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Abstract A framed surface is a smooth surface in the Euclidean space with a moving frame.
The framed surfaces may have singularities. We treat smooth surfaces with singular points,
that is, singular surfaces more directly. By using the moving frame, the basic invariants
and curvatures of the framed surface are introduced. Then we show that the existence and
uniqueness for the basic invariants of the framed surfaces. We give properties of framed
surfaces and typical examples. Moreover, we construct framed surfaces as one-parameter
families of Legendre curves along framed curves. We give a criteria for singularities of
framed surfaces by using the curvature of Legendre curves and framed curves.

Keywords framed surfacefrontal - singular point basic invariant curvature
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1 Introduction

The geometry of smooth surfaces in the Euclidean space is a classical object. Recently,
smooth surfaces with singular points are more important for differential geometry, differ-
ential equations and physics (for instance, [1,2,4-7,12,14-16,18-21,23-26,28]). One of
the idea to treat the smooth surfaces with singular points is that we consider the fronts or
frontals as smooth surfaces with singular points (cf. [1,2, 20,21, 26, 28]).

In this paper, we give an other consideration of smooth surfaces with singular points.
The idea is a generalisation of not only the Legendre curves [8] but also framed curves in
the Euclidean space [11]. Itis also related the Cartan’s moving frame (cf. [17]).
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A framed surface in the Euclidean space is a smooth surface with a moving frame. The
framed surface is a generalisation of not only regular surfaces but also frontals at least lo-
cally. The framed surfaces may have singularities. We would like to treat the surfaces with
singular points more directly. In fact, we introduce the basic invariants of the framed sur-
face in§2. Then we give the existence and uniqueness theorem of the basic invariants for
the framed surface i§3. We investigate properties of the framed surfaces. We give a cur-
vature and a concomitant mapping of the framed surfacé4.ifhese mappings are useful
to recognize a Legendre immersion or a framed immersion. Moreover, we construct framed
surfaces as one-parameter families of Legendre curves along framed cuf&sAia an
application of the construction, we give a criterion that the framed surface is locally diffeo-
morphic to the cuspidal edge, swallowtail and cuspidal cross cap by using the curvatures of
the Legendre curves and the framed curves. We give concrete examfes in

All mappings and manifolds considered here are differential of &&ss

2 Definitions and notations

Let R3 be the 3-dimensional Euclidean space equipped with the inner praduet a;b; +
aghy + aghs, wherea = (a1,a,a3) andb = (bg,by,bs) € R3. The norm ofa is given by
|a| = v/a-aand the vector product is given by

e & €3
axb=|a ay az|,
b; by bs

where{es, e, e3} is the canonical basis dr®. LetU be a simply connected domain &f
and$? be the unit sphere iR3, that is,& = {a € R%||a| = 1}. We denote a 3-dimensional
smooth manifold(a,b) € & x S|a-b =0} by A.

Definition 1 We say thaix,n,s) : U — R3 x A is aframed surfacéf x,(u,v)-n(u,v) =
0,xy(u,Vv) - n(u,v) = 0 for all (u,v) € U, wherexy(u,v) = (dx/du)(u,v) and x,(u,v) =
(9x/dv)(u,v). We say thak : U — R® is aframed base surfadéthere existgn,s):U — A
such thatx, n,s) is a framed surface.

We also say thatx,n) : U — R® x S is aLegendre surfacéespectively, d.egendre
immersion if X,(u,v)-n(u,v) = 0,%,(u,v) -n(u,v) =0 for all (u,v) € U. We say thak: U —

R3 is afrontal (respectively, dront) if there exist : U — S such thaix,n) is a Legendre
surface (respectively, Legendre immersion). For definition and properties of frontals see [1,
2].

Suppose that: U — R3 is a regular surface. Them,n) : U — R x S is a Legendre
immersion, wher@ = x, x X,/|X, X %,|. There exists a smooth mappiagl — S’ such that
(x,n,s) is a framed surface. Actually we may take- x,/|Xu| or s= Xy/|Xy|-

By definition, the framed base surface is a frontal. On the other hand, the frontal is
a framed base surface at least locally. In this paper, we consider framed base surfaces as
singular surfaces. If we do not confuse in the sentence, we also saytleframed surface.

We denotet(u,v) = n(u,v) x s(u,v). Then{n(u,v),s(u,v),t(u,v)} is a moving frame

alongx(u,v). Thus, we have the following systems of differential equations:

Xu a1 b S
()= (@n) ) @
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ny 0 e f n Ny 0 & f n
ss|l=|-e 0 gr1||s],|sv]=[-e 0 o] |s]. 2
ty —f1 -01 0 t ty —f> -0 0 t

wherea;, b, g, fi,gi : U — R,i = 1,2 are smooth functions and we call the functidmasic
invariantsof the framed surface. We denote the above matriceg 3§, ,.%,, respectively.
We also call the matrices7,.%1,.%») basic invariantsof the framed surfacéx, n,s). Note
that(u, V) is a singular point ok if and only if det% (u,v) = 0.

Since the integrability conditiongy = Xyy and.%, , — F1y = F1.%2 — F2.%1, the basic
invariants should be satisfied the following conditions:

agy—big2 = azy — b0y,
b1v—axg1 =boy — 102, €))
a1e+ by fo = axer + by fy,

ey — f100 = ey — fo0s,
fiv—e01 = fou—e0, (4)
Ogv—efo=gpu—ef:.

3 Properties of framed surfaces

We consider basic properties of framed surfaces. We give fundamental theorems for framed
surfaces, that is, the existence and uniqueness theorems for the basic invariants of framed
surfaces.

Definition 2 Let (x,n,s), (X,7,3) :U — R3 x A be framed surfaces. We say tlfan, s) and
(X,n,5) arecongruent as framed surfacéshere exist a constant rotatioche SQ(3) and a
translationa € R® such that

X(u,v) = A(x(u,v)) +a,n(u,v) = A(n(u,v)),S(u,v) = A(s(u,v)),
for all (u,v) e U.

The existence theorem of framed surfaces follows from the existence of solutions of
partial differential equations.

Theorem 1 (The Existence Theorem for framed surfaced)et U be a simply connected
domain inR2 and let a,b;, g, f;, g :U — R,i =1,2be smooth functions with the integrabil-
ity conditions(3) and (4). Then there exists a framed surfagen,s) : U — R3 x A whose
associated basic invariants i/, .%1,.%>).

Proof. Since the integrability conditiofd), there exists an orthonormal frarfie, st} such
that the condition(2) holds. Moreover, by the integrability conditiqi3), there exists a
smooth mapping : U — R3 such that the conditioil) holds. Therefore, there exists a
framed surfacéx, n,s) : U — R3 x A whose associated basic invariant§#.71,.%,). O

Theorem 2 (The Uniqueness Theorem for framed surfaced)et (x,n,s), (X,n,3) : U —

R3 x A be framed surfaces with basic invariar(&ﬁl,ﬁz),(%? ,%,%), respectively.
Then(x,n,s) and (X, n,s) are congruent as framed surfaces if and only if the basic invariants
(9,.71,%,) and (%N, %,%) coincide.
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In order to prove the uniqueness theorem, we prepare the following two lemmas.

Lemmal If (x,n,s) and (X,n,S) are congruent as framed surfaces, thgf, 51,.%>) =
(b, 71, F2).

Proof. By Definition 2 and a direct calculation, we obtain the lemma. a

Lemmaz2 If (¢4,%1, %) = (g:%,%) and (x,n,s)(up,vo) = (X,N,S)(Up, Vo) for some
point (up, Vo) € U, then(x,n,s) = (X,n,3).

Proof. Firstly, we show(n,s,t) = (1,5 1), wheren x s=t andh x $=1. We define a function
f:U — R by f(u,v) =n(u,v)-n(u,v) +s(u,v) -5(u,v) +t(u,v) -t(u,v). By the definition of
the basic invariants, we have

fu = (e1—€)(s- M)+ (f1— f)(t-N) + (& —e)(n-P)
+(f1— f)(N-T) + (91— G1) (t-9) + (G — 91) (s T).

By the assumption#y = .73, we havefy(u,v) =0 for all (u,v) € U. Similarly, we also have
fv(u,v) = 0 for all (u,v) € U. Moreover, by the assumptidn, s)(uo, Vo) = (i, 5)(uo, Vo), we
have f (up,vo) = 3. It conclude thatf (u,v) = 3 for all (u,v) € U. Hence, we hava-n =
s-§=t-t=1.Itfollows thatn=n,s=Sandt =t.

