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 1.  
General introduction  

1.1. Relevance of the present work 

Population aging and the global burden of late-life diseases 

Only one century, i.e. from 1850 to 1950, was needed for humans to double their life expectancy 

[1] (Figure 1.1). Much of this dramatic increase in life expectancy can be explained by lower 

early life mortality after improvements in the quality of water, food, hygiene, housing, and 

medical care [2]. In this millennium (from 2000 to 2016), life expectancy has only risen 4.76 ± 

1.12 years so far (life expectancy nowadays is ~77 years in developed countries; see 

http://apps.who.int/gho/data/view.main.SDG2016LEXREGv?lang=en; accessed 03.2019).  

 

 

Figure 1.1. World life expectancy estimates compared, 1800 - 2001 (modified from [3]). HDR 

= UNDP, Human Development Report, various years; WDI = World Bank, World 

Development Indicators 2004. SOURCES: World Bank 2004; United Nations Development 

Programme (various years); United Nations 1995, 1998; Siampos 1989, who on p. 424 

reproduces without reference what may be a League of Nations or UN estimate for 1930; United 

Nations 1975a: 1; 1975b, I: 175; and 1988 

 

However, living longer does not necessarily mean that the years gained are characterized by 

health and reproductivity [4]. Infectious diseases do no longer represent leading causes of death 
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in developed populations, but they have been replaced by chronic degenerative diseases like 

cancer and cardiovascular diseases that occur later in life (a phenomenon known as 

"epidemiologic transition" [5]. While the shift from early mortality by infectious diseases to 

long lives with chronic diseases was triggered, as aforementioned, by improved lifestyle 

(hygiene) and medical conditions (vaccines, antibiotics), curing degenerative diseases 

nowadays is still hindered by knowledge gaps concerning the mechanisms of aging [6, 7]. It is 

well accepted that aging, the progressive accumulation of molecular damage and consequential 

loss of biological functioning, is the most important risk factor for chronic diseases and drives 

both morbidity and mortality [8]. 

 

The proportion of elderly is increasing and an alarming 16-20% of the late life is spent in 

morbidity, partly because medical treatments allow diseased people to survive longer with their 

illness [9, 10]. Late-life diseases become a global burden with vast economic implications [7]. 

If or how long the increase in life expectancy will continue or if there is a limit to human lifespan 

is lively debated among scientists [6, 11]. Some researchers even foresee a reversal, i.e. an 

eventual decrease in life expectancy [12]. 

 

One focus of modern aging research is on how to compress the morbid phase at the end of life 

(see e.g. [13]). Both aging and longevity have a genetic contribution, and both are also vastly 

influenced by environmental factors [14, 15]. Obviously, long-lived individuals (LLI) are also 

aged and show the common signs of aging (e.g. wrinkles, grey hair). The likelihood of a long 

lifespan, i.e. of becoming long-lived, is limited by individual aging processes. It becomes clear 

that aging and longevity are different phenotypes, but highly connected. In the past, both studies 

using (genetically modifiable) model organisms and research on LLI have helped shed light on 

genes and pathways responsible for or contributing to (healthy) aging and longevity. 

 

1.2. Aging and longevity in model organisms 

Aging can be defined as a progressive functional decline of an organism with  a gradual 

deterioration of physiological function, including a decrease in fecundity [16, 17]. Sometimes, 

“aging” and “senescence” are used synonymously; however, the latter term rather refers to 

processes in a single cell [18]. 

 

The aging process, particularly in metazoans, appears to derive from intrinsic cellular 

mechanisms acting in parallel with changes in tissues. Scientists hypothesize that bone marrow 
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stem cells are crucial in the aging process due to their high self-renewal capacity [19]. Others, 

however, state that aging is controlled by a specific tissue or organ (e.g., the hypothalamus) 

rather than single cell populations [20–22]. Yet, despite the complexity of the aging processes, 

there is no scientific basis for the notion that aging is an inevitable process that cannot be 

stopped or postponed [23]. Many aging and longevity-associated pathways are evolutionarily 

highly conserved. Therefore, studies in model organisms, including yeast, nematodes, fruit 

flies, and mice, help shed light on those processes. Despite the yet not fully resolved aging 

mechanisms, it has been demonstrated in model organisms that lifespan can be extended to 

some degree. For example, mutations in genes associated with the insulin/insulin-like signaling 

pathway (such as daf-2, daf-12, daf-16, or PI3KCS) in the nematode Caenorhabditis elegans (C. 

elegans) extended the lifespan of the organisms nearly 10-fold [24]. In mice, over-expression 

of the klotho gene which acts as a circulating hormone extended lifespan by ~30% [25], and 

disruption of the growth hormone receptor extended lifespan by more than 40% [26]. 

Furthermore, mice with mutations in Prop1 (a transcription factor that regulates Pit1, a gene 

related to the insulin/insulin-like signaling pathway) lived twice as long as control mice that 

did not carry the mutation [27]. 

 

Caloric restriction (CR), i.e. reduced energy intake without malnutrition, appears to be the only 

lifestyle intervention so far that has led to increased lifespan in various lower model organisms, 

e.g. in C. elegans and in the fruit fly Drosophila melanogaster (D. melanogaster). Studies have 

also shown beneficial effects of CR on survival and health in mammals like mice and rhesus 

monkeys [28–30], and very recently, CR led to improved health measures (e.g. reduction of 

oxidative damage) in healthy non-obese humans [31]. 

 

1.2.1. The potentially immortal freshwater polyp Hydra vulgaris 

Along the evolutionary tree, diverse forms of aging appear which are reflected in wide 

differences in lifespan. For example, some species of reptiles, amphibians, fishes and birds 

appear to be able to delay age-related pathologies, maybe even the aging process itself [32]. 

Others, like the freshwater polyp Hydra (Figure 1.2), display negligible senescence or even 

escape the aging process by coupling vegetative propagation to sexual reproduction [33, 34]. 

 

 

 

 



4 
 

 

Figure 1.2. The freshwater polyp Hydra in its completely differentiated form (modified from 

[35]). 

 

Hydra is considered to be potentially immortal. Impressively, when gametogenesis is induced 

in Hydra (e.g., H. oligactis or Pelmatohydra robusta), aging patters seem to emerge which lead 

to the death of the organism within 100 to 120 days [34]. Gametogenesis in Hydra was shown 

to be associated with loss of interstitial stem cells and their somatic derivatives [34]. This 

pattern resembles the humans aging process which is related to the reduction of the capacity of 

self-renewal due to loss of somatic stem cells [36, 37]. Therefore, Hydra’s immortality was 

initially thought to be due to its asexual mode of reproduction. However, nowadays, it is widely 

accepted that the self-renewal capacity of the stem cell lineages contributes significantly to 

Hydra´s immortality, and one of the genes correlated with this capacity is the forkhead box O 

(FoxO) gene [38]. FoxO is an evolutionarily conserved transcription factor with a well-known 

role in cellular responses to environmental and physiological stress [39], and has been validated 

as a central regulator of lifespan across species [40]. In H. vulgaris, FoxO correlated with stem 

cell proliferation, budding processes and continuous self-renewal capacity [38]. Additionally, 

FoxO was shown to be crucial for the functional maintenance of the innate immune system and 

immune peptides production [35, 41]. Experimental evidence from studies in flies, worms and 

mice indicated that FoxO extends lifespan by stimulating cell survival, stem cell control, and 

tissue homeostasis [39, 40]. Strikingly, specific mutations in the human FOXO3 gene 

predispose to human longevity [42–44]. 

 

In addition to Hydra's immortality status, its potential as a model organism for aging and 
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longevity studies is remarkable. Studies focusing on the identification of orthologous genes 

among species showed that Hydra shares at least 6,071 genes with humans [45]. Impressively, 

of 259 human aging genes, 207 (80%) were shared by Hydra. In contrast, some of the human 

aging genes shared by Hydra were missing or poorly conserved in D. melanogaster and C. 

elegans (e.g., MDM2 or TGFβ inhibitor noggin) [46]. This evidence, along with the unique 

experimental techniques (e.g., genomics, transcriptomics, and transgenics), published in 

previous studies, highlights Hydra as a powerful model for mechanistic aging studies [46, 47].  

 

Studying aging processes in other animals and comparing the way different species age or 

escape aging, helps scientists to gather knowledge about human aging and may eventually yield 

clues on how to delay it. In summary, research in animal models and humans has shown that 

genetic and environmental factors affect both life- and healthspan and both can potentially be 

prolonged. 

 

1.3. Human longevity 

Longevity could be defined as the period of time an organism is expected to live under ideal 

circumstances. Evolutionary and genetic research indicates that longevity has been a by-product 

of evolution, and results from the integration of many genetic and environmental factors which 

furthermore interact with each other; therefore, longevity can be considered as a complex trait 

[16, 17, 48, 49]. 

 

1.3.1. The genetics of human longevity 

Hundreds of genes have been identified to be capable of influencing longevity [50]; most of 

them can be allocated to one or more of the following pathways i) protein homeostasis, ii) 

insulin/insulin-like growth factor signaling (IIS), iii) mitochondrial metabolism, iv) sirtuin 

signaling, v) chemosensory function or vi) pathways associated with CR [51, 52]. This aging 

gene pool was predominantly defined with the help of model organisms (e.g., Saccharomyces 

cerevisiae (S. cerevisiae), C. elegans and D. melanogaster) using experimental approaches such 

as random mutagenesis [53] or overexpression screenings [54, 55]. However, aforementioned 

techniques are suitable for models that are relatively simple and inexpensive to maintain in the 

laboratory (e.g., Hydra), but not for long-lived models and/or those less flexible to targeted 

genetics (e.g., humans). In humans, genetic mapping techniques, either by studying a secondary 

phenotype that correlates with longevity (e.g., for humans: Hutchinson–Gilford progeria, 

mandibuloacral dysplasia, Werner’s syndrome) [15], or the investigation of a genetically 
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diverse population with a natural variation in lifespan allow scientists to identify longevity-

associated loci [14]. 

 

 

Figure 1.3. Proportion of individuals reaching extreme ages either by surviving, delaying or 

escaping morbidity in three age groups: centenarians (100-104years), semisupercentenarians 

(105-109 years) and supercentenarians (110+ years) [56]. “Survivors” refers to individuals with 

at least one disease with an onset of prior to age 80 years; “delayers”, at least one disease with 

an onset between age 80 and 90 years; escapers, at least one disease with an onset after age 100 

years [56]. 

 

Epidemiological and demographical analyses indicate that natural variation in human longevity 

is diverse [57, 58]. While some studies showed that centenarians escape major diseases [59], 

other reports indicated that centenarians often suffer from multi-morbidity [57, 60, 61]. Hence, 

it has been suggested that humans can reach extreme ages either by surviving, delaying or 

escaping morbidity (Figure 1.3) [56, 58]. This indicates that there are multiple ways to achieve 

exceptional longevity which has implications on both the way how contrasting populations 

(case-control cohorts) are defined and on the approaches used to identify genetic variants that 

affect this trait, e.g., longitudinal, cross-sectional, genetic linkage, and association-based 

studies. Additionally, the genetic contribution to longevity was shown to increase with age; 

therefore, individuals with 100 years of age or older are likely to be the most informative 

subjects for investigating the genetics of human longevity [14]. 
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Longitudinal studies in humans would represent the gold standard in human longevity research 

[62, 63]; however, securing the budget and retention of the participants within a long-term study 

are two major problems generally encountered with a longitudinal study design. Longitudinal 

longevity studies specifically are further hampered by the fact that the proportion of individuals 

that will reach exceptional longevity is too small to conduct statistically meaningful analyses 

[64]. Alternatively, genetic linkage (a family-based approach) and population-based association 

analyses have been largely employed in human longevity research [64]. 

 

Linkage analysis is a technique which is based on the fact that genes or DNA segments that are 

physically close to each other tend to be inherited together. For any trait with a genetic 

contribution, this enables the identification of chromosomal regions that co-segregate among 

affected family members using polymorphic markers that are evenly distributed throughout the 

genome [65]. In longevity research, linkage studies conducted on twins yielded the estimates 

for the longevity heritability in humans which was found to be rather modest, i.e. between 20% 

and 30% [66–68]. Additionally, with relative large sample sizes, at least ten longevity loci 

(3p22, 4q22-25, 8q23, 9q31-34, 12q24, 14q11, 17q12-q21, 17q22, 18q23-24, and 19p13) were 

identified by applying this study design [69–71]. 

 

Mutations in the genome can contribute to an increased or reduced disease or phenotype risk in 

a population. Genome-wide association studies (GWAS) help to identify mutations related to 

the phenotype of interest. The most commonly used type is the case-control study design, in 

which frequencies of genetic markers (e.g., single nucleotide polymorphisms (SNPs)) are 

compared between contrasting populations, e.g., healthy (controls) and sick (cases) individuals, 

to identify SNPs that significantly differ in frequency. Longevity GWAS can be divided into 

two major types depending on the evaluated phenotype. In the first (traditional) type, the 

genotype of each individual is determined and correlated with the phenotype of the individual 

itself. The second type focuses on parental longevity and evaluates the genotype of each 

individual correlated with the age or phenotype of the parents. 

