer

design since the region of interest for primer design is the flanking region which is common to

every allele in the cluster. Under this premise, a random allele is chosen from every cluster

as representative (Figure 3.1–X). If no suitable candidates are found, a looser search will be

executed. This search will take in account the difference between the shortest and longest allele

in each cluster and if the difference is big enough, it is expected that, in the wild, individuals

may have also alleles within this size range, increasing the candidate pool (Section 3.3).

After the third filter, all the requirements for primer design are met. All the information

available for each selected SSR is aggregated into a file properly formatted to subsequently be

parsed into Primer3 [70] (Listing 4.25). Primer3 is suitable for being used in high-throughput

pipelines for genome-scale research, what makes it a great tool for this pipeline (Figure 3.1–XI).

Despite its utility, the resulting Primer3 output is not user friendly, meaning that the output

should be altered to be presented in a straightforward, concise and simple format, ready to use

(Figure 3.1–XII). A custom script, final_primers (Listing 4.26), perform this conversion, resulting

on the final result of the pipeline. It contains all the necessary information for SSR amplification

such as (i) sequence ID; (ii) primer product size; (iii) forward primer; (iv) forward primer Tm;

(v) reverse primer; (vi) reverse primer Tm; (vii) SSR motif; (viii) and number of alleles found.

The flag "|BEST|" can also be shown at the end of each line, advising the user which SSR primer

pair should have better performance.

3.5 Execution parameters

All the parameters that Micro-Primers needs to properly perform the analysis must be set at the

config.txt file. In this text file there are four sections with different parameters to take into

account for the pipeline execution.

First of all, it can be found the "Input files" section where the user has to indicate the name

of the pair-end files that will be used in the analysis. Then, at the "CUTADAPT" section, the

sequence of adapters used after the restriction enzyme digestion is required.
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Figure 3.1: Flowchart of Micro-Primers.

These adapters were necessary to transform the longer overhangs into blunt ends after the

enzyme digestion. Next stage is called "SSR" and several parameters regarding the microsatellite

selection are involved. The parameter MIN_FLANK_LEN indicates the minimum length

accepted in both flanking regions where the primers will be designed on.

PCR amplification primers usually have a length around 20-25 nucleotides and some par-

ticularities are required, like the presence of G or C at the 3’ end, certain percentage of GC

for a proper melting temperature, both primers should have similar melting temperature for

the hybridization to take place at the same time [85]. All these factors make critical the length

of the flanking areas since a very narrow window can make impossible the primer design and

subsequently the SSR to be discarded. Thus, every sequence with shorter flanking region in one

or both ends will be discarded.

The MIN_MOTIF_REP sets the minimum number of repeats that every SSR region must

have to continue in the pipeline. In the EXC_MOTIF_TYPE parameter, the user can discard

some SSR motifs for not being analysed. Options for this parameter are c;c*;p1;p2;p3;p4;p5;p6,

being compound, compound with imperfection, or motif with different repeats from 1 to 6

nucleotides, respectively. It should be noted that bigger motifs are supported but any higher

than 6 bases does not classifies as an microsatellite, but as a minisatellite.

Motifs selected previously that must be discarded should be indicated separately with
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comma. At the MIN_ALLEL_CNT option the minimum number of alleles for a SSR loci to

be selected is indicated. The parameter under the name MIN_ALLEL_SPECIAL is used to

enable or disable (1=enabled, 0=disabled) the option to select microsatellites with less number

of alleles previously indicated as long as the difference between the allele with higher number

of repeats and the allele with a smaller number of repeats satisfy the number indicated in the

MIN_ALLEL_SPECIAL_DIFF. Last section in the config.txt file is about PRIMER3. Here

the only requirement is to indicate the path to the Primer3 settings file. In this settings file

several parameters can be changed but a general one is provided with the standard parameters

that Primer3 includes. Table 3.1 shows the parameters that can be configured by the users.

As one is able to observe, no spaces or additional text character should be present after the

character "=". Every setting, besides R1 and R2 file names, have a default value defined in the

configuration file.



24 Chapter 3. Motivation and Methods

Ta
bl
e
3.
1:

Se
tt
in
gs

to
be

co
nfi

gu
re
d
by

th
e
us
er
.

P
ar
am

et
er

In
pu

t
ac
ce
pt
ed

D
es
cr
ip
ti
on

IN
PU

T
_
FI

LE
S_

R
1

fil
e
di
re
ct
or
y

Fi
le

na
m
e
an

d
di
re
ct
or
y
of

R
1
fa
st
q
fil
e
to

be
an

al
ys
ed
.
Fi
na

lo
ut
pu

t
w
ill

be
na

m
ed

af
te
r
th
is

fil
e.

IN
PU

T
_
FI

LE
S_

R
2

fil
e
di
re
ct
or
y

Fi
le

na
m
e
an

d
di
re
ct
or
y
of

R
2
fa
st
q
fil
e
to

be
an

al
ys
ed
.

C
U
TA

D
A
PT

_
3

st
rin

g
R
ev
er
se

A
da

pt
er

to
be

cu
t
fr
om

se
qu

en
ce

by
C
ut
A
da

pt
.

C
U
TA

D
A
PT

_
5

st
rin

g
Fr
ow

ar
d
A
da

pt
er

to
be

cu
t
fr
om

se
qu

en
ce

by
C
ut
A
da

pt
.

M
IN

_
FL

A
N
K
_
LE

N
in
te
ge
r

M
in
im

al
le
ng

th
of

SS
R

fla
nk

in
g
re
gi
on

s.

M
IN

_
M
O
T
IF

_
R
EP

in
te
ge
r

M
in
im

al
nu

m
be

r
of

SS
R

m
ot
if
re
pe

tit
io
ns

EX
C
_
M
O
T
IF

_
T
Y
PE

c;
c*
;p
1;
p2

;p
3;
p4

;p
5;
p6

M
ot
if
ty
pe

to
be

ex
cl
ud

ed
.
|c

,c
*
-c

om
po

st
;p

x
-x

ba
se
s
m
ot
if

M
IN

_
A
LL

EL
_
C
N
T

in
te
ge
r

M
in
im

al
nu

m
be

r
of

in
di
vi
du

al
al
le
le
s

M
IN

_
A
LL

EL
_
SP

EC
IA

L
0;
1

Sp
ec
ia
ls

ea
rc
h
ac
tiv

at
io
n.

|0
-D

ea
ct
iv
at
ed
;1

-A
ct
iv
e

M
IN

_
A
LL

EL
_
SP

EC
IA

L_
D
IF

in
te
ge
r

M
in
im

al
di
ffe

re
nc
e
be

tw
ee
n
hi
gh

es
t
an

d
lo
w
es
t
al
le
le

re
pe

tit
io
n
am

on
g
fo
un

d
SS

R
s
.

PR
IM

ER
3_

SE
T
T
IN

G
S

fil
e
di
re
ct
or
y

Fi
le

na
m
e
an

d
di
re
ct
or
y
to

Pr
im

er
3
se
tt
in
gs

fil
e.



Chapter 4

Implementation Details

In the previous chapters, we motivated the need for automatic management of input and output

files from the different software aggregated, and explained that each one has unique and different

specifications. This lead to the creation of this pipeline and the supporting functions.

In this chapter, we show the internals of the Micro-Primers software. To do so, we show

its procedures, a description of their role in the pipeline and a detailed explanation of its inner

workings.