_ Next, we showx = X. By the assumptior¥y = ¢, we havex, = a;S+ byt = &5+
bt = X, and x, = aps+ bt = &5+ bt = %,. Then, we havegx —X), = (x —X)y = 0.
Sincex(uo, Vo) = X(Uo, Vo), we havex(u,v) = X(u,v) for all (u,v) € U. Therefore, we have
(X7 n7 s) = (’X7ﬁ7’§) D

Proof of Theorem 2The necessary part of the theorem is Lemma 1.

We prove the sufficient part of the theorem. Fixing a pdim,vo) € U, there exist
A € SQ3) anda € R? such that(x,n,s)(ug,Vo) = (AX+ a,An, AS)(Up, Vo). By Lemmas 1
and 2, we havex,n,s) = (AX+ a,An,AS), that is, (x,n,s) and (X,n,S) are congruent as
framed surfaces. a

Let (x,n,s) : U — R3 x A be a framed surface with basic invariari,.71,.%,). We
consider rotations and reflections of the vecgtsWe denote

P(u,v)\ _ [cosB(u,v) —sinb(u,v)\ [s(u,v)
(te(u,v)) - (sin@(u,v) cosh(u,v) ) (t(u,v))’
wheref : U — R is a smooth function. Thenx s? =t% and{n,s? 1%} is also a moving
frame alongx. It follows that (x,n,s?) is a framed surface. We call the franfie, s t%} a
rotation frameby 6 of the framed surfacéx,n,s). We denote by%%, 79, 7#) the basic
invariants of(x,n,s?). Moreover, we consider a moving franie’,s',t"} = {—n,t, s} along
xand call it areflection frameof the framed surfacéx, n, s). We denote by¥", %, ,.%;) the

basic invariants ofx,n",s").
By a direct calculation, we have the following.

Proposition 1 Under the above notations, we have the relations between the basic invari-
ants(9, .71, %) and(98, 78, 72\, (9", F], F}), respectively.
(1) For any smooth functiof : U — R,

g9 _ o cosf sin@ _ a1 cosO — by sinB a; sind + by cosO
—sinB cosb apcosb — b, sinB aysind + by cosb )’
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0 e1cosB — f1sinB e;sinf + f1cosd
919 = | —e cosb + f1sind 0 01— 6, ,
—eysinf — f1cos@ —0g1+ 6y 0
0 e cosf — f,sinB e sinf + f,cosO
Z2 = | —eycos0 + fpsind 0 92— 6
—eysing — focosh —02+ 6y 0

2

0 —f1 —er 0 —f, —&
%ug(%)—(gzz),ﬁ{—(fl 0 gl),y‘g—<f2 0 gz).
e g O e g 0

Especially, we have
€9\  (cosf —sinb\ (& i_12
)~ \sin@ cos® ) \fi)> —

We consider the integrability conditiori8) and (4) of (x,n,s?) and(x,n",s), respec-
tively. Since
xy = a5+ byt = afs? + bt — al s +bit" x, = aps+ byt = aJs® + bSt? = als + bt
we also have
af, —bjg3 = a3, —b3g?.
0 040 _ o 60
bi,—agg; =b3,—a79;.
a%ef +bf 1Y = afef +bfff,
forany6:U — R, and
ar1.v - br1gr2 = arz.u - r29r1>
br1.,v - arzgrl = brz,u - arlgr2>
aje, + b f] =ale + b, f].
Proposition 2 Let(x,n,s) :U — R3 x A be a framed surface with basic invariarité, .#1,.%,).
Then the following are equivalent for any smooth functiar — R.
(1) Fou— Fry= F1.F2— FoF1.
(2) ﬁfu ~FP =7 - 7 78.
(3) A1, - 71, = F|F - FL7].

Proof. We prove that1) is equivalent tq2). We define matriceR(8) and®© by

10 0 000
R(@)=|0cos8 —sinB |, ©=({00-0|.
0 sin@ cosB 06 0

Then we haveZf = 0, +R(0).#1R(—0) and.#) = @, + R(6).%,R(—0) by Proposition 1
(1). By a direct calculation, we have
ffz‘?u — ﬂfv = Ou+R(8)uZ2R(—0) +R(8).%, R(—0) + R(0).72R(—0),
—Ouw—R(0)v7#1R(-0) —R(8).71yR(—6) — R(8) 71R(—0)y.
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On the other hand,
FP7Y — 7278 = O,R(8).7,R(—6) + R(0).71R(—0)B, — O,R(6).F1R(—6)
—R(8)72R(—0)0u+R(0)(F1.72 — F271)R(—0).
By using the relation®,R(8) = R(6),, R(—0)0, = R(—08)y, 6,R(6) = R(6)y andR(—0)6, =
R(—0)y, we haveR(0)(Fou— F1v)R(—0) = R(0)(F1.%2 — F2.71)R(—B). SinceR(0)

andR(—0) are invertible matrices, we conclude ttiaj is equivalent tq2).
Next, we prove thatl) is equivalent tq3). We define a matriR by

-100
=(001}.
010

Then we haveZ] = R%1R and.#] = R%;R by Proposition 1(2). Thus, we have
Fou— f{v R72uR—R71yR=R(F2u— F1v)R
On the other hand,
F1Fy — F3.F1 = RFIRRZ,R— R#RRZ1R = R(#1.%2 — F2.71)R.
Note thatR? is equal to the unit matrix. Sindis an invertible matrix, we conclude thét)
is equivalent tq3). O

Next we consider a parameter change of the dorba@nd a diffeomorphism of the
target spac&S.

Proposition 3 Let(x,n,s) :U — R3 x A be a framed surface with basic invariaritg, .7;,.%,).
Letg:V —U,(p,q) — @(p,q) = (u(p,q),v(p,q)) be a parameter change, that is, a dif-
feomorphism of the domain. Théan,3) = (x,n,s)o @ :V — R3 x A is a framed surface.

Moreover, the basic invarianl(sf, 3517%) of (X,n,s) is given by

a by ey a b
(55) = (202) 00 (22) o0

(G 18 wo-(20)wa (g L3) e

Proof. By the chain rule, we have

Xp(P:d) = Xu(@(p,q))up(p, ) + X, (@(p,q))Vp(P, )
= {a1(o(p,q))s(@(p,q)) +b1(@(p,q))t(¢(p,q)) }up(p,q)
+{az2(e(p,q))s(@(p.q)) + ba(@(p,a))t(@(p,a))) }Vp(p,q)
= {a1(@(p.a))up(p,q) +az(@(p,q )) p(P,a) }3(p,q)
+{b1(o(p,a))up(p,q) +b2(e(p,a))Vvp(p, ) }t(p, ),
Xq(P, ) = Xu(@(P,a))uq(P,q) +*(@(P,d))Vq(P,q)
= {a1(o(p,q))s(o(p,q)) +b1(@(p,a)t(@(p,a)) }uqg(p, )
+{az(@(p, a))s(@(p,a)) + b2(@(p,a)t(¢(p,d))) }Va(P,a)
= {al(tp(r» )) Uq (P, a) +a2(p(p,a))Vqa(P, ) }S(p, )
+{b1(@(p,a))uq(p,a) + b2(@(p,q))ve(p,a) }t(p,q).
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It follows that we have the first equation. The second equation in the proposition is proved
similarly as the above by using the chain rule. o

Proposition 4 Let(x,n,s) : U — R® x A be a framed surface. L& : R® — R® be a diffeo-
morphism. Then there exists a smooth mappiffys®) : U — A such that @ ox,n®,s®) :
U — R3x A is a framed surface.

Proof. We denote the Jacobian matrix @f at x by D (X). Since® is a diffeomorphism,
Do (X) € GL(3,R). We define a mappingh®,s®) : U — A by

( (] LD)(U,V) _ < n(U,V) T(D¢)71(X(U7V)) S(U,V)Dq;(X(U,V)) >7

s IN(U,v) T(Da) X(X(U,V))]’ [8(u,V) Do (X(U,V))|

whereT Aiis the transpose of the matix Then we show thai® ox,n®,s®):U - R3x A
is a framed surface. In fact, sin¢g/du)(® o x)(u,v) = Xu(u,v)De o x(u,v) and(d/dv)(®o
X)(u,v) = xy(u,v)Dg o X(u,Vv), we have

d ® 1 —1 T 1 T
—(® n?=_———"_ x,D D e =0
(G(®=) 1° = [ e (D (D) o= gt =0
d ® 1 —1_ T 1 T
— X)) n® = —————X,(DpoXx)((D X)) N= ————-—X n=0.
(590028 1° = G e Po e (Po enTn= s for a0
Note that all vectors in this proof are row vectors. Moreover, we have
1
D @ T -1 T T
n.s" = n(' (D X)(' Dg oX
S = T (D) ToxsDaox™ (P@) "eX((Doox)Ts
1 T
INT(Dg)tox||sDe oX|
Therefore(®ox,n®,s®) :U — R3 x A is a framed surface. i

4 Curvatures of framed surfaces

Let (x,n,s) : U — R3 x A be a framed surface with basic invaria(#s .7;,.%,).