 

Since longevity-associated variants have barely reached genome-wide significance (GWS; P-

value < 5 x 10E-08), longevity is thought to depend on small-effect alleles [72–75]. Yashin et 

al. [76] genotyped 1,173 individuals and analyzed 169 putative SNPs for an association with 

longevity (P-value < 1 x 10E-06). They demonstrated a significant and substantial joint 

influence of small-effect alleles on human lifespan. This finding has two major implications: 
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First, a relaxation of the GWS threshold in longevity is needed to identify the right trade-off 

between false-positive and biologically relevant signals; in other words, statistics needs to be 

adapted to the biological problem. As discussed later, this would also contribute to solving the 

so-called ‘‘missing-heritability problem’’ [77]. Second, complex traits like longevity might 

exhibit a non-additive (nonlinear) joint genetic influence (epistasis). Therefore, it has been 

proposed to analyze small-effect alleles, the so-called omnigenic model [78]. In this model it is 

taken into account that association signals tend to be spread across the genome and may include 

genes without an obvious connection to the trait under study. The omnigenic model 

differentiates between core and peripheral genes and accounts for the effect size of the genetic 

variants. The core genes are those which harbor mutations with strong effects (normally 

reaching GWS) and a biologically interpretable role in the trait studied. The peripheral genes 

include all genes with apparently no relevant effects on the trait (fail reaching GWS). Longevity 

likely is a result of many processes involving core genes such as FOXO3 [42, 43, 79] and 

apolipoprotein E (APOE) [72, 80, 81] as well as other loci with only a suggestive association 

with longevity (P-value < 5 x 10E-06). 

 

The first longevity association dates back to the 1990s. Back then, the ɛ4 allele in the 

apolipoprotein E (APOE) gene was reported to be negatively associated with human longevity 

[80]. This finding derived from a candidate gene association study (CGAS), in which 

associations of variants in pre-defined loci with a trait, e.g., longevity, are investigated. APOE 

plays an important role in lipid metabolism in both peripheral tissues and the brain. The 

deleterious ɛ4 allele is associated with an increased risk and an earlier onset of various chronic 

degenerative diseases, like cardiovascular and Alzheimer’s disease [72, 80, 81]. Up to now, the 

negative longevity association of APOE ɛ4 has been confirmed in various populations. 

 

In 2008, the FOXO3-longevity association was published; first reported in Japanese-Americans 

[42], and later confirmed in other populations including Germans [43, 82, 83]. The protein 

FOXO3 is a key player in the IIS pathway [39, 52]. Activation of IIS correlates inversely with 

the expression of FOXO3 and its targets, as upon IIS activation FOXO3 is phosphorylated and 

excluded from the nucleus. In contrast, oxidative stress activates FOXO3 by inducing its 

dephosphorylation and translocation to the nucleus where FOXO3, in its function as a 

transcription factor, enhances the transcription of stress-response genes, which aid in cell 

protection and maintenance. Increased FOXO3 expression led to lifespan extension in Hydra, 

C. elegans and D. melanogaster [52, 84]. Many non-coding FOXO3-variants have been shown 
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to be associated with human longevity [74]. Some of them have already been analyzed in more 

depth with regard to functional implications and/or phenotypic associations. For example, the 

longevity-associated G allele of rs2802292 was reported to be associated with a higher 

peripheral and hepatic insulin sensitivity and increased FOXO3 expression in skeletal muscle 

[85]. The minor allele (G) of rs12212067 was associated with an anti-inflammatory role [86] 

which was reflected in lower "inflammaging" in LLI [87]. In a recent study, the longevity-

associated minor alleles of rs12206094 (T) and rs4946935 (A) both showed considerable 

enhancer activities in luciferase activity assays that were reversed by IGF-1 treatment. This 

may indicate an allele-specific response to nutritional stress. In the same report, the longevity 

alleles of both SNPs were shown to be associated with increased FOXO3 expression in various 

tissues [44]. 

 

In order to extend the list of loci associated with human longevity, several large-scale meta-

analyses have been conducted. One of these included 14 different studies with individuals of 

European descent [81]. They identified a novel locus, chromosome 5q33.3 (rs2149954, P-value 

< 5 x 10E-08), to be associated with longevity. The T-allele of this single-nucleotide variant 

(SNV) had previously been reported to be associated with low blood pressure in middle age 

and to reduce the cardiovascular mortality risk (independent of the effects on blood pressure) 

[88, 89]. A meta-analysis on parental lifespan led to the discovery of two more regions: HLA-

DQA1/DRB1 (rs34831921) and LPA (rs55730499) [86]. Furthermore, in that study, previous 

longevity-associated loci were validated, i.e. CHRNA3/5 (rs8042849), CDKN2A/B (rs1333049, 

rs4977756) and SH2B3 (rs3184504) [90]. A disease-informed GWAS, in which knowledge 

from large studies of age-related diseases was integrated to narrow down the potential gene 

pool of longevity, identified genetic loci associated with exceptional human longevity including 

APOE, CDKN2B/ANRIL, ABO (tags the O blood group), and SH2B3/ATXN2 [91]. This study 

also substantiated the genetic overlap between longevity and age-related diseases [92]. 

 

Despite the long time that has passed since the initial findings and the suggestive variants that 

have been discovered, up to now, only a handful variants have remained with a confirmed 

longevity association across populations: Next to APOE and FOXO3, this includes the locus on 

chromosome 5 (chromosome 5q33.3), and the variants in CDKN2B. 

 

Despite the power of GWAS for the identification of new susceptibility loci, in longevity, the 

meta-analyses barely yielded novel genetic findings or overlap between studies. This 
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phenomenon has been partially attributed to inconsistent phenotype definitions across studies 

(especially with regard to the controls) [14, 93]. In addition, the individual longevity variants 

showed only weak effects which cannot reach GWS. Another surprising outcome from GWAS 

on complex traits was that GWAS-detected trait-associated SNVs explained only a small 

proportion of the total heritability (on average 5-10%). Furthermore, over 90% of the identified 

variants are located in non-coding regions, e.g., intronic or intergenic regions [14, 94–96]; this 

fact makes functional interpretations of GWAS findings highly challenging. 

 

Hitherto, GWAS efforts have been mostly focused on discovering common genetic variants 

based on the common disease-common variant (CD/CV) hypothesis. However, from an 

evolutionary perspective, it is more likely that rare mutations have larger effects on common 

diseases [97]. Joint influences of large-effect (rare) and weak-effect (common) variants might 

explain the genetic susceptibility to both common complex diseases/phenotypes [98] and late-

onset diseases. For example, the type 2 diabetes-associated loci MTNR1B was shown to harbor 

both rare and common variants [99]. Additionally, low-density lipoprotein levels were reported 

to be associated with common and rare variants in APOE and NPC1L1 [100, 101]. Likewise, 

variation in blood pressure was linked to rare and common variants in SLC12A3, SLC12A1, and 

KCNJ1 [102]. Also in Alzheimer´s disease, common and rare SNV-burden was detected in 

genes such as TREM2, CLU, SORL1, ABCA7, APP, PLD3, EPHA1, CR1, and BIN1 [103]. 

Recently, a whole-exome sequencing of 100 long-lived individuals (≥ 98 years) was performed 

to identify rare variants with large effects associated with extreme longevity [104]. 

Unfortunately, due to the limited sample size, no SNV reached statistical significance; however, 

the authors suggested LYST, MDN1, and RBMXL1, which showed nominal significance, to be 

genes that harbor an increased burden of rare variants. 

 

The evidence summarized above indicates that as a complex trait, longevity is very likely to be 

controlled by rare variants at many loci [105]; therefore extending the spectrum to rare 

susceptibility variants may help explain the missing heritability of longevity. 

 

1.4. The human gut microbiota in aging and longevity 

1.4.1. The human gut microbiota 

The gut microbiome (GM) is the complex collection of microorganisms that inhabit our 

gastrointestinal (GI) tract; according to initial estimates, approximately 1013 to 1014 

microorganisms reside inside the GI tract, exceeding the number of human cells in the body by 
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a factor ~10. Bacterial genes were reported to outnumber human genes even by a factor 100 

[106]. However, in a more recent report, the stated values are much lower, but still impressive 

(~1013 microorganisms, ratio human:microbial genes 1:1) [107]. In a balanced healthy state, the 

relationship between the human host and his gut microbes is symbiotic; therefore, humans are 

sometimes considered "meta-" or "superorganisms" [108, 109]. Indeed, the microbiota 

contributes to human health in multiple ways. As one of the key functions, it plays a pivotal 

role in the development of the immune system and in balancing pro- and anti-inflammatory 

responses. The metabolic capacity perfectly complements the human enzymatic repertoire, e.g. 

by facilitating energy harvest from otherwise indigestible fibers. Furthermore, it helps maintain 

the integrity of the gut barrier and protects the host from colonization by pathogenic 

microorganisms [109]. 

 

1.4.2. The human gut microbiota composition during development and in adulthood 

Aging is accompanied by changes in the gut microbiota composition. The colonization of the 

gut starts immediately after birth (or even already in utero), but microbial communities 

fluctuate particularly during the first three years of life until, after then, the structures stabilize 

to an adult-like status [110]. 

 

 

Figure 1.4. Gut microbiome changes from infancy to adulthood and factors influencing the 

microbial composition at the single stages ([111]). 
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Since the infant gut is initially an aerobic environment, facultative aerobe bacteria like 

Escherichia and Enterococcus, which derive from the mother and the environment, settle first. 

They induce a gradual change to more anaerobic conditions within a few days, which in turn 

allows a colonization by Firmicutes like Clostridia, Bacteroidetes, and Bifidobacteria [112]. 

During this process, the biodiversity of the GM increases in complexity and reaches a stable 

ecology structure at approximately three years of age [113]. Compared with the adult stage, 

childhood GM is still lower in microbial diversity, and characterized by both a low abundance 

of Bacteroidetes and higher abundances of Firmicutes and Actinobacteria. Species from the 

genus Bifidobacterium, the Lactobacillus group, and from the family Coriobacteraceae are also 

more abundant than in adulthood [114–116]. From a functional perspective, the childhood 

microbiota is characterized by an enrichment of genes that support growth, development, and 

production of vitamin B12 (124). In adulthood, the GM composition remains relatively stable. 

In healthy individuals, the dominating phyla are Firmicutes (families Lachnospiraceae and 

Ruminococcaceae), Bacteroidetes (Bacteroidaceae, Prevotellaceae, and Rikenellaceae), and 

Actinobacteria (Bifidobacteriaceae and Corinobacteriaceae). The families Lachnospiraceae 

(Eubacterium rectale group, 10 - 45%), Ruminococcaceae (Clostridium leptum group, 16 - 

27%), and Bacteroidaceae/Prevotellaceae (12 - 60%) together account for 60 - 90% of all the 

faecal bacteria [113, 117–119]. Functionally, the adult GM is enriched in genes associated with 

dietary utilization [115]. 

 

Noteworthy, although only a few phyla dominate the adult human gastrointestinal tract, at the 

species level, these are composed of ~1,800 genera and ~16,000 phylotypes. Furthermore, 

every person carries specific and dynamic subsets of ~160 species [109, 120]. This highlights 

the complexity of any study, in which the GM composition and/or changes in GM composition 

in health and/or disease are targeted. The microbial diversity, i.e. the number of different 

microbial species in a community, generally serves as an indicator of a "healthy gut", owing 

this role to its association with productivity, functioning, and stability [121, 122]. Both a 

reduced microbial diversity and perturbations of the microbial balance, so-called dysbiosis, in 

the gut have been associated with various adverse health outcomes, including obesity, type 2 

diabetes mellitus (T2D), inflammatory bowel disease, and other inflammatory and infectious 

diseases [108, 123, 124]. Also the changes in the microbial composition that take place during 

aging may affect host health, although it has remained controversial so far whether this 

remodelling is a cause (dysbiosis) or rather an adaptation to the aging processes [123]. 
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However, maintaining both a high microbial diversity and a balanced gut microbial composition 

appear to be crucial in healthy aging and longevity. 

