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ABSTRACT 

Most cellular processes depend on the activity and interactions of proteins. The 

proteome, i.e. the entire set of proteins in a specific condition, is shaped by 

regulation of transcription, mRNA-degradation, -processing, -storage, -translation 

and protein degradation. Cancer cells are known to highjack gene expression 

processes, including the translation machinery, for their growth and survival. This 

occurs as a result of converging oncogenic signaling pathways which impinge on 

translation factors to selectively modulate synthesis of cancer-related proteins.  

Our understanding of mechanisms by which oncogenic pathways dynamically 

control their targets' translational activity is limited and could be extended by 

transcriptome-wide studies of changes in translation efficiency. In Paper I, we 

developed anota2seq which allows for statistical analysis of such data. Using a 

simulation approach, we showed that anota2seq constitutes an improvement 

compared to other methods for identification of genes under translational 

regulation. 

The relative contribution of transcriptional and translational regulation to proteome 

modulation has been extensively debated. This raises the interest in studies 

integrating data on multiple levels of gene expression regulation. In Paper II, we 

study the role of estrogen receptor alpha (ERα), a transcription factor that is 

commonly targeted in hormone-dependent cancers, in coordinating transcriptional 

alterations with control at the level of translation. Upon ERα depletion in a prostate 

cancer model, we observed massive translational offsetting whereby the 

translational output remains unchanged despite changes in mRNA levels. To 

characterize mechanisms underlying translational offsetting, we extended the 

scope of the anota2seq method (Paper I) to also identify genes regulated by this 

underappreciated mode of gene expression regulation. Next, our detailed 

mechanistic study revealed that upon ERα depletion, mRNAs whose levels are 

reduced but translationally offset have less structured 5'UTRs and are devoid of 

miRNA target sites and thus cannot be influenced by such translational repressors. 

In contrast, transcripts which were upregulated but offset at the level of translation 

are enriched in codons requiring U34-modified tRNAs for their translation. We 

finally demonstrated that ERα impacts the levels of such modified tRNAs. 

Cancer is a highly heterogeneous disease. In our studies of translational control, we 

are reaching the limits of reasonable inference when extending conclusions from 

experiments in cell lines into clinical settings. However, experimental methods to 

quantify translatomes such as polysome-profiling, are not suitable for samples with 

low RNA input such as tissue samples from cancer patients. Paper III presents an 

optimization of the polysome-profiling method, compares it with the classical 

approach and validates that this new approach is suitable to study novel 

mechanisms regulating mRNA translation in large collections of tissue samples.  
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1 Prolegomenon

1.1 Translational control

1.1.1 Introduction about the central dogma of molecular biology

An organism’s genetic information is encoded in the deoxyribonucleic acid (DNA) lo-

cated in its cells’ nuclei. Depending on its cell type and on which state a cell is in,

specific locations (genes) along the DNA will be transcribed (expressed). This entails

synthesizing a necessary amount of temporary copies of the DNA region called tran-

scripts. About 62% of the human genome is transcribed and processed further (Djebali

et al. 2012). Of these transcripts, 2-5% are messenger RNAs (mRNAs) which encode

proteins (Carninci et al. 2005). The process of "converting" an mRNA template into

a protein is called mRNA translation (Figure 1); this thesis will mainly be focused

around studying regulation of gene expression at the level of mRNA translation.

AAA

AAA

AAA

AAA
AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA
AAA

AAA

AAA

AAA

AAAmRNA
decay

δm

transcription & 
processing

βm

translation
βp

protein
degradation

δp

pm

Figure 1: Main steps of gene expression regulation. This figure illustrates, for one gene,
the processes of the central dogma of molecular biology. The protein level (p) is shaped by
regulation of the rates of different steps including rate of transcription and processing (βm), of
mRNA-decay (δm), -storage, -translation (βp) and protein degradation (δp). In the figure, m
is the mRNA abundance. At a given time t, p(t) = (βm(t)−δm(t)).βp(t)−δp(t). When mea-
suring translational efficiency, some methods such as polysome-profiling (see section 1.1.4.1)
estimate the proportion of efficiently translated mRNAs (mRNAs associated with many ribo-
somes, colored in blue) among all mRNAs. Other methods, such as ribosome-profiling (section
1.1.4.2), count the number of ribosome footprints (colored in yellow).

A cell’s activity is characterized by quantity and interactions of proteins. The abun-

dance of a protein is determined by the rate of transcription of its corresponding gene,
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translation of the mRNA intermediate as well as rate of mRNA and protein degrada-

tion (Figure 1). These processes constitute the so-called central dogma of molecular

biology (Crick 1970). At steady state, from one gene product to another, the range of

transcription and translation rates is wide. Between 0.1 and 100 mRNAs are synthe-

sized every hour while translation rates range from 10 to 10 000 proteins per mRNA

per hour (Schwanhäusser et al. 2011; Li et al. 2014; Hausser et al. 2019). mRNA

and protein median half-lives have been measured to be around 11 and 35.5 hours

respectively and vary over a 10-fold range (Cambridge et al. 2011; Gregersen et al.

2014; Hausser et al. 2019). In terms of cellular energy consumption, mRNA trans-

lation is the most demanding step (~28% of the total adenosine triphosphate (ATP)

production) in normal proliferating cells (Rolfe and Brown 1997). In uncontrolled

proliferation contexts such as in cancer cells, control over the translational machinery

therefore becomes essential (Robichaud et al. 2018).

1.1.2 Translation of an mRNA

Once transcribed, pre-mRNAs are processed (5’capping, 3’ polyadenylation, intron

splicing) and exported from the nucleus to the cytoplasm of the cell. During transla-

tion, mRNA messages consisting of nucleotide sequences are converted into protein

sequences consisting of amino acid sequences (Jacob and Monod 1961). On an mRNA,

the part which codes for the protein is called coding sequence and is enclosed between

the 5’ and the 3’ untranslated regions (UTRs). These regions typically include regula-

tory sequences which are used for translational control as will be described later.

Before protein synthesis starts, the ribosome which will translate the mRNA and

allow for the assembly of the amino acid sequence, scans the 5’ UTR until recognition

of the beginning of the coding sequence (Kozak 1989). This step is called transla-

tion initiation. Each triplet of nucleotides (codon) along the coding sequence will

then be paired to the anticodon of a transfer RNA (tRNA) which will have previously

been charged with the corresponding amino acid to be added to the polypeptide chain

(Crick 1958; Chapeville et al. 1962). This occurs from the AUG start codon until the

recognition of a stop codon (UAG, UAA or UGA) which terminates translation.

1.1.2.1 Translation initiation More specifically, for translation to be initiated, sev-

eral translation factors have to coordinate and the two subunits of the ribosome have

to assemble at the start codon (Figure 2). On one hand a TC consisting of eIF2, ini-

tiator tRNA and GTP is formed. On the other hand, eIF4E binds the mRNA-cap and

together with eIF4G and eIF4A form the eIF4F complex. This allows for recruitment of

the 43S pre-initiation complex (40S small ribosome subunit, TC and additional initia-

tion factors including eIF3) to the mRNA template. 5’ UTR scanning starts towards the

2
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Figure 2: Translation initiation. Initiation is the rate-limiting phase of translational regula-
tion. The formation of the 43S pre-initiation complex (PIC) assembles the 40S ribosomal sub-
unit with eukaryotic initiation factor (eIF)1, eIF1A, eIF3, eIF5 and the ternary complex (TC)
(eIF2 (containing α-, β- and γ-subunits), initiator methionyl tRNA and guanosine triphos-
phate (GTP)). eIF4E binds the 5’-cap of mRNAs and associates with eIF4G, a large scaffolding
protein and eIF4A, a DEAD box ribonucleic acid (RNA) helicase. Assembly of such an eIF4F
complex (eIF4E, eIF4G, eIF4A) facilitates the recruitment of ribosomes on the mRNA and forms
a 48S PIC. Circularization of mRNAs via interaction between eIF4G and the poly(A)-binding
protein (PABP) helps stability of the complex and increases translation efficiency.

Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer Nature Reviews Drug Discovery.
Bhat M et al. Targeting the translation machinery in cancer. Nat Rev Drug Discov. 2015 Apr;14(4):261-78. doi:
10.1038/nrd4505. ©2015

start codon where the 60S big ribosomal subunit joins (Gingras et al. 1999; Jackson

et al. 2010; Hinnebusch and Lorsch 2012; see also Figure 2).
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1.1.2.2 Translation elongation Once the 80S ribosome is assembled, translation

elongation and the formation of the polypeptide chain can start. For each codon,

eukaryotic elongation factor (eEF)1A:aminoacyl tRNA:GTP are presented to the ribo-

some to its A site (site for incoming amino-acid charged tRNA). Upon codon recog-

nition, GTP is hydrolyzed, the tRNA is accommodated to the A-site and a peptide

bond is formed between the amino acid of the A-site tRNA and the amino acid of the

tRNA in the peptidyl (P) site. The polypeptide chain is transferred to the A-site before

translocation is assured by eEF2 binding and GTP hydrolysis (Dever and Green 2012).

The uncharged tRNA which was in the P-site is then moved to the exit E-site and the

charged tRNA and polypeptide chain are moved to the P-site.

Before tRNAs can be efficiently used in translation, they undergo a tightly con-

trolled biosynthesis involving multiple steps: RNA polymerase III (Pol III) transcrip-

tion, removal of the 5’ leader and 3’ trailer sequences, addition of CCA on the 3’ end,

splicing, modification and aminoacylation (Phizicky and Hopper 2010). tRNAs are

ubiquitous and very abundant (15% of the total RNA) which facilitated their iden-

tification (Hoagland et al. 1958) even before understanding the concept of mRNA

and the machinery of protein synthesis (Brenner et al. 1961). Notwithstanding ma-

jor advances in the characterization of many RNAs notably thanks to breakthrough in

sequencing technologies, a complete map of heavily modified RNAs such as tRNAs is

still lacking (Juhling et al. 2009; Czerwoniec et al. 2009). Among the important tRNA

modifications which are currently extensively studied, are the modifications which en-

able wobbling (non Watson-Crick base pairing between the first position of the tRNA

anticodon (position 34) and the third position of the codon). Because of the wobbling

rules, the same tRNA can decode several codons. In theory, a minimum of 30 tRNAs

would be absolutely required. Yet, in human, tRNAs with 49 different anticodons are

represented; these tRNAs are encoded by 513 genes (Chan and Lowe 2009). Not all

tRNA genes are expressed at the same level and ribosomal speed at a specific codon

will depend on abundance of the corresponding tRNA(s), the cellular demand for

this/these tRNA species as well as the nature of the pairing (Watson-Crick or not).

Along an mRNA, the ribosome transiently pauses when low abundance tRNAs are

required which facilitates co-translational folding (Zhang and Ignatova 2011). The

tRNA abundance correlates strongly with codon usage in prokaryotes and unicellular

eukaryotes but not in higher eukaryotes (Novoa and Ribas de Pouplana 2012; Plotkin

and Kudla 2011; Novoa et al. 2012).

New technological and analytical findings are allowing further understanding of

the essential role of tRNAs and their modifications in translation (El Yacoubi et al.