Definition 3 We define a smooth mappi@ = (Jr,Kr,Hg) :U — R® by

a by e f1 1 a fp b1 e
Jr = det Kg = det He = —=<det —det .
i (az bZ) F (92 fZ) ah 2{ (az fZ) <b2 62) }

We callCr = (Jr,Kr,Hr) acurvature of the framed surface
Remark 1By the integrability conditior{4), we haveKr = g1y — 02,u.

For concrete examples of curvatures of framed surfaceg6see

Suppose that: U — R3 is a regular surface. Then there exigtss) : U — A such that
(x,n,s) is a framed surface, s€@. LetE = x, - Xy, F = X, - Xy, G = Xy - Xy be the coefficients
of the first fundamental form and= —x, - ny,M = —x, - ny,N = —X, - n, be the coefficients
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of the second fundamental form. The relationship between the first, second fundamental
invariants and the basic invariant is as follows:

E:a§+b§, F = ajby +aphy, G:a§+b§,
L=—aie;—bif;, M=—-aiep—bify, N=—-aper—byfo.

By the integrability conditior{3), we haveM = —aye; — by f1. We denote the Gauss curva-
ture and the mean curvature of the regular surfadogK andH. Then

LN —M? _ EN-2FM+GL

K=—— - =
EG—F2’ 2(EG—F)2

By a direct calculation, we give a relationship between the Gauss curvature, the mean cur-
vature and the curvature of the framed surface, s) as follows.

Proposition 5 Under the above notation, we haveKKr /Jr and H=Hg /Jr.

Let (x,n,s):U — R3 x A be a framed surface with basic invaria(#s, .#1,.%>). Note
that the conditioH? (u,v) — Jg (u,v)Kg (u,v) > 0 holds for all(u,v) € U.

We give a relation between the curvature of the framed surface and the framed surfaces
which given by a rotation frame and a reflection frame. We denote the curvaifires
(38, KE,HE) of the framed surfacéx,n,s?) andCE = (JE,KE,HE) of the framed surface
(x,n",s), respectively.

Proposition 6 Under the above notation, we have the following.
(1) (J€,KE,HE) = (J=, K, H) for any smooth functiof : U — R.
(2) (‘]lrszlrszlr:) = (=Jr,—Ke.Hf).

Proof. (1) By Proposition 1(1), we have
0 1o i
0 aj by ap by [ cosB sin8\ |
= det(ag bg) B det{ <a2 bo) \ —sing coss ) | =

o 0 i
0 e 7\ e f1) [ cos® sinB)|
Ke = det(eg f29> - det{ (ez t,) \—sin6 coss ) | = KF:

We showH? = Hr. By Proposition 1(1), we also have

a? £\  [aicosd —b;sing e;sind + f1cosd
a3 f9) — \@acosh —bysind e;sind + focosh )’

b? e\  [a1sinf+b;cosd e cosd — f1sind
b €5/~ \axsinf+b,cosh e;cosh — f,sin6

It follows that

0 0
det<z%, I16> = a;e,¢088sinf — by fosiNB cosh + ay f,c08 B — by ey sin? @
2 2

—e12,c0S0sin0 + f1b, cosOSING + e by Sinf 6 — f1a,co< 6,

0 o0
det(gle Zé,) = a;8,c080sin6 — by f,cosO sind — a; f5Sir? 6 + bye; coL 6
>

—e1a,c0805sin6 + f1bySiNO cos — ey co 6 + fraxsinf 6.
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Thus, we have

1 ad 9 b? &f
HE = —7{det( 3 1) —det( 3 1)}
Fo2 a; 17 by e
—%(alfzcosze—blezsinze—i—elbzsinze— fia,c0<L 0
+ay fpsin? 8 — bye,cos 0 + e;bycos 6 — frapsin? 0)

1
=5 (a1 fy— fr1ay — b1y +e1by) = He.

(2) By Proposition 1(2), we have
ro a;_ bg_ o a; by 01 _
J = det(arz b,) = det apby)\10) (= Jr,
e fl e1 fl 01
r_ L =
o) =e{(a ) (o)

1 a; f] b €
r_ _= 111 16
=g {e(d ) o (2 3)
_ 1 by —e1) a —f1\ | _
=5 {det(b2 —ez) det(a12 —fz)} =H.
Letg:V —U,(p,q) — @(p,q) = (u(p,q),v(p,q)) be a parameter change. By Propo-

sition 3, (X,1,3) = (x,n,s)o @ :V — R x A is a framed surface with basic invariants
(¥,.71,.7>). We denote the curvature of the framed surf@c@, 3) by (Jr, K, Hr ).

Moreover,

O

Proposition 7 Under the above notation, the curvatuid , Kr,Hr ) : V — R3 is given by

(Jr (p,a), Ke (p,a),He (. @)
= (Jo(p, D) (@(p,9)), Jo(P, DKE (@(p, ), Jp(P, A)HE (@(p,9))),

where § is the Jacobian of the parameter change

Proof. We haveJe (p,d) = Jo(p,d)Je (@(p,q)) and Ke(p,q) = Jp(p.a)Ke (@(p.q)) by
Proposition 3. Since

@i %) (p.0) = (ldz ://Z) (P.0) <Z§ E) (@(p.a),

(E:; 2) (p.a) = (ﬂz :’,Z) (p.q) <E; 2) (@(p.9)).

we haveHr (p,q) = Jp(P, O)Hr (@(p, ). O
The curvature is useful to recognize that the framed base surface is a front or not.

Proposition 8 Let(x,n,s) : U — R3 x A be a framed surface andgU. Then(x,n) : U —
R3 x & is a Legendre immersion around p if and only #(@) # O.
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Proof. We show the necessarily part of the proposition, that i€rifp) = 0, then(x,n) :
U — R3 x S is not a Legendre immersion pt SinceJg (p) = 0, there exisky, k, € R such
thatk? + k3 # 0 andky (a1, ap) + ko (b1, b2) = 0 atp. Moreover, sincér (p) = 0, there exist
hy,hz € R such thath? 4 h3 £ 0 andhy (e, &) + hy(f1, f2) = 0 at p. We divide into the
following four casesk;h; # 0, kohy # 0, kihy 7 0 andkohy # 0.

Suppose thatih; # 0. In this case, we hav@i,az) = —(kz/k1)(b1,b2) and (e, &) =
—(hg/hl)(fl, fg) at P. ThUS,

Xu Ny ~ (bawy fiwy
(XV nv) (p) = (bzwl szz) (p);
wherew; = —(kp/ki)s+t andw, = —(hp/h;)s+t. Sincew; andw, are non-zero vectors,
Xy Nu . . b]_ f]_ o
rank(xv nv) (p) < 2ifand only if det(b2 fz) (p) =0.

Now suppose that d IE; g

_ a fi B b e (ke M by 1
0= det(az fz) (p) det(b2 ez) (p) = ( ke + hl) det(b2 fz) (p).

It follows that

) (p) # 0. By the assumptioHhle (p) = 0, we have

ke hy
TR =0 5)

On the other hand, by the integrability condition (4),

_ a6 by f1 _ hoko by f1
0—det<a2 e2> (p)+det<b2 f2> ()= (—hlkl +1)det( ¢ ) (p)-
Hence, we have

22 1= (6)

By the equations (5) and (6), we hal\é/hf +1=0, and this is a contradiction. Therefore,
by f1
2

we conclude de( (p) = 0. It follows that(x,n) is not an immersion gb. The other

cases are also proved similarly.

Conversely, if ranf ¥ n“) (p) < 2, then there existy, k, € R such thatk? +k3 # 0

Xy Ny
andkj (ag,b1, e, f1) + ko(az, by, €, f2) = 0 at p. By substituting this relations intGg, we
haveCe (p) = 0. O

Remark 2By Propositions 5 and 8, ifx, n) is a Legendre immersion aroupds U andpis
a singular point ok, then the Gauss curvatukeor the mean curvatutd must be divergence
at the pointp.