 

1.4.3. Changes in the human gut microbiota composition in the elderly 

The gastrointestinal tract as well as dietary patterns undergo substantial changes with aging, 

shifting GM gradually over time [125–127]. In the elderly, the GM diversity is reduced 

compared with younger adults, while the inter-individual variation is increased [126]. Part of 

the GM instability in old age has been associated with stress, antibiotics, lifestyle and diet [128], 

while some alterations have been linked to age-related diseases such as obesity, T2D, and 

cardiovascular diseases (CVD) [129–133]. In addition, shifts in the dominant species occur; the 

amount of beneficial microorganisms declines and both facultative anaerobic bacteria and 

subdominant bacterial species increase, such as members of Bacteroidetes and Proteobacteria 

over Firmicutes (Clostridium cluster XIV, Fecalibacterium prausnitzii, and Bifidobacterium) 

[126, 134–136]. Susceptibility to pathogenic infections has been associated with depletion of 

Bifidobacterium in older adults [137]. The proliferation of pathobionts (resident microbes with 

pathogenic potential) together with the lower microbial diversity is hypothesized to contribute 

to the pro-inflammatory status in the elderly and to be a risk factor for chronic health conditions 

[125, 127, 138]. Moreover, a lack of microbiota-derived metabolites (i.e. short-chain fatty acids, 

SSFA) due to the reduction in beneficial bacteria (Clostridium cluster XIV, Fecalibacterium 

prausnitzii, and Bifidobacterium, etc.) has been associated with aging-related disorders such as 

irregular bowel transit, reduced appetite, frailty, weight loss, cognitive decline, hypertension, 

vitamin D deficiency, diabetes, arthritis, and sarcopenia [132, 139, 140]. Altogether, these 

findings substantiate the hypothesis that maintaining GM homeostasis is crucial for healthy 

aging and for achieving longevity [141–144]. Therefore, restoration of GM homeostasis in 

elderly at risk is likely to become a main challenge in the future, especially in view of the 

ongoing population aging. 

 

1.4.4. Signatures of longevity in the human gut microbiome 

The most profound changes in GM have been seen in centenarians. One of the unequivocal age-

related affliction is "inflammaging" (chronic low-grade inflammatory status [87]). In the gut, 

inflammation boosts aerobiosis and the production of reactive oxygen species, turning the gut 

into a disadvantageous environment for the strict anaerobic bacteria (e.g. Firmicutes) while 

uplifting the colonization of facultative aerobes (e.g. Enterobacteraceae, Enterococcaceae, 

Staphylococcaceae). These facultative microorganisms can compromise the immune 
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homeostasis in favor of a pro-inflammatory profile creating a vicious inflammatory cycle (as it 

has been demonstrated for mice [145]), which in turn may contribute to both frailty and the 

progression of diseases. Healthy LLI do not follow a linear pattern that continues to nourish the 

inflammatory cycle. Centenarians have been shown to exhibit a noticeable adaptive remodeling 

of the GM [135, 146, 147]. 

 

 

Figure 1.5. Proposed changes in the gut microbiota composition during aging and in extreme 

longevity ([146]). 

 

Among the multiple characteristics of the centenarians’ GM, one of the most prominent is the 

high microbial diversity (Figure 1.5) [136, 146, 147]. The increase in diversity entails a 

rearrangement of the core microbiota; for example, in centenarians from Italy, a reduction in 

the occurrence of the Clostridium cluster XIVa, an increment in Bacillus species and 

compositional changes in the Clostridium cluster IV [146] have been observed. The GM was 

also characterized by an increase in pathogenic species, such as Proteobacteria, 

Fusobacterium, Bacillus, Staphylococcus, Corynebacterium, and from members of the families 

Ruminococcaceae, Christensenellaceae and Micrococcaceae [135]. The proliferation of 

pathobionts like Proteobacteria, which may contribute to inflammaging, and a reduction in 

butyrate-producing bacteria, such as Fecalibacterium, Roseburia, Coprococcus, Blautia and 

Eubacterium have been reported in LLI from Italy, Japan and China [136, 146, 147]. This 

evidence has led to the hypothesis that the centenarians’ GM displays a particular signature 

embedded in a microbial community shaped by lifestyle, nutrition, geographical/population or 

social factors as well as genetics, which still remains to be determined [148]. 
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1.5. Aims of the thesis 

We need a better understanding of the mechanisms underlying aging; only this knowledge will 

enable us to eventually intervene in aging-related biological processes, influence or manipulate 

them for the better and thereby extent the healthy lifespan of humans. As aging is a highly 

complex phenotype, the present work aims at contributing to the growing body of evidence 

about aging mechanisms on three very different levels (Figure 1.6): 

 

1. Basic research in the immortal fresh water polyp Hydra vulgaris (Chapter I) 

2. Genetic analyses focusing on the heritable component of human longevity, a healthy aging 

phenotype (Chapter II) 

3. Investigations of the human intestinal microbiome and its role in healthy aging (Chapter III) 

 

On all these levels, the work requires the handling, management and analysis of diverse big 

data sets (microarray and next-generation sequencing transcriptomics (Chapter I), exome-wide 

SNP arrays (Chapter II), microbiome 16S rRNA sequencing data along with host genetic and 

phenotypic information (Chapter III)) and the application of cutting-edge statistical and 

computational methods. 

 

Figure 1.6. Overview of the three research projects. 
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CI, control individuals; COG, cluster of orthologous groups; KEGG, Kyoto Encyclopedia of 

Genes and Genomes; LLI, long-lived individuals; SNV, single nucleotide variant. 

 

1.5.1. Specific aims 

Chapter I 

The Hydra chapter comprises fundamental research on the genetically driven regulation of 

development and aging. Many genes and pathways are evolutionarily conserved and, 

consequently, a large number of orthologs of human genes have been found in the Hydra 

genome; FoxO is only one prominent example. Therefore, basic research in Hydra might 

contribute in the long-term to unravel evolutionary signatures of aging regulation, which may 

help to understand human aging. 

 

Specifically, molecular mechanisms underlying Hydra body compartmentalization, i.e. 

boundary formation and maintenance under constant proliferation, and the genetic contribution 

to these processes have remained largely unknown so far. Therefore, the aims of Chapter I are 

to: 

 

1. define the gene expression profile of the body parts of Hydra (foot, body, head and tentacles) 

using RNAseq techniques; 

2. subsequently determine by differential gene expression analyses the degree to which gene 

expression changes underlie the compartmentalization; 

3. identify which patterns in gene expression are altered when Hydra’s epigenome is disrupted 

employing a histone acetylation inhibitor. 

Eventually, the work aims to discover the regulatory mechanism(s) underlying the 

regionalization processes as well as to investigate a possible involvement of FoxO. 

 

Chapter II 

Despite extensive research efforts, there is still a huge knowledge gap about the genes that 

specifically contribute to human longevity – so far, only a handful of SNVs have shown 

consistent longevity-associations across population-cohorts. It appears plausible that apart from 

common susceptibility variants also (relatively) rare SNVs with large effect sizes that reside in 

coding regions may at least partly explain the missing longevity heritability. Previous studies 

focused almost exclusively on intronic or regulatory SNVs with limited success. In this 

subproject, exonic variants are investigated. This is the first study of this kind in Germans. An 
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exome-wide chip-based SNV case-control association analysis is conducted in a large cohort 

comprising more than 1,200 LLI including 599 centenarians. This project also involves the 

replication of results in Danish and French cohorts and an in-depth analysis of the genotyping 

data with bioinformatic methods. 

 

Chapter III 

The intestinal microbial composition changes during aging. However, these changes appear to 

depend on dietary patterns and/or geographic region. No systematic large-scale study over a 

broad age range, including LLI, has been conducted in Germans. Therefore, the aims of this 

subproject are to: 

 

1. identify age-related changes in the microbiome composition in healthy German individuals 

covering the age range between 19 and 104 years;  

2. determine to what extent host genetics (associated with gut microbial composition and 

metabolic syndromes) as well as environmental factors influence aging;  

3. investigate whether there are any specific microbial patterns in German LLI. 
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Abstract 

Despite being a defining feature of many animal taxa, much remains to be understood about 

boundary formation during development. Axial patterning of Hydra, member of the ancient 

phylum Cnidaria which diverged prior to the bilaterian radiation, involves a steady state of 

production and loss of tissue and is dependent on an organizer located in the upper part of the 

head. We show that the sharp boundary which separates tissue in the body column from head 

and foot tissue depends on histone acetylation. Histone deacetylation decomposes the boundary 

by affecting numerous developmental genes including Wnt components and prevents stem cells 

from entering the position dependent differentiation program. Overall, our results suggest that 

reversible histone acetylation is an ancient regulatory mechanism for partitioning the body axis 

into domains with a specific identity, which has been present in the common ancestor of 

cnidarians and bilaterians, at least 600 million years ago. 
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2.1. Introduction 

Boundary formation during animal development is important to establish tissue with regional 

identity along the body axis (Batlle and Wilkinson, 2012; Cayuso et al., 2015). Although 

destabilization of boundaries by cell intercalation or physical disruption and dispersal during 

morphogenesis directly interferes with normal development (Dahmann et al., 2011a), the 

molecular principles by which boundaries are maintained throughout the life of an organism 

have remained undiscovered. 

 

In Hydra (Figure 2.1 A), cell proliferation takes place continuously along the single apical-

basal body axis but is restricted to the gastric region of the animal (Figure 2.1 B) (Campbell 

and David, 1974; David and Campbell, 1972). The division of stem cells in this region causes 

a constant displacement of differentiated cells towards extremities (head and foot) and buds 

(Campbell, 1967). Due to these tissue dynamics, patterning signals are constantly active in the 

adults, which not only allows polyps to proliferate by budding continuously but also is 

constantly challenging the formation of stable boundaries. Such boundaries are those who 

strictly separate the stem cell populations in the body column from the committed or terminally 

differentiated cells in the head and foot compartments (Figure 2.1 B-C). 

 

The morphologically invisible boundary which separates body column and head tissue 

correlates with distinct expression domains of both transcription factors and signalling as well 

as effector molecules (Figure 2.1, D-H) (Boehm et al., 2012; Endl et al., 1999b; Weinziger et 

al., 1994; for review see Böttger and Hassel, 2012). Transcriptional regulators potentially 

involved in establishing regional identity along the body axis include CnOtx, HyAlx, Budhead 

and Prdl-a (Gauchat et al., 1998; Martinez et al., 1997; Smith et al., 1999, 2000). Genes 

demarcating the basal end of the tentacles and thus the boundary between head and body 

column tissue include HyDsh, HvWnt8 and Hmfz2 (Minobe et al., 2000; Philipp et al., 2009). 

Hydra specific effector gene ks1 (Endl et al., 1999b) is strongly expressed in ectodermal 

epithelial cells immediately after they leave the body column compartment and before they 

terminally differentiate to become head specific “battery” epithelial cells (Figure 2.1 A and 

D). 

 

The molecular mechanisms maintaining stable boundaries in the constantly proliferating Hydra 

tissue remain largely unknown. It is also not known to what extent changes in gene expression 

underlie the regionalization, nor do we understand how these changes are regulated. The 
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mechanistic nature of the control system that specifically sets the head-body column boundary 

along the body axis is therefore still unknown. Towards this goal, we here combined genetic, 

cell biological, molecular and computational approaches. We find that the molecular circuitry 

at the sharp boundary which separates tissue in the body column from head tissue deploys 

numerous developmental genes and depends on histone acetylation. Histone deacetylation 

decomposes the boundary and transforms head tissue into body column-like tissue with 

constant mitotic activity. Overall, our results suggest a model in which partitioning of the Hydra 

body axis into domains with specific identity involves epigenetic programming mediated by 

histone acetylation. 

 

2.2. Results 

 

2.2.1. Comparative transcriptomics identifies compartment specific genes  

To uncover the encoded genetic logic underlying the maintenance of region-specific 

compartments in adult Hydra, we profiled the transcriptome from six defined regions along the 

body column (Figure 2.1 C). The assembly of 256702 contigs led to the identification of 29358 

transcripts. As a quality threshold and to minimize variability, we concentrated on 14127 genes 

corresponding to transcripts which appeared in at least three libraries with at least two counts 

per million reads. Three independent biological replicates for each region showed high 

reproducibility (Figure 2.2 A). Principle component analysis (PCA) revealed that component 

1 and 2 (PC1, PC2) were sufficient for separating the samples into four defined groups:  

tentacle, head, foot, and all the samples from the three body parts (B1, B2 and Bb) (Figure 2.2 

A). The first component (PC1) distinguished body column expressed genes from head and 

tentacle specific transcripts and accounted for 19 % of the variability. The largest differences 

in this dataset were between the tentacles and the body region (Figure 2.2 A). These two regions 

exhibited 2199 differentially regulated genes. The 9 percent of them were upregulated, and 6.5 

percent downregulated (Supplementary figure 2.1). When comparing head and body column 

tissue, from 1022 differentially expressed genes 4.5% were up and 2.6% downregulated. 

Moreover, from 967 genes differentially expressed in tentacle and foot tissue, 4% were up and 

3% downregulated suggesting a quite distinct transcriptome profile for these two 

compartments. The tentacle and head programs were relatively similar to each other with less 

than 1% up or downregulated genes from a total of 137 genes. 
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2.2.2. Functional annotations outline the compartment specific gene expression program 

One goal of the study was to delineate a region-specific gene expression profile along Hydra´s 

body column to understand the mechanistic underpinnings. As a first step, we used the 

differentially expressed genes that were expressed at least 2-fold higher in region-specific 

samples and plotted them in the PCA correlation circle following their annotation in KEGG 

pathways (http://www.genome.ad.jp/kegg/) (Figure 2.2 B). Genes contributing to body column 

tissue (right side of the circle) are mostly associated with terms such as protein processing, 

pyrimidine metabolism, ribosome and spliceosome pathways. Terms enriched in the tentacle 

and head samples (left side of the circle) are associated with cell adhesion, ECM-receptor 

interaction, calcium signalling, focal adhesion and the MAPK pathway (Figure 2.2 B). Terms 

enriched in foot samples (upper side of the circle) are associated with cell adhesion, MAPK 

(FGFR) and Wnt signalling pathway (Figure 2.2 B). Terms enriched in head tissue (lower part 

of the circle pathway) are associated with other components of the Wnt signalling pathway as 

well as oxidative phosphorylation and phagosome formation (Figure 2.2 B). 