2012; Sarin et al. 2018; Cozen et al. 2015). Concomitantly, more and more evidence

have shown that dysfunctional tRNAs associates with the development of specific dis-
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eases (Abbott et al. 2014; Torres et al. 2014; Kirchner and Ignatova 2015). In this

thesis, the effect of the modulation of specific tRNA-modifying enzymes will be stud-

ied in prostate and breast cancer cell lines (Paper II).

1.1.2.3 Translation termination When a stop codon enters the A site, the eukary-

otic peptide chain release factor (eRF)1:eRF3:GTP complex binds, GTP is hydrolyzed

and the polypeptide is released leading to ATP hydrolysis and subunit dissociation

(Zhouravleva et al. 1995). Recycling can occur by ribosome splitting, release of tRNA

and mRNA for reuse in synthesis of additional proteins (Hellen 2018).

1.1.3 Efficiency of translation of an mRNA

Figure 3: Dynamics of translational effi-
ciency regulation. The efficiency at which
an mRNA is translated will depend on the
initiation rate λ (rate at which ribosomes
start elongating), the transition rate at each
codon (λ1,λ2, ...,λn for an mRNA with n
codons) and the termination rate. In yeast,
initiation rates have been estimated to be
around 0.01-1.9 ribosomes per second while
elongation rates would range from 1 to 20
codons per second (Riba et al. 2019). The
average elongation rate in mouse embry-
onic stem cells was approximated around
5.2 codons per second (Sharma et al. 2019).
More recent methods have included in this
model the rate and position of ribosome
drop-off (Bonnin et al. 2017).

Reprinted with permission from Reuveni, S et al. (2011).
"Genome-Scale Analysis of Translation Elongation with
a Ribosome Flow Model". PLOS Computational Biology
7(9). e1002127. doi:10.1371/journal.pcbi.1002127

For a specific protein, the synthesis rate

will depend on the amount of avail-

able corresponding mRNA and on the

rate of translation of each of these

mRNA molecules. It has been known

since the 1960s that protein synthe-

sis occurs in polysomes meaning that

mRNAs undergoing translation are typ-

ically associated with multiple ribo-

somes (Warner et al. 1963). Sev-

eral models exist to describe riboso-

mal dynamics along an mRNA but the

basic principle is illustrated in Figure

3.

The factors which can influence rate

of initiation, elongation or termination

include the number of available ribo-

somes, aminoacylated tRNAs, transla-

tion factors in the cell, the presence of

specific structure or binding sites of the

mRNA, codon usage along the transcript

and amino acid charge of the growing

polypeptide chain (Tuller 2014; Figure

4). Regulation of global players (ribo-

somes, tRNAs, translation factors) can

impact translational efficiency of all mR-

NAs in the cell. In contrast, reduction or
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overexpression of some translation factors are known to affect specific subsets of mR-

NAs more than others (Koromilas et al. 1992; Rubio et al. 2014; Wolfe et al. 2014).

Moreover, even at steady-state and in the absence of any specific stress or treatment,

the range of translational efficiencies from one mRNA to another is widespread (Math-

ews et al. 2007; Hausser et al. 2019). Finally, translation of mRNAs holding particular

RNA or protein-binding sites may be affected according to the level, availability or like-

lihood of the interaction with corresponding partners (Gebauer et al. 2012; Hentze et

al. 2018). As such, inherent characteristics of translational efficiencies and differen-

tial sensitivities are encoded in the mRNA’s sequence and structures (cis-regulatory

elements) while modulation of trans-acting factors (e.g. microRNAs (miRNAs), RNA-

binding proteins (RBPs)) will mediate translational changes on the mRNA subsets that

they target (Figure 4; Hinnebusch et al. 2016; Leppek et al. 2018). The interplay be-

tween RNA elements and trans-acting factors will be further described in section 1.2

about Coordination of gene expression programs.

AAAA
STOP

RNA
        Modification

uORF

AUGAUG
AAAcodon

     usage

m
iRNA

      site

tRNA
RBP

STOP RNA-

bin
din

g

dom
ain

miRISC

5'UTR 3'UTR

Figure 4: Cis- and trans-regulation of mRNA translation. Primary and higher-order struc-
tures along the mRNA influence the efficiency at which it is translated. For instance, complex
structures in the 5’UTR, presence of upstream open reading frames (uORFs) or miRNA bind-
ing sites are mostly associated with down-regulation of translation efficiency of the main open
reading frame; specific RNA modification such as m6A may help ribosome scanning while RBP
can act either as enhancers or repressors of translation. Finally, presence of suboptimal codons
may reduce the speed of elongation especially in relation to availability of their corresponding
tRNAs.

Initiation is the rate limiting step of translation in most conditions (Sonenberg and

Hinnebusch 2009). This implies that small changes in elongation or termination rates

are likely to have limited effect on the rate of protein output whereas modulation at

the initiation step typically have more impact. Accordingly, regulatory mechanisms

will affect assembly of initiation complexes or scanning along the 5’UTR more often

than other steps of the translation process.
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1.1.4 Experimental methods to measure differential translational efficiency

In cases where translation initiation is rate-limiting (which is the most common sce-

nario), the number of ribosomes associated with mRNAs is a good proxy for efficiency

of translation. mRNAs associated with few ribosomes are then considered inefficiently

translated while heavy polysomes (mRNAs associated with many ribosomes) would

have higher protein output per mRNA molecule and time unit.

1.1.4.1 Polysome-profiling The polysome-profiling method is based on the princi-

ple that heavier polysomes will contain more efficiently translated mRNAs. A gradient

of sucrose is prepared with density increasing linearly from 5% to 50%. Treatment

with an inhibitor of translation elongation such as cycloheximide immobilizes ribo-

somes on mRNAs and cytoplasmic lysates are loaded on the gradient. This allows,

after ultracentrifugation, for differential sedimentation of mRNAs depending on the

number of ribosomes they are associated with (Gandin et al. 2014; Figure 5A).

Polysome-profiling can be used to assess the overall quantity of translating mR-

NAs under different conditions. A decrease in global translation, i.e. in translation of

most mRNAs, would be identified by a higher 80S peak and lower polysome peaks as

exemplified in Figure 5B upon inhibition of mTOR translation by torin1 (pink trac-

ing) as compared to insulin-stimulated MCF-7 cells (orange tracing). Quantification

of specific transcripts along the gradient fractions allows for assessment of transcript-

level regulation of mRNA translation. This potentially permits identification of subsets

of transcripts sharing common features leading to their co-regulation at the level of

translation. For a specific mRNA, in conditions where it is efficiently translated, its

ribosome occupancy mode (most common value) will typically be higher than 3 while

in inefficient translation conditions, it would usually be associated with fewer than 3

ribosomes. This "3-ribosome-cutoff" (Figure 5A, orange dotted line) for differentia-

tion between efficient and inefficient translation applies to most mRNAs (Larsson et al.

2013; Gandin et al. 2016). Therefore, for transcriptome-wide analysis of differential

translation, a cutoff is set at 3 ribosomes and fractions corresponding to mRNAs with

more ribosomes than this cutoff are pooled (later referred to as polysome-associated

mRNA). This efficiently translated mRNA pool is then extracted and quantified using

DNA microarrays or RNAseq. At the single gene level, a change in abundance within

the polysome-associated mRNA pool can either be caused by a shift in the number of

bound ribosomes for that mRNA (i.e. change in translational efficiency, Figure 5B) or

a change in the steady state mRNA level (i.e. change in transcription and/or mRNA

stability, Figure 5C). To distinguish between changes in translation and changes in

steady state mRNA levels, cytoplasmic mRNA is collected and quantified in parallel. In

the absence of regulation via translation, changes in cytoplasmic mRNA levels should

be reflected in corresponding changes in polysome-associated mRNA.
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Figure 5: Examples of regulation by mRNA translation or abundance measured by
polysome-profiling. After starvation, MCF7 cells were stimulated with insulin or insulin in
the presence of torin1, an inhibitor of mammalian/mechanistic target of rapamycin (mTOR)
translation (see also section 1.2.2.2.1). Polysome-profiling was performed on insulin and in-
sulin+torin1 treated cells. (A) The profile illustrates separation of ribosomal subunits 40S
and 60S, the 80S monosome peak as well as peaks corresponding to mRNAs associated with
2, 3, 4, ribosomes etc. For gene level quantification by DNA-microarrays or RNA sequencing
(RNAseq), fractions corresponding to mRNAs associated to more than 3 ribosomes are pooled
and quantified in parallel of the cytoplasmic mRNA input. (B) A known torin1-sensitive mR-
NAs (cyclin D3 (CCND3)) was quantified in each fraction by quantitative reverse transcription
polymerase chain reaction (RT-qPCR) and illustrates a shift in translational efficiency towards
lighter fractions upon inhibition of mTOR translation (blue and green lines). (C) In contrast,
suppression of the cytoplasmic level of an mRNA i.e. by down-regulation of its synthesis or
stability, leads to a vertical shift without reduction of the average number of associated ribo-
somes. However, polysome-associated mRNA is reduced between the green and blue tracings
both in (B) and (C).

Modified from Gandin, V et al. (2016). "nanoCAGE reveals 5’ UTR features that define specific modes of
translation of functionally related MTOR-sensitive mRNAs." In: Genome research 26(5), pp. 636-648. doi:
https://doi.org/10.1101/gr.197566.115. ©2016 Gandin et al.; Published by Cold Spring Harbor Laboratory Press.
This article, published in Genome Research, is available under a Creative Commons License (Attribution 4.0 Interna-
tional), as described at http://creativecommons.org/licenses/by/4.0/

This standard polysome-profiling protocol is often adapted to specific cases: when

studying specifically short mRNAs, a cutoff at 2 ribosomes can be deemed more ap-
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propriate (Aspden et al. 2014); when assessing usage of alternative isoforms, more

fractions and deeper sequencing may be required (Floor and Doudna 2016). Paper

III of this thesis will present an optimization of the polysome-profiling technique al-

lowing to expand its applicability to samples with low RNA-amounts such as most

tissue samples.

In comparison with other methods measuring differential translation (see 1.1.4.2

Ribosome-profiling below), the polysome-profiling technique has the advantage to di-

rectly assess, on each mRNA molecule, whether it was associated with low or high

amounts of ribosomes. However, it does not provide information about ribosome po-

sitioning along the mRNA.

1.1.4.2 Ribosome-profiling Ribosome-profiling was developed more recently than

polysome-profiling. It entails blocking translation elongation before degrading RNA

not protected by ribosomes using ribonuclease (RNase) (Ingolia et al. 2009). Sequenc-

ing libraries are built based on the remaining ribosome-protected fragments (RPFs)

providing a quantitative profile of ribosome occupancy after alignment to the tran-

scriptome. For reasons already mentioned in the previous section, cytoplasmic mRNA

input (which can be randomly fragmented in order to obtain RNA fragments of sim-

ilar sizes as RPFs) is collected and quantified in parallel. On one hand, because this

method is based on RNase digested samples, information about the number of ribo-

somes associated with each mRNA is lost. On the other hand, due to its ability to

locate ribosomes, it has been providing valuable insights into regulatory mechanisms

that control elongation speed, ribosome pausing and translation of alternative open

reading frames (Ingolia et al. 2018). Therefore, polysome- and ribosome-profiling

methods are complementary.