25
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4.1 Pipeline Control

4.1.1 Setup

� �
1 import os , sys

2 from software . scripts import picker , config , text_manip , pre_primer

3 #System c a l l hand ler

4 def micro_primers_system_call (cmd , erro ) :

5 rvalue = os .system (cmd ) # re turns the e x i t code

6 if rvalue != 0 :

7 sys .exit (erro )

8 #Def in ing output name

9 def name (file_name ) :

10 output_name = file_name .split ( "_R" ) + " _primers . txt "

11 return output_name

12 #Check i f primer3 input i s empty

13 def size_check (SPECIAL_CASE ) :

14 if os .path . getsize ( " . temp/primer3_input_out . f a s t a " ) < 1 :

15 print ( "Empty primer3 input f i l e . \n " )

16 if SPECIAL_CASE == 0 :

17 sys .exit ( "No v a l i d SSRs were s e l e c t e d . Try to use a broader

search . " )

18 sys .exit ( "No v a l i d SSRs were s e l e c t e d . " )

19 #Removal o f . temp d i r e c t o r y

20 def junk ( ) :

21 micro_primers_system_call ( "rm −r . temp/ " , " Error : Could not remove . temp

d i r e c t o r y . " )

22 #Create empty f i l e f o r import ing python s c r i p t s

23 micro_primers_system_call ( " touch so f tware / s c r i p t s /__init__ . py " , " Error : Could

not c r e a t e i n i t . py . " )

24 #Reading s e t t i n g s

25 settings = config .config ( " c o n f i g . txt " )

26 #Creat ion o f hidden temp f i l e

27 def folder (folders ) :

28 for i in folders :

29 if os .path .isdir (i) == False :

30 micro_primers_system_call ( " mkdir %s " %(i) , " Error : could not

c r e a t e %s d i r e c t o r y . " %(i) )� �
Listing 4.1: Auxiliary procedures to support pipeline stages
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The script responsible for pipeline control is divided in 3 parts: (i) setup; (ii) Function

Definition and (iii) Function Call.

The setup phase is very straight-froward. At the beginning, all functions located in scripts

folder are imported (line 2). The function micro primers system call is also defined. It will

process any host operating system call and will handle any errors. If an error occurs during

a Micro-Primers call, it will display a short message with the error description (lines 7). The

function name will define the output file name from the R1 input file name, which will contain

the designed primers (lines 8–11).

It is possible, due to an error or non-selection of valid SSRs, that the input file created for

Primer3 might be empty and parsed into it, without any error or pipeline stop. To avoid pipeline

crash, size check will check file size. If an empty file is detected the user will be advised to either

activate "special search" or loosen SSR specification. Next, function junk is defined, which will

erase any intermediate files (lines 13–21).

Finally, the config file is loaded, in which each setting is loaded as a variable into the script,

with the help of the function config previously imported (line 25). The folders .temp and logs

are also created if not found in the main pipeline directory. They will save respectively the

temporary files and log files created during Micro-Primers run (lines 27–30).
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4.1.2 Function definition

Afterwards, the needed functions for the correct operation of Micro-Primers are defined.

� �
1 #Sequences Triming o f Sequencer adap ter s

2 def trimmomatic (R1 , R2) :

3 print ( ’ Trimmomatic working . . . ’ )

4 micro_primers_system_call (

5 " java −j a r so f tware /Trimmomatic −0.36/ trimmomatic −0.36. j a r PE −phred33 "

6 "%s %s "

7 " . temp/trim_out_trimmed_R1 . f a s t q . temp/trim_out_unpaired_R1 . f a s t q "

8 " . temp/trim_out_trimmed_R2 . f a s t q . temp/trim_out_unpaired_R2 . f a s t q "

9 "ILLUMINACLIP : . / so f tware /Trimmomatic −0.36/ adapters /TruSeq2−PE. fa : 2 : 3 0 : 1 0 "

10 " LEADING: 3 TRAILING: 3 SLIDINGWINDOW: 4 : 1 5 2> l o g s / trim_log . txt "

11 %(R1 , R2) ,

12 " Error : Trimmomatic could not remove adapters " )

13 #Adapters removal ( s p e c i f i c s from techno logy )

14 def cutadapt (a , g) :

15 print ( ’ Cutadapt working . . . ’ )

16 micro_primers_system_call ( " cutadapt "

17 "−a %s "

18 "−g %s "

19 "−o . temp/cut_out_nolink_R1 . f a s t q

. temp/trim_out_trimmed_R1 . f a s t q "

20 "> l o g s /cut_log_r1 . txt "

21 %(a , g) ,

22 " Error : CutAdapt could not remove adapters from R1 sequence . " )

23 micro_primers_system_call ( " cutadapt "

24 "−a %s "

25 "−g %s "

26 "−o . temp/cut_out_nolink_R2 . f a s t q

. temp/trim_out_trimmed_R2 . f a s t q "

27 "> l o g s /cut_log_r2 . txt "

28 %(a , g) ,

29 " Error : CutAdapt could not remove adapters from R2 sequence . " )� �
Listing 4.2: Procedures for Trimmomatic and CutAdapt stages
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� �
1 # Fusion o f R1 and R2 f i l e s

2 def flash ( ) :

3 print ( ’ Flash working . . . ’ )

4 micro_primers_system_call ( " so f tware /FLASH−1.2.11/ f l a s h "

5 " . temp/cut_out_nolink_R1 . f a s t q "

6 " . temp/cut_out_nolink_R2 . f a s t q "

7 "−M 220 −o . temp/ f lash_out 2>&1 | "

8 " t e e l o g s / f l a s h . l og "

9 "> l o g s / f l a sh_ log . txt " ,

10 " Error : FLASH could not merge sequences . " )

11

12 # Se l e c i on o f fragments t h a t s t a r t and ends wi th the pa t t e rn o f the

r e s t r i c t i o n enzyme

13 def python_grep ( ) :

14 print ( ’ S e l e c t i n g sequences with r e s t r i c t i o n enzyme pat t e rns . . . ’ )

15 text_manip . python_grep ( " . temp/ f lash_out . extendedFrags . f a s t q " ,

" . temp/grep_out . f a s t a " )� �
Listing 4.3: Procedure for FLASH and python grep call

� �
1 #Change i d s and Length C a l c u l a t i o n f o r l a t e r s e l e c t i o n o f v a l i d m i c r o s a t e l l i t e s

2 def ids_and_len ( ) :

3 print ( ’ Adding i d s . . . \ nCa lcu la t ing sequences l eng th s . . . ’ )

4 text_manip . add_id_calculate_length ( " . temp/grep_out . f a s t a " ,

" . temp/ ids_out . f a s t a " , " . temp/ length_calc_out . f a s t a " )� �
Listing 4.4: Procedure to attribute a unique ID and calculate total sequence size for each sequence.

� �
1 #Search M i c r o s a t e l l i t e s

2 def misa ( ) :

3 print ( ’ Misa working . . . ’ )

4 micro_primers_system_call ( " p e r l so f tware / s c r i p t s /misa . p l "

5 " . temp/ ids_out . f a s t a "

6 "2> l o g s /misa_log . txt " ,

7 " Error : Misa f a i l e d " )� �
Listing 4.5: Procedure for the MISA call (SSR search).
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� �
1 #Adds l e n g t h to end o f the sequences to misa output

2 def length_merger ( ) :

3 print ( ’ Adding l ength to MISA output . . . ’ )

4 text_manip . length_merger ( " . temp/misa_out . misa " ,

" . temp/ length_calc_out . f a s t a " , " . temp/ length_add_out . misa " )� �
Listing 4.6: Procedure adding length to MISA output.