 

To gain further insight into the extent of gene expression change between the different regions 

along the body column, we computed the transcriptome divergence between adjacent tissue 

regions (Figure 2.2 C). We included all differentially expressed genes (adjusted P-value < 0.05) 

with at least two-fold change between the two compartments to uncover the set of genes 

responsible for their identity. This process resulted in 1310 genes that were further classified 

based on the Gene Ontology Biology Process terms (http://www.geneontology.org/) and plotted 

according to their expression (counts per million) in each region of the body column (Figure 

2.2 C). Interestingly, for each body region, we also identified a high number of genes with an 

unknown Gene Ontology annotation, which we considered as “orphans” (Figure 2.2 C). 

Orphan genes have been suggested to be involved in species-specific processes and to have 

effector functions (Khalturin et al., 2009; Neme and Tautz, 2013; Tautz and Domazet-Lošo, 

2011). 

 

To identify genes that behave similarly and might operate in networks, we next cluster all 

differentially expressed genes (2497 with adjusted P-value < 0.05) (Figure 2.2 D). The clusters 

were sorted by their expression trend along the body axis and grouped according to particular 

expression patterns (upregulated in one or more compartments). Four BCs where considered 

for further analysis (Figure 2.2 D): genes upregulated in tentacle and head tissue (dark blue in 

Figure 2.2 D); genes upregulated in foot tissue (yellow in Figure 2.2 D); genes upregulated in 
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both extremities, i.e. tentacle head and foot (light blue in Figure 2.2 D); and genes specifically 

upregulated in the body column (red in Figure 2.2 D). 

 

2.2.3. Metabolism, cell proliferation and adhesion pathways contribute to the boundary 

between head and body 

In a next step, we characterized the differentially expressed genes of each of the four “BCs” by 

identifying KEGG pathway terms enriched in these gene sets (Figure 2.3). We considered only 

pathways where more than 10 % of the corresponding members could be identified in our data 

set. 

 

When analyzing differentially expressed genes enriched in body column tissue, we observed 

three distinct KEGG categories (Figure 2.3). The first one includes terms associated with DNA 

replication, cell cycle regulation, mismatch repair and nucleotide excision pathway (Figure 2.3, 

Supplementary figure 2.2). This is consistent with the well-known proliferation processes that 

occur in this region (Campbell, 1967; Bosch et al., 2010). The second category of terms 

enriched in the body column samples are genes involved in metabolism. We found in particular, 

terms associated with glutathione metabolism, synthesis of purine and pyrimidine, cysteine and 

methionine production, oxidative phosphorylation (OxPhos) and One-carbon (1C) pool by 

folate to be enriched in the Hydra body column. The third category of terms enriched in the 

body column samples concerns processing and degrading of proteins. Components of both the 

ubiquitin proteolysis and proteasome pathway are differentially expressed with some of them 

upregulated in the terminally differentiated tissue. 

 

KEGG pathways defining terminally differentiated Hydra tissue involve the Ca++/ 

Phosphatidylinositol system as well as cell-adhesion/cytoskeleton-associated processes 

(Figure 2.3). With regard to the Ca++/ Phosphatidylinositol system, essential components of 

the phosphatidylinositol signal transduction cascade including Phospholipase C (PLC), protein 

kinase C (PKC) and calmodulin are transcriptionally upregulated in differentiated Hydra tissue 

(Figure 2.3 and Supplementary figure 2.2). Terminally differentiated tissue was also found 

to be characterized by the expression of key components of the inositolphosphate-metabolism 

pathway such as IP3K kinase, PI4K kinase, PI(3)P5K kinase and IP5 phosphatase 

(Supplementary table 2.2). 
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2.2.4. Inhibition of histone deacetylases (HDAC) breaks down head/body column 

boundary 

We generated transgenic animals in which the body-head boundary can be visualized through 

the expression of reporter genes, as a system for positional dependent gene expresion. Embryo-

microinjection of a construct Ks1::GFP /Actin::dsRED (see supplement) yielded polyps which 

expressed eGFP in ectodermal cells in the head and dsRED in the whole body as a marker of a 

positive transgenic cell (Figure 2.1 A; Figure 2.4 A). Exposure of these polyps to low doses 

(2- 10nM) of a potent and specific inhibitor of histone deacetylase (Trichostatin A, TSA) 

resulted in animals which progressively lost terminally differentiated tentacle and head tissue 

(Figure 2.4 A-C). Tissue in the body column apparently was not affected. This led us to address 

the role of histone acetylation in the establishment and maintenance of the head/body column 

boundary. 

 

Further, we detected the complete repertoire of histone deacetylases (HDAC) including 

transcripts and gene models corresponding to each of the HDAC groups described in Homo 

sapiens (HDAC1/2, 3, 4/5/7/9, 6, 8, 11) in the genome of Hydra magnipapillata (Chapman et 

al., 2010) and in the transcriptome of Hydra vulgaris AEP (Hemmrich et al., 2012) 

(Supplementary figure 2.3 A). Moreover, when transplanting TSA-treated Hydra tissue to 

untreated tissue followed by immunohistochemical analysis, we discovered an accumulation of 

acetylated histone 3 (H3ac) in the nuclei in TSA treated tissue (Supplementary figure 2.3 B 

Anti-H3ac +TSA) in comparison to untreated control tissue (Supplement 4, B, Anti-H3ac 

DMSO) indicating that TSA suppresses the activity of Hydra´s HDAC leading to an increase 

in histone acetylation. 

 

To link the morphological changes caused by TSA treatment (Figure 2.4 A-C) to the gene 

expression profiles, we used a microarray analysis. A PCA was employed to inspect the 

expression profiles of the head and upper body tissue (Head and Body 1, see Figure 2.1 B) 

when the polyps were exposed to 2.5 or 10nM of TSA (Figure 2.4 D). TSA responsive 

expression patterns were highly consistent in three independent replicates and clustered 

together according to the origin of the tissue and the TSA concentration. Interestingly, the PC1, 

which explains 44.2% of the variability in the dataset, clearly depict the transition of the 

expression profile between head and body under TSA treatment (Figure 2.4 D). TSA 

responsive functional classes contributing to this shift include genes involved in calcium 

signalling, pyrimidine metabolism, focal adhesion, MAPK signalling (FGF), regulation of actin 
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cytoskeleton, and the ligands of Wnt signalling pathway (Figure 2.4 E). In addition, genes 

involved in cell cycle, purine metabolism, pyrimidine metabolism, RNA degradation, RNA 

polymerase, spliceosome and ubiquitin-mediated proteolysis characterized the TSA treated 

head samples (Figure 2.4 E). Apparently, these functional processes are a distinguishing factor 

between head to body column tissue. The PC2 explains 24.3% of the variability and noticeably 

discriminates among TSA concentrations. Among the TSA sensitive genes, we highlight those 

involved in arginine and proline metabolism, mitochondrial genes, oxidative phosphorylation, 

purine metabolism and tryptophan metabolism as well as apoptosis, cell cycle, MAPK 

signalling (FGF/FGFR), and peroxisome and pyrimidine metabolism (Figure 2.4 E). 

 

To investigate the extent to which TSA treatment changes the expression profile along the body 

axis, we next identified the differentially expressed transcripts and classified them into clusters 

(Figure 2.4 F and G and Supplementary figure 2.4). Interestingly, plotting the genes 

differentially expressed in TSA treated head tissue positioned their expression within the body 

column clusters or nearest to body column gene expression fashion (Figure 2.4 F and G and 

Supplementary figure 2.4 A and B). This analysis revealed, that inhibition of Hydra´s HDAC 

strongly affected the expression profile of cells in terminally differentiated head tissue and 

causes them to adapt a more body-like expression mode. 

 

Having demonstrated that HDAC is involved in shaping the gene expression profile along the 

Hydra body axis, we next asked which pathways are involved. Thus, based on KEGG 

annotation of the differentially expressed genes, we found that TSA treatment in head tissue 

induces the expression of genes involved in cell cycle, DNA replication, spliceosome, TCA 

cycle, ubiquitin-mediated proteolysis and oxidative phosphorylation (e.g. cluster 1, see Figure 

2.4 F). This analysis also showed that TSA treatment causes cells in the head region to under-

express genes (e.g. cluster 6, 7 and 10, see Figure 2.4 G and Supplementary figure 2.4 A and 

B) involved in MAPK, insulin, hedgehog and calcium signaling as well as the WNT signaling 

pathway. The fact that several components of the Wnt signalling pathway are prominently 

expressed in the head (Hobmayer et al., 2000; Nakamura et al., 2011; Petersen et al., 2015), and 

that body column tissue is characterized by the expression of cell cycle genes (Buzgariu et al., 

2018) raised the hypothesis that histone deacetylation establishes and maintains the boundary 

between head and body column tissue. We therefore, targeted genes involved in cell cycle and 

stem cell proliferation as well as genes from the Wnt signaling pathway and examined the 

effects of TSA treatment on their expression. 
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2.2.5. Cell cycle control and histone deacetylation 

KEGG analysis revealed numerous genes involved in cell cycle control to be differentially 

expressed upon TSA treatment (Figure 2.5 A).  The majority of the transcripts belonging to 

this pathway are predominantly expressed in the body region which corresponds with the 

localization of the three stem cell linages in Hydra (Red boxes in Figure 2.5 A). Examples 

include cyclins A, B, E and H, CDK1 and CDK4, 6, E2F4, 5, HDACs, and the APC/C complex. 

While only few cell cycle genes are up-regulated in untreated head tissue (blue boxes in Figure 

2.5 A), a number of them is sensitive to TSA treatment (orange boxes in Figure 2.5 A). 

Intriguingly, genes encoding Cyclin A, B and E and CDK1 as well as components of the APC 

complex and ubiquitin ligase Cdh1 were part of this altered gene expression profile. 

 

Direct visualization of cells in S-phase along the body column by using 5-bromo-2'-

deoxyuridine (BrdU) labelling demonstrated an increased number of S-phase cells in the body 

column of treated polyps (Figure 2.5 B-D). Intriguingly, inhibition of HDAC appeared to allow 

cells localized in terminally differentiated head tissue to replicate their DNA (Figure 2.5 B-D). 

We also noted that with increasing concentrations of TSA the tentacle length became much 

shorter and that S-phase cells can be monitored even in the most terminal tissue (Figure 2.5 D). 

Overall, our analysis strongly indicated that inhibition of HDAC affects cell cycle genes along 

the body column and effectively expands the zone of proliferation to include terminally 

differentiated tissue. 

 

To address possible consequences of this expanded zone of proliferation, we monitored the 

expression of transcription factor FoxO along the body column using a transgenic line which 

expresses GFP under the control of the FoxO promoter (Figure 2.5 E). We previously have 

shown that Hydra FoxO is a key regulator of stem cell proliferation (Boehm et al., 2012). 

Consistent with our observation of the impact of TSA cell proliferation (Figure 2.5 A-D), FoxO 

transgenic polyps show FoxO expression along the whole animal even ectopically in the most 

terminal tissue regions (Figure 2.5 F-H). Interestingly, treatment with increasing 

concentrations of TSA not only expanded the zone of activity of FoxO; the TSA-induced high 

and ectopic level of FoxO activity also resulted in polyps with multiple body axes (Figure 2.5 

F-H) indicating interference of FoxO with the endogenous patterning system. 

 

 

 



40 
 

2.2.6. Wnt signaling and histone deacetylation 

Patterning in Hydra is under control of the Wnt pathway (Gee et al., 2010; Gufler et al., 2018; 

Hobmayer et al., 2000; Iachetta et al., 2018; Lengfeld et al., 2009; Nakamura et al., 2011; 

Petersen et al., 2015). To investigate the impact of histone deacetylation on the Wnt signalling 

pathway, we used KEGG analysis to ask which of the TSA-dependent gene clusters (Figure 

2.4) can be classified as genes involved in the Wnt pathway. Figure 2.6 A reveals that many 

components of the Wnt pathway in Hydra are differentially expressed between head and body 

column tissue. Seven Wnt encoding genes, two Frizzled transmembrane receptors, Dishevelled, 

Axin, β-Catenin and GSK-3 are restricted to or upregulated in the head region (see Figure 2.6 

A, blue boxes). Other transcripts including two other transmembrane Frizzled proteins, a casein 

kinase II (CK2), a protein phosphatase (PP2A) and the transcription factors cMyc and cJun are 

more abundant in the body region (Figure 2.6, A Red boxes). Intriguingly, and consistent with 

our previous findings of TSA-treated head tissue to become more body column like (Figure 

2.4 F and G), our data reveal that the head-specific expression of two Wnt encoding genes 

(Wnt1 and Wnt5) are downregulated upon HDAC inhibition (Figure 2.6 A, light blue boxes). 