Framed surfaces in the Euclidean space 11

By Proposition 8, ifCe(p) = 0, thenx is not a front but a frontal at the point, that is,
(x,n) is not an immersion. How about the condition that the framed surface is an immersion
or not? Let(x,n,s) : U — R3 x A be a framed surface with basic invaria(#s .71,.%,). We
define a smooth mappirlg : U — R8 by

g = Cp,det<al 9) det by gl) ,det(el 9) det h gl) ,det(al ).
a g2 b2 g2 & % f2 g Q&
We call the mappingg : U — R® aconcomitant mappingf the framed surfacé, n,s). We

say that(x,n,s) : U — R® x A is aframed immersioiif (x,n,s) is an immersion.

Proposition 9 Let(x,n,s) : U — R3 x A be a framed surface andgU. Then(x,n,s) is a
framed immersion around p if and only (Ip) # O.

Proof. We show the necessarily part of the proposition, that il (ip) = 0, then(x,n,s) is
not a framed immersion gt It is enough to show that

Xu Nu Sy
k 2.
ran (Xv n S/) (p) <

The above condition is equivalent to the following conditions,

Xu Ny Xu Su Ny Sy
rank(xv nv> (p), rank(xv S/> (p), rank( ) (p) <2

By the assumptio@x (p) = 0 and Proposition 8, rar(<X” 25) (p) < 2.

We show ran&(i((“ Z’/) (p) < 2. By the definition of the basic invariants, we have

\

\

XuSu) _ (@s+bit —ein+oit
Xy Sy as+hbot —eon+got /-

SinceJs (p) = 0 and de<g g;) (p) = 0, there exisky, kp € R such thak? + k3 = 0 and

ki(a1,a2) +ko(b1,bp) = 0 atp. Moreover, there exidty, hy € R such thah? +h3 # 0 and
hi(e1,e2) +ha(d1,02) = 0 atp. We divide into the following four casekih; # 0, kohy # 0,
kihy # 0 andkphy # 0.

Suppose thaktihy # 0. In this case, we hav@i,az) = —(ko/ki)(b1,b2) and(er, &) =
—(h2/h1)(91,92) atp. Thus,

Xu Su _ (bawi 1w
(Xv &) ()= (b2W1 gzwz) (P):
wherew; = —(ko/k1)s+t andw, = (hp/h1)n+t. Sincew; andw, are non-zero vectors,

rank( u 2‘/) (p) < 2 if and only if det( 1 gl) (p) = 0. By the assumptiot: (p) = 0, we
V

have de<bl gl) (p) = 0. Therefore, ran<§“ 3) (p) < 2. The other cases are also proved

b2 g2 v
similarly.
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Next, we show ranl(?]: 2’/) (p) < 2. By the definition of the basic invariants, we have

Ny Sy _ [es+ fit —ein+gst
(nv &) ()= <928+ fat —ezn+gzt) )

€ 0
€ 02
K2+ K3 # 0,h2 + 3 # 0, ky (€1, €2) + ka( f1, f2) = 0 andhy (1, &) + ha(g1,92) = 0 atp. We
divide into the following four case&;h; # 0, kohy # 0, kihy #£ 0 andkahy # 0.

Suppose théatihy # 0. In this case, we haver, e2) = —(ko/k1)(f1, f2) and (e, &) =
—(h2/h1)(01,92) atp. Thus,

Ny Sy _ fiw giwe
(nv &) ()= (fZWl 92W2) ()
wherew; = —(ko/k1)s+t andws = (hp/h1)n—+t. Sincew; andw, are non-zero vectors,

rank(?}: ::“I) (p) < 2 if and only if det<fl gl) (p) = 0. By the assumptioh: (p) = 0, we

Since we assumiée (p) = 0 and de ) (p) =0, there exisk, ko, hy,h2 € R such that

f2 g
have de( E gi) (p) = 0. Therefore, ran<:“ 2) (p) < 2. The other cases are also proved
v
similarly. Therefore(x, n,s) is not an immersion gp.

Xy S”) (p) < 2, then there exigity, ky € R such thak?+ k2 0
Xv Ny Sy

andky(az,b1, e, f1,01) + ko(ap, b2, €, f2,02) = 0 atp. By substituting this relations inte,
we havelg (p) =0. O

Conversely, if ran

As a summary, we have the following result.

Corollary 1 Let(x,n,s):U — R® x A be a framed surface andgU.
(1) x is an immersion (a regular surface) around p if and onlytg) # 0.
(2) (x,n) is a Legendre immersion around p if and only @) # 0.
(3) (x,n,s) is a framed immersion around p if and only4f(lp) # O.

Let (x,n,s) : U — R x A be a framed surface witl. We denotdg = (I, ,Irg)
andCr = (Jr,Kr,Hr) = (Ir1,Ir2,Ir3). Let@:V — U, (p,q) — @(p,q) = (u(p,d),v(p,d))
be a parameter change of the domain. We denote the concomitant mapping of the framed
surface(X,1,3) = (x,n,s)o@:V — R3x A by Ir. By Proposition 3, we have the following
proposition.

Proposition 10 Under the above notation, the concomitant mapgingV — R8 is given
by

(ea(p,a), - . Tes(p,a) = (Jp(P, D) IEL(@(P,T)), -, Jp(P. D) IEs(@(P,T)))-

Remark 3We denote the concomitant mapping of the framed surface which given by a
rotation frame (respectively, a reflection frame) Iy(respectivelylf). By Proposition 1
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(1) and(2), we have the following.

0 o0
I8, = det(z%; g%) IF4C0S0 — Ip5Sin6 — det(az gv) cos@—kdet<b1 9“) sing,
2 92
0 o
I§5 = det(gjg- gg) =Ip4sin6 +Ig5c0s8 — det(zz g:j) sm@—det(gi g:) coso,
9 o
I,Q6 = det(%, gé) =g gCc0SO — Ig7Sin@ det<2 &) c036+det(g gt) sin®,
0 o0
18, = det(Ilg gg) IF,Gsin9+IF,7cose—det<221 g‘j) sin9—det<g g::) cosf,
2 %2
0 of
0 ad & B . a fr by €1
18g = det(ag eg) (co 0 —sir?0)lgg cos@sm@{det( ) f2> +det(b2 ez)},
and
roor by — b o1
IL, = det algl):d t< 1 91):7 t( ! )
Fa = €€ <ar2 g *\bs —g b2 g2/’
b df a —01 a 01
r o _ 191) — —
les = det<br2 9,2) = det(a12 e et )
€ d fio
Ifs =det( 1°1) =det
Fo = ¢ <% 95) ° (fz 0)”
fl’ r
7= det( [ &) —aer(2 ),
al & bj_ —f1 b]_ f]_ a; €
r _ 1~ ) — —
Ifg = det<arz %r) = det(b2 7f2) det(b2 ) det(a ez)

that iS,|r = (7JF,7K|: ,HE, 7IF~,57 7||:74, ||:A’7, ||:,57 |Fﬁ8)-

Proposition 11 Let(x,n,s) :U — R3x A be a framed surface with basic invariarit§, 71, .%,).
(1) Suppose thafg:,g2) # (0,0) at pe U. If

det(al 91> — det (bl 91> —de t(el 91) —de t(fl 91)
a2 g2 b2 g2 €9 f29
at p, theng(p)=0

(2) Suppose thatg:,g2) = (0,0) at pe U. If Ce(p) =0, then k(p) =

Proof. (1) By the assumptions, there existc R,i =1,...,4 such that

(a1,82) =Kk1(91,92), (b1,b2) = ka(91,02), (€1,€2) = ka(091,92), (f1, f2) = Ka(91,92)

atp € U. It follows thatlg (p) = 0.
(2) SinceCe(p) = 0 and Proposition 8, n) is not an immersion gb € U. It follows

a €&
that de = 0. Hence we ha =0. O
t(a2 ez) we havé: (p)

Next, we consider parallel surfaces of framed surfaces. For a framed s(xfacs) :
U — R3 x A, we define a parallel surfacé : U — RS of the framed surface by (u,v) =
X(u,v) +An(u,v), whereA € R.
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Proposition 12 Under the above notations s a framed base surface. Indeé#} ,n,s) :
U — R% x A is a framed surface.

Proof. By definition,

X = xu+Any=(ar+Aer)s+ (b + A fo)t,

X, =X +An = (@2 +Ae)s+ (bp+A o)t
Thus,x} -n=x} -n= 0. Since(x,n,s) is a framed surface, we have s= 0. Therefore,
(x*,n,s) is a framed surface. ]

By a direct calculation, we have the following proposition.

Proposition 13 Let(x,n,s) :U — R® x A be a framed surface with basic invariarité, .71, .7>)
and the concomitant mapping.IThen, the basic invariar{t#? , 7}, %3 ) and the concomi-
tant mapping,i of the parallel surfacéx* ,n,s) are given by

G =4 42 @ E) , T =T, TR =T,

I3 =J —2HEA +KeA2, K2 =Kg, H2 =Hp —KgA,

A A A ) A
lga=1ra+Alre, les=Ilrs+Ale7, lEg=Ire IE7=1F7, IFg =IFs.