� �
1 #S e l e c t i o n o f m i c r o s a t e l l i t e s wi th enough space f o r primer

2 def good_micros (MIN_FLANK_LEN , MIN_MOTIF_REP , EXC_MOTIF_TYPE ) :

3 print ( ’ S e l e c t i n g good m i c r o s a t e l l i t e s . . . ’ )

4 picker . csv_picker ( " . temp/ length_add_out . misa " ,

" . temp/good_micros_out . f a s t a " ,

5 " . temp/good_micros_table_out . misa " , MIN_FLANK_LEN ,

MIN_MOTIF_REP , EXC_MOTIF_TYPE )� �
Listing 4.7: Procedure for the csv picker.

� �
1 #Extrac t i on o f the m i c r o s a t e l l i t e sequence from al ignment o f fragments wi th

f l a n k i n g reg i ons

2 def splitSSR ( ) :

3 print ( ’ sp l i tSSR working . . . ’ )

4 text_manip .split ( " . temp/good_micros_out . f a s t a " , " . temp/ ids_out . f a s t a " ,

" . temp/ sp l i t_out . f a s t a " )� �
Listing 4.8: Procedure for splitting SSR.



4.1. Pipeline Control 31

� �
1 #Removal o f Redundacy

2 def cdhit ( ) :

3 print ( ’CD−HIT working . . . ’ )

4 micro_primers_system_call ( " so f tware / cdh i t /cd−hit −e s t "

5 "−o . temp/ cdhit_out . txt "

6 "− i . temp/ sp l i t_out . f a s t a "

7 "−c 0 .90 "

8 "−n 10 "

9 "−T 10 "

10 "> l o g s / cdhit_log . txt " ,

11 " Error : CD−HIT f a i l e d " )

12 #Clus t e r ass ignement

13 def cluster ( ) :

14 print ( ’ Ca l cu l a t ing number o f sequences f o r each c l u s t e r . . . ’ )

15 text_manip . cluster ( " . temp/ cdhit_out . txt . c l s t r " , " . temp/ c lu s t e r s_out . txt " )

16 #Adding c l u s t e r in format ion to M i c r o s a t e l l i t e s t a b l e

17 def cluster_info ( ) :

18 print ( ’ Adding in fo rmat ion to the t a b l e o f m i c r o s a t e l l i t e s . . . ’ )

19 text_manip . add_cluster_info ( " . temp/ c lu s t e r s_out . txt " ,

" . temp/good_micros_table_out . misa " , " . temp/ c lus te r_in fo_out . txt " )� �
Listing 4.9: Procedure for allele clusterization.

� �
1 def cluster_filter (MIN_ALLELE_CNT , MIN_ALLELE_SPECIAL , MIN_ALLELE_SPECIAL_DIF ) :

2 picker .allele ( " . temp/ c lus te r_in fo_out . txt " ,

" . temp/ c l u s t e r _ f i l t e r _ o u t . txt " , MIN_ALLELE_CNT , MIN_ALLELE_SPECIAL ,

MIN_ALLELE_SPECIAL_DIF )

3 # S e l e c t i n g one sequence per c l u s t e r

4 def selected_micros ( ) :

5 print ( ’ S e l e c t i n g one sequence per c l u s t e r . . . ’ )

6 picker . selected_micros ( " . temp/ c l u s t e r _ f i l t e r _ o u t . txt " ,

" . temp/ selected_micros_out_seqs . txt " ,

" . temp/ selected_micros_out_tabs . txt " )� �
Listing 4.10: Procedure for cluster filtering and choice of loci representative.
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� �
1 #Creat ing input f i l e f o r Primer3

2 def primer3_input ( ) :

3 print ( ’ Creat ing Primer3 input f i l e . . . ’ )

4 pre_primer . pseudofasta ( " . temp/ selected_micros_out_seqs . txt " ,

" . temp/ ids_out . f a s t a " , " . temp/primer3_input_out . f a s t a " )

5 #Primer des i gn and c r e a t i o n

6 def primer3 (p3_settings ) :

7 print ( ’ Creat ing Primers . . . ’ )

8 micro_primers_system_call ( " so f tware / primer3 / s r c / ./ primer3_core "

9 "−de fau l t_ver s i on=2 −p 3 _ s e t t i n g s _ f i l e=%s "

10 " . temp/primer3_input_out . f a s t a "

11 "−output =.temp/primer3_out . pr imers "

12 %(p3_settings ) ,

13 " Error : Primer3 f a i l e d " )

14 #S e l e c t i o n o f primers f o l l o w i n g l a b o r a t o r y c r i t e r i a and output f o rmat t ing

15 def output ( ) :

16 print ( ’ S e l e c t i n g best pr imers . . . ’ )

17 print ( ’ Creat ing f i n a l f i l e . . . ’ )

18 pre_primer . final_primers ( " . temp/ selected_micros_out_tabs . txt " ,

" . temp/primer3_out . pr imers " , name (settings [ 0 ] ) )� �
Listing 4.11: Procedure for primer design and output formatting.

Every function follows the same template (Listing 4.2 to Listing 4.11). First, a comment

describes function purpose. Second, a print call is made to inform the user, in real time, about

current pipeline progress. Third, the functions are defined with their arguments. All outputs

also follow a common template. Every output is named by the combination of the function name

responsible for its creation and the prefix "_out". This improves readability, overall organization,

and error detection since a incorrectly formatted or blank file can be pin-pointed to the function

at fault.

In case of third-party software calls, such as Trimmomatic and Cutadapt (Listing 4.2), MISA

(listing 4.5), CD-HIT (listing 4.9) and Primer3 (listing 4.11), the necessary additional arguments

and error messages are added.
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4.1.3 Function call

Finally, in the third step, all functions are called.

� �
1 #P i p e l i n e

2 folders ( [ " . temp/ " , " l o g s " ] )

3 trimmomatic (settings [ 0 ] , settings [ 1 ] ) ,

4 cutadapt (settings [ 2 ] , settings [ 3 ] ) ,

5 flash ( )

6 python_grep ( )

7 ids_and_len ( )

8 misa ( )

9 length_add ( )

10 good_micros (int (settings [ 4 ] ) , int (settings [ 5 ] ) , settings [ 6 ] )

11 splitSSR ( )

12 cdhit ( )

13 cluster ( )

14 cluster_info ( )

15 cluster_filter (int (settings [ 7 ] ) , int (settings [ 8 ] ) , int (settings [ 9 ] ) )

16 selected_micros ( )

17 primer3_input ( )

18 size_check (int (settings [ 8 ] ) )

19 primer3 (settings [ 1 0 ] )

20 output ( )

21 junk ( )

22 print ( ’Done ! ’ )� �
Listing 4.12: Pipeline with function calls and their corresponding settings.

Each individual function can be silenced with the addition of the comment symbol "#" at

the start of the line. This gives the pipeline a modular nature, allowing the user to control

which function will be called. As an example, the user can choose to pre-process the sequences

using alternative software to Trimmomatic and CutAdapt and run the rest of the pipeline

normally (although this option involves extra steps, something that will be improved in next

implementations). If any error occurs, the function junk can also be silenced to allow intermediary

file analysis for error detection.

Finally a "Done!" message is shown, signalling the end of the pipeline.
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4.2 Filters

4.2.1 matrix_picker

� �
1 def matrix_picker (rf ,

2 of_micros_good ,

3 of_micros_tab ,

4 min_ext_dist ,

5 min_rep ,

6 exclude_ssr ) :

7 readfile1 = open (rf , " r " )

8 outfile1 = open (of_micros_good , "w" )

9 outfile2 = open (of_micros_tab , "w" )

10 ID = 1

11 for line in readfile1 :

12 selected_line = line .split ( " \ t " )

13 #S e l e c t l i n e which do not conta in the c o r r e c t SSR mot i f type .