Figure 2.6 B summarizes our current understanding of how histone hyperacetylation affects 

Hydra by extending the stem cell containing body region and reducing the differentiated 

compartments.  

 

2.3. Discussion  

2.3.1. Principles of boundary formation in the early emerging metazoan Hydra 

Decades of studies have established the basic features of patterning in Hydra (Bode, 2011; 

Gierer, 2012; Koinuma et al., 2000; Meinhardt, 2012; Watanabe et al., 2014). The single body 

axis is established during embryogenesis and maintained in adult polyps by local Wnt activity 

(Gee et al., 2010; Gufler et al., 2018; Hobmayer et al., 2000; Nakamura et al., 2011). 

Transcription factors including c-myc (Ambrosone et al., 2012; Hartl et al., 2014) and FoxO 

(Boehm et al., 2012; Mortzfeld and Bosch, 2017) contribute to maintaining continuous stem 

cell proliferation and differentiation in the body column. Here we present a multidimensional 

gene expression dataset from carefully selected regions along the Hydra body axis which 

provides a foundational gene expression resource encompassing central aspects of patterning 

in Hydra. It supports earlier findings of a spatial (i.e. region-specific) organization of gene 

expression in adult polyps (Figure 2.1) and reveals that numerous not conserved “orphan” 

genes along with conserved regulators and pathways contribute to the patterning process 

(Figure 2.2). The sensitivity of the expression of many of these genes to experimentally induced 
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changes in histone acetylation (Figure 2.4) reveals that boundaries between compartments are 

formed and maintained by mechanisms that depend on reversible histone acetylation and 

deacetylation. 

 

Our results suggest that specific genes are in charge of the boundary maintenance along the 

body axis. Among these genes, we found members of the cell cycle pathways such as cyclins, 

cyclins-dependent-kinases (CDKs), proteins forming complexes responsible for DNA 

replication and the transcription factors c-myc and FoxO (Figure 2.3, Figure 2.5 A, and 

Supplement ary figure 2.2). The body column was also characterized by the upregulation of 

metabolic pathways mainly related to energy supply and protein processing. In addition, many 

enzymes are upregulated in the body column for the production of purines and pyrimidines, 

OxPhos, glutathione, cysteine and methionine metabolism (Figure 2.2 B, Figure 2.3, Figure 

2.4 E).  

 

Interestingly, many of these pathways are known to be important in maintaining the stemness 

of pluripotent stem cells in different organisms (Shiraki et al., 2014; Shyh-Chang et al., 2013). 

The OxPhos pathway, for example, is used by mitochondria in totipotent mammalian stem cells 

and differentiating embryonic stem cells (ESCs) for oxidation of pyruvate (Shyh-Chang et al., 

2013). Moreover, cell growth of undifferentiated human ESCs and induced pluripotent stem 

cells (iPSCs) is dependent on large amounts of methionine; and deprivation of this amino acid 

result in cell growth inhibition and cell cycle arrest (Shiraki et al., 2014). A particularly 

interesting class of metabolic terms enriched in the body column was associated with S-

Adenosyl L-methionine (SAM) production (Supplementary figure 2.2). Since SAM is 

considered a universal methyl donor (Ducker and Rabinowitz, 2017), it may play a major role 

in epigenetics because it is the principal methyl substrate used by methyltransferases to 

methylate metabolites, RNA, DNA, and proteins including histones (Mentch and Locasale, 

2016).  After the methyl group from SAM is transferred to an acceptor substrate, S-

adenosylhomocysteine (SAH) is produced. In turn, SAH is hydrolyzed to adenine and 

homocysteine, and to complete the cycle, the homocysteine can be re-methylated via 

methionine synthase to produce again methionine. 

 

At the same time, genes encoding phosphatidylinositol- and related phosphoinositides-

modifying enzymes are expressed in terminally differentiated head tissue (Figure 2.3). One 

regulatory step later, enzymes up or downstream the conventional phosphatidylinositol 
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signaling pathway including PKC and PLC, diacylglycerol kinase and calmodulins are also 

differentially upregulated in head tissue (Figure 2.3). These findings support earlier studies in 

Hydra (Hassel and Bieller, 1996; Müller, 1990, 1995). They reported severe defects in 

patterning processes when, e.g., PKC is chemically inhibited. Interestingly, these pathways 

were previously associated with trophoblast differentiation (Kent et al., 2010), keratinocyte 

differentiation (Haase et al., 1997), and in the regulation of growth and differentiation of 

hematopoietic cells (Michell et al., 1990) and neurons (Loss et al., 2013).  

 

Besides, many genes involved in the architecture of the actin cytoskeleton including F actin, 

myosin, integrins, Tallins (Figure 2.3, Supplementary figure 2.2); calcium signalling 

pathways, focal and cell adhesion are upregulated in differentiated head tissue in comparison 

with the body column. Head tissue is also characterized by the expression of genes encoding 

extracellular components including collagens, thrombospondin, and ligands such as fibroblast 

growth factors. Another group of genes differentially expressed in head tissue encodes the 

anaphase-promoting complex/cyclosome (APC/C) which is a multifunctional ubiquitin-protein 

ligase that targets various substrates for proteolysis inside and outside of the cell cycle (Alfieri 

et al., 2017). 

 

The complex expression patterns are controlled and maintained by histone deacetylases. 

Prolonged inhibition of histone deacetylase by TSA results in progressive loss of terminally 

differentiated head tissue (Figure 2.4 C). Ectopic upregulation of cell cycle genes (Figure 2.4 

F, Figure 2.5 A) and the sudden appearance of actively replicating cells in the most apical 

region of the body axis (Figure 2.5 B-D) indicates that repression of histone deacetylases 

prevents the correct onset of the differentiation program at the head/body column boundary. 

HDAC repression also affects both the cell-cycle regulatory complex APC/C and genes APC 

1,8,10 which normally are only expressed in the body column as well as genes encoding 

components of the SCF complex, which mediates ubiquitination of proteins and has been 

associated with the degradation of cell cycle proteins. These repressions also remove the 

confinement of FoxO expression to the body column region (Figure 2.5 F-H). 

 

Previous studies have provided evidence that at least some of the HDACs including HDAC 1,2 

and 3 are regulated by phosphatidylinositides (Millard et al., 2013a, 2017). Our dataset shows 

that many genes involved in the phosphatidylinositol pathway and inositol phosphate 

metabolism are upregulated in tissue from the apical (head) or basal (foot) region (Figure 2.3 
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and Figure 2.7 C). The strikingly strong presence of phosphatidylinositides in differentiated 

(head and foot) tissue, therefore, could cause the region-specific full activation of HDAC (see 

also Watson et al., 2016). 

 

To summarize, whereas in Hydra a common organizer is used to initiate and to maintain the 

region-specific expression of both conserved as well as un-annotated genes, the different and 

complex patterns of gene expression at the head/body boundary are controlled by histone 

deacetylases (HDACs) and thus by epigenetic regulators which regulate transcription through 

chromatin modification without directly binding response elements on DNA. We conclude 

(Figure 2.7 A-D) that reversible histone acetylation and deacetylation appears as key 

component maintaining the sharp boundary between the stem cell (body column) and terminally 

differentiated (head) compartment in Hydra.  

 

2.3.2. An evolutionary perspective on HDAC and boundary formation: parallels between 

Hydra and patterning in other animals and plants 

Besides Hydra, there are other invertebrates and also vertebrates in which an interference 

(mutation, repression) with HDACs activity affects patterning and embryonic development (de 

Ruijter et al., 2003). For example, exposure of Drosophila to Trichostatin A causes 

developmental defects (Ikegami et al., 1993; Nemer, 1998). Mutations in the Drosophila hdac-

1 homolog Rpd3 (Figure 2.7 E) are lethal and lead to a paired-rule segmentation phenotype 

with disturbed parasegmental boundary formation (Mannervik and Levine, 1999; Mottus et al., 

2000; reviewed by Dahmann et al., 2011b; Umetsu and Dahmann, 2010). Moreover, treatment 

of sea urchin embryos with 10ng/ml TSA induces hyperacetylation of histones in cells of 

blastula stages. Development of the treated embryos is arrested at an early gastrula stage, 

indicating that a developmental window in the midblastula stage is sensitive to the normal cycle 

of histone acetylation and deacetylation (Ikegami et al., 1993). Interfering with HDAC activity 

also affects vertebrate development. Homozygous hdac-1 zebrafish knock-out mutants show 

numerous developmental abnormalities in the heart and neural epithelial tissue (Pillai et al., 

2004). Similarly, treatment of Xenopus frog embryos with TSA leads to developmental defects 

in the head and tail region accompanied by embryonic lethality (Almouzni et al., 1994). In mice, 

hdac-1 knockout led to severe proliferation defects, growth retardation and abnormal head and 

allantois development followed by embryonic lethality before E10.5 (Lagger et al., 2002). 

 

Interestingly, as in continuously proliferating Hydra, the remarkable ability of some plants to 
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retain populations of dividing undifferentiated cells (meristems) also depends on histone 

acetylation. It is widely known that angiosperms, root and shoot growth is maintained and 

regulated through the activity of the apical meristems (Shishkova et al., 2008). ‘Potentially, the 

plant axis can grow indefinitely in length through the activity of its apical meristem and in 

width through the activity of the vascular cambium (cited from Sinnott, 1960). In the 

Arabidopsis root (Figure 2.7 F), stem cells localized in the apex of the root meristem are 

characterized by relatively weak and dynamic histone-DNA interactions. However, the constant 

supply of new cells from the root meristem towards the differentiation zone results in a 

progressively stronger bond of chromatin to histones (Rosa et al., 2014). In fact, histone 

hyperacetylation by means of TSA leads to an increase in meristem size (schematically depicted 

in Figure 2.7 F) and in the expression of the meristem marker RHD6 in cells from the 

differentiation zone, together with an overall decrease of histone stability (Rosa et al., 2014). 

These results reveal a role for acetylation and histone stability in determining meristem 

competency and root development (Rosa et al., 2014). 

 

The observations as portrayed in Figure 2.7 D to F for Hydra, Drosophila and Arabidopsis 

indicate an evolutionary conserved and therefore the important role of histone acetylation in 

regulating both differentiation and cell cycle progression in a spatially controlled framework 

and for partitioning the body axis into domains with a specific identity. Continuously 

proliferating Hydra polyps, therefore, may present a unique opportunity to decipher the 

molecular mechanisms regulating boundary formation beyond the spatial and temporal 

restrictions imposed by most animal embryos. 

 

2.4. Materials and methods 

Animals and culture conditions 

Experiments were carried out using Hydra magnipapillata and Hydra vulgaris strain AEP. All 

animals were cultured identically under constant environmental conditions that include: culture 

medium, Artemia salina as food, and temperature according to standard procedures at 18°C 

(Lenhoff and Dubois Brown, 1970). 

 

Generation of transgenic H. vulgaris strain AEP 

For reporter of Ks1 (GenBank, AM161049.1) and FoxO (GenBank JX118843), transgenic 

polyps were generated, expressing GFP under the control of Ks1 and FoxO promoter 

respectively. Therefore, the promoter region of Ks1 and FoxO (aprox. 1.1 kb. for Ks1 and 1.5kb 
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for FoxO from the 5’ flanking region) were cloned into ligAF vector (Wittlieb et al., 2006) in 

front of enhanced green fluorescent protein (eGFP) and followed by actin terminator. A second 

cassette was included with actin-promoter driving the expression of red fluorescent protein 

(dsRED) and finalized through actin terminator (figure 5, E). The resulting vector was injected 

into H. vulgaris (AEP) embryos as previously described (Wittlieb et al., 2006). Founder polyps 

showed stable dsRED expression in a group of ectodermal cells and were expanded further by 

clonal propagation.  

 

In situ hybridization 

Gene expression analysis was performed by whole-mount in situ hybridization as described 

previously (Khalturin et al., 2007). The gene expression pattern was detected with digoxigenin 

(DIG)-labelled RNA probes. Anti-sense RNA probes were designed to recognize specifically 

the sequence of the following genes: Ks1 (GenBank, AM161049.1), foxO (GenBank 

JX118843), and at metazome server: HMG3b3 (Hma2.227348) Aristales Alx (Hma2.219326), 

KLF13 (Hma2.209274). DIG-labelled sense probes ware used as a control. Signal was obtained 

using anti-DIG antibodies conjugated to alkaline phosphatase /1:2000, Roche Diagnostics) and 

NBT/BCIP staining solution (Roche).  