Ribosome-profiling has however been suffering from experimental artefacts. For

instance, it has been shown that cycloheximide, which can be used to inhibit transla-

tion elongation, may modify ribosome distribution along the mRNA near specific se-

quences leading to spurious footprints (Brar and Weissman 2015). Furthermore, the

RNase treatment which is used in order to digest RNA between translating ribosomes,

also tends to digest ribosomal RNA (rRNA) from ribosomes leading to partial loss of

the footprints. However, tools to better assess the quality of ribosome-profiling data,

alternative ribonucleases (Gerashchenko and Gladyshev 2017) and in silico methods

to flag spurious RPFs have been made available (O’Connor et al. 2016; Brar and Weiss-

man 2015; Kiniry et al. 2019).

One limitation which is shared by polysome- and ribosome-profiling arises in the

context of specific mRNAs and/or conditions where translation elongation would be
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the rate-limiting step, instead of initiation. Indeed, even if initiation speed would typ-

ically control protein synthesis rate, assuming that it is the case in any condition and

for any gene may be oversimplifying. In occasions where elongation would be rate-

limiting, an increased number of ribosomes along an mRNA would indicate a reduced

rate of elongation and, provided that translation initiation remained unchanged, a

reduced efficiency of translation. As such, when it is unknown which step is rate-

limiting, a change in polysome-associated mRNA or RPF, even in the absence of corre-

sponding change in cytoplasmic mRNA, cannot be attributed with certainty to a change

in the same direction of the translational efficiency (Mathews et al. 2007). In order to

overcome this limitation, other methods to measure translational output, for instance

by labeling of newly synthesized polypeptides can be used. Puromycin incorporation-

based methods are typically used in this context (Iwasaki and Ingolia 2017) and can

be combined with protein-specific antibodies in order to assess translation output of

a given protein (Söderberg et al. 2006; Tom Dieck et al. 2015). In order to assess in

greater details the translational metrics, such as initiation and elongation rates, one

would need to calculate them from the polysome size and ribosome transit time (de-

fined as the time for the ribosome to traverse the mRNA) which can be measured based

on radioactivity kinetics from nascent polypeptides to released polypeptides (Fan and

Penman 1970; Gehrke et al. 1981). Even if they do not allow the level of precision

offered by these methods, polysome- and ribosome-profiling have the advantage to

provide a transcriptome-wide perspective of translational control.

1.1.5 Analytical methods for transcriptome-wide analysis of differential trans-

lation

Development and improvements of experimental methods highlighted the need for ap-

propriate statistical methods to detect genes showing differential translational efficien-

cies within transcriptome-wide pools. This section will focus on reviewing analytical

methods testing for regulation at the level of translation between 2 or more conditions.

Such results can be obtained from both polysome-profiling data (provided that both

efficiently translated mRNA and cytoplasmic mRNA were quantified) and ribosome-

profiling data (providing quantification of RPFs and cytoplasmic mRNA). The main

challenge of such methods is to accurately "correct" polysome-associated mRNA or

RPF changes for modulations in steady-state mRNA. As mentioned previously, for one

gene, a difference between conditions in its polysome-associated mRNA expression or

its RPF expression, can mirror a similar difference of expression observed in its cyto-

plasmic mRNA expressions which were quantified in parallel; this would primarily be

the case of genes under regulation by transcription or mRNA degradation. Transla-

tional regulation would then be defined as changes in polysome-associated mRNA or

RPF which are independent from fluctuations in cytoplasmic mRNA levels.
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It is important to note that even though similar computational methods are typ-

ically used downstream of polysome- or ribosome-profiling, data coming from these

methods are inherently different. Indeed, while in polysome-profiling data, gene-level

differences in translational efficiencies will be measured as horizontal shifts (exempli-

fied in Figure 5B), they will be measured as differences in total numbers of ribosomes

(coming from any mRNA synthesized from this gene) in ribosome-profiling experi-

ments (see also Figure 1). The relationship between the log number of ribosomes

associated with an mRNA and the sedimentation distance along a sucrose gradient is

very robust (as observed in Gandin et al. (2016) and Paper III). However, on a gene-

level, differences in RPFs (which "counts" ribosomes) can be very distinct from differ-

ences in polysome-associated mRNA (which quantifies copies of efficiently-translated

mRNAs). As such, even when studying similar biological mechanisms, studies using

polysome- and ribosome-profiling data have proven to sometimes lead to conflicting

conclusions (Larsson et al. 2012; Hsieh et al. 2012; Thoreen et al. 2012; Gandin et al.

2016; Masvidal et al. 2017) and may require deviating interpretations of their results.

Most of the methods which will be described below have been designed for ri-

bosome profiling data while Paper I involves a method which was developed for

polysome-profiling. However, in theory, all these tools could be applied to any data

source where the intention is to identify changes in an RNA subset that is indepen-

dent of a background (e.g. total or cytoplasmic RNA). For this reason, in the next

paragraphs, "translated mRNA" will be used as a generic term referring to polysome-

associated mRNA or RPFs.

When most mRNA quantification was performed on DNA-microarrays, few meth-

ods for analysis of changes in translational efficiencies were available. They have

been described and reviewed previously (Larsson et al. 2010; Larsson et al. 2013).

Typically, statistical methods which were applicable to DNA-microarrays data cannot

be directly used on RNAseq data because of inherent differences in the properties of

these two data types (Robinson and Smyth 2008). DNA-microarrays quantify gene ex-

pression by measuring intensities or intensity summaries whereas RNAseq quantifies

it by measuring numbers of short reads. Empirically, this results in data from DNA-

microarrays which, after log-transformation, fulfils normality requirements of most

statistical frameworks and data from RNAseq remaining non-normal even after clas-

sical transformations and rather following negative binomial-like distributions (the

variance of read counts between replicates is generally higher than their mean).

Babel was one of the first method specifically developed for RNAseq based mea-

surements of translation (Olshen et al. 2013) and was designed for data from ribosome-
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profiling. It took into account the count nature of the data and used an errors-in-

variables regression model between RPF and cytoplasmic mRNA in order to account

for the fact that gene expression can only be measured with some level of uncertainty.

This is particularly the case of non-replicated experiments which are not uncommon

and for which Babel can be used. However, in later benchmark studies, this method

showed to perform relatively poorly in terms of control of type I error (Xiao et al.

2016).

edgeR (Robinson et al. 2010) and DESeq2 (Love et al. 2014) are two methods

which were initially developed for identification of differential gene expression from

RNAseq experiments where only cytoplasmic mRNA was considered. These two meth-

ods differ in the specific methods for dispersion estimation, information sharing across

genes and normalization but they share similar principles. They are both parametric

methods assuming a negative binomial distribution for the read counts and use gen-

eralized linear models (GLMs) for differential expression testing. The use of GLMs

makes these methods very flexible and allow for analyzes of complex study designs.

As such, they can easily be adapted towards analysis of differential translation. Reads

counts Kg j are modelled as negative binomial distributions with mean µg j and dis-

persion σg for gene g and sample j. The mean is considered as the product of qg j

(parameter proportional to the expected true concentration of fragments from gene g
for sample j) by a size factor accounting for differences in sequencing depth between

samples. For classical differential expression analysis between, for instance, a treated

and a control condition the GLM would be as follows:

log(qg j) = β
Tr t
g .X Tr t

j + εg j

with coefficients β Tr t
g representing the log2 fold changes for gene g for each col-

umn of the model matrix X and εg j the error term. For analysis of differential transla-

tion, two additional parameters can be incorporated into the model: a parameter for

the RNA type (i.e. cytoplasmic or translated mRNA), and an interaction parameter

between treatment and RNA type.

log(qg j) = β
Tr t
g .X Tr t

j + βRNAt ype
g .X RNAt ype

j + βRNAt ype:Tr t
g .X interact ion

j + εg j

The interaction term can be interpreted as the differential effect of treatment in

translated mRNA compared to cytoplasmic mRNA i.e. the translational control effect.

This "GLM with interaction term" is the principle used by several recent methods in-

cluding Riborex (Li et al. 2017b), Ribodiff (Zhong et al. 2017) and deltaTE (Chothani

et al. 2019). Riborex is directly available either as "DESeq2 with interaction term"

or "edgeR with interaction term" whereas Ribodiff uses slightly different estimation
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methods and allows for different dispersion estimations from cytoplasmic and trans-

lated mRNA data (Zhong et al. 2017). Although estimating different dispersions for

data coming from different experimental procedures seems relevant, Ribodiff seemed

to underperform in simulation studies compared to Riborex (Li et al. 2017b). In the

implementation of Riborex as an R package, its use is restricted to simple designs

whereas the deltaTE implementation of the same methods maintains their availability

to more advanced applications including the possibility to correct for batch effects in

the model (Chothani et al. 2019). Xtail (Xiao et al. 2016) uses DESeq2 for estima-

tion of mean and dispersion while allowing for analysis of experiments with only one

replicate per condition (which only Babel allowed so far). Xtail outperforms other

methods in terms of specificity and sensitivity when the sample size is very low (1 or

2 replicates) but further analyzes included in Paper I show that this is at the cost of

detection of high amounts of non-differentially translated genes when tested under a

NULL model (no true differences in gene expression) especially when the sample size

is low. Xtail was also shown to be strongly impacted when a batch effect was added

to the data even though systematic differences between replicates are commonly ob-

served in translatome data (Chothani et al. 2019).

The importance of dysregulated translation for cancer progression has been in-

creasingly recognized over the last 30 years (Lazaris-Karatzas et al. 1990; De Benedetti

and Graff 2004) such that the translation initiation apparatus is presently a target in

oncology (Chu and Pelletier 2018). It has also been associated with other diseases such

as neurodegenerative diseases (Moreno et al. 2012) or metabolic disorders (Shi et al.

2003). Consequently, efforts have been put to understand mechanisms dysregulating

mRNA translation and specifically to improve experimental methods for quantifica-

tion of the translatome as well as computational methods to detect differential trans-

lational control. Two of the constituent papers of this thesis (Paper I and Paper III)

are extensions of classical methods: Paper III presents an optimization of polysome-

profiling allowing it to become scalable to large sets of small samples (low RNA input

as in biobanked tissue samples) and Paper I provides an improvement of the computa-

tional method anota (Larsson et al. 2010) which was only available for quantification

by DNA-microarrays data. Anota2seq (Paper I) extends its use to RNAseq-quantified

polysome- or ribosome-profiling data. Furthermore, we demonstrated that anota2seq

shows appropriate control of type I error, can include batch-effect correction and al-

lows identification of genes whose mRNA levels are buffered at the level of translation

(this gene expression mode of regulation will be presented in the next sections).

13



1.2 Coordination of gene expression programs

In general, the objective of omics studies (e.g. transcriptomics which measure the

full set of transcribed RNA molecules, proteomics which measure the full set of pro-

teins, metabolomics measuring any metabolites, translatomics measuring translated

mRNAs, etc.) is to understand which cellular pathway or mechanism is influencing a

specific phenotype. For instance, in an attempt to study which regulatory events or

mechanisms lead to the development of resistance to BRAF inhibitors in melanoma (a

classical treatment in this disease which is known to be efficient for a certain time until

the patient stop responding and the tumor relapses), one would extract biomolecules

of interest (RNA, proteins, metabolites, translated mRNAs, etc.) from a cell line which

is sensitive to the treatment and one which has developed resistance. From inferred

differences in abundance of specific species of these biomolecules, one would generate

hypotheses regarding essential cellular events driving the resistance.