14 if not selected_line [ 2 ] in exclude_ssr :

15 #Remove second "_" from ID . I t messes wi th sp l i tSSR s c r i p t .

16 remove_under = list (selected_line [ 0 ] )

17 for i in range (10 , (len (remove_under ) ) −1) :

18 if remove_under [i ] == "_" :

19 remove_under [i ] = " "

20 selected_line [ 0 ] = " " .join (remove_under )

21 # S e l e c t i n g on ly sequences t h a t have at l e a s t 50 bases b e f o r e and

a f t e r the SSR

22 if int (selected_line [ 7 ] ) − int (selected_line [ 6 ] ) >= min_ext_dist

and int (selected_line [ 5 ] ) >= min_ext_dist :

23 good_micros = list (selected_line [i ] for i in [ 0 , 5 , 6 , 7 ] )

24 good_micros = [str (ID) ] + good_micros

25 outfile1 .write ( " \ t " .join (good_micros ) )

26 outfile2 .write ( " \ t " .join (selected_line ) )

27 ID += 1

28 #Adding "\n" to the end o f the f i l e . I t a l s o s messes wi th sp l i tSSR s c r i p t

29 outfile1 .write ( " \n " )

30 readfile1 .close ( )

31 outfile1 .close ( )

32 outfile2 .close ( )� �
Listing 4.13: Procedure to select sequences that follow the user specification.
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Listing 4.13 refers to the second filter present in the pipeline. This function is responsible for

filtering the sequences that obey to user specifications (Figure 3.1 – II). In the first lines the

input and output files are open (lines 7–9). Next, all sequences are analysed and only that ones

that do not contain the SSR motif will be excluded (line 15). After minor string corrections

(lines 17–21), the size of the flanking regions is calculated. If the flanking region length is over

user specifications, a new identifier is added. If not, the sequence is discarded. This second

identifier is added for the eventuality of a sequence having two or more SSRs. The resulting text

files contain the full sequence matrix, with all the data from the filtered sequences. The first

matrix contain (i) the identifier; (ii) SSR motif type; (iii) SSR motif; (iv) SSR length; (vi) SSR

start position; (vii) SSR end position; (viii) sequence length. The second, shorter, matrix is only

composed by the (i) new identifier; (ii) sequence identifier; (iii) starting and ending SSR position,

and total sequence size (lines 26 and 27). This final file is correctly formatted to be parsed to

splitSSR, where the SSR is removed from the sequence.

4.2.2 selected_micros

� �
1 def selected_micros (rf1 , of1 , of2 ) :

2 readfile1 = open (rf1 , " r " )

3 outfile1 = open (of1 , "w" )

4 outfile2 = open (of2 , "w" )

5 dic_cluster = {}

6 for line in readfile1 :

7 #S p l i t by tab

8 selected_line = line .split ( " \ t " )

9 #Creat ing d i c t i o n a r y f o r s e l e c t i o n o f one sequenc ing per c l u s t e r

10 if not selected_line [ 8 ] in dic_cluster .keys ( ) :

11 dic_cluster [ selected_line [ 8 ] ] = selected_line [ 0 ]

12 #Creat ing o u t f i l e

13 sel_micros = list (selected_line [i ] for i in [ 0 , 3 , 5 , 6 , 8 , 1 0 ] )

14 outfile2 .write ( " \ t " .join (sel_micros ) )

15 #c r e a t i n g t a b _ s e l e c t e d

16 for keys ,values in dic_cluster .items ( ) :

17 outfile1 .write (values + " \n" )

18 readfile1 .close ( )

19 outfile1 .close ( )

20 outfile2 .close ( )� �
Listing 4.14: Procedure for cluster representative selection.
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Listing 4.14 shows the function responsible for filtering a single SSR representative from each

cluster designated by CD-HIT and its relevant practical information, which will be used to design

the primers for each cluster (Figure 3.1–X). In the first part (lines 2–5) it initializes the input

and output files and the dictionary dic cluster (data structure where all the data will be saved).

Next, the first sequence of each cluster is selected and added to the dictionary (lines 6–11). Even

if only the first sequence of each cluster is selected, the selection process is in fact randomized,

since the operation of FLASH, which occurs at the beginning of the pipeline, causes the random

identifier assignment to the sequences, consequently randomizing the sequence order in the input

file. Each entry is also accompanied by its respective (i) identifier; (ii) motif type, (iii) SSR start

position; (iv) SSR end position, (v) cluster identifier; (vi) cluster size (line 13). Finally, in lines

16 and 17, the dictionary is written into a text file.
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4.2.3 allele

� �
1 def allele (rf1 ,

2 of1 ,

3 MIN_ALLELE_CNT ,

4 MIN_ALLELE_SPECIAL ,

5 MIN_ALLELE_SPECIAL_DIF ) :

6 readfile1 = open (rf1 , " r " )

7 outfile1 = open (of1 , "w" )

8 cluster_exclude = [ ]

9 dic_pool = {}

10 dic_allele = {}

11

12 dic_writer (readfile1 , dic_pool )

13 allele_finder (dic_pool , dic_allele , MIN_ALLELE_SPECIAL )

14

15 if MIN_ALLELE_SPECIAL == 0 :

16 for cluster in dic_allele .keys ( ) :

17 if dic_allele [ cluster ] < MIN_ALLELE_CNT :

18 cluster_exclude .append (cluster )

19 else :

20 for cluster in dic_allele :

21 if max (dic_allele [ cluster ] ) − min (dic_allele [ cluster ] ) <

MIN_ALLEL_SPECIAL_DIF :

22 cluster_exclude .append (cluster )

23 #Reset ing f i l e cursor

24 readfile1 .seek (0 )

25 #S e l e c t i n g sequences from c l u s t e r s not exc luded

26 for line in readfile1 :

27 selected_line = line .split ( " \ t " )

28 selected_line [ 9 ] = selected_line [ 9 ] . rstrip ( )

29 if selected_line [ 8 ] not in cluster_exclude :

30 selected_line .append (str (dic_allele [ selected_line [ 8 ] ] ) + " \n" )

31 outfile1 .write ( " \ t " .join (selected_line ) )

32 readfile1 .close ( )

33 outfile1 .close ( )� �
Listing 4.15: Procedure to select SSRs that follow user specification.

The third and final filter, allele, will select the loci that have the minimum accepted number of
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alleles (Figure 3.1–IX). If "special search" is active, a more loosen analysis is made (Listing 4.15).

At the beginning, all sequence identifiers, with their respective SSR motif type and repetitions,

are loaded into the dictionary dic pool from the SSR matrix, using the auxiliary function dic

writer (Listing 4.16). Then, using another auxiliary function called allele finder (Listing 4.17),

all individual alleles present in each cluster are counted, for being later parsed into the dictionary

dic allele.

Afterwards, each cluster is filtered. The cluster that do not have the minimum alleles specified

by the user are marked for exclusion (lines 15 –22). However, if special search is active a different

route is taken. Due to the possible existence of alleles with intermediate number of motifs

repetitions of those found in the sample (Section 3.3), the difference between the smallest and

highest allele is calculated. Finally, the SSR matrix is again analysed. If the cluster to which

the sequence belongs is not marked for exclusion, the sequences, and all their information, are

written to the output file (lines 29–33).