 

Immunohystochemistry 

Immunohistochemical detection of acetylated histone 3 in whole mount Hydra preparations 

was performed following standard procedures (Engel et al., 2002) using polyclonal rabbit anti-

Histone H3 (acetyl K9 + K14 + k18 + K23 + K27) antibody – ChIP Grade (1:2000) and Alexa 

488 anti-rabbit antibody (1:1000). Phalloidin and TO-PRO staining was done as described 

previously (Anton-Erxleben et al., 2009). Confocal laser-scanning microscopy was done using 

TCS SP1 laser-scanning confocal microscope (Leica). 

 

BrdU labelling and detection 

For analysis of cell with active replication in the whole polyp, animals were exposed for 3h to 

5mmol l-1 of 5-bromo-2’-deoxyuridine (BrdU) (Holstein et al., 1991). Detection of 

incorporated BrdU was carried out according to Holstein et al. (1991) using monoclonal anti-

BrdU antibodies (1:100, Roche), alkaline phosphatase-conjugated sheep-anti-mouse secondary 

antibodies (1:5000, Millepore ®) and NIBT/BCIP staining solution (Roche).  
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Microscopy analysis 

Fluorescent images of transgenic polyps were taken on a Zeiss Axioscope fluorescence 

microscope equipped with an Axiocam (Zeiss) digital camera. Laser-scanning confocal data of 

transgenic cells were acquired by using LeicaTCSSP1 CLS microscope. The in situ 

hybridization preparations were analysed using Zeiss Axioscope microscope.  

 

Phylogenetic analysis 

For the calculation of the HDAC tree, an amino acid alignment of 7 HDAC sequences from 

Hydra magnipapillata, 5 HDAC sequences from Hydra vulgaris AEP transcriptome, 11 

HDACs from humans and one homologue from Saccharomyces cerevisiae HDA1 were used. 

The sequences were aligned using Clustal W with the standard parameters for multiple 

alignments (Thompson et al., 1994). All ambiguous positions were removed for each sequence 

pair, giving a total of positions in the final data set of 1462. The statistical method used to make 

the reconstruction was Neighbour-joining and the bootstrap values were calculated based on 

1000 replicates, this was implemented by using MEGA 6 (Tamura et al., 2013) (with p-distance 

model). 

 

Chemical interference  

For the chemical interference experiments the polyps were incubated in 5 or 10nM of TSA or 

DMSO (control polyps) for 24, 48 or 72 hours. Hydra medium was supplemented with a stock 

solution of TSA (1000nM in DMSO) to a final concentration of 5 or 10nM. TSA was obtained 

from Sigma-Aldrich (catalog number T8552). The control polyps were kept in Hydra medium 

with the corresponding amount of DMSO for each concentration.  

 

Hydra axial transcriptome, assembly and annotation 

Total RNA was isolated using TRIzolTM reagent (InvitrogenTM) according to manufacturer’s 

protocol and followed by a purification protocol using PureLinkTM RNA mini Kit columns 

from Ambion®. For the RNAseq experiments total RNA was isolated from 6 Hydra -body 

sections (Tentacles, Head, Body 1, Body 2, Body bud and Foot, Figure 1,C ) using TRIzolTM 

reagent (InvitrogenTM) according to manufacturer’s protocol and combine with a purification 

protocol using PureLinkTM RNA mini Kit columns from Ambion®. For them we pooled from 

150-200 sections of each polyp part.  RNA quality was measured with the Agilent RNA Nano 

Kit, for the individual pools. Samples with RIN values above 7.5 were used for sequencing. 

Library preparation was done using the Illumina TruSeq stranded Total RNA preparation, 
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following manufacturers’ instructions. Sequencing was done in Illumina MiSeq sequencer. 

Transcripts were assembled using Trinity v2.1.1 (Haas et al., 2013). Trinity was run with –

min_kmer_cov 2 and –min_contig_length 200 to reduce memory requirements and discard 

contigs shorter than 200 bp. In all other respects, default parameters were used. In total, 

58.258.591 raw paired reads were processed. Poor quality reads shorter than 25bp were 

removed. The first ten nucleotides of each read and adapter contamination were also removed 

prior further analysis. Poor quality nucleotides (average base quality over a four bp sliding 

window < 5) were trimmed. The remaining 52.631.072 paired reads were used for de novo 

transcriptome assembly. The assembled transcriptome was assessed for gene completeness 

using the BUSCO (Benchmarking Universal Single-Copy Orthologs) library (Simão et al., 

2015). 

 

After Trinity assembly, annotation was performed using Trinnotate pipeline v3.0.1 

(https://trinotate.github.io/). Gene open reading frames (ORFs) were predicted using 

TransDecoder v5.0.0 (http://transdecoder.github.io). Only the longest predicted ORFs that were 

at least 100 amino acids long were retained. Obtained ORFs were blasted against the SwissProt-

UniProt database (v06.2017) with an E-value cut-off of 10−5 using BlastP (Altschul et al., 

1990). Additionally, the software Hmmer v.3.1b2 was used for protein domain identification 

(Finn et al., 2015), Tmhmm v.2.0c for prediction of transmembrane helices in proteins (Krogh 

et al., 2001) and SignalP v.4.1 to predict signal peptide cleavage sites (Petersen et al., 2011). 

 

Differentially expressed genes along Hydra body parts 

Differentially expressed (DE) genes among the three parts of Hydra’s body plan (foot, body, 

and head) were identified using the R-package DESeq2 (Love et al., 2014). RNAseq libraries 

from each body part were mapped to the de novo Hydra transcriptome and the transcripts were 

quantified using RSEM (Li and Dewey, 2011). Transcripts with more than two counts per 

million in at least three libraries were kept for further analysis. Correction for batch effects in 

the samples was applied through a surrogate variable analysis using the sva R-package (Leek 

JT, Johnson WE, Parker HS, Fertig EJ, Jaffe AE, Storey JD, 2017). Negative binomial 

generalized linear models in DESeq2 were used to determine the differential expression of the 

transcripts among the body parts. Transcripts with a significance cut-off of adjusted P-value < 

0.05 were selected for comparisons. The P-value was adjusted according to the false discovery 

rate (FDR) (Benjamini and Hochberg, 1995). 
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Cluster and GO enrichment analysis 

The expression patterns of the DE transcripts were analysed with a hierarchically clustering 

tree. A regularized log transformation (Love et al., 2014) of the expression of DE transcripts 

and the Euclidean distance was used to construct the tree. The clusters of similar expression 

patterns were calculated cutting the tree at 50% of the maximum height. 

 

Microarray hybridization and analysis 

Custom Agilent Gene Expression Microarray was designed using the H.magniapillata gene 

models available at Metazome (https://metazome.jgi.doe.gov/pz/portal.html). For the 

microarray analysis of gene expression, total RNA was isolated from head and the first part of 

the body (Body 1, Figure 1, C) of polyps treated with 2,5 TSA or 10nM TSA or the control 

polyps in DMSO using TRIzolTM reagent (InvitrogenTM) according to manufacturer’s 

protocol and combine with a purification protocol using PureLinkTM RNA mini Kit columns 

from Ambion®. About 400ng of total RNA were labelled with Cy3 using the one-colour Quick-

Amp Labeling Kit (Agilent Technologies). Labelled cRNA samples (n= 24 in total) were 

hybridized to Agilent Gene Expression Microarray 4x44k slides for 17h at 65°C and treated 

according to the Agilent protocol. The microarrays were scanned using the Agilent High 

Resolution G2565CA Microarray Scanner System. Agilent single-channel microarrays were 

processed using an in-house R-script which integrates the package limma (Smyth, 2005) for 

quality control, normalization and gene differential expression assessment. For each 

microarray, we applied a background correction (Ritchie et al., 2007) using normexp-saddle 

(Ritchie et al., 2006; Silver et al., 2009). For replicated probes on the same array, we replaced 

the individual value with the respective average. For array comparability, we performed 

quantile-normalization (Bolstad et al., 2003). Differentially expressed genes were identified by 

a linear modeling approach and the empirical Bayes statistics (Smyth, 2004). 

 

Quality of the assembly - supplementary results 

The quality of the Hydra transcriptome was made based on statistics such as the ExN50 value 

and the number of genes longer than 1kb. Transcriptome completeness regarding gene content 

was assessed as a complementary approach. The transcriptome was tested for the presence or 

absence of a list of conserved orthologous genes. The BUSCO (Benchmarking Universal 

Single-Copy Orthologs) library of Metazoa orthologous genes was used (Simão et al., 2015). 

This library represents a collection of 843 well-annotated and conserved single-copy metazoan 

orthologs. 
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In total, 730 (86.6%) complete BUSCO hits were obtained, and duplicate hits to 143 (17%) 

genes. Another 45 (5.3%) were fragmented and 68 (8%) were missing. In theory, duplicates 

represent gene duplication and/or mechanisms such as alternative splicing in the sample. 

Indeed, duplicates were high in our total assembly; therefore, this could be explained by the 

expression of paralogs and/or isoforms in the different Hydra’s body plan (foot, body, and 

head). However, the high number of complete genes provides an important validation of the 

depth and completeness of the assembly. 

 

D. mela Ref C:98% [D:6.4%], F:0.6%, M:0.3%, n:2 675 

D. mela busco C:99% [D:3.7%], F:0.2%, M:0.0%, n:2 675 

C. eleg Ref C:85% [D:6.9%], F:2.8%, M:11%, n:843 

C. eleg busco C:90% [D:11%], F:1.7%, M:7.5%, n:843 

H. sapi Ref C:89% [D:1.5%], F:6.0%, M:4.5%, n:3 023 

H. sapi busco C:99% [D:1.7%], F:0.0%, M:0.0%, n:3 023 

L. giga Ref C:89% [D:2.3%], F:4.3%, M:5.8%, n:843 

L. giga busco C:90% [D:13%], F:7.8%, M:2.1%, n:843 

A. nidu Ref C:98% [D:1.8%], F:0.9%, M:0.2%, n:1 438 

A. nidu busco C:95% [D:7.3%], F:3.8%, M:0.9%, n:1 438 
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Figure 2.1. General approach followed to investigate Hydra boundaries. A. Transgenic Hydra 

used to visualize the head boundary. B. Regionalization of Hydra body. The arrows show the 

constant passive movements of the cells due to constant proliferation of stem cells in the body 

column. C. Collection of datasets used in this study. D-E. Examples of some genes in Hydra 

showing a position restricted expression. The dashed lines indicate the concerned boundary. 
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Figure 2.2. Identification of region-specific genes by comparative transcriptomics. A. RNA 

sequenced samples from Hydra body parts plotted in a principal component analysis. B. 

Correlation circle. The higher contributors to the variation from the PCA where plotted and 

annotated, the functional processes are shown in the direction where they contribute from the 

center of the PCA. C. Graphical representation of DEGs annotated by Gene Ontologies where 

the differential expression was at least of 2 fold among the parts. D.DEGs organized in clusters 

according to their expression in the different part of the body. Here we show 4 models of the 

clusters we selected for the analysis. TH: Genes expressed mostly in the Tentacle- Head region. 

F: Genes expressed specifically in the foot region. THF: Common genes expressed in 

differentiated tissue (tentacles, head and foot), and B: Genes overexpressed in the body column.  
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Figure 2.3. Summary of the unbiased RNAseq approach to identify compartment specific 

functional groups of genes. Group of clusters sharing similar expression pattern (Figure 2D) 

were annotated using KEGG pathways to identify the function and biological processes 

dominating in each body part. The colors correlate with the group of clusters from Figure 2,D. 

Notice that members a single pathway can be expressed in a different fashion according to the 

position in the Hydra body axis.  
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Figure 2.4. Changes in the transcriptional landscape upon TSA treatment. D: PCA form all the 

samples in the microarrays assay E. Correlation circle. The higher contributors to the variation 

from the PCA where plotted and annotated, the functional processes are shown in the direction 

where they contribute from the center of the PCA. The organization of the genes in clusters 

according to their expression in the different treatments gave rise to 2 main clusters. F: cluster1, 

where genes that in the control (head DMSO) are downregulated in the head, after TSA 

treatment are upregulated like in the body.  G. cluster 6, here the genes that normally are 

upregulated in the head, after TSA treatment show downregulation to a level as they are 

expressed in the body. 
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Figure 2.5. A higher expression of cell cycle genes is identified in head tissue when Hydra is 

treated with TSA. A. The genes from cluster 1 were annotated by blast and analyzed in the 

KEGG pathway database, here we show the cell cycle pathway. Gene expression pattern along 

the body axis and their change upon TSA treatment is shown in different colored boxes 

according to the legend below. The boxes without color correspond to genes that were either 

not giving a Blast hit or that were falling out in the signal cleaning process. Notice that most of 

the red colored boxes which correspond to genes expressed in the body compartment are also 

with a skin color, meaning that many genes whit restricted expression to the body, are also 

sensible to TSA and change their expression pattern: they are also upregulated in the head upon 

TSA treatment. B-D: TSA treatment leads to BrdU labelled s-phase cells in head tissue in 

differentiated cells. Whole mount BrdU labeling with a lapse of 4 days incubation in DMSO 

(B), TSA 5nM (C) or TSA 10nM (D), with one time feeding and followed by 2 hours incubation 

in BrdU. The arrows show positive BrdU nuclei. Notice that in TSA treatments these nuclei are 

increased in the head and appear in the tentacles where they never did in the control. E-H: TSA 

allows cell to express the stem cell specific transcription factor FoxO. E: reporter construct used 

to check the expression pattern in living animals. The expression of foxO is concentrated in the 

body region of the ectodermal cells (GFP positive region). F: DMSO, G: transgenic animals 

kept 4 days in 5nM TSA, notice that ectodermal cells from head and foot are GFP positive. H: 

transgenic animals kept 10 days in 5nM TSA, notice that the detachment of the bud is disturbed. 
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Figure 2.6. TSA treatment prevents the cells in the head expressing organizer genes. A: Here 

we show some genes belonging to cluster 6. The genes were annotated by blast and organized 

in KEGG categories. Their comparative expression according to the localization in the body 

axis is shown in different colored boxes according to the legend above. The boxes without color 

correspond to genes that were either not giving a Blast hit or that were falling out in the signal 

cleaning process. Notice that the Wnt proteins which are expressed specifically in the head 

(Blue), are also sensible to TSA been downregulated (see also figure 5, D). B-D: Model of 

action of a persistent histone hyperacetylation state in Hydra. Transition of a normal pattern 

into an extended stem cell compartment and a concurrent reduction of the differentiated 

compartments (most notorious in the tentacles). B: Hydra in normal conditions or in DMSO. 