5 Framed surfaces as one-parameter families of Legendre curves along framed curves

We consider a framed curve in the Euclidean space ([11]) and a one-parameter family of
Legendre curves ([8,27]). We construct framed surfaces as one-parameter families of Leg-
endre curves along the framed curves. The idea is a cut off the surface by a plane of a special
direction along a space curve.

Letl,J C R be intervals with parametetsv, respectively. Foa,b € R3, we denote the
orthonormal plane ad throughb by (a)é, that is,

(@)p = {xeR%a- (x—b) =0}.

If bis the origin, then we denot@)g by (a)* briefly.
Let (y,v1,v2) : | — R3 x A be a framed curve with the curvatugg m n, a), see Ap-
pendix A (cf. [11]). We denotgi(u) = vi(u) x vo(u). For eactu € I, we consider a Legen-
dre curve(x(u,-),vt(u,)) : J — (H(W) g (SN (u(u))t), that is,x(u,v) - vt(u,v) = 0
for all (u,v) € | x J. We identify the Euclidean plan®? and the pIane(u(u))ﬁu)

(ag,a2) > y(u) +agva(u) + apvo(u), and St and N (u(u))* via (by,by) — byvy(u) +
bzv2(u). We consider induced inner product qu(u))* by (agvs (u) +azvz(u)) - (byva(u) +
bavo(U)) = agby + apbp. Under the identification(x(u,-),v-(u,-)) is a Legendre curve in
the sense of Appendix B (cf. [8]). The curvature of the Legendre c(de-),v-(u,-)) is
denoted by(¢-(u,-), B%(u,-)). By definition, there exist functions;,x; : | x J — R such
thatx : 1 x J — R3 is given byx(u,v) = y(u) + X1 (u,v)v1(u) + X2(u,v)vo(u). We assume
thatx; andx, are smooth functions, namely,is a smooth surface. We denaté(u,v) =
Vi (U, v)vy(u) + V5 (U, v)va(u) and pb(u,v) = —vh(u,v)vi(u) + vE(u,v)vz(u). We also as-
sume thatv} and v} are smooth functions. It follows that the curvature of the Legendre
curve(ft, BL) 11 x J — R? is a smooth mapping.

via
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Theorem 3 Under the above notations, suppose that there exists a smooth fufiction

J— R such that ¥(u,v)-n(u,v) = Ofor all (u,v) € | xJ, where 1fu,v) = cos8 (u,v)v\(u,v) +
sin@(u,v)u(u). We define sl x J— S by gu,v) = —u(u,v). Then(x,n,s) : 1 xJ - R3x A

is a framed surface with basic invariants,

ag(u,v) = (Xu(u, V) — X2 (U, v)£(u)) v (U, v) — (Xau(U, V) + X1 (U, V)£(U) ) VE (U, V),

ba(u,v) = sin@(u,v) ((Xau(U, V) — X2(U, V)£(u))V (U, V) + (Xau(U, V) +Xa (U, V) £(U) ) V5 (U, ) )
—cos8(u,Vv)(a(u) + x1(u,v)m(u) + x2(u, v)n(u)),

ag(u,v) = —B-(u,v),

ba(u,v) = 0,

e1(u,v) = sinf(u,v)(n(u)vk(u,v) — m(u)vi(u,v))
+c088/(u, V) (VE, (U, v)v5 (u,v) — vk (U, v)vi (u,v) — £(u)),

f1(U,v) = —6u(u,v) — m(U)vg (u,v) — n(U)v3 (u,v),

g1(u,v) = sin@(u,v) (v, (u,v) Vi (u,v) — vk, (u,v) Vi (u,v) 4 £(u))
+c0s8(u, V) (n(u) Vi (u,v) — m(u)vs(u,v)),

e(u,v) = —cos(u,v)¢(u,v),

fa(u,v) = —6y(u,v),

g2(u,v) = sin@(u,v)et(u,v).

Proof. By definition, we have(u,v) - s(u,v) = 0 for all (u,v) € | x J. It follows that(n,s) €
A. By the assumption, we havg(u,v) - n(u,v) = 0 for all (u,v) € | x J. Sincex,(u,v) -
vt(u,v) =0, we have

X (U, V) - n(u,v) = (Xay(U, V) V1 (U) +Xayv2(u)) - (cosB(u, v)vE(u,v) +sinB(u,v)u(u))
= €0s8(U,V) (Xay (U, V)VE (U, V) + Xy (U, V) V5 (U, V) = 0

for all (u,v) €1 x J. Hence(x,n,s) : 1 x J — R3 x A is a framed surface. We onit, v) and
u below. By a direct calculation, we have

Xu = (Xu — X2€)V1 + (Xou + X1£) V2 + (@ + XgM+ Xon) 4,
Xy = XiyV1 +XoyV2,

N = cosBViv; + cosBvi v, +sindu,

S= V5V — Vivy,

t = nxs=sinBvivy +sinBvsv, —cosdy,

Ny = (—6,SiNBV} 4 cosBv, — cosBvsl — sinBm)vy
+(—6ySiNBVS + cosBVLL + cosBvy, — sinfn)vy
+cosf(vim+vin+6,)u,

Su = (Vg + VIOV + (—VE, + V362 + (Vsm—Vin)p,

n, = —6,sinBvt 4 cosBv! + 6, cosby,

s, = Mt

It follows that we have the basic invariants as the above. O
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By a direct calculation, we have the following condition:

Xu(U,V) - (U, V) = (X1u(U, V) — X2 (U, v)£(u)) cosB(u, v)vi (u,V)
+(Xu(U,V) +Xa (U, V)£(u)) 0SB (U, V)3 (U, V)
+(a(u) +x1(u, v)m(u) +x2(u, v)n(u)) sinB(u,v)

=0

forall (u,v) e xJ.
By the above construction, we say that the framed surfages) is a one-parameter
family of Legendre curves along a framed curve
As an application of Theorem 3, we give a condition that the surtaseliffeomorphic
to the cuspidal edge, the swallowtail and the cuspidal cross cap, see Figure 1 and Examples
1, 2 and 3 ok6 for definitions.

cuspidal edge swallowtail cuspidal cross cap
Figure 1.

We recall the criteria for singularities of frontals stated in [5,18] (see also, [15]). Let

x:U — R® be the frontal of a Legendre surfaten). We define a functiod : U — R
by A (u,v) = det(xy, Xy, n)(u,v) where(u,v) is a coordinate system dn. We callA adis-
criminant function(or, asigned area density functipriWhen a singular poinp of x is non-
degenerate, that islA (p) # O, there exists a smooth parametrizat@f) : (—€,&) —» U,
0(0) = p of the singular se$(x). We call the curved(t) the singular curve of. Moreover,
there exists a smooth vector figjdt) alongd satisfying that) (t) generates keixs;). Now
we define a functiong(t) on (—&,€) by gk(t) = det{(xo d)’,no d,dn(n))(t). By using
these notations, we have the following theorem.

Theorem 4 ([5,18]) Let (x,n) : U — R® x S be a Legendre surface andgpU be a non-
degenerate singular point of x. Then the following assertions hold.

(1) If nA(p) # 0, then x is a front near p if and only @ (0) # O holds.

(2) The map germ x at p is/-equivalent to the cuspidal edge if and only if x is a front
near p andjA(p) # 0 hold.

(3) The map germ x at p is7-equivalent to the swallowtail if and only if x is a front
near p andnA (p) =0andnnA(p) # 0 hold.

(4) The map germ x at p i-equivalent to the cuspidal cross cap if and only ¥ (p) #
0, ¢x(0) = 0 and ¢g(0) # 0 hold.

Here,nA : U — R means the directional derivative afby the vector fieldj, wherei
is an extended vector field gfto U.

In this paper, if there is no confusion, we dengtby 7. By using the above theorem, we
give criteria of singular points of the framed base surface which is given by a one-parameter
family of Legendre curves along a framed curve.
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Theorem 5 Let (x,n,s) : | x J — R3 x A be a one-parameter family of Legendre curves
along a framed curve. Suppose thany0) = y(u), the set of singular points gfis dense in
I and (0, 0) is a non-degenerate singular point of x. Then we have the following two cases.

(A) Suppose thgB'(0,0) = 0 and a (0) # 0.

(1) x at (0,0) is «7-equivalent to the cuspidal edge if and onlygif(0,0) # 0 and
¢-(0,0) #£ 0.