� �
1 def dic_writer (readfile1 , dic ) :

2 for line in readfile1 :

3

4 selected_line = line .split ( " \ t " )

5 short_id = selected_line [ 0 ] [ 0 : 1 0 ]

6

7 # Writing d i c t i o n a r y

8 if selected_line [ 8 ] not in dic .keys ( ) :

9 dic [ selected_line [ 8 ] ] = [ ]

10 dic [ selected_line [ 8 ] ] . append ( [ short_id , selected_line [ 3 ] ] )� �
Listing 4.16: Auxiliary function of allele detection.

The dic writer (Listing 4.16) is a simple function that analyses every SSR from the SSR

matrix and stores the necessary attributes for the correct functioning of allele (Listing 4.15) in a

dictionary, using the cluster identifier as a key and the sequence identifier, SSR motif type and

SSR motif repetitions as values.
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� �
1 def allele_finder (dic_pool , dic_allele , MIN_ALLELE_SPECIAL ) :

2 for cluster_num in dic_pool :

3 #L i s t o f every d i f f e r e n t a l l e l f o r a g iven c l u s t e r

4 dic_pool_cluster = {}

5 #S e l e c t i n g a l l e l s i z e

6 for values in dic_pool [ cluster_num ] :

7 identifier = values [ 0 ]

8 allele_type , allele_size = values [ 1 ] . split ( " ) " )

9 allele_type = allele_type . replace ( " ( " , " " )

10 #adding unique a l l e l e to l i s t

11 if allele_size in dic_pool_cluster .keys ( ) :

12 dic_pool_cluster [ allele_size ] [ 0 ] += 1

13 else :

14 dic_pool_cluster [ allele_size ] = [ [ ] , [ ] ]

15 dic_pool_cluster [ allele_size ] [ 0 ] = 1

16 dic_pool_cluster [ allele_size ] [ 1 ] . append (identifier )

17 dic_allele [ cluster_num ] = len (dic_pool_cluster .keys ( ) )

18 if MIN_ALLELE_SPECIAL == 1 :

19 dic_allele [ cluster_num ] =

list (map (int , dic_pool_cluster .keys ( ) ) )� �
Listing 4.17: Auxiliary function of allele for allele quantification.

The second auxiliary function of allele, allele finder will analyze each entry in the dictionary

dic pool.

All sequences from a given cluster have the same SSR but, due to the pair-end nature of

sequencing, the SSR motif can represent forward or reverse sequences. This can cause confusion,

since SSRs from the same cluster can have different motifs, but will not affect the overall result.

The only thing differentiating the different alleles are the number of motif repetitions.

As such, the number of repetitions is isolated (line 8) and saved (lines 11–16) in a temporary

dictionary, dic pool cluster. If "special search" is activated, all individual alleles are instead

stored in the dictionary (line 23). If not, all different repetitions are stored (line 19). Different

repetitions represent different alleles.
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4.2.4 python_grep

� �
1 def python_grep (rf1 , of1 ) :

2 readfile1 = open (rf1 , " r " )

3 outfile1 = open (of1 , "w" )

4 for line in readfile1 :

5 pattern = r ’ ^GATC\w∗GATC$ ’

6 seq = re .match (pattern , line )

7 if seq :

8 print (re .sub ( " ^@" , ">" ,prev_line ) + seq .group (0 ) , file=outfile1 )

9 prev_line = line

10 readfile1 .close ( )

11 outfile1 .close ( )� �
Listing 4.18: Procedure to select sequences containing the restriction enzyme pattern.

Listing 4.18 describes python grep which is the function responsible for selecting only the

sequences that contain, in both ends, the restriction enzyme pattern (Figure 3.1 – I). The function

employs the usage of regular expressions, which will examine every sequence for the intended

pattern. (lines 5 and 6). If the pattern is found, both, sequence and previous line in the file,

containing the sequence identifier, are written in the output file. The symbol "@", present in the

sequence identifier, is also substituted with ">" to make it suitable for the fasta format.
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4.3 File Manipulation

4.3.1 add_id_calculate_length

� �
1 def add_id_calculate_length (rf1 , of1 , of2 ) :

2 readfile1 = open (rf1 , " r " )

3 outfile1 = open (of1 , "w" )

4 outfile2 = open (of2 , "w" )

5 #ID counter

6 counter = 1

7 #ID saver

8 len_line = " "

9 # Cycle trough a l l l i n e s

10 for line in readfile1 :

11 #S e l e c t i n g on ly l i n e s wi th sequence ID

12 if line [ 0 ] == ">" :

13 #Adding ID

14 ids_line = line [ 0 ] + str (counter ) + "_" + line [ 1 : ]

15 #Saving ID s t r i n g e x c l u d i n g ">"

16 len_line = ids_line [ 1 : ]

17 counter += 1

18 outfile1 .write (ids_line )

19 #S e l e c t i n g DNA sequence

20 else :

21 outfile1 .write (line )

22 #C a l cu l a t e sequence s i z e

23 size = len (line ) − 1

24 #Construc t ing f i n a l s t r i n g

25 len_line = len_line .strip ( " \n " )

26 len_line = len_line + " \ t " + str (size )

27 outfile2 .write (len_line + " \n" )

28 readfile1 .close ( )

29 outfile1 .close ( )

30 outfile2 .close ( )� �
Listing 4.19: Procedure to add identifiers and the length calculation

The Listing 4.19 describes the function responsible for calculating the total sequence length,

preceding SSR search in the pipeline (Figure 3.1–III).
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It takes the output from the Filter 1 and goes trough all lines of the input file. If the line

starts with the symbol ">", it contains a sequence identifier. If not, it contains the DNA sequence

of the last read sequence identifier. Thus, if the symbol is found (line 12), it copies the entire

string ,that is, copies the sequence identifier and adds a new simpler identifier at the start of

the already existing sequence identifier (line 14). The simplicity of the new identifier allows for

smoother sequence processing. Its attribution is controlled by the variable counter, which is

incremented each time a new identifier is attributed (line 17).

Since each line is read sequentially, a line containing the sequence identifier is always succeeded

by its corresponding DNA sequence. The lack of the symbol ">" means that a DNA sequence was

read. In that case, the length of the string is calculated, which corresponds to the DNA sequence

size (line 23). With this in mind, the function creates two outputs. The first one, outfile1, will

contain the newly made sequence identifier followed, in the next line, by the corresponding DNA

sequence (lines 14–18). The second output, outfile2, will contain the sequence identifier + DNA

sequence size, separated by a tab (line 27).
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4.3.2 length_merger

� �
1 def length_merger (rf1 , rf2 , of1 ) :

2 readfile1 = open (rf1 , " r " )

3 readfile2 = open (rf2 , " r " )

4 outfile1 = open (of1 , "w" )

5 #Creat ing d i c i t o n a r y wi th SeqID and s s r l e n g t h

6 dic_length = {}

7 # Dict ionary w r i t i n g

8 for line in readfile1 :

9 #S p l i t i n g f i l e by t a b s

10 selected_line = line .split ( " \ t " )

11 #Saving only 10 f i r s t c a r a c t e r s o f ID .

12 dic_length [ selected_line [ 0 ] [ 0 : 1 0 ] ] = selected_line [ 1 ]

13 for line in readfile2 :

14 selected_line = line .split ( " \ t " )

15 #Removing \n from end tab

16 selected_line [ 6 ] = selected_line [ 6 ] . rstrip ( )

17 #Creat ing new tab wi th s s r l e n g t h

18 if selected_line [ 0 ] [ 0 : 1 0 ] in dic_length .keys ( ) :

19 selected_line .append (dic_length [ selected_line [ 0 ] [ 0 : 1 0 ] ] )

20 outfile1 .write ( " \ t " .join (selected_line ) )

21 readfile1 .close ( )

22 reafile2 .close ( )

23 outfile1 .close ( )� �
Listing 4.20: Procedure to add the length information to the SSR matrix.

length merger (Listing 4.20) is a simple function responsible for pre-processing the input file

for the second filter (Figure 3.1–V). It adds the length of the sequence to the SSR matrix (MISA

output file), if a SSR was detected. The length was previously calculated with the function at

step III of the pipeline by the function add ids calculate length (Listing 4.19).