Because proteins are arguably the most important players in many biological pro-

cesses, a majority of such research projects would favor proteomics over other omics

approaches. Transcriptomics may be considered a less expensive approach which ben-

efits from well-established technologies and which, in some specific contexts, would

be deemed to provide an appropriate proxy for protein levels. The question of whether

RNA and protein levels strongly correlate, of whether RNA levels is a good surrogate

for protein levels is controversial. In other words; among transcription, mRNA transla-

tion or decay, which step has the most important contribution to shaping the proteome

has been extensively debated (Schwanhäusser et al. 2011; Vogel and Marcotte 2012;

Jovanovic et al. 2015; Li and Biggin 2015; Li et al. 2017a; Liu et al. 2016). A consensus

has nonetheless been reached on one aspect of this discussion: the dynamic contribu-

tion of each process between conditions is context- and biological system-dependent

with mRNA translation having a high contribution upon severe stress (Liu and Aeber-

sold 2016) such as endoplasmic reticulum stress (Baird et al. 2014; Guan et al. 2017;

Cheng et al. 2016). Thus, changes in mRNA levels cannot be generally considered as

a good proxy for changes in protein levels.

Notwithstanding major improvements in coverage and precision of recently de-

veloped proteomics technologies (Branca et al. 2014; Orre et al. 2019), observing

changes in protein levels upon a specific perturbation only informs on the impact on

the output product of the gene expression pathway. In systems where it could be as-

sumed that the intervention directly affects this output (i.e. the protein abundance),

this would provide sufficient evidence for a broad understanding of the mechanisms

affecting the phenotype. However, cellular pathways, including those active in cancer,

are often very complex containing feedback loops and alternative branches. This is a
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reason for the increased interest in multiple omics studies (i.e. where several levels

of gene expression are measured on the same samples). In the next section, control

at the translational level will be considered in the general context of gene expression

regulation.

1.2.1 Regulation of gene expression at multiple levels

In eukaryotes, because mRNA translation occurs in the cytoplasm and transcription in

the nucleus, these processes are often thought to be controlled independently. How-

ever, this view is probably over-simplistic and mechanistic examples of crosstalk be-

tween separate gene expression processes are common. Transcription and splicing are

predominantly coupled (Beyer and Osheim 1988) and it has been hypothesized that

co-transcriptional splicing could impact the integrity of transcription (Komili and Sil-

ver 2008). The development of methods to efficiently sequence long nascent RNA

molecules will soon unravel dynamics and order of intron removal (Drexler et al.

2019). In the cytoplasm, advances in other sequencing-based technologies allowed

5’ to 3’ mRNA co-translational decay to be characterized by observing 3-nucleotide

periodicity in mRNA degradation intermediates. These were interpreted as products

of exonucleases following the last translating ribosome (Pelechano et al. 2015). Co-

translational decay is general and conserved which indicates that interplay between

mRNA translation and decay is more complex than the classical view stating that trans-

lating mRNAs are protected from decay (Roy and Jacobson 2013).

Concerning crosstalks between different cellular localizations, Haimovich et al.

(2013) have introduced the concept of synthegradosome where mRNA synthesis is

linked to degradation by decay factors that were shown to shuttle from the cytoplasm

to the nucleus to associate with transcription start sites and regulate transcription ini-

tiation. Furthermore, few examples exist of coordination between transcription and

translation. For instance, Rpb4p and Rpb7p which are subunits of the yeast RNA

polymerase II (Pol II) and also mediate mRNA decay (Choder 2004; Lotan et al. 2005;

Lotan et al. 2007) have later been associated with regulation of translation initiation

by interacting with eIF3 (Harel-Sharvit et al. 2010).

Interestingly, when conducting ribosome- and polysome-profiling experiments, cy-

toplasmic mRNA samples always need to be quantified in parallel of translated mRNA.

Thus, data from these measurements provide more information than only translational

regulation. Differences in mRNA abundance and potentially coordination between dif-

ferent layers of gene expression regulation can be also be analyzed. This could unravel

whether the mRNA synthegradosome (transcription and mRNA decay) act in concert

with mRNA translation or if translation seems to compensate or counteract modula-
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tions in mRNA abundance. Examples associated to both cases exist in the literature

and will be explained below.

1.2.1.1 When mRNA synthegradosome and translation act in concert Gingold

et al. (2014) gave an interesting example where regulation at the level of transcrip-

tion/mRNA decay and mRNA translation may be coordinated to both enhance or both

repress cellular functions. Namely, in proliferating or cancer cells vs. differentiated

or normal cells, opposing tRNA signatures are expressed (Figure 6). Notably, tR-

NAs translating different codons for the same amino acid showed opposite trends.

Furthermore, when analyzing the codon usage of genes expressed in proliferation

and differentiation, this study demonstrated that proliferation genes are enriched in

codons (Figure 6, red colored codons) matching the "proliferation-tRNA-signature"

(Figure 6, red colored anticodons) and inversely differentiation mRNAs require the

"differentiation-signature" tRNAs for their translation (Figure 6, blue). They conclude

that if in translation, the codon usage of an mRNA is the demand and the available

tRNAs correspond to the supply; proliferation and differentiation are cellular states in

which supply and demand are well matched.

Differentiation Proliferation

GAA
3'5'

GAG
5' 3'

CUC

UUC

E

E

CUC

UUC

E

E

Differentiation-related mRNA Proliferation-related mRNA

Figure 6: Coordination between tRNA supply and demand in proliferation and dif-
ferentiation. Genes belonging to proliferation-, respectively differentiation-, related ontology
genesets are enriched for a specific set of codons (red, respectively blue). Red codons preferably
have, at their third nucleotide position, A or U while blue codons preferably have C or G at
this position. Interestingly, method development in tRNA quantification revealed differences
in tRNA pools between cell models of proliferation vs. differentiation as well as between can-
cer and normal tissue samples. Gingold et al. (2014) observed in each cellular state, a match
between tRNA supply and codon usage.

Inspired by Gingold, H et al. (2014). "A dual program for translation regulation in cellular proliferation and differen-
tiation." In: Cell 158(6), pp. 1281-1292.

This interpretation has however been challenged. Rudolph et al. (2016) has ar-

gued that although codon-driven differences in translational efficiency between con-

ditions have been extensively observed in prokaryotes and single-cell eukaryotes (Man
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and Pilpel 2007; Drummond and Wilke 2008), the level of evidence for similar mech-

anisms in mammals remains low. When studying several steps of tissue development

in mice, they did not detect overall differences in tRNA supply nor demand (Schmitt

et al. 2014). Deciphering such contradicting results is complex: established methods

to measure modified and charged tRNAs are lacking as well as trustworthy quantifi-

cation of global differences in tRNA levels; assessing whether a specific tRNA pool

can equally well translate different transcriptome-weighted codon usages is difficult;

translational efficiency correlates to some extent with codon usage and with tran-

scriptomic GC content but the causality between these events is less trivial to address.

However, the conclusion which has a high level of confidence is that mammalian sys-

tems do not depend on codon bias as a translational regulatory mechanism as much

as prokaryotes (Rudolph et al. 2016).

1.2.1.2 When mRNA translation compensates modulations at the mRNA level

Situations where a gene is strongly up-regulated at the mRNA level while the corre-

sponding protein is strongly down-regulated are uncommon and sometimes attributed

to data normalization issues (Albert et al. 2014). However translational buffering

where protein levels remain stable between conditions despite alterations in the RNA

levels has been described in several organisms (Lalanne et al. 2018; McManus et al.

2014; Artieri and Fraser 2014; Cenik et al. 2015). For instance, Lalanne et al. (2018)

compare mRNA levels and protein synthesis rates between divergent bacteria species

which have evolved independently for several billion years. They take the example of

4 genes (rpsP, rplS encoding two ribosomal proteins, rimM an rRNA-maturation factor

and trmD a tRNA modification enzyme) which are expressed as a polycistronic mRNA

in E. coli whereas in B. subtilis, they have a wide range of expression levels. Three

of these genes show big differences in expression between the two bacterial species

(from 5 to more than 30 fold). However, the function of these homologous proteins

are similar and the relative levels of RPFs between the species are similar (less than 2-

fold differences for all 4 mRNAs). Thus, transcriptional differences between divergent

bacterial species are translationally compensated. Mechanistically, this is achieved by

translationally suppressive mRNA secondary structures which are present in E.coli and

absent in B. subtilis. Consequently, while regulation of these genes occurs at the tran-

scriptional level in B. subtilis, it occurs by mRNA translation in E. coli.

Other mechanisms mediating translational buffering have been characterized in

transcriptome-wide studies across yeast species (McManus et al. 2014; Artieri and

Fraser 2014) and between human patients (Cenik et al. 2015).

Notably, several definitions of "translational buffering" co-exist in the literature.

First of all, in some publications, steady-state co-expression of proteins encoded by
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non co-expressed mRNAs (or vice versa) is also termed translational buffering or trans-

lational compensation (Kustatscher et al. 2017; Dassi et al. 2015) but this is not the

definition used herein. Indeed, this thesis will focus on changes in gene expression

observed under dynamic settings (i.e. between conditions) and therefore needs to be

distinguished from when mRNA and protein levels are compared under a single con-

dition. The different modes of regulation of gene expression which can be analyzed

from transcriptome-wide analyzes of differential translation (i.e. from polysome- or

ribosome-profiling data for instance) are described in Figure 7 between 2 hypothetical

conditions (treatment T and control C). As explained earlier, a change in translated

mRNA between conditions can be due to a change in mRNA abundance (Figure 7A

top left; Figure 7B bottom) or a change in translational efficiency (i.e. a difference in

ribosome occupancy resulting in a shift along the polysome gradient; Figure 7A top

right; Figure 7B top; see also Figure 5). Finally, translational buffering is defined as

a change in cytoplasmic mRNA levels which is not reflected in a change in translated

mRNA (Figure 7A bottom left; Figure 7B middle).

It remains to be fully characterized whether specific mechanisms or specific bio-

logical processes are associated with situations where mRNA level modulations are

buffered or not at the level of translation. An example of such a mechanism will be

discussed in Paper II. However, this is largely unexplored area of research and to

further the knowledge of mechanisms coordinating gene expression, availability of

analytical methods distinguishing between changes in translational efficiencies lead-

ing to altered proteins levels or buffering is essential. This is an important feature of

the anota2seq methodology which will be presented in Paper I of this thesis.

1.2.1.3 Role of estrogen receptor alpha in breast and prostate cancer Most

studies analyzing transcriptome-wide changes in translational efficiencies are focused

on the role of translation factors or on mechanisms known to impact mRNA translation

such as stress responses. In contrast, in Paper II, we studied the role of a transcrip-

tion factor, namely estrogen receptor alpha (ERα), in coordinating transcriptional and

translational output. Indeed, in addition to its role as a transcription factor, ERα has

been shown to potentially have non-nuclear functions and to affect the mTOR and

mitogen-activated protein kinase (MAPK) pathways which impinge on mRNA transla-

tion (see section 1.2.2.2). Further details about ERα-dependent gene expression reg-

ulation will be provided in Paper II while this section will expose some background

information regarding ERα’s position as therapy target in breast cancer and co-driver

of tumorigenesis in prostate cancer.