(2) x at (0,0) is </-equivalent to the swallowtail if and only & (0,0) = 0, B5,(0,0) #
0,B5(0,0) # 0 and¢-(0,0) # 0.

(3) x at (0,0) is «7-equivalent to the cuspidal cross cap if and onlyB{f(0,0) #
0,¢-(0,0) = 0 and (¢~ 0 6)'(0) # 0.
B) Suppose thag8-(0,0) # 0anda(0) = 0.

=

(
(1) x at(0,0) is 7-equivalent to the cuspidal edge if and onlyif0) # 0 andvi (0,0)m(0) +
v3(0,0)n(0) # 0.
(2) x at (0,0) is «/-equivalent to the swallowtail if and only @’(0) = 0,a”(0) #
0,v3(0,0)m(0) — v1(0,0)n(0) # 0 and vy (0,0)m(0) + v3(0,0)n(0) # 0.
(

2
3)xat(0,0) is o - equwalent to the cuspidal cross cap if and onlgif0) # 0, vk (0,0)m(0) +

v3(0,0)n(0) = 0 and ((B"(vim+vzn+6u) +a16,) 0 5)'(0) # 0.

Here d is a singular curve of x.

=

Proof. Letx(u,v) = y(u) +X1(u,v)v1(u) +x2(u,v)v2(u). By the assumptiop(u) = x(u,0),
we havex; (u,0) = x2(u,0) = 0 for all u € I. Moreover, since the set of singular points of
y is dense in andx,(u,v) - n(u,v) = 0, we have sif(u,0) = 0 and hence cd¥u,0) =
+1. By by(u,v) = 0 in Theorem 3, we hava(u,v) = —by (u,v)az(u,v) = B-(u,v)by (u,v).
Since(0,0) is a non-degenerate singular poinbofve divide two casegA) (0,0) = 0
andby(0,0) # 0, (B) B-(0,0) # 0 andby(0,0) = 0. Moreover, we have,(0,0) # 0 or
Av(0,0) £ 0. By the integrability condition o&;e; + by f; = azey + bp f1, we havea 6, =
—BY (v, vk — vk vk —¢) at (0,0). The other integrability conditions automatically hold at
(0,0).

First we consider the cagd). By Theorem 3)b;(0,0) £ 0 if and only if a(0) # 0.
Moreover,bs (u,0) = +a(u) # 0 around 0 |. Thereforey is a regular curve around®l.
In this case(u,V) is a singular point ok if and only if B-(u,v) = 0. Sincedx = x,du-+
x/dv= (a15+ bit)du+ apsdvanday(u,v) = —B%(u,v), the null vector field] is given by
d/0v. Therefore, the conditionA (0,0) # 0 is equivalent tg8} (0, 0) # 0, and the conditions
nA(0,0) = 0 andnnA(0,0) # 0 are equivalent t@}(0,0) = 0 andB,(0,0) # 0. Since
(0,0) is a non-degenerate singular point>ofwe haveB}(0,0) # 0 or B5(0,0) # 0. By
the integrability condition, we havé,(0,0) = 0. By a direct calculation, we hav&s =
—(-(vEm+vin) andHg = aft at(0,0). It follows thatx is a front around0, 0) if and only
if £-(0,0) # 0 by Proposition 8. Therefore, by Theoremxdat (0,0) is .7-equivalent to
the cuspidal edge (respectively, the swallowtail) if and on§(if0,0) # 0 and¢-(0,0) # 0O
(respectivelyBL(0,0) = 0, 85(0,0) # 0, B+(0,0) # 0 and¢“(0,0) # 0).

We now consider the condition for the cuspidal cross cap. $jad¢®, 0) = BL(0,0) # 0,
the singular curve is given by the formd(t) = (t,v(t)), wherev is a smooth function with
v(0) = 0. By a direct calculation,

(x08)" = (& +X1M~+XoN) U 4 (Xgy — BEVEV — Xol) V1 + (Xou + BEVEV + x1.6) v
Nod = cos(Vivy + viva) +sinfu
dn(n) = (—6,sinBvi —cosbrtv5)vy + (—6,sinBvs + cosBitvi)va + B, cosBu.
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By straightforward calculations, we have

¢ = det((x08)",no ,dn(n))
= (@ +xam+xen)- 4 (xqy — BVEV — Xof) (Byv5 — sinB cosBrtvk)
+(Xou+ BVIV +Xx10) (— BV — sinB cosOi-vy).

It follows that ¢x(0) = a(0)¢-(0,0) and @ (0) = a(0)(¢- o &)'(0) under the condition
@x(0) = 0. Therefore, by Theorem %,at (0,0) is «7-equivalent to the cuspidal cross cap if
and only if 35 (0,0) # 0,¢-(0,0) = 0 and(¢- 0 5)'(0) # 0.

Second we consider the ca@®). Sinceb;(0,0) = Fa(0) =0, 0 is a singular point
of y. In this case(u,v) is a singular point ok if and only if b;(u,v) = 0. Sincedx =
Xydu+ x,dv = (as+ byt)du+ apsdv= a;sdu— Bsdvon the singular set of, the null
vector fieldn is given byB‘(u,v)d/du+a;(u,v)d/dv. Note that we havey (u,0) = O for
allue|. Therefore, the conditionA (0,0) # 0 is equivalent ta’(0) = 0, and the conditions
nA(0,0)=0andnnA(0,0) + 0 are equivalent ta’ (0) = 0 anda” (0) # 0. Since(0,0) is a
non-degenerate singular poinbgfwe haveby,(0,0) # 0 orby,(0,0) # 0, that is,a’(0) # 0
or v5(0,0)m(0) — v£(0,0)n(0) # 0. By a direct calculation and the integrability condition,
we haveKe = —¢-(vim+ vin) andHe = (1/2)B-(vim+vin) at (0,0). It follows that
x is a front around0,0) if and only if vi(0,0)m(0) + v5(0,0)n(0) # O by Proposition 8.
Therefore, by Theorem 4,at (0,0) is «7-equivalent to the cuspidal edge (respectively, the
swallowtail) if and only if a’(0) # 0 and v} (0,0)m(0) + v5(0,0)n(0) # O (respectively,
a’(0) = 0,a”(0) # 0, v5(0,00m(0) — vi(0,0)n(0) # 0 andvi(0,0)m(0) + vk (0,0)n(0) #

0).

We now consider the condition for the cuspidal cross cap. Siid®,0) # 0 is equiv-
alent toa’(0) # 0, the singular curvé is given by the formd(t) = (u(t),t), whereu is a
smooth function withu(0) = 0. By a direct calculation anio (u(t),t) =0,

(x08) = (o +xam+XenU t + (xgut — BV —xlU' )v1 + (XouUd + BEVE + x00U )2
= tanB((Xqy — X2l ) Vi + (Xou +x10)v5)Uu' u
+(Xaul — BEVE —xolU Y1 + (XouU + BEVE 4+ x00U ) v,
nod = cosh(Vivy + vivp) 4 sinbu
dn(n) = (sin@(—6,B v — B*m— B,arvi) +cosB(BLvi, — BLval —agftvh))vy
+(sinB(—6yB-vs — B-n— Ba1vy) +cosO(B-vs, + B-vil + agf-vi))vo
+cos0(B-(vim+von+ 6,) +a16,) .
By straightforward calculations, we have
@ = det(x0d)’,nod,dn(n))
= SiNG ((Xay — Xol) VI + (Xou +X10) V5 ) U
X (sinGBL(—vanJr vim) 4 cosf(Bvivs, — BLus vk, +BL€+a1éL)>
+(xquU — BLvE — xoll) (co§ OVE (B (vim+vin+6,) +a16)
—sinB(sinB(—6,B-vs — Btn— Ba1vy) +cosB(BLvh, + BLvir+ alﬁLvlL)))
+(xuU + BV xp o) (— cog Ovk (B (vim+vin+ 6y) + a16,)

+sinB(sind(—B,B v — Btm— Bayvh) + cosB(BL VL, — BLvbe— alevaL))).



Framed surfaces in the Euclidean space 19

It follows thatgx(0) = —(BL(0,0))2(vi(0,0)m(0) + v5(0,0)n(0)), andgk(0) = (BL(vim+
vin+ 6y) +a16,) o 6)'(0) under the conditiorgk(0) = 0. Therefore, by Theorem %,at
(0,0) is <7-equivalent to the cuspidal cross cap if and onlyff0) # 0,vi(0,0)m(0) +
v5(0,0)n(0) = 0 and(B-(vim-+vin+ 6,) +a16,) 0 5)'(0) # 0. This complete the proof of
the Theorem. o

Remark 4Under the same assumptions in Theorem ¥(if) is the image of the singular
curve ofx, then it holds that the singular set$6x) = {(u,0)|u € I} and one has the case
(A). Since the null vector field) and the singular directiod’ are linearly independent at
(0,0), the singular point0,0) can not be the swallowtail.