For this, the length calculations are loaded into a dictionary, dic length using the sequence

identifier as key and length as value (line 12). Next, for each line of the SSR matrix, the sequence

identifier is compared to the dictionary entries list. If a match is found, the dictionary values are

appended to the line and written in the output file (lines 18–20). If a match is not found, no

SSRs were found by MISA and, as such, the sequence and all its information is discarded.
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4.3.3 split

� �
1 def split (rf1 , rf2 , of1 ) :

2 readfile1 = open (rf1 , " r " )

3 readfile2 = open (rf2 , " r " )

4 outfile1 = open (of1 , "w" )

5 #Cria t ing Dic t ionary con ta in ing Number ID , Sequence ID , s t a r t and end o f

SSR

6 dic_micros = {}

7 for line in readfile1 :

8 selected_line = line .split ( " \ t " )

9 if len (selected_line ) > 1 :

10 dic_micros [ selected_line [ 0 ] ] = [ selected_line [ 1 ] [ 0 : 1 0 ] ,

selected_line [ 2 ] , selected_line [ 3 ] ]

11

12 # Search and cut o f SSR in s e l e c t e d Sequences

13 ssr_cut (readfile2 , outfile1 , dic_micros )

14

15 readfile1 .close ( )

16 readfile2 .close ( )

17 outfile1 .close ( )� �
Listing 4.21: Procedure to remove SSRs from respective sequence.

The function split (Listing 4.21) removes the SSR from the DNA sequence, thus, the SSRs

can be clustered not by motif structure, but by its flanking regions, avoiding errors due to

homoplasy (Section 1.2.4.3). Two inputs will be parsed to the function: the second filter result

(Figure 3.1–V) and elements containing the sequence identifier and corresponding DNA strings

(Figure 3.1–I).

Whith this inputs, a dictionary is created, dic_micros saving the secondary identifier (created

for the possible existence of multiple SSRs in the same sequence) as a key together with (i) the

sequence identifier; (ii) SSR start position; (iii) SSR end position as values(lines 7 – 10). This

data is parsed to the auxiliary function ssr_cut (Listing 4.22) that slices the SSR and writes the

sequence without the SSR to the output.
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� �
1 def ssr_cut (readfile2 , outfile1 , dic ) :

2 last_seq = " "

3 dna_line = " "

4 for line in readfile2 :

5 selected_line = line .split ( " \ t " )

6 for key in dic :

7 if selected_line [ 0 ] [ 1 : 1 1 ] in str (dic [key ] [ 0 ] ) :

8 #S e l e c t i n g Sequence ID

9 if selected_line [ 0 ] [ 0 ] == ">" :

10 #I f t he r e i s m u l t i p l e SSRs the DNA Seq i s saved

11 if last_seq == selected_line [ 0 ] [ 1 : 1 1 ] :

12 nextline = dna_line

13 last_seq = " "

14 else :

15 #S e l e c t i o n o f the next l i n e , con ta in ing the DNA

sequence

16 nextline = readfile2 . readline ( )

17 dna_line = nextline

18 #S l i c i n g away SSR

19 first_cut = int (dic .get (key ) [ 1 ] ) − 1

20 second_cut = int (dic .get (key ) [ 2 ] )

21 nextline = nextline [ 0 : first_cut ] + nextline [ second_cut : ]

22 #Output w r i t i n g

23 outfile1 .write (selected_line [ 0 ] + nextline )

24 #Saving l a s t sequence ID :

25 if selected_line [ 0 ] [ 0 ] == ">" :

26 last_seq = selected_line [ 0 ] [ 1 : 1 1 ]� �
Listing 4.22: Auxiliary function of split.

Each sequence on the second input file is analyzed and checked for an entry on the dictionary

calculated in split function. If an entry exists, the script checks for the existence of multiple SSRs

in the same sequence. If, by chance, two identical sequence identifiers are read consecutively,

it is certain that the DNA sequence contains two or more SSRs. Because of this, the script

compares the current sequence identifier with the last sequence identifier cycled through. If no

correspondence is found the next line (containing the DNA sequence) is read. If the opposite

occurs, the DNA sequence from the last sequence cycled, saved in last_seq, is read(lines 14 –

17). Finally, the sequence is spliced from its SSR using the data present in the dictionary. The

combined sequence identifier plus the sequence without SSR is written in the output file.
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4.3.4 cluster

� �
1 def cluster (rf1 , of1 ) :

2 readfile1 = open (rf1 , " r " )

3 outfile1 = open (of1 , "w" )

4 current_cluster = " "

5 #Creat ing d i c t i o n a r y to save each sequence o f each c l u s t e r

6 dic_cluster = {}

7 for line in readfile1 :

8 #S e l e c t i n g c l u s t e r ID

9 if ">" in line [ 0 ] :

10 selected_line = line .split ( )

11 current_cluster = selected_line [ 1 ]

12 #Creat ing c l u s t e r entry on the d i c t i o n a r y

13 dic_cluster [ current_cluster ] = [ ]

14 else :

15 #Replacing "_" f o r ">"" f o r easy s e l e c t i o n o f sequence ID

16 line = line . replace ( "_" , ">" )

17 selected_line = line .split ( ">" )

18 #Adding sequence ID to corresponding c l u s t e r on the d i c t i o n a r y

19 dic_cluster [ current_cluster ] . append (selected_line [ 1 ] )

20 for key , value in dic_cluster .items ( ) :

21 for x in value :

22 #Def in ing c l u s t e r s i z e

23 size_cluster = len (dic_cluster [key ] )

24 outfile1 .write (str (x) + " \ t " + str (key ) + " \ t " + str (size_cluster )

+ " \n" )

25 readfile1 .close ( )

26 outfile1 .close ( )� �
Listing 4.23: Procedure to export data from CD-HIT.

Listing 4.23 details the actions performed by the cluster function, one of two functions

responsible for step VIII in the pipeline (Figure 3.1). It takes the cluster data from CD-HIT

(Figure 3.1–VII) and creates a more easy to handle and readable output, cluster_out, detailing

for each sequence identifier its asigned cluster and cluster size.

Each line of the input file is analyzed. The cluster identifier can be identified by the presence

of the symbol ">" at the start of the string. This cluster identifier is used as a key in dic cluster,

a dictionary created for the effect (line 13). In the CD-HIT output format, each cluster identifier
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line is followed by the sequence identifiers of that cluster. Thus, each adjacent line is added as a

value to the dictionary entry of the current cluster (line 19). When a new cluster identifier is

detected, the cycle starts again the procedure. At the end, the number of values for each entry in

dic cluster is measured. Finally, all sequences are written in the output file, with the respective

cluster number and cluster size.