ERα is mainly studied in breast cancer which is the most common cancer type in

women accounting for almost one in 4 cancers. In March 2019, the reported world-
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Figure 7: Modes of regulation of gene expression. (A) Cytoplasmic and translated mRNA
quantification are provided for 4 hypothetical genes and 5 biological replicates (Treatment con-
dition T and Control condition C). Four scenarios are illustrated: changes in mRNA abundance
(top left); changes in translational efficiencies leading to altered protein levels (top right) or
buffering (bottom left); bigger changes in translational efficiencies compared to changes in
mRNA abundance (bottom right). (B) Schematic representation of the different modes of reg-
ulation of gene expression.

(A) Modified from Larsson, O et al. (2013). "Toward a genome-wide landscape of translational control." In: Cold Spring
Harbor Perspectives in Biology 5(1), a012302. doi: https://doi.org/10.1101/cshperspect.a012302. ©2013 Cold
Spring Harbor Laboratory Press. (B) Modified from Oertlin C et al. "Generally applicable transcriptome-wide analysis
of translation using anota2seq." Nucleic Acids Res. 2019 Jul 9;47(12):e70. doi: https://doi.org/10.1093/nar/gkz223

wide age standardized incidence was 46.3 per 100 000 with a mortality rate of 13/100

000 (Cancer fact sheets - Breast). In this disease, ERα is both a prognostic marker, i.e. a

characteristic of the disease which is associated with patients’ survival independently

of treatment, and a predictive factor for endocrine therapies, i.e. it characterizes how

responsive to this treatment tumors are. Namely, patients whose breast tumor ex-

presses the receptor (estrogen receptor (ER)+), have a better prognosis than ER- pa-

tients, at least in the first 5 years after their cancer diagnosis (Knight et al. 1977).

Furthermore, ER+ tumors have been shown to benefit from endocrine therapy (Ta-

moxifen) whereas little to no such effect was seen in ER- patients (EBCTCG 1998).

Hormonal treatment is also the most common strategy against prostate cancer but

in this case targeting the androgen signaling or receptor. Prostate cancer is the second

most common cancer in men worldwide. Its age standardized incidence and mor-

tality rates are 29.3 and 7.6 per 100 000 respectively (Cancer fact sheets - Prostate).

Prostate cancer is thought to be an androgen-dependent disease making androgen-

deprivation therapy its most classical treatment strategy (Parker et al. 2015). However,

19



evidence that androgens alone could induce sustained proliferation and carcinogenesis

in prostate cells is remarkably lacking (Morgentaler and Traish 2009). In combination

with other carcinogens or upon chronic treatment of high doses of testosterone (an-

drogens), prostate cancer could be induced (Pour and Stepan 1987; Bosland 2013).

Strikingly, estrogens, in combination with testosterone result in prostate cancer in 90

to 100% of cases in animal models (Bosland et al. 1995); they can also stimulate cancer

progression and metastasis (Ricke et al. 2006). Estradiol (estrogens) are synthesized

from testosterone by the aromatase enzyme which has been shown to be expressed

in the prostate (Ellem et al. 2004). A landmark study showed that aromatase knock-

out mice which were treated with androgens and estrogens developed pre-malignant

prostate disease whereas androgen alone did not result in such development. Consis-

tent with a leading role for ER signaling, the combination of androgens and estrogens

did not lead to the disease in ERα knockout mice (Ricke et al. 2008). Understanding of

the role of estrogens in prostate cancer is further complicated by the fact that estrogen

receptor beta (ERβ) may, in contrast to ERα, have beneficial effects on cancer devel-

opment, although this is under debate (Nelson et al. 2014). In the study mentioned

above (Ricke et al. 2008), knockdown of ERβ led to development of pre-malignant

prostate cancer upon treatment with both hormones.

In humans, even though aromatase inhibitors have proven their efficacy in post-

menopausal breast cancer (i.e. in women whose ovaries no longer produce signifi-

cant amounts of estrogens but in whom estrogens are still produced from androgens;

Dowsett et al. 2010, Cardoso et al. 2019), clinical trials of similar drugs concluded that

they should not be advised for prostate cancer treatment (Smith et al. 2002; Santen

et al. 2001).

Although androgen-deprivation therapies are efficient against most prostate tu-

mors, resistance to this treatment is not uncommon and more than 15% of men ini-

tially diagnosed with prostate cancer die from advanced incurable disease. A recent

study showed that ERα is specifically expressed in the epithelium of advanced prostate

tumors (Takizawa et al. 2015). The role of this receptor is still poorly understood

in this disease but advances in this field could lead to promising therapeutic strate-

gies. As mentioned previously, ERα is an extensively studied transcription factor in

breast cancer; yet, its transcriptional targets can be tissue-specific which extends the

need for transcriptome-wide studies of ERα-dependent gene expression in prostate

tissue. Furthermore, Simoncini et al. (2000) showed that ERα can associate with

phosphatidylinositol-3-OH kinase (PI3K) which is upstream of important regulators

of mRNA translation. Thus, both transcriptional and translational outputs of ERα will

be investigated in Paper II.
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1.2.2 Coordinated regulation of sets of mRNAs

A well-accepted perspective is to consider that mRNAs are not linear nucleic acids

but rather, in addition to harboring secondary structure and carrying multiple modi-

fications, exist most often in complexes with proteins and other RNAs, so called mes-

senger ribo-nucleoprotein particles (mRNPs) (Gebauer et al. 2012). If each mRNA

should be viewed in regard to the activity of each of its interacting partners, each

trans-acting factors, e.g. RBP or miRNA, typically binds to multiple mRNA targets

thus coordinating entire RNA operons (Keene 2007). These many-to-many relation-

ships define complex interactomes. Furthermore, multiple post-transcriptional regu-

latory features typically co-occur in mRNAs with the activity of one RNA feature also

potentially depending on the proximity of other features (Cottrell et al. 2018). Recent

advances in technology have facilitated better characterization of RNA features and

trans-regulatory elements required for selective post-transcriptional regulation (Tru-

itt and Ruggero 2016). Among others, experimental challenges have been resolved

to better assess which mRNAs are selectively translated (Brar and Weissman 2015),

binding and activity of RBPs (Van Nostrand et al. 2016), regulatory patterns of miR-

NAs (Katchy and Williams 2016) and tRNAs (Sarin et al. 2018), usage of alternative

transcription start sites (Poulain et al. 2017; Gandin et al. 2016; Masvidal et al. 2017)

but additional studies of the translatome under multiple conditions will be essential

before a complete understanding of how post-transcriptional regulation is manifested

can be reached.

As mentioned in section 1.1.5, computational methods for transcriptome-wide

analysis of differential translation will distinguish genes regulated at the translational

level from changes in mRNA abundance. Previously annotated sets of mRNAs co-

regulated at the translational level constitutes essential tools helping to extract rel-

evant biological findings from lists of genes regulated at different steps of the gene

expression pathway in new studies. Let us consider the following example: eIF4A is

a DEAD-box RNA helicase which helps unwinding secondary structures along 5’UTRs

(Parsyan et al. 2011). Consequently, upon treatment with an eIF4A-inhibitor, the set

of mRNAs harboring long and highly structured 5’UTRs will show reduced transla-

tional efficiency (Wolfe et al. 2014; Rubio et al. 2014; Gandin et al. 2016). It has

also been specified recently that the position of the structures along the UTR impacts

the sensitivity to eIF4A (Waldron et al. 2019). Therefore, if, in a new study, it can be

proven that mRNAs having complex structures close to the start codon are specifically

downregulated at the translational level, a reasonable hypothesis could be that eIF4A

suppression may drive the studied phenotype. Similarly, as a second example, if in

another study, enrichment for a specific RNA-element is observed among translation-

ally modulated genes, one might deduce that a factor binding to this element may be
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regulated between the studied conditions. Several examples of known mechanisms

by which subsets of mRNAs may be translationally co-regulated will be described in

the next paragraphs.

1.2.2.1 Regulatory RNA elements and trans-acting factors

1.2.2.1.1 microRNA and RNA-binding proteins Regulatory mechanisms of

translation commonly involve interactions between specific structure or sequences

along the UTRs and RNA or proteins which bind to it (Figure 4). miRNAs for instance

typically bind to 3’UTR of specific subsets of mRNAs thereby inhibiting their trans-

lation or inducing their degradation (Jonas and Izaurralde 2015). RBPs commonly

affect mRNA stability, translation as well as processing or modification (Hentze et al.

2018). About 1400 RBPs have been identified in humans; some of them, like PABPs

target widespread RNA sequences while others act on small groups of mRNAs. For

instance, human antigen R (HuR) is a well-characterized RBP which binds U- or AU-

rich sequences on 3’UTRs (Grammatikakis et al. 2017). This RBP has attracted special

interest because many of its targets are involved in cellular functions such as prolifera-

tion, apoptosis and differentiation (Abdelmohsen and Gorospe 2010). HuR function is

mainly regulated by posttranslational modifications. For instance, phosphorylation of

HuR by cyclin-dependent-like kinase 5 (CDK5) was shown to specifically prevent bind-

ing to cyclin-A2 (CCNA2) mRNA, one of its target leading to its reduced translation

and to cell cycle arrest (Filippova et al. 2012).

1.2.2.1.2 5’UTR elements 5’UTR length, presence of secondary structure or of

uORFs play critical roles in translational control (Gebauer et al. 2012; Hinnebusch et

al. 2016; Gandin et al. 2016). Studies by Kozak in the 80s suggested that an optimal

5’UTR length for efficiency scanning and translation initiation could be found around

80 nucleotides implying that both shorter and longer UTRs would be less efficiently

translated (Kozak 1987). Subsets of long and structured 5’UTR mRNAs have been

shown to be particularly sensitive to eIF4E availability i.e. reduction of eIF4E primar-

ily affect these so-called "weak mRNAs" (Graff et al. 2008). They represent a classical

example of oncogenic translational control. Indeed, these weak mRNAs are enriched

in cellular functions such as survival, proliferation, angiogenesis (e.g. MYC proto-

oncogene (MYC), Survivin, Cyclin D1, vascular endothelial growth factor (VEGF)).

Most cancers overexpress eIF4E thereby enhancing translation of these oncogenic sig-

natures (De Benedetti and Graff 2004).

Another example where translation is selectively controlled by differential sensi-

tivity to a translation factor was described above (eIF4A-sensitive subset); in this case,

the regulation was also mediated by structural features in the 5’UTR.
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1.2.2.1.3 Codon-dependent elongation rates and the role of tRNA availabil-

ity In addition to modulation of translation impinging on scanning and initiation,

dysregulated translation depending on codon composition of mRNAs was recently de-

scribed during tumorigenesis and therapy resistance (Rapino et al. 2018). In this

context, tRNAs can be thought of as trans-acting factors whose regulation may impact

translational elongation speed. In case of a global reduction of the levels of all tRNA

species, the potential impact on protein synthesis rate is predicted to also be general.

tRNA synthesis is for instance known to be stimulated by mTOR via suppression of

the Pol III-inhibitor MAF1 (Michels et al. 2010). However, as already discussed, it has

been debated whether regulation of specific tRNAs may have an impact on translation

in a codon-dependent manner.