Remark 5The conditions/5 (0,0)m(0) — vi(0,0)n(0) # 0, vk (0,0)m(0) + v5(0,0)n(0) # 0
in Theorem 5B) (2) is equivalent to the conditiofm(0),n(0)) # (0,0).

Corollary 2 Let (x,n,s) : 1 xJ — R3x A be a one-parameter family of Legendre curves
along a framed curve. Suppose thatl — R®is a regular curve, f,-) : J — (u(u))ﬁu) is
diffeomorphic to thé&/2-cusp at0 € J and Xu,0) = y(u) forallu € I. Then x| x J — R3

is a front around(u,0). More precisely(x,n) : | x J — R® x & is a Legendre immersion

around(u,0). Moreover, x is diffeomorphic to the cuspidal edg€aD).

Proof. Sinceyis a regular curve, we hawe(u) # 0 for allu € |. Moreoverx(u, -) is diffeo-
morphic to the 32-cusp at G= J if and only if x,(u,0) = 0 and defx,y(u, 0),x(u,0)) # 0,
for allu e | (cf. [4,9,13]). By the definition of the curvatufé-(u,v), 3-(u,v)) of the Leg-
endre curvex(u,-),vt(u,-)), we have

XV(U’V) = BL(U>V)HL(qu)a
Xw(U,v) = B (u,v) b (u,v) — B (u,v) et (u, v)vh(u, v)
Xo(Uy V) = (B (U, V) — BY(u,v) (25 (u,v))?) (U, v) — 2B (u,v) £ (U, v) vt (u,v).

It follows thatB“(u,0) = 0, BL(u,0) # 0 and/-(u,0) # 0 for all u € I. Sincex(u,0) = y(u),
we havex; (u,0) = x2(u,0) = 0 for allu € |. Thereforex,(u,0) = x2u(u,0) = 0. Moreover,
by the conditiorx,(u,v) - n(u,v) = 0 for all (u,v) € 1 x J, we havea (u)sin8(u,0) =0 and
hence sif(u,0) = 0. Thenay (u,0) = 0, by (u,0) = —cosB(u,0)a(u),ax(u,0) = —B~(u,0),
b2(u,0) = 0, ex(u,0) = —cos8(u,0)¢(u,0), f2(u,0) = —8,(u,0),g2(u,0) = 0. It follows
thatHg (u,0) = (1/2) cos 8(u,0)a (u)¢-(u,0) # 0 for all u € 1. By Proposition 8(x,n) is a
Legendre immersion arourid, 0). Hencex is a front aroundu, 0). Moreover, by Theorem
5 (A) (1), xis diffeomorphic to the cuspidal edge(at 0). |

We also have the following result.

Theorem 6 Suppose that XU — RR? is diffeomorphic to the cuspidal edge@e U. Then
there exist a parameter change | x J— U aroundO and a smooth mapping,s) : | xJ —

A such that the framed surfad&o @,n,s) : | x J — R3 x A is given by a one-parameter
family of3/2-cusp at0 € J along a regular curvey: | — R® around0 € I.

Proof. The normal form of cuspidal edge by using coordinate transformations on the source
and isometries on the target is given by [20]. Since the property of one-parameter family of
Legendre curves along a framed curve are invariant as isometries on the target, there exists a



20 Tomonori Fukunaga, Masatomo Takahashi

parameter change: | x J — U around 0 such that= xo @ is given by the following form
around(0,0) € | x J:

X(u,v) = <u7a(u) + g,b(u) +Vv2hy(u) +v3b3(u,v)> ,

wherea(0) = &(0) = b(0) = b(0) = by(0) = 0 andbs(0,0) + 0, by the proof of Theorem
3.1in [20]. Here we relabelled the coefficient functions.

We define a regular curvg: | — R3 y(u) = (u,0,0). If we take (vy,v2) : | — A by
vi(u) = (0,1,0),vo(u) = (0,0,1), then(y, vy, v2) : 1 = R3x A is aframed curve. By, (u,v) =
(0,v, 2vip (u) + 3v2bs(u, V) +v3bay (U, V), we havev(u,v) = vk (u,v)va(u) + v (u,v)va(u)
andu®(u,v) = —v5(u,v)vi(u) + Vi (U, v)vo(u), where

vhu) = — 20 (u) + 3vis(u, v) + v2bgy (U, V) 7
/(2bz(u) + 3vis(u, V) + v2bgy (U, v))2 + 1
1
V/(2b2(u) + 3vbz(u, v) + v2bg, (U, v))2+ 1

vs(uv) =

It follows that the curvature of the Legendre cu(®éu,-),v\(u,-)) is given by

3bg(u, V) + 5vhay (U, V) + V2ban (U, V)
(2bp(u) + 3vbs(u,v) +v2bgy(u,v))2 + 1’

B-(u,v) = fv\/(2b2(u) + 3vbs(u, V) 4+ v2bg, (U, v))2 + 1.

M) =

We denote

& (u) (20?4 3vbs(u, v) + V2bgy (U, v)) + b (u) + V20, (u) + v3bgy (U, v)
/(202(U) + 3V (U, V) + VZbay(Uv))2 1 1 '

¢(U,V) =

Then we define a smooth mappifgs) : | xJ — A by

1 ¢ (u,v)
n(u,v) = \/WVL(U,V) — mu(u),s(u,v) = —ut(u,v).

SinceX,(u,v) = (1,& (u), b (u) +v2by(u) +v3bay(u, v)), we havex,(u,v) -n(u,v) = 0 for all
(u,v) € I x J. It follows from Theorem 3 thafX,n,s) is a framed surface. Moreover, since
x1(u,v) = a(u) +Vv2/2 andxy(u, V) = b(u) +v2by(u,v) + v3bz(u, V), we have

(X1, %2)v(U, V) = (V, 2vhp(u) + 3v2bg(u, V) +V3bay(u,V)),
(X1, %2)w(u,V) = (1,2bp(u) 4 6vhbs(u,Vv) + 6v2hsy (U, V) + V3baw(u, V),
(X1, X2)w(U, V) = (0,6b3(u, V) + 18vhgy (U, V) + Wbz (U, V) + V3bauy(U, V).

It follows that (x1,X2)v(u,0) = 0 and def(x1,%2)w(U,0), (X1,X2)ww(U,0)) = 6bz(u,0) # 0
around(0,0) € | x J. Therefore(u,0) is a 3/2-cusp ofX(u, -) around O I. O

The singularities of the swallowtail and of the cuspidal cross cap are more complicated
(cf. [6,22,25]). The corresponding results for Corollary 2 and Theorem 6 of the swallowtalil
and the cuspidal cross cap (and other singularities) are future problems (cf. [10]).
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6 Examples

We give typical examples of singularities of smooth surfaces. We detect the basic invariants
and curvatures of framed surfaces.

Example 1 (cuspidal edgé) singular pointp € U of a mappingx : U — R3 is called a
cuspidal edgéf the map gernx at p is «7-equivalent (right-left equivalent) to the,v) —
(u,v2,\%) at 0. Letx : R? — RS2 be given byx(u,v) = (u,v?,v3). If we take(n,s) : U — A4,
n(u,v) = (1/v9v2+4)(0,-3v,2),s(u,v) = (1,0,0), then(x,n,s) :U — R x A is a framed
surface. Since(u,v) = (1/v/9v2+4)(0,2,3v), we have the following basic invariants.

a]_bl - 1 0 e]_f]_g]_ . 0 0 0
ahy)  \Owwn2+4)’ e fog) 0—6/(9V2+4)0 ’
It follows that the curvatur€ of (x,n,s) is given by
3
— /o2 — -_°
Jr(u,V) =vvV9v? +4, Ke(u,v) =0, Hr (u,V) YW
Example 2 (swallowtailp singular pointp € U of a mappingk: U — R3 is called aswal-
lowtail if the map gernx at pis .«7-equivalent to théu, v) — (3u*+ u?v, —4u® — 2uv,v) at 0.
Letx: R? — R3 be given byx(u,v) = (3u* 4 uv, —4u® — 2uv,v). If we take(n,s) :U — A,
n(u,v) = (1/v1+u2+u?)(L,u,u?),s(u,v) = (1/v1+u?)(u,—1,0), then (x,n,s) : U —
R3 x A is a framed surface.
Sincet(u,v) = (1/v1+ w2+ utV/1+u2) (W, u3, —1— 1?), we have the following basic

invariants.
ag by (1202 +2v)V/1+u2 0
<a2 b2> = U(2+U2) Y Hud+ut |
V1402 V1412
e f1 g _ 1 _ u(2+u?) w
151 _ VI w142 (@20t 12 (1+2)y/ 1t )
e f2 0 0 0 0
It follows that the curvatur€c of (x,n,s) is given by
1+5u? +5u* 4 ub
Je (U, V) = 2(6U% 4+ V)V 1+ U2+ u, Ke(u,v) =0, He (u,v) = — .
F( ) ) ( + ) +uc+ut, F( ) ) ) F( ) ) 2(1+U2+U4)(1+U2)

Example 3 (cuspidal cross cap)singular pointp € U of a mapping«: U — R2 is called
acuspidal cross cajf the map gernx at p is .«7-equivalent to théu,v) — (u,v2,uv?) at 0.
Letx: R? — R3 be given byx(u,v) = (u,v2,u\?). If we take(n,s) :U — A,
1 1

— = (=2 -3uv2),s(u,v) = 1,0,\°),
\/4v6+9u2v2+4( ) s(Y) l+v5( )
then(x,n,s) : U — R3 x A is a framed surface.