C: After 2-3 days incubation in TSA 2.5nM. D: After 2-3 days incubation in TSA 10nM. 



66 
 

  



67 
 

Figure 2.7. Histone deacetylation model: A. Histone deacetylation by HDACs (Millard et al., 

2017, 2013b) leads conventionally to the inhibition of gene expression  (Struhl, 1998) and the 

first compaction step of chromatin (Eskeland et al., 2010).  B. TSA inhibits HDACs and leads 

to a histone hyperacetylation state, thereby many genes cannot be silenced. C. In Hydra, 

increased expression of members of the phosphatidylinositol signaling system and inositol 

phosphate metabolism pathways in differentiated tissue (head and foot) results in numerous 

phosphatidylinositols (PI) and soluble inositol phosphate isoforms which cause  fully 

activation of HDACs in complex (see Watson et al., 2016). D. Exposure of Hydra polyps to 

low dose of TSA hampers the differentiation process, interferes with the maintenance of the 

boundary and results in a transition of the whole body into a stem cell compartment.  E. 

Drosophila embryos of mutant Rpd3 (HDAC 1/2 in Drosophila melanogaster) germline clones 

display a drastically disturbed segmentation phenotype (Mannervik and Levine, 1999; Perrimon 

et al., 1996). F.  A similar effect of TSA is seen on the Root Apical Meristem (RAM) from 

Arabidopsis thaliana. HDACs inhibition causes an increase in meristem size without increase 

in cell division which has been interpreted as a delay of differentiation (Rosa et al., 2014), 

suggesting that controlling the level of histone acetylation is fundamental for the timely 

transition into differentiation (Ikeuchi et al., 2015). Acetylation representation modified from 

(Morao et al., 2016). 
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Abstract 

Despite enormous research efforts, the genetic component of longevity has remained largely 

elusive. Since the investigation of common variants, mainly located in intronic regulatory 

regions in the genome, has yielded only little new information on the longevity heritability, we 

performed a chip-based exome-wide association study focusing on both common and rare 

variants in our German longevity cohort comprising more than 1,200 long-lived individuals, 

including 599 centenarians. In a single-variant analysis, we found rs1046896 in the gene 

fructosamine-3-kinase-related-protein (FN3KRP) to be significantly associated with longevity. 

An eQTL database search revealed the rs1046896 longevity allele to be associated with higher 

gene expression in various human tissues. A gene-based analysis, in which potential collective 

effects of common and rare variants were considered, yielded the gene phosphoglycolate 

phosphatase (PGP) as another potential longevity locus. With both the single-variant and the 

gene-based analysis, we validated previously reported longevity associations, i.e. for CDKN2B 

(rs1063192) and OTOL1, respectively. Replication of our results in French and Danish 

longevity collections, was successful for rs1063192 in the French; the longevity-association 

was further substantiated by a meta-analysis. 
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3.1. Introduction 

Human longevity is a complex phenotype influenced by both genetic and environmental factors, 

which furthermore interact, e.g., via epigenetic changes [1]. Heritability estimates for longevity 

range from 12% [2] to 30% [3]; however, in the oldest-old, the genetic influence is even higher 

(up to 48%) [4]. Candidate studies have yielded many potential longevity associations, but most 

of them could not be replicated in independent investigations. To date, variation in only four 

loci has been confirmed to impact longevity across populations: APOE [5, 6], FOXO3 [7, 8], 

the 5q33.3 locus [9, 10] and CDKN2B [11–13]. The first three reached genome-wide 

significance in large genome-wide association studies (GWAS) [9, 14]. However, the identified 

variants together only explain a small proportion of the longevity heritability. Thus, novel 

approaches are needed to identify additional loci involved in the phenotype. 

 

Longevity studies have mostly been conducted following the common disease/common variant 

hypothesis, which is based on the assumption that the likelihood of becoming long-lived 

depends on a small number of single nucleotide variants (SNVs) that occur at high frequency 

in all populations. Yet, it has been estimated that common variants explain only 5 - 10% of the 

heritability of complex traits [15–17]. Rare variants may contribute a considerable fraction to 

the heritability of complex traits, i.e. according to initial estimates, half the heritability 

explained by common SNVs [18]. Therefore, rare variants may substantially regulate longevity, 

but they are often not covered by genome-wide genotyping arrays or imputations [14]. Common 

variants often reside in regulatory/intronic regions [19], and GWAS SNPs for complex traits 

are enriched in functionally important intronic regions [20]. However, rare variants in or near 

coding regions are thought to have larger effects on the trait of interest than rare or common 

regulatory variants [19]. To date, only in a few longevity studies, the coding regions of the 

genome have been targeted or covered, e.g. by the application of exome-based genotyping [21] 

or whole-genome [22] or exome-sequencing [23–27]. These approaches yielded important 

results, not only in terms of new longevity variants (e.g. mutations in CLEC3B and HLA-DQB1 

[21, 26]); they also provided novel analysis methods that could extend the discovery spectrum 

of loci and genes influencing complex traits (e.g. analysis for an accumulation and/or 

combination of multiple variants) [11, 28]. 

 

Here, we performed an exome-wide association study (EWAS) in a large German longevity 

cohort comprising more than 1,200 centenarians and nonagenarians. We used the Illumina 

Infinium HumanExome BeadChip that covers both rare and common variants. In a single-
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variant analysis, we found rs1046896, located in the gene fructosamine-3-kinase-related-

protein (FN3KRP), to be significantly associated with longevity. An eQTL database search 

revealed the rs1046896 longevity allele to be associated with higher gene expression in various 

human tissues. We furthermore performed a gene-based analysis to consider potential collective 

effects of individual common and rare variants. This analysis yielded, next to FN3KRP, the 

gene phosphoglycolate phosphatase (PGP) as a potential longevity locus. With both the single-

variant and the gene-based analysis, we validated previously reported longevity associations, 

i.e. for CDKN2B (rs1063192) and OTOL1, respectively. Replication of our results in French 

and Danish longevity collections was successful for rs1063192 in the French; the longevity-

association was further substantiated by a meta-analysis. By considering SNV-SNV 

interactions, we were able to define a functional context highlighting the relevance of Tie2, 

PI3K/AKT and mTOR signaling, as well as calcium mobilization in healthy aging and 

longevity. 

 

3.2. Results 

3.2.1. Single-variant association analysis reveals a longevity association of rs1046896 in 

FN3KRP  

To identify new common and rare genetic variants with moderate to high penetrance associated 

with longevity, a chip-based EWAS was conducted using the Illumina Infinium HumanExome 

BeadChip (Figure 3.1). This array covers rare and common variants in a ratio of approximately 

rare:common = 8:1 [29]. In total, 1,248 German LLI and 6,941 younger controls were included 

in the study. The genotyping analysis was performed based on 62,488 SNVs, and 1,212 LLI 

and 6,762 younger controls, which had remained after QC (Supplementary figure 1, 

Supplementary figure 2). The single-variant association approach yielded 11 candidate SNVs 

(P < 1 x 10E-04) (Table 3.1, and Supplementary figure 3). Among the associated variants, 

we identified rs2075650, rs4420638, and rs769449 located in the 

TOMM40/APOE/APOC1region, a region that is well known to be negatively associated with 

longevity [5, 9, 11, 30]. Apart from these SNPs, the best association signal was obtained for 

rs1046896 in the gene FN3KRP (minor allele frequency (MAF) = 0.32, P = 7.40 x 10E-07; 

Table 3.1), which passes the exome-wide association significance threshold of 1 x 10E-06 for 

common variants [31]. In addition, we observed a longevity association for rs1063192 in the 

CDKN2B-AS1 region (2.99 x 10E-05; Table 3.1), which has previously been reported in the 

context of human longevity [11]. 
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The effects of the candidate variants were investigated for independency of the 

TOMM40/APOE/APOC1 locus by a conditional association test. The results of the conditional 

analysis confirmed the associations of rs1046896 (FN3KRP), rs55882518 (NOTCH3), 

rs1063192 (CDKN2B-AS1 region), rs1319846 (TMEM131L) and rs1790706 (DSC2) with 

longevity (Table 3.1). Additionally, an association analysis with the centenarian subpopulation 

(n=599 individuals ≥100 years) was performed. Although the centenarian subset comprised 

substantially fewer individuals, the association analysis yielded higher ORs for rs1046896 

(FN3KRP), rs55882518 (NOTCH3), 1063192 (CDKN2B-AS1 region) and rs184214819 (SPZ1) 

(Supplementary table 2). This effect has been reported before [32], and is consistent with the 

greater genetic influence with increasing age. 

 

Since we had noticed that our best-associated new candidate longevity SNV rs1046896 was 

located in a 3'UTR region and might therefore have structural implications for the mRNA 

stability [33]. (i.e. might affect gene expression in an allele-dependent manner), we investigated 

whether this SNV or SNVs in high LD (r2 > 0.8 based on HapMap-CEU individuals; 1,000 

Genomes phase 3 [34, 35]) influences local or distant gene expression. Using the publicly 

available databases Blood eQTL browser (https://genenetwork.nl/bloodeqtlbrowser/) [36] and 

the GTEx eQTL database (https://www.gtexportal.org/home/, accessed April 5 2019), we 

observed significant cis-eQTL associations of rs1046896 (and high-LD SNVs) with its vicinity 

genes, especially with the expression of FN3KRP and FN3K in several tissues (e.g. brain 

regions, testis, pancreas; Supplementary table 3). For all reported tissues, FN3KRP gene 

expression was higher in the presence of the rs1046896 longevity allele C (major allele) 

(Supplementary table 3, Supplementary figure 4). 

 

3.2.2. The longevity-association of rs1063192 (CDKN2B) replicates with borderline 

significance in an independent cohort  

We aimed for replication of the association results in two independent cohorts. Sample sizes of 

the Danish and French cohorts (Danish: 1,002 LLI, 737 younger controls and French: 1,264 

LLI and 1,830 younger controls) limited the replication approach to the common variants 

rs1046896 (FN3KRP), rs1063192 (CDKN2B), and rs1319846 (TMEM131L). The association 

of rs1063192 (CDKN2B) reached borderline significance in the French (P = 0.056, OR = 1.14; 

Table 3.2), but not in the Danish (P = 1.00, OR = 1.04; Table 3.2). The other SNPs did not 

replicate, either in the French or in the Danish (Table 3.2). 

 



75 
 

In a meta-analysis, we observed large inconsistency (I2) of the genetic effects across the three 

studies (I2 > 75%) for rs1046896 (FN3KRP) and rs1319846 (TMEM131L), but moderate I2 (25 

> I2 <75%) for rs1063192 (CDKN2B) (Table 3.2). The between-population heterogeneity of 

the genetic effects for rs1063192 (CDKN2B) was estimated as 40.72% (Table 3.2). To 

overcome a potential heterogeneity bias, we used the random effects summary odd ratio 

(OR(R)). The strongest evidence for an association with longevity was observed for rs1063192 

(CDKN2B) (OR(R) = 1.14, P = 0.00174; Table 3.2). The association for this SNV (or others in 

high LD like rs4977756) had been already replicated previously by others [11–13], however, 

in the Danish sample, we could not detect any association with longevity. Both the slightly 

smaller sample size (1,003 cases compared with 1,248 cases in the German and 1,264 cases in 

the French cohort) and the older age of the Danish (< 71 years) compared with the German (< 

60 years) or French (< 62 years) controls might have contributed to the missing replication. 