4.3.5 add_cluster_info

� �
1 def add_cluster_info (rf1 , rf2 , of1 ) :

2 readfile1 = open (rf1 , " r " )

3 readfile2 = open (rf2 , " r " )

4 outfile1 = open (of1 , "w" )

5 #Creat ing d i c t i o n a r y to save c l u s t e r # and c l u s t e r s i z e

6 dic_cluster = {}

7 for line in readfile1 :

8 selected_line = line .split ( " \ t " )

9 selected_line [ 2 ] = selected_line [ 2 ] . rstrip ( )

10 #Create d i c t i o n a r y us ing ID as key and c l u s t e r # and c l u s t e r s i z e

11 dic_cluster [ selected_line [ 0 ] ] = [ selected_line [ 1 ] , selected_line [ 2 ] ]

12 for line in readfile2 :

13 # S p l i t by tab and remove \n

14 selected_line = line .rstrip ( )

15 selected_line = selected_line .split ( " \ t " )

16 #S e l e c t i n g on ly ID

17 ID , junk = selected_line [ 0 ] . split ( "_" )

18 #Appending to misa f i l e c l u s t e r # and s i z e

19 for item in dic_cluster [ID ] :

20 selected_line .append (item )

21 #O u t f i l e w r i t i n g

22 outfile1 .write ( " \ t " .join (selected_line ) + " \n" )

23 reafile1 .close ( )

24 readfile2 .close ( )

25 outfile1 .close ( )� �
Listing 4.24: Procedure to insert the cluster information in the SSR Matrix.

The function add cluster info (Listing 4.24), is the second function for clustering the SSR

sequences (Figure 3.1–VIII). This simple function goal is to add cluster information obtained in

the function cluster (Listing 4.23) to the general SSR matrix, where various SSR parameters are
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stored. Basically, the dictionary dic cluster is initiated with the output from cluster, using the

sequence identifier as key and cluster identifier and cluster size as values. This information is

added to the SSR matrix by comparing each sequence identifier with its corresponding entry in

the dictionary (line 19 and 20).
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4.4 Output Preparation

4.4.1 pseudofasta

� �
1 def pseudofasta (rf1 , rf2 , of1 ) :

2 readfile1 = open (rf1 , " r " )

3 readfile2 = open (rf2 , " r " )

4 outfile1 = open (of1 , "w" )

5 selected_seqs = [ ]

6 for line in readfile1 :

7 selected_seqs .append (line )

8 for line in readfile2 :

9 if line [ 0 ] == ">" :

10 if line [ 1 : ] in selected_seqs :

11 nextline = readfile2 . readline ( )

12 outfile1 .write ( "SEQUENCE_ID=" + line [ 1 : ] +

"SEQUENCE_TEMPLATE=" + nextline + "=" + " \n" )

13 reafile1 .close ( )

14 readfile2 .close ( )

15 outfile1 .close ( )� �
Listing 4.25: Procedure to create the Primer3 input file.

The input file for Primer3 must follow a specific format for its correct functioning. Thus,

the chosen cluster representatives sequences must be converted by pseudofasta (Listing 4.25)

before being processed by Primer3 (Figure 3.1–X). All sequence identifiers from the cluster

representatives are saved to a temporary list selected seqs (lines 8 and 7). Afterwards, each line of

the input file, containing the original non altered sequences with both SSR and flanking regions,

are inspected, line by line. If the sequence identifier is present in selected seqs, the sequence

identifier, followed by the corresponding sequence in the adjacent line, is written in the correct

Primer3 format (line 12). This cycle runs till every sequence in the file is analyzed.
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4.4.2 final_primers

� �
1 def final_primers (rf1 , rf2 , of1 ) :

2 readfile1 = open (rf1 , " r " )

3 readfile2 = open (rf2 , " r " )

4 outfile1 = open (of1 , "w" )

5 dic_attr = {}

6 for line in readfile1 :

7 line = line .rstrip ( )

8 selected_line = line .split ( " \ t " )

9 dic_attr [ selected_line [ 0 ] ] = [ selected_line [ 1 ] , selected_line [ 2 ] ,

selected_line [ 3 ] , selected_line [ 4 ] , selected_line [ 5 ] ]

10 transform (readfile2 , outfile1 , dic_attr )

11 readfile1 .close ( )

12 readfile2 .close ( )

13 outfile1 .close ( )� �
Listing 4.26: Procedure to convert Primer3 result to final pipeline result.

The output from Primer3 contains all the information needed for amplification of the selected

SSRs, such as the generated forward and reverse primer and respective melting temperature

(Tm), primer product size, among others. Despite this, the format is not easily analysed or

readable, due to its code based format. To improve user usability and convenience, final primers

converts Primer3 output to the final output of the pipeline (listing 4.26). Firstly, data of the

start and end of the SSR plus number of alleles of the respective SSR loci are loaded into the

dictionary dic attr. This data is then parsed into the auxiliary function transform that will create

the final result.



4.4. Output Preparation 51

� �
1 def transform (readfile , outfile , dic ) :

2 out = [ ]

3 for line in readfile :

4 line = line .rstrip ( )

5 if re .match ( " ^SEQUENCE_ID" , line ) :

6 seq_id = line .split ( "=" ) [ 1 ]

7 count = 0

8 elif re .match ( " ^PRIMER_LEFT_\d_SEQUENCE" , line ) :

9 out .append (line .split ( "=" ) [ 1 ] )

10 elif re .match ( " ^PRIMER_RIGHT_\d_SEQUENCE" , line ) :

11 out .append (line .split ( "=" ) [ 1 ] )

12 elif re .match ( " ^PRIMER_LEFT_\d_TM" , line ) :

13 out .append (line .split ( "=" ) [ 1 ] )

14 elif re .match ( " ^PRIMER_RIGHT_\d_TM=" , line ) :

15 out .append (line .split ( "=" ) [ 1 ] )

16 elif re .match ( " ^PRIMER_LEFT_\d=(\d∗) , (\ d∗) " , line ) :

17 next = line .split ( "=" ) [ 1 ]

18 left_ini , left_len = next .split ( " , " )

19 elif re .match ( " ^PRIMER_RIGHT_\d=(\d∗) , (\ d∗) " , line ) :

20 next = line .split ( "=" ) [ 1 ]

21 right_ini , right_len = next .split ( " , " )

22 elif re .match ( " ^PRIMER_PAIR_\d_PRODUCT_SIZE=\d" , line ) :

23 out .append (line .split ( "=" ) [ 1 ] )

24 out .append (dic [seq_id ] [ 0 ] )

25 out .append (dic [seq_id ] [ 4 ] )

26 start = int (dic [seq_id ] [ 1 ] )

27 end = int (dic [seq_id ] [ 2 ] )

28 cluster = dic [seq_id ] [ 3 ]

29 good_left = int (left_ini ) + int (left_len )

30 good_right = int (right_ini ) − int (right_len )

31 if (good_left < start ) and (good_right > end ) :

32 out = list (out [i ] for i in [ 4 , 0 , 2 , 1 , 3 , 5 , 6 ] )

33 out = [str (seq_id ) ] + out

34 outfile .write ( " \ t " .join (out ) )

35 if count == 0 :

36 outfile .write ( " \ t | BEST | " )

37 count = 1

38 outfile .write ( " \n " )

39 out = [ ]� �
Listing 4.27: Procedure to show final results.
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The auxiliary function transform reads the Primer3 output and transforms it in to the new

format (Listing 4.27). Resorting to regular expressions, various attributes are searched for each

individual SSR primer pair created (lines 4–22) and added to out, which will save all information

for every single primer for later be written. It will be also verified if the generated primer does not

exceed SSR flanking regions (line 31). The final output file is divided by tabs and contains eight

columns (Figure 4.1). Each line represents the primers designed by Primer3 for each SSR found

in the sample. (a) First column (red) contains the sequence identifier. For each loci representative

various primers can be designed, giving the users various options for optimal amplification. (b)

Next, the total size of the SSR is shown (Brown). The primers designed are shown next, starting

with the left primer and respective Tm, followed by the right Primer and respective Tm. Both

primers are shown with direction 5’ to 3’. Then, the specific motif/allele found is shown with the

total number of alleles for the specific SSR loci (black). The flag "|BEST|" is shown if Primer3

defines the corresponding primer as the best one for loci amplification.
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(a)

(b)

Figure 4.1: Example of the Micro-Primers output.