In the example of the study by Gingold et al. (2014) described above (Figure 6),

differential expression of tRNAs corresponded to differences in codon usage between

proliferation and differentiation conditions. Such codon-specific regulation may how-

ever occur at any level of tRNA biogenesis. Alterations of tRNA function by post-

transcriptional modifications has recently raised interest (El Yacoubi et al. 2012). The

5-methoxycarbonyl-methyl-2-thiouridine (mcm5s2U) modification will, for instance,

be of particular interest in Paper II. mcm5s2U strengthen the interaction between

tRNAUUC
Glu, tRNAUUU

Lys, tRNAUUG
Gln and the codons they can pair with, namely GAA

and GAG (coding for Glutamic acid), AAA and AAG (coding for Lysine), CAA and

CAG (coding for Glutamine). This modification is necessary for wobbling (decoding

GAG, AAG and CAG) but the cognate tRNAs of these G-ending codons (tRNACUC
Glu,

tRNACUU
Lys, tRNACUG

Gln) are also expressed in humans. Ribosome-profiling studies

performed in yeast upon loss of the mcm5s2U modification showed increased ribo-

some occupancy at AAA, CAA and, to a lesser extent, GAA codons which can be inter-

preted as a reduction of elongation rates at these codons (Zinshteyn and Gilbert 2013;

Nedialkova and Leidel 2015). Interestingly, the increases in occupancy at AAG, CAG

and GAG codons were unconvincingly small compared to those of A-ending codons.

Therefore, mcm5s2U modification impact translation of A-ending codons to a higher

extent than G-ending codons. The estimated differences in ribosome dwell time at A-

ending codons upon loss of the modification did not lead to a significant reduction of

global protein synthesis (indicating that translation initiation remains rate-limiting in

these conditions; Zinshteyn and Gilbert 2013). When focusing on the set of proteins

encoded by mRNAs which are enriched for AAA, CAA and GAA codons, Rezgui et al.

(2013) observed a significant decrease in protein abundance upon loss of the mod-

ification. However, in the study by Nedialkova and Leidel (2015), these differences

were also observed on cytoplasmic levels of AAA, CAA and GAA enriched mRNAs thus

disproving the hypothesis that such regulation would be due to reduced translation

elongation rate at specific codons. Instead, they showed that increased ribosomal
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pausing perturbs co-translational folding and solubility of proteins.

The mcm5s2U modification and the tRNA species it impacts is well defined in yeast

(Johansson et al. 2008) but remains to be fully characterized in mammalian systems.

In melanoma, it has recently been shown that modulating expression and/or activity

of the enzymes catalyzing this modification (so called Uridine 34 (U34) modifying en-

zymes; (Figure 8)) promotes survival and resistance to therapy (Rapino et al. 2018).

Similarly, these enzymes has been described to have a key role in breast cancer metas-

tasis (Delaunay et al. 2016) and Wnt-driven intestinal cancers (Ladang et al. 2015).

These phenotypes were proposed to rely on differential requirement for tRNAs mod-

ified at the U34 position across mRNA-species. Thus, a higher level and/or activity

of U34 modification enzymes would allow more efficient translation of mRNAs with

high frequency of codons requiring U34 modified tRNAs.

Unmodified tRNA

U34 U35 N36

Anticodon

Less efficient decoding of
AAA, CAA, GAA codons

ELP3 ALKBH8 CTU1/2
cm5U34 mcm5U34 mcm5s2U34

Modified tRNA

mcm5s2U34 U35 N36

Anticodon

More efficient decoding of
AAA, CAA, GAA codons

Figure 8: U34 tRNA modification pathway. The mcm5s2U modification is catalyzed by a
series of enzymes: elongator acetyltransferase complex subunit 3 (ELP3), alkB homolog 8,
tRNA methyltransferase (ALKBH8) and cytosolic thiouridylase subunit (CTU).

1.2.2.2 Regulatory pathways impinging on translational outputs of subsets of

mRNAs Translational co-regulation of subsets of mRNAs also typically occurs down-

stream of specific regulatory pathways. A few examples will be explained below. The

features allowing co-regulation can be found, for instance, along their 5’UTRs (pres-

ence of terminal oligopyrimidine (TOP) motifs, complex secondary structures (see

section 1.2.2.2.1)).

1.2.2.2.1 mTOR-sensitive mRNAs Activation of mTOR, more specifically of its

complex 1 (mTOR complex (mTORC)1), leads to phosphorylation of eIF4E binding

proteins (4E-BPs) which are inhibitory proteins for translation initiation. Phosphory-

lated 4E-BPs cannot bind eIF4E freeing the cap-binding effector for assembly of the
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Figure 9: Regulation of selective translation by oncogenic pathways. Hyperactive PI3K-
mTOR and MAPK pathways impinge on eIF4F complex assembly.

Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer Nature Reviews Drug Discovery.
Bhat M et al. Targeting the translation machinery in cancer. Nat Rev Drug Discov. 2015 Apr;14(4):261-78. doi:
10.1038/nrd4505. ©2015

eIF4F complex and initiation of translation (Figure 9; Brunn et al. 1997). Specific sets

of mRNAs are known to be more sensitive than others to alterations in the mTOR path-

way. For instance, mRNAs harboring a TOP motif (cysteine after the 5’cap followed

by 4-15 pyrimidines), corresponding mainly to mRNAs involved in the translational
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machinery itself such as ribosomal proteins, show coordinated drastic reduction in

their translational efficiency upon mTOR inhibition (Hsieh et al. 2012; Thoreen et al.

2012; Larsson et al. 2012). Another subset of mRNAs, those having long and struc-

tured 5’UTRs, shows specific sensitivity to mTOR inhibition (Hinnebusch et al. 2016;

Larsson et al. 2012; Gandin et al. 2016). This effect depends on signaling via 4E-BPs.

mTOR is a regulator of responses to nutrient and growth factor stimuli. It can

be part of several protein complexes including mTORC1 which regulates cell growth

and proliferation (by phosphorylating ribosomal S6 kinase (S6K) and 4E-BPs) and

mTORC2 which regulates survival mainly via the AKT (also known as Protein kinase

B) pathway (Dowling et al. 2010; Sarbassov et al. 2005). mTOR is commonly hyper-

active in human cancers (Vivanco and Sawyers 2002; Taylor et al. 2010) and attempts

to selectively and efficiently target its pathway as an oncological therapy are still on-

going (Rodrik-Outmezguine et al. 2016; Fan et al. 2017).

ERα has been shown to associate with PI3K, an upstream activator of mTOR and

directly or indirectly influence this oncogenic pathway in several tissues (Simoncini

et al. 2000; Levin 2009). A recent study linked resistance to estrogen receptor antag-

onists with hyperactivation of mTOR as well as increased phosphorylation of eIF4E by

MAPK-interacting kinase (MNK)1 (Geter et al. 2017).

1.2.2.2.2 Regulation of selective translation by MAPK signaling and eIF4E

phosphorylation eIF4E activity and initiation of cap-dependent mRNA translation

can also be modulated by phosphorylation of eIF4E at Serine 209 (Furic et al. 2010).

This is mediated via MAPK or MAPK/ERK kinase (also known as MAPKK) (MEK)-

extracellular signal-regulated kinase (ERK) signaling (Figure 9). The role of eIF4E

phosphorylation is still poorly understood but has been associated with preferential

translation of selected mRNAs (Robichaud et al. 2015; Furic et al. 2010). In mouse

embryonic fibroblasts (MEFs), translational activation through increased phosphory-

lation of eIF4E is necessary for epithelial-to-mesenchymal transition (EMT) induction.

Therefore, targets of the MAPK pathway constitutes another example of coordinated

translational control.
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2 Present investigations

2.1 Aims of the thesis

• To extend the methodological support allowing to study transcriptome-wide dif-

ferences in translational efficiency:

– Expand the polysome-profiling experimental method to make it available

for large sets of small samples while maintaining the possibility to quanti-

tatively measure translational control

– Expand the anota computational method for analysis of changes in trans-

lational efficiencies to generalize it to polysome- and ribosome- profiling

data quantified using DNA-microarrays or RNA sequencing and to adapt it

to classical characteristics of RNA sequencing data

• To unravel a novel role for estrogen receptor alpha in cancer: namely to in-

vestigate the mechanisms by which this transcription factor also affects gene

expression’s translational output
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2.2 Results and discussion

2.2.1 Assessing differential translation and buffering using anota2seq

For translatomes quantified by DNA-microarrays, the anota algorithm had been de-

veloped to correct changes in polysome-associated mRNA for changes in cytoplasmic

mRNA levels by using a linear regression method (in Figure 7A, the anota models

are plotted for the treatment (solid line) and control conditions (dotted line); Lars-

son et al. 2010). This approach was shown to outperform the translational efficiency

(TE) score approach (also called log-ratio method) which compares the log(translated

mRNA data/cytoplasmic mRNA data) between conditions (Larsson et al. 2010). The

first objective of Paper I was to develop anota2seq to allow similar modelling for RNA-

sequencing data (accounting for the count nature of such data with a mean variance

dependency which cannot be corrected by log-transformation alone) and to compare

anota2seq to other methods for transcriptome-wide analysis of differential translation.

In the early days of next-generation sequencing, several studies used classical DNA-

microarrays methods on log(RNAseq counts/total library size) (Perkins et al. 2009;

Cloonan et al. 2008). It was shown later that RNAseq data should be analyzed us-

ing specific methods for count data. However, another strategy was taken by Law et

al. (2014) when they established a new data transformation technique which, when

applied to RNAseq data, "gives" properties of DNA-microarrays data. It permits that

methods optimized for DNA-microarrays can be used on transformed RNAseq data.

Using a similar strategy, anota2seq is a method which was adapted from the "DNA-

microarrays anota method" (Larsson et al. 2010; Larsson et al. 2011). Indeed, an-

ota2seq allows for transformation or normalization of RNAseq data prior to applying

similar models as in anota.

As explained earlier, from RNA quantification of polysome- or ribosome-profiling,

one can detect changes in translational efficiency leading to changes in protein lev-

els (a change in the amount of translated mRNA that is not explained by a change

in cytoplasmic mRNA) or buffering which opposes changes in protein levels despite

alterations in corresponding cytoplasmic mRNA. A third mode of regulation of gene

expression corresponds to having similar changes in cytoplasmic mRNA levels and

levels of translated mRNA i.e. change in mRNA abundance. Paper II (regulation of

gene expression upon depletion of ERα in a prostate cancer cell line) and Paper III

(differences between serum starved HCT-116 cells (a colon-cancer cell line) with or

without tumor protein p53 (p53)) are two examples where a subset of transcripts

show increased or decreased abundance that were buffered at the level of translation.

To allow for characterization of this mode of regulation, anota2seq includes the option

to perform analysis of translational buffering and categorizes regulated genes in one
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of three modes of regulation: changes in translational efficiencies leading to altered

protein levels (in short, "translation"), changes in translational efficiencies leading to

buffering ("buffering") or changes in mRNA abundance.
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Figure 10: Anota2seq
model for analysis of dif-
ferential buffering. Same
gene and condition as in
Figure 7A (bottom left) but
for analysis of differential
buffering in anota2seq,
cytoplasmic and translated
mRNA have been reversed.