 

3.2.3. Gene-based analysis reveals PGP as a potential new longevity locus and strengthens 

the FN3KRP association 

In addition to the single-variant association approach, we assessed the cumulative effects of 

common and rare variants within one genomic region. In the gene-based association test, 13 

genes (apart from TOMM40/APOE/APOC1) were identified with an enriched burden of rare 

and common variants (P < 1 x 10E-04). However, only PGP survived Bonferroni correction in 

both the SKATO and the burden test (Table 3.3). Of the 13 genes, four (FN3KRP, GRN, 

SKOR1, SPZ1) had already been observed in the single-variant association analysis. With the 

gene-based analysis, we validated the previously reported association of OTOL1 with human 

longevity (rs1425609; [37]). In the present work, OTOL1 reached a P-value < 1.61 x 10E-06 in 

the burden test. An association analysis using the centenarian subset only, yielded significant 

associations (P < 3 x 10E-06) for seven genes (apart from APOE) that survived Bonferroni 

correction (Supplementary table 4). Of these seven genes, FN3KRP and HMHA1 overlapped 

with the gene-based analysis using the whole German study population. The remaining five 

genes (TMEM14A, IRAK1BP1, ACPP, PLXNB1, and GAR1) were identified in the centenarian 

subpopulation only (Supplementary table 4). 

 

3.2.4. SNV-SNV interaction analysis reveals a functional longevity framework 

To extend the understanding of the complex biology of longevity, we performed a SNV-SNV 

interaction analysis. A total of 52,310 SNVs (all SNVs from the array apart from those in 

linkage disequilibrium (LD) and those on the gonosomes) were used to test all possible 
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interactions with SNPsyn [38] without a priori hypothesis. For 86 SNVs, we found 148 

significant interacting pairs with positive synergy, i.e. each SNV conveys non-redundant 

information (Supplementary table 5). The genes annotated to the 86 SNVs and those 

annotated to the significantly associated SNVs from the association analyses (in total, 90 core 

genes) were uploaded to GeneMANIA [39] and ClueGo [40] to predict their functional 

implications. Based on the genome-wide map of human genetic interactions published by Lin 

et al. [41], GeneMANIA confirmed most of the interactions generated with SNPsyn 

(Supplementary figure 4), Additionally, GeneMANIA predicted 20 genes to be functionally 

related to the 90 core genes (Supplementary table 6). From the whole set of 110 genes, a 

functional map of longevity was generated using ClueGo that comprised seven functional 

groups (RNA modification; regulation of cholesterol transport; role of LAT2 on calcium 

mobilization; insulin receptor pathway; IGF1R signaling cascade; Tie2 signaling, Figure 3.1 

and Supplementary table 7). 

 

3.3. Discussion 

In our large German longevity cohort comprising more than 1,200 LLI (incl. ~600 

centenarians), we screened 62,488 common and rare exonic SNVs for an association with 

longevity. We discovered rs1046896 in the 3'UTR region of the gene fructosamine-3-kinase-

related-protein (FN3KRP) as a novel longevity-associated variant that reached exome-wide 

significance. Additionally, we replicated the longevity-association of rs1063192 in CDKN2B-

AS1 [11] as well as rs2075650, rs4420638, and rs769449 in the TOMM40/APOE/APOC1 region 

[9, 11]; the latter three are well known for being both negatively associated with longevity and 

positively associated with Alzheimer's disease [6, 42]. 

 

Our meta-analysis, which included data from our German cohort as well as from French and 

Danish sample collections, revealed very high between-population heterogeneity for rs1046896 

in FN3KRP. This might indicate that the identified SNV is not the causal variant and shows 

different LD patterns with the causal polymorphism in the three populations included in the 

meta-analysis [43]. However, based on the eQTL prediction analysis (Supplementary table 3, 

Supplementary figure 4), rs1046896 and SNVs in high LD appear to influence the stability of 

FN3KRP and thereby regulate its expression. In future studies, a fine-mapping of the FN3KRP 

gene region is needed to identify the causal variant. 

 

FN3KRP belongs to a gene family with an important role in the reversal of the non-enzymatic 
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glycation of proteins [44]. Glycation adversely affects protein function, which leads to arterial 

stiffening [45] in particular and to an accumulation of damaged proteins. This in turn promotes 

aging [44] and the development of age-related diseases [46]. Both FN3RKP and fructosamine-
3-kinase (FN3K), which show 65% sequence similarity, seem to protect proteins from non-

enzymatic glycation and to stop the formation of certain advance glycation end products [44, 

47]. Strikingly, rs1046896-T, which showed a lower allele frequency in the LLI in our study 

(ORcond. = 0.77; ORcond._centenarian = 0.70), was identified as a risk locus for glycated 

hemoglobin (HbA1c), a critical non-enzymatic glycation product used to monitor and diagnose 

diabetes [48]. Our findings, together with the substantial role of FN3KRP in cell maintenance 

and viability, support it as a promising candidate which may facilitate healthy aging and 

longevity by preventing physiological deterioration. 

 

Interestingly, rs1063192-G in the CDKN2B region, which was enriched in the LLI of our 

sample and whose longevity-association was further supported by our meta-analysis, was 

reported to be a protective variant in glaucoma, a classical age-related disease [49], which is 

also characterized by an increased burden of advanced glycation end products [46]. 

 

Apart from rs1046896 (FN3KRP), rs1063192 (CDKN2B-AS1), and rs2075650, rs4420638, and 

rs769449 (TOMM40/APOE/APOC1), six additional SNVs showed an association with 

longevity (P < 2 x 10E-04, Table 3.1). We found exome-wide significant (EWS) associations 

only for the three variants in the TOMM40/APOE/APOC1 region and rs1046896 (FN3KRP). 

However, variants without EWS (or genome-wide significance) may still reflect true 

association signals with biological relevance. It was shown that eight of the ten top CHARGE 

SNVs without GWS from a meta-analysis of GWAS [30], correspond to mouse lifespan 

quantitative trait loci (QTL) [50]. Of the 11 SNVs, for which we report a longevity association, 

four represented rare variants (MAF < 0.05%, Table 3.1). In a recent study, in which the 

exomes of 100 LLI were sequenced, no rare protein-altering SNV was observed to be enriched 

in the genomes of the LLI compared to younger controls [27]. However, our results show that 

rare coding variants may be drivers of longevity. 

 

Studies on other complex traits have shown that gene-based tests, in which all common and 

rare SNVs within a gene locus are considered jointly, can be more powerful than single-variant 

association approaches. When we examined the cumulative effect of common and rare variants 

within each gene, we discovered PGP (cumulative effect of three variants: two rare and one 
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common) as another novel longevity-associated locus (P = 8.90 x 10E-07). Via its function as 

glycerol-3-phosphate (Gro3P) phosphatase, PGP controls the levels of Gro3P, which is an 

important metabolite formed during glycolysis [51]. The availability of Gro3P is crucial for the 

regulation of both glucose and fat metabolism and eventually determines the generation of 

signaling and regulatory molecules, which further affect many biological processes (e.g., 

insulin secretion and sensitivity, inflammation, fat synthesis and storage, (cancer) cell 

proliferation) [52]. Therefore, PGP may aid in the detoxification of excess nutrient/fuel 

supplies, thereby preventing metabolic stress with its associated pathologic conditions, e.g. type 

2 diabetes, cardiovascular diseases and metabolic syndrome [52–54], and eventually facilitating 

longevity. 

 

In the gene-based test, apart from PGP and TOMM40/APOE/APOC1, we identified 17 

additional potential longevity genes (P < 1 x 10E-04), including otolin 1 (OTOL1). One intronic 

SNV in OTOL1, rs1425609, has already been associated with longevity in a single-variant 

analysis in a previous study [37]. The fact that the gene-based test led to the replication of a 

longevity-association, whose identification was based on a single variant, not only validated 

the gene-based approach, but also points towards the added value of analyzing both common 

and rare SNVs jointly for explaining the missing longevity heritability. Next to OTOL1, the 17 

genes included the ribosomal protein S6 kinase B1 (RPS6KB1), a downstream effector of the 

nutrient-responsive mTOR (mechanistic target of rapamycin kinase), which was shown to 

promote longevity in yeast, worms, and flies [55]. Furthermore, TMEM14A, IRAK1BP1, ACPP, 

PLXNB1, and GAR1, all involved in cell proliferation and cell growth [56–60], also reached 

nominal statistical significance. Noteworthy, the gene FN3KRP reached a P-value of P = 3.08 

x 10E-06 and survived multiple testing correction in the centenarians subset (Supplementary 

table 4). This supports the FN3KRP-longevity association to be a true-positive signal. An 

accumulation of common and rare variants has already been observed in genes associated with 

other complex traits like type 2 diabetes [61] and Alzheimer´s disease [42]. With respect to 

extreme aging, the genes LYST, MDN1 and RBMXL1 were found to harbor an increased burden 

of rare coding variants in LLI versus younger controls; however, with nominal significance 

only [27]. To our knowledge, joint effects of common and rare variants on human longevity 

have not been investigated yet in a cohort of comparable size like ours. In a recent study, sets 

of variants with low and rare frequency (MAF< 0.05) were analysed for an association with 

longevity in East Asians (530 nonagenarians/centenarians). More than 100 genes reached 

nominal significance in that study; however, EWS was not met by any of the genes [21] and we 
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could not identify an overlap with our results. 

 

SNV-SNV interaction analysis predicted genetic interactions between 86 genes that, together 

with the longevity-associated genes annotated to the significant SNPs from the association 

analyses in the present work, may depict the molecular and physiological pathways underlying 

human longevity. The functional network of the longevity-associated genes identified in this 

study tended to form hubs, which were determined rather by co-expression and genetic 

interaction data than by co-localization or physical interaction (Supplementary figure 4). 

Overall, our functional network supported previous reports on pathways that likely control 

longevity, i.e. the mTOR and insulin/IGF1 signaling pathways [55, 62]. Tie2 signaling has been 

suggested to be indispensable for neovascularization and protection of age-related macular 

degeneration and glaucoma [63, 64], which is in concordance with our findings for rs 1063192 

and FN3KRP. Telomere maintenance has also been suggested to be crucial for attaining 

longevity [62]. In our functional network, the genes GAR1 and NAT10, both involved in rRNA 

modification, were reported to be telomerase-associated proteins, and particularly over-

expression of NAT10 was shown to induce telomere shortening [65]. 

 

3.4. Conclusion 

With our study, we contribute to the genetic framework of longevity with two new potential 

candidate genes, FN3KRP and PGP, which were identified by single-variant and gene-based 

analyses, respectively. The two genes influence longevity likely by their role in metabolic 

processes, i.e. the reverse glycation of proteins (FN3KRP) and control of Gro3P levels (PGP). 

However, with respect to FN3KRP, the variant that we report here (rs1046896) is unlikely to 

be the causal variant, considering the high between-population heterogeneity values in the 

meta-analysis of the German, Danish and French association results. Future fine-mapping 

studies are warranted to identify the true functional variant in high LD with rs1046896. With 

the combination of analysis methods and, in particular, the investigation of cumulative effects 

of common and rare variants within one genetic region, we are a step closer to accounting for 

the missing heritability of human longevity. 

 

3.5. Materials and methods 

German, Danish and French study populations 

The German sample comprised 1,248 German LLI (male/female ratio: approximately 1/3; age 

range: 94 - 110 years; mean age: 99) as described previously [6, 8]. Briefly, the control sample 
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contained 6,941 younger individuals (age < 60 years) from a German population-based 

collection recruited with the help of the biobank popgen; in detail, 2,905 adults from the KORA 

study (Collaborative Health Research in the Region of Augsburg) [66], 2,360 individuals from 

HCDEBONN, 998 Germans from the popgen biorepository [67], 473 participants from 

HCDEMICK, and 205 additional individuals from HCGCON. All study participants provided 

a written informed consent prior to enrolment in the study. Approval for the project was 

obtained from the Ethics Committee of the Medical Faculty of Kiel University. 

 

For the Danish data set, the 1,003 cases (male/female ratio 1/3, age range: 91 - 101 years) 

consisted of participants drawn from seven nation-wide surveys collected at the University of 

Southern Denmark; the Study of Danish Old Sibs (DOS), the 1905 Birth Cohort Study, the 

1910 Birth Cohort Study, the 1911-12 Birth Cohort Study, the 1915 Birth Cohort Study, the 

Longitudinal Study of Danish Centenarians (LSDC), and the Longitudinal Study of Ageing 

Danish Twins (LSADT). Briefly, DOS was initiated in 2004 and included families in which at 

least two siblings were ≥ 90 years of age at intake. The LSDC and 1905, 1910, and 1915 Birth 

Cohort Studies were prospective follow-up studies initiated in 1995, 1998, 2010, and 2010, 

when participants were 100, 92-93, 100, and 95 years of age, respectively  [68]. The 1911-

1912 Birth Cohort Study consisted of individuals reaching the age of 100 years in the period 

from May 2011 to July 2012 [69] and LSADT was initiated in 1995 and includes Danish twins 

≥ 70 years of age [70]. From DOS and LSADT, one individual