Chapter 5

Results

The Micro-Primers pipeline was tested with a dataset belonging to bats of the species Hiposideros

vittatus from two different populations, Namibia and Botswana, with a total of 15 and 21

individuals1, respectively.

Samples were mixed into a unique library and later sequenced on a Illumina MySeq producing

pair-end reads of 251 nucleotides length. The library preparation was made following the protocol

established at [78] and explained at the Input files section.

Since the species is diploid, the maximum number of alleles to be found by locus could reach

the number of 72. The process was reproduced both, by running the programs sequentially by

hand, including some files pre-processing so that certain outputs are suited to be parsed to other

program, and executing the Micro-Primers pipeline with exactly the same parameters used in

the manual run.

Final results in both processes were identical, as expected, being the only difference the time

spent to reach the final result. The manual process took not less than 24 hours, mainly invested

on the clusters eye selection. Some format changes were needed as well for the proper functioning

of certain programs, such as Primer3. Sequences identifiers also had to be changed for easier

handling, allowing for a selection based on a unique ID and not on a long identifier, only different

at the end of a very long name string.

On the other hand, the automatic pipeline took less than 120 seconds to perform the analysis

on a Intel i7 Octacore desktop with 64 Gb of memory. It should be noticed that the whole
1This dataset is included in the Micro-Primers’ GitHub repository.
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process was run on a single core and the unique point where the memory is demanding is at the

trimming step carried out by Trimmomatic, so minimal resources are needed in general. Three

different parameters combinations were tried to check differences in the number of microsatellites

loci selected. The number of sequences remaining after every stage of the pipeline were calculated

and are shown at Table 5.1.

The pipeline execution was modified by changing the parameters at the config file, in the

SSR section. The three configurations used were:

• MIN_ALLEL_CNT=5, MIN_ALLEL_SPECIAL=0 (default).

• MIN_ALLEL_CNT=4, MIN_ALLEL_SPECIAL=0 (4 unique alleles).

• MIN_ALLEL_SPECIAL=1, MIN_ALLEL_SPECIAL_DIFF=8 (difference of 8).

The number of selected sequences at each step remains the same between the three experiments

until the cluster selection, where the number of alleles makes the difference. Across all steps

there is a significant reduction in the sequences number, with an important drop at the filter

steps.

Analyzing the experimental results, it is clear that the activation of the SPECIAL parameter

produces an increase in the number of results. However, these new results will be of a lower

quality, since any cluster with any number of alleles will be accepted up till the difference between

the maximum number of repeats and the minimal is over the established in the config file.

If we observe the number of alleles in the final results at the configuration "5-0" the distribution

of the selected clusters is 16,14,14,12,10,8,8,7,7,7,6,5,5,5,5,5,5. In the configuration "4-0" the

distribution remains the same with eighteen additional clusters with 4 alleles each. Meanwhile at

the "5-1-8" configuration, 38 new clusters appear, including fifteen clusters with 3 alleles and

twenty three with only two alleles, all of them with a range difference of 8.

During the analysis, the number of individual alleles for each cluster detected can be huge,

but only a small part of them represent informative alleles, that is, only sequences with different

number of repeats of the motif will be considered as alleles, and all the sequences with the same

number of repeats will be ignored for computing the number of final alleles. This process is

carried out automatically by Micro-Primers but on a manual search for microsattelites all this

remaining information can represent a lot of effort to discriminate them or a lot of spent money

in failed amplifications that will not result of interest.
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Table 5.1: Number of sequences being kept at every pipeline step. Numbers for the three configurations are equal until

clusters creation. The relative percentage over the original is shown in brackets.

Combinations
Pipeline Step

5-0 4-0 5-1-8

FASTQ File 259506 (100%)

Trimming 188843 (72.77%)

Pair-end Merge 130603 (50.32%

Filter 1 19695 (7.59%)

With SSRs 16983 (6.54%)

Filter 2 8083 (3.11%)

Filter 3 2091 (0.81%) 2204 (0.84%) 4913 (1.89%)

Unique Alleles 26 (0.01%) 51 (0.02%) 104 (0.04%)

Primers Selected 17 (0.007%) 35 (0.013%) 73 (0.028%)

Figure 5.1: Total number versus unique alleles

Using the same data as before, the total number of unique sequences in the selected 27

clusters was 2091. Among those, only 243 sequences contained unique alleles, a ratio of only

11.63 percent (Figure 5.1).





Chapter 6

Discussion and Conclusions

Nowadays, it can take up to months for researches to analyse and select SSR primers for their

projects. It requires them to run MISA several times without any kind of pre-processing and

to select by hand individual candidates for primer3. With no clusterisation or ignoring the

number of available alleles, most amplifications results are useless since most of the time SSRs

are not variable across the population. This fact implies a waste of time and money that could

be easily avoided just with the development of an automatic tool to do the selection based on

polymorphism. In that way a user can change parameters several times and select only that

SSRs most suitable for the experiment just in few seconds.

Comparison between the manual selection and the execution of Micro-Primers is very biased

towards the automatic pipeline since the process by hand still needs some scripting or command

line pre-processing between software execution just to adapt the output of one program to the

input of the next. The longest process in the selection corresponds to the categorization and

allele counting for every single SSR. First, all microsatellites individually identified need to be

grouped by locus taking into account that from sequencing we will have both strands of the

same sequence so the same locus can be represented by two different sequences as well as the

microsatellites. After the identification of all the copies of the same microsatellite loci one needs

to count the number of different unique alleles for subsequent selection. In some cases this task

can result very tedious since some of the locus can be represented by thousands of elements. The

creation of an automatic pipeline that can speed up the process immune to manual selection bias

is of a great interest for the scientific community.

The use of Micro-Primers provides an unprecedented availability of candidate SSRs at a
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much more reliable and fast pace than before. This abundance permits selection of markers that

may be most suitable for specific applications or particular organisms.

By making the process automatic, a researcher can run several times the same dataset just

modifying the parameters in the config file to get different results. As results showed above, the

inclusion of the SPECIAL parameter makes a wider selection, where the researcher accepts the

hypothesis of the existence of new alleles in the species between the maximum and minimum

found in the dataset, due maybe to a insufficient sequencing.

Micro-Primers is a novel tool with space for improvement. The creation of python imple-

mentations of the third-party software included in this pipeline can lead to total compatibility

with Windows operating systems and, in combination with pipeline parallelization, can greatly

improve performance and lower pipeline run time. Also, regarding data quality, more options

can be added to extend the functionality and its malleability to different samples. The addition

of a Graphic Use Interface can facilitate the user configuration and runtime, avoiding the need

to alter text-based files.

Concluding, Micro-Primers has demonstrated an enormous potential for microsatellite search

and primer design among other similar software since it includes an important step of selection of

the more polymorphic ones without any user supervision. The complete automation of the process

make it very easy to use for any researcher, even with no experience at all in command-line

software thanks to the inclusion of a Python script that will install all the required software and

dependencies before the pipeline execution. Micro-Primers allows any researcher to characterize

individuals or a whole population just with some PCR reactions. This protocol can be of an

great help for conservation plans where the species are becoming very homogeneous and a

cross-population hybridization is needed.
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