Similarly as in anota, the model fitted in an-

ota2seq for analysis of changes in translational effi-

ciency leading to altered protein levels consists of a

linear regression with translated mRNA as dependent

variable and cytoplasmic mRNA and the sample class

variable as independent variables. A common slope

for all sample categories is considered and the transla-

tional effect is defined as a difference in intercepts be-

tween conditions (Larsson et al. 2010). On the other

hand, translational buffering is defined as changes in

cytoplasmic mRNA level that are not paralleled by

changes in levels of translated mRNA (Figure 10).

As such, performing analysis of buffering considers

cytoplasmic mRNA as dependent variable and trans-

lated mRNA as independent variable (together with

the sample class). The "mRNA abundance" mode of

regulation, corresponds to significant changes in both

cytoplasmic and translated mRNA with changes in the

same direction.

In order to compare the ability of different methods to identify genes regulated at

the level of mRNA translation, we designed a simulation study. RNAseq counts were

simulated for cytoplasmic and translated mRNA under two conditions for 4 categories

of genes:

• truly unregulated genes (simulated from the same theoretical distributions for

both conditions)

• genes regulated by differential translation (cytoplasmic mRNA counts were sim-

ulated from the same distribution but a positive or negative fold change (FC)

was applied between the 2 conditions for the translated mRNA simulation)

• genes regulated by differential buffering (translated mRNA counts were sim-

ulated from the same distribution but a positive or negative FC was applied

between the 2 conditions for the cytoplasmic mRNA simulation)

• genes regulated by differences in mRNA abundance (The same FC was applied
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between conditions for both cytoplasmic and translated mRNA theoretical dis-

tributions)

We concluded from this study that anota2seq outperforms current methods notably

by allowing distinction between changes in translational efficiency affecting protein

levels and buffering. Indeed, anota2seq showed higher area under the receiver oper-

ating characteristic curve (AUC) and precision than other methods for identification of

genes in the "differential translation" category (i.e. true differential translation). All

methods except anota2seq, are based on the principle that a gene will be identified as

differentially translated if the translated mRNA change between conditions is signifi-

cantly different from the change in cytoplasmic mRNA levels, regardless of whether the

difference is higher in translated mRNA or cytoplasmic mRNA. The inability of most

methods to distinguish between differential translation leading to altered protein lev-

els and buffering has led in the past to incorrect biological conclusions as explained

in Larsson et al. (2010).

As mentioned earlier, regulation by translational buffering has been observed in

other contexts (McManus et al. 2014; Artieri and Fraser 2014; Cenik et al. 2015;

Lalanne et al. 2018). When discussing these different studies, we realized that trans-

lational buffering could be categorized in different contexts. The first context would

be when translational buffering occurs in the context of transcript-dosage compensa-

tion (McManus et al. 2014; Artieri and Fraser 2014; Lalanne et al. 2018) or between

different individuals (Cenik et al. 2015; Dassi et al. 2015) where differences between

conditions are static. We envisaged that mechanisms at play in such cases are likely

to differ from mechanisms mediating translational buffering upon adaptive responses

which can be reverted (as when observing translational buffering upon depletion of

ERα which can be a therapy target). In this second context (exemplified in Paper

II), we would use the term "translational offsetting". Finally, response to acute stress

(Tebaldi et al. 2012) or delayed synthesis between mRNA and protein can cause tran-

sient translational buffering, called equilibration at the translational level.

As any model, our simulation study has limitations and its applicability scope is

unclear. However, the parameters used for the control condition were estimated from

a real polysome-profiling dataset (Guan et al. 2017) to maximize the confidence in

inferred conclusions from this study. Furthermore, using such a simulation study al-

lowed us to test additional parameters: for instance, how robust the different algo-

rithms for translatome analyses are against increased variance and reduced sequenc-

ing depth. All algorithms perform well under increased variance and reduced se-

quencing depths as long as the number of mapped reads to mRNAs was higher than

5 million. As our simulation data are public, such explorations could easily be ex-
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tended to verify for instance the impact of batch effects with increasing sizes as did

Chothani et al. (2019). It would also be interesting to evaluate the impact of strong

down-regulation of global translation. Indeed, as discussed in (Gandin et al. 2016),

assessment of gene-level relative differences in translation between conditions can be

influenced by reductions in translation of most genes quantified in parallel (as would

be observed for instance upon mTOR inhibition).

Finally, even if the differences between the methods were smaller, anota2seq was

shown to outperform current methods for statistical analysis of translational efficiency

even in the absence of translational buffering. When further exploring the reason why

some methods seemed to underperform, we observed that Xtail (Xiao et al. 2016) typ-

ically detects high amounts of non-differentially translated genes when tested under

a NULL model (no true differences in gene expression) and that Babel poorly controls

type I error (this was also noticed by Xiao et al. (2016) in their method comparison).

Thus, anota2seq allows efficient analysis of translatomes quantified using DNA-

microarrays or RNAseq which is essential to further our knowledge of the role of

translational control in cancer and other diseases.

2.2.2 Transcriptome-wide analysis of mRNA translation in tissue samples

Dysregulation of translation contributes to both initiation and progression of cancer by

inducing global changes in protein synthesis rates and changes in the translational ac-

tivity of specific mRNAs encoding cancer related proteins (Truitt and Ruggero 2016).

Dysregulated mRNA translation can also mediate resistance towards targeted ther-

apies (Boussemart et al. 2014). This occurs notably via activation of eIF4E which

is hyper-active in most cancers, including those of the breast (De Benedetti and Graff

2004). Furthermore, preliminary analyzes performed in our research group on a small

subsets of breast cancers showed that regulation at the translational level could un-

ravel molecular subgroups of tumors which could not have been distinguished when

only looking at the transcriptomic level (unpublished).

Breast cancer is a highly heterogeneous disease at the molecular level. A first in-

dication for this heterogeneity is the wide range of ER expression in population-based

cohorts (Osborne 1998; Wenger et al. 1993). Furthermore, despite ER expression cor-

relating with proliferation and tumor aggressiveness (Wenger et al. 1993), overall ER-

tumors usually show poorer prognosis than ER+ ones (Knight et al. 1977). This con-

stituted an initial proof that breast tumors can be driven by many different molecular

mechanisms. Intra-tumor heterogeneity is also common in this disease (Teixeira et al.

1995). Thus, studying breast cancer biology nowadays requires using patient material
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from large cohorts that are representative of the variability of this disease. A cohort

of 161 biobanked breast cancer tissue samples was identified with the aim to perform

translatome analysis.
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Figure 11: Polysome-profiling using the linear and
the optimized non-linear gradient methods. Ex-
ample of a polysome profile when using the classical
method (A) or the optimized non-linear gradient (B).
Fractions separations are shown as dotted lines. Frac-
tions numbers are provided at the bottom of each plot.

(A) Modified from Gandin, V et al. (2016). "nanoCAGE re-
veals 5’ UTR features that define specific modes of translation of
functionally related MTOR-sensitive mRNAs." In: Genome research
26(5), pp. 636-648. doi: https://doi.org/10.1101/gr.197566.115.
©2016 Gandin et al.; Published by Cold Spring Harbor Labora-
tory Press. This article, published in Genome Research, is available
under a Creative Commons License (Attribution 4.0 International),
as described at http://creativecommons.org/licenses/by/4.0/. (B)
Modified from Liang C et al. "Polysome-profiling in small tis-
sue samples." Nucleic Acids Res. 2018 Jan 9;46(1):e3. doi:
https://doi.org/10.1093/nar/gkx940

Analyzing gene expression

from tumor material implies

the use of optimized experi-

mental methods for low input

of RNA. Thus, the polysome-

profiling technique first needed

to be adapted for large sample

sizes with low RNA amounts.

Indeed, in the classical lin-

ear gradient approach, mRNAs

are separated by sedimenta-

tion and the entire volume is

fractionated along the gradient

in 26 fractions (Figure 11A;

red numbers). Collecting the

polysome-associated mRNA en-

tails pooling a large volume

(>3 mL) across many fractions

(16 to 25 on Figure 11A)

which is labor-intensive and can

cause sample loss. Our op-

timization allowed to concen-

trate the polysome-associated

mRNA in one or two fractions

instead (fractions 16-17 on Fig-

ure 11B).

Using two conditions of a

cell-line model (HCT116 p53-

/- and HCT116 p53+/+), we

performed polysome profiling

using both methods in paral-

lel and compare the results in

terms of RNA quantity, quality

and output of the analysis of dif-

ferential translation using an-
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ota2seq. High RNA quality and similar amounts were obtained from both meth-

ods. Next, we performed a differential expression analysis on polysome-associated

mRNA obtained from both methods to assess gene-level differences between HCT116

p53+/+ and p53-/-. When comparing FCs, a high Spearman correlation (0.74) was

observed between those of the linear gradient polysome-associated mRNA data and

those from the optimized non-linear gradient data. After adjustment for multiple test-

ing using Benjamini-Hochberg false discovery rates (FDRs), p-values obtained from

the optimized non-linear method appeared globally lower. Taken together, these re-

sults are consistent with both methods resulting in similar effect sizes and different

variability (the optimized method providing data with lower variance among biologi-

cal replicates).

Finally, we also validated the feasibility for the optimized non linear gradient

method to isolates efficiently translated mRNA from biobanked tissues. For this pur-

pose, we selected 5 breast cancer tissue samples from the large cohort mentioned

above (with 161 patient samples) and applied our new polysome-profiling method.

RNAseq libraries were prepared for polysome-associated and cytoplasmic mRNA using

Smartseq2 which has been developed for low input samples such as single-cell RNAseq

(Picelli et al. 2014). High coverage of the translatome could be reached from breast

cancer tissue samples and the sequencing depth was above 5 million reads mapped

to protein coding mRNA for 3 samples and just below this threshold (between 4.5

and 5 million) for the remaining 2. In Paper I, we showed that statistical analysis of

differential translation is not influenced by sequencing depth if it is above 5 million

reads mapped to protein coding mRNAs. Anota2seq results were also quite stable in

cases where 25% of samples have a sequencing depth of 2.5 million reads mapped to

mRNAs and 75% have at least 5 million reads.

Thus studying novel mechanisms of regulation of mRNA translation in large col-

lection of tissue samples is feasible using the optimized non-linear polysome-profiling

method and anota2seq.

2.2.3 Investigating the mechanisms by which the transcription factor estrogen

receptor alpha affects gene expression at the translational level

As described in section 1.2.1.3, the aim of Paper II was to study the role of ERα in co-

ordinating gene expression at multiple levels. Indeed, in a previous publication (Tak-

izawa et al. 2015), potential non-nuclear functions of ERα were illustrated by show-

ing that its depletion partially inhibited members of the mTOR and MAPK pathways.

Therefore, we used BM67 cells (a prostate cancer cell-line derived from phosphatase

and tensin homologue (PTEN)-deficient mice) and performed polysome-profiling fol-

33



lowed by quantification of the translatome upon depletion of ERα. As expected from

perturbation of a transcription factor, major differences were observed on the cyto-

plasmic mRNA level of many transcripts. However, at the translational level, observed

regulations did not seem consistent with reduction in activity of important translation

pathways; as seen by the limited amount of genes classified in anota2seq’s translation

mode (i.e. changes in translational efficiency leading to altered protein levels) and by

the absence of significant translationally suppressed cellular functions upon ERα de-

pletion. Instead, alterations in mRNA levels were largely translationally offset. This

unexpected result was carefully validated using independent technologies: the initial

quantification was performed using DNA-microarrays; RNAseq resulted in very simi-

lar measurements of cytoplasmic and polysome-associated mRNA in both conditions;

a subset of targets (selected in all different modes of regulation of gene expression)

were validated using Nanostring; at the protein level, Western blotting (WB) con-

firmed regulation observed by polysome association for all tested targets. Thus, ERα

up- and downregulates the mRNA abundance of many targets but a majority of these

alterations are offset at the level of translation. We validated that, at least for a sub-

set of targets, such translational offsetting leads to maintained protein levels despite

mRNA modulations.