Sincet (u,v) = (1/v4v® 4 9u2v2 + 4/1+V6) (—3uv?, 28 4- 2, 3uv), we have the follow-
ing basic invariants.

<al b1> (\/ 146 0 )
= 3wP W aASauRv244 |,

n(u,v) =

a b
22 14+v8 14+v6
6vy/ 148
e fign) _ 0 T A2 14 0
efo) |- 6v2 6u(2°-1) ou® :
VAP 14/ 118 (48+9URV2+4)\/1-1V8  \/4B+OURV2+4(1+8)
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It follows that the curvatur€e of (x,n,s) is given byJg (u,v) = vv/4v6 + QU2 + 4,

362 e (o) — (5P 1)
(AF+oud2+4)32" T T T AS 2 14

Kr (u,v) = —

Example 4 (cross cap) singular pointp € U of a mappingx: U — R3 is called across
capif the map gernx at p is .«7-equivalent to théu,v) — (u,v?,uv) at 0. Letx: R? — R3

be given byx(u,v) = (u,v?,uv). Then it is well-known that the cross cap is not a frontal.
However, if we consider the polar coordinage R x R — R?,(r,8) — (rcos8,rsing),
thenxo @ is a frontal and the images are the same (cf. [7]). Noteghatnot diffeomorphic
but surjective. We rewrit&o @ asx: R x R — R3, x(r,0) = (r cosf,r?sinf,r?cosfsing).

In this case, if we takén,s) : R xR — A,

1

Var2sint 6 + 3sirf 0 + 1

s(r,0) = ¥(O,Zsin9,cose),

V3sirf8+1

then(x,n,s) : R x R — R® x A is a framed surface. Since

n(r,0) = (—2rsir? @, —cosh, 2sind),

1
\/(4rzsin49+33in29+1)(Ssir129+1)

t(r,0) = (—(3sirf 8+1), 2r sir? 6 cosf, —4r sin° 6)

)

we have the following basic invariants.

2r sinf(sin? 6+1) —cosBy/ 4r2sirt* 8+ 3sir? 6+1
ap by _ V/3sirf6+1 \/3sirP6+1
a by ’

r2cos@ /33ir126+1 rsinf+/4r2sin 6+3sir? 6+1
V/3sirP6+1

<91 f 91> _
e fHho
0 2sir? 64/3sirf 6+1 0
2
Vi

4r2sirf* 6+3sirf 0-+1
2r sin@ cosh (3sir? 6+2) 4rsi 0

4r2sin 9+ 3sir 6+1)(3siP 6+1) (4r2sirf* 0+3sirP 0-+1)y/3siP 0+1 \/4r2sinf +3sir? 6+1(3sir? 0+1)

It follows that the curvatur€e of (x,n,s) is given by

r2(2sin@(sin? 6 + 1) 4+ co& 6 + 1)\/4r2sir’* 6 + 3sirf 6 + 1

Jr (r, 6) =

3sif6+1 ’
2sirf @
K r,@ - - ’
F(1.6) (4r2sint @ + 3sirf 6 + 1)2/3
2cosf(—3r2sin’ @ + 8r2sin’* 8 + 3r2sinf + 3sirf 6 + 2)
He (r,B) = — .

(4r2sin* @ +3sirf 64 1)(2sirf 6 + 1)

EspeciallyCr (r,8) # 0 for any(r,0) € R x R, that is,x is a front by Proposition 8.
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A Framed curves in the Euclidean space

We quickly review on the theory of framed curves in the Euclidean space, see detail [11].

A framed curve in the Euclidean space is a smooth curve with a moving frame. We séy, that») :
| — R3x A is aframed curvef y(t)-vy(t) = 0 andy(t) - vo(t) = 0 for allt € |. We say thay: | — R%is a
framed base curvi there exist vy, v2) : | — A such thaty, v1, v2) is a framed curve.

We putpu(t) = vi(t) x va(t). Then{vy(t),va(t), u(t)} is @ moving frame along the framed base curve
y(t) in R3 and we have the Frenet-Serret type formula,

v:l(t) 0 L(t) m(t) vi(t)
(v;(t)) - ( —t) 0 n(t)) (Vz(t)) Y0 = au)
() —m(t) —n(t) 0" ) \ u(t)

wherel(t) = vy (t) - vo(t), m(t) = va(t) - u(t),n(t) = vo(t) - u(t) anda(t) = y(t) - p(t). We call the functions
(¢,m,n,a) the curvature of the framed curviote thaty is a singular point of/if and only if a(tg) = 0.

Definition 4 Let(y, vy, V) and(y, V1, V») : 1 — R® x A be framed curves. We say that vy, v») and(y, V1, V»)
arecongruent as framed curvéfghere exist a constant rotatighe SQ(3) and a translatioa € RS such that
V(t) = A(y(t)) +a, vi(t) = A(vi(t)) andvy(t) = A(vo(t)) forallt € 1.

Theorem 7 (The Existence Theorem for framed curves, [18) (¢,m,n,a) : 1 — R* be a smooth mapping.
There exists a framed curyg, v1,vz) : | — R® x A whose curvature of the framed curve(ism,n, a).

Theorem 8 (The Uniqueness Theorem for framed curves, [LH)(y, v1,v2) and (¥,V1,V2) : 1 = R x A
be framed curves with the curvatufg m,n,a) and (¢,m, i, @), respectively. Thefy, v1, v,) and (¥, V1, V)
are congruent as framed curves if and only if the curvatfes, n, o) and (¢, M,A, @) coincide.

B Legendre curves in the Euclidean plane

We quickly review on the theory of Legendre curves in the unit tangent bundléRdysee detail [8].

We say thaty,v) : | — R? x Stisa Legendre curvé (y,v)*8 = 0 for allt € I, where8 is a canonical
contact form on the unit tangent bundigR? = R? x St overR? (cf. [1,2]). This condition is equivalent to
y(t)-v(t) =0 forallt € . We say that: | — R? is a frontal if there existy : | — St such that(y, v) is
a Legendre curve. Examples of Legendre curves see [13,14]. We deapte (—ay,a;) the anticlockwise
rotation by7r/2 of a vectora = (a;,a) € R?. We putu(t) = J(v(t)). Then{v(t), u(t)} is a moving frame
of a frontaly(t) in R and we have the Frenet type formula,

(20)= (0 6 (1)) o =pwue,

where((t) = v(t)- u(t) andB(t) = y(t) - u(t). We call the pair¢, 3) the curvature of the Legendre curve

Definition 5 Let (y,v) and(y,V) : | — R? x S! be Legendre curves. We say tiigtv) and(y, V) arecon-
gruent as Legendre curvébthere exist a constant rotatioh € SQ(2) and a translatiom € R? such that
y(t) = A(y(t)) +aandv(t) = A(v(t)) forallt €.

Theorem 9 (The Existence Theorem for Legendre curves, [83) (¢,8) : | — R? be a smooth mapping.
There exists a Legendre curfg v) : | — R? x St whose curvature of the Legendre curvéds).

Theorem 10 (The Uniqueness Theorem for Legendre curves, [8§)(y,v) and (V,V) : | — R? x St be
Legendre curves with the curvatures of Legendre cut¥g®) and (¢, 3), respectively. Thefy, v) and (Y,v)
are congruent as Legendre curves if and only if the curvat(tg8) and (¢, 8) coincide.

Acknowledgements The authors would like to thank the referee for helpful comments to improve the origi-
nal manuscript.
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