Next, we sought to pinpoint mRNA characteristics which could mediate transla-

tional offsetting upon ERα depletion. For this purpose, we explored features in differ-

ent parts of the mRNA. Firstly, we performed nanoCAGE on shERα which allowed to

precisely determine the position of transcription start sites (TSSs) and thereby ana-

lyzing characteristics of the 5’UTRs. Secondly, we explored presence of miRNA target

sites on offset vs. non-offset mRNAs. We sequenced small RNAs in order to investigate

whether ERα-dependent miRNA regulation could reconcile translational offsetting al-

terations. Lastly, we observed major differences in codon usage along mRNAs which

are induced but translationally offset upon ERα depletion as compared to non-offset

mRNAs.

mRNAs which are downregulated but translationally offset appeared to have shorter

and less structured 5’UTRs than non-offset transcripts. Their median mRNA length is

close to what has been hypothesized to be the "optimal" length for efficient translation

(Kozak 1987) and they lack complex structures which could limit their translational

efficiency.

Regarding analysis of miRNAs, we initially observed an enrichment of target sites

(from the targetScan database (Lewis et al. 2005)) among mRNAs whose upregulation

is translationally offset. Therefore, we hypothesized that ERα may upregulate specific

miRNAs which would target these offset mRNAs thus mediating translational offset-
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ting. Interestingly, our small RNA sequencing revealed that ERα depletion leads to

more downregulation than upregulation of miRNAs and that no sign of upregulation

was seen for miRNAs targeting mRNAs whose levels are induced but translationally

offset. Accordingly, we concluded that ERα-regulated miRNAs do not seem to mediate

offsetting at the level of translation. Yet, we detected that mRNAs whose levels are re-

duced upon ERα depletion but translationally offset (i.e. those lacking complex 5’UTR

structures) generally lack miRNA target sites which could also limit their translational

efficiency.

Intriguingly, when analyzing characteristics of transcripts whose levels are induced

by ERα depletion but translationally offset, a major distinction with non-offset mRNAs

is their codon usage. Specifically, ERα-induced but translationally offset transcripts are

enriched in codons depending, for their translation, on tRNAs modified at their U34

position.

Initially, we noticed a substantial overlap between codons enriched in upregulated

but translationally offset mRNAs and codons enriched in proliferation-related mRNAs

in the study by Gingold et al. (see section 1.2.1.2 and Figure 6). Among these codons,

the strongest over-representation was seen for AAA and GAA which require U34-

modified tRNAs for efficient translation (Figure 8). Consistently, we showed that ERα

depletion downregulates protein levels of ELP3 which is one of the enzymes catalyz-

ing the modification. Moreover, translational offsetting of DEK Proto-Oncogene (DEK)

(an offset target which we extensively validated) could be reversed by re-expression of

ELP3 in BM67 cell-lines where ELP3 had previously been knocked out. Finally, a strong

reduction of these mcm5s2U modifications was quantified by mass spectrometry upon

ERα inhibition in a breast cancer cell line. In conclusion, ERα regulates expression of

U34-modifications and selectively offsets mRNA abundance at the translational level.

Studying mechanisms of translational offsetting allowed to formulate new per-

spectives in the role that ERα plays in cancer. Functionally, this implies that upon

ERα depletion, transcripts enriched in "proliferation signature codons" will not be

synthesized despite high levels of mRNA molecules. Furthermore, we showed that

the anti-proliferative effect of ERα-inhibitors was strongly reduced in cells where the

U34-modifying pathway had been inactivated. In melanoma, perturbation of the

U34-modifying pathway was associated with resistance to B-Raf proto-oncogene, ser-

ine/threonine kinase (BRAF) inhibitors (Rapino et al. 2018). In breast cancer, resis-

tance to endocrine therapies is a major concern which limits new survival benefits

(Clarke et al. 2015). Studying the U34-modifying pathway as a potential target to

overcome treatment resistance in ERα-dependent cancers may be a promising strategy.
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Mechanistically, an intriguing remaining question is whether and to which extend

reduced abundance of U34-modified tRNAs would influence translation elongation

vs. initiation rates. However, this might be challenging to decipher as reduced elon-

gation rates can themselves limit initiation by accumulation of ribosomes towards the

5’ end of the coding sequence. In our study, we observed translational offsetting of

a large amount of mRNAs from polysome-profiling data which implies that for such

transcripts, the same amount of mRNA is associated with >3 ribosomes (we used this

threshold to isolate efficiently translated mRNA) following ERα depletion whereas the

mRNA level is increased. We showed that this is mediated by reduced availability of

U34-modified tRNAs. Ranjan and Rodnina (2017) proposed that U34 enzymes causes

ribosome pausing during translation elongation and suggested that lack of thiolation

of tRNAUUU
Lys increases the residence time of ribosomes on AAA codons by about 40%

in a prokaryotic translation system. We investigated further whether such an increase

in translocation time at codons requiring U34-modified tRNAs could explain the trans-

lational offsetting observed in Paper II. For this purpose, we selected one target which

was induced but translationally offset upon ERα depletion: DEK. We chose this tar-

get because it has an extreme frequency of AAA, CAA and GAA codons compared to

other mouse transcripts (Figure 12A). We validated its FC on cytoplasmic mRNA us-

ing qPCR (Figure 12B). We used ribosome flow model (RFM)s (Reuveni et al. 2011)

to estimate translational output of the DEK mRNA upon several hypothetical reduc-

tion of translation elongation rate at codons decoded by U34-modified tRNAs. As

input of the RFM, we needed to give the coding sequence of DEK, a range of initiation

rates and codon-specific residence times. We sought to assess if the combination of

increased residence time coupled with increased mRNA level could lead to maintained

protein synthesis as compared to the control condition (Figure 12C). The RFMs indi-

cated that ribosome residence time on codons requiring U34-modified tRNAs cannot

alone explain observed translational offsetting under any initiation rate (Figure 12D).

Therefore, ribosome drop-off could be a potential mechanism restricting translation

under conditions where tRNAs are hypomodified at the U34 position but additional

experiments are required to explore this further and eventually to understand how

translational control can be used to maintain homeostasis.

2.2.3.1 Reflections on ethical considerations in bioinformatics projects My doc-

toral studies have focused on statistical method development and bioinformatics an-

alyzes of translatomes from experiments mainly performed on cell lines. Reflections

on ethical considerations instinctively arise in research projects for instance when ex-

periments need to be performed on animals and these reflections are then of utmost

importance. However, in other contexts such as data analysis, ethical discussions are

often overlooked. Paper II provided an example of interesting ethical considerations

in data analysis which will be described here.
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37



One classical example which raises questions related to scientific reasoning and

ethics comes when the initial hypothesis of a study cannot be confirmed by the anal-

ysis. More specifically, a study has been designed based on a scientific hypothesis; it

was conducted according to this design and then led to a negative result. Let’s set

apart the discussion about what should be considered as a negative result for now and

focus on the following question: should one publish what would be considered as a

negative result or should other options be considered? A common "excuse" for not

trying to publish negative results is that it would be refused by journal editors them-

selves. Publication bias, also called positive-outcome bias, is an unfortunate reality

in medical research. In clinical trial research for instance, studies with statistically

significant results are definitely more likely to be published and more likely to get

published early. This kind of bias can have deleterious consequences, notably because

meta-analyzes can only be based on published results. This issue has recently begun to

be addressed by some journals which are dedicated to publication of negative results.

Another question is: would it be unethical to publish these results as the "positive"

results of another post-hoc hypothesis? Should this alternative be considered as a

misleading way to make one’s research more interesting than what is it in reality? Or

should it be considered as the starting point of a potentially promising new hypothe-

sis? Firstly, the answer to these questions depends on whether the research question

is to be considered as having a "hypothesis confirmation" or "hypothesis generation"

goal. The former would imply that a lot of research has previously been performed to

lead to the hypothesis. In this case, publishing the negative result should probably be

the reasonable option. An example of this would be phase III clinical trials, which are

confirmatory trials and may lead to approval of new drugs or indications. In this case,

a statistical analysis plan should be pre-defined and any additional analyzes should be

interpreted as having lower levels of evidence. There should however be more free-

dom in research that is further away to applications for patients and research that is

performed to generate new hypotheses. In this case, it should be acceptable to con-

sider a post-hoc analysis as promising even if its level of evidence is not as high as the

initial hypothesis.

In Paper II, the initial hypothesis was that ERα would not only regulate transcrip-

tion of specific targets but also translational output. Indeed, ERα has been shown to

interact with classical pathways which impinge on translational control such as the

mTOR pathway. We therefore wanted to test whether ERα’s transcriptional output

would also be regulated at the translational level notably via this pathway. As de-

scribed above, we could however not confirm from our transcriptome-wide studies of

changes in translation that ERα depletion impacted the mTOR pathway. However, the

analysis of data from these experiments revealed other interesting mechanisms upon
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ERα depletion (see Paper II). We published our results in the context of the second

hypothesis, stating that this was not the initial hypothesis. Furthermore, additional

validation experiments have been performed in order to give more strength to this

post-hoc hypothesis. Several reflections were raised before writing the manuscript to

decide in which order the "story" should be told and whether to omit the initial nega-

tive result. In the final version of this paper, the initial hypothesis is discussed in the

introduction. Of course, ethics was not the only consideration when designing the

manuscript but even in projects where the context of the research offers freedom in

the way the analysis can be done, it is interesting to reflect upon the integrity and va-

lidity of scientific results from post-hoc hypotheses. Having stated that more freedom

should be allowed in the data analysis of basic research, this paragraph should not be

concluded before adding that data dredging is of course not to be advised.
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3 Conclusion

Because of its tight connection with uncontrolled proliferation (Faller et al. 2015), im-

mune response (Piccirillo et al. 2014), altered metabolism (Cunningham et al. 2014),

invasion and metastasis (Robichaud et al. 2015); translational dysregulation is now

itself considered as a hallmark of cancer (Vaklavas et al. 2017). This thesis provides

methodological advances allowing to study further mechanisms by which translation

influences cancer cell phenotypes. Indeed, our optimized gradient polysome-profiling

method allows to isolate translatomes from tissue samples. Furthermore, we demon-

strated that the anota2seq algorithm outperforms current methods for statistical iden-

tification of differences in translational efficiencies.

Furthermore, this thesis shines a light on an underappreciated mode of gene ex-

pression regulation whereby translation acts as an offsetting process which opposes

protein levels despite fluctuations in corresponding mRNA abundance. Common mech-

anisms regulating translational offsetting are yet to be discovered but upon depletion

of ERα in prostate cancer, the most influential regulatory pathway impinged on modi-

fication of specific tRNAs. This result could have implications in our understanding of

how the proteome of hormone-dependent diseases is controlled as well as in strategies

to tackle resistance to ERα-targeted therapies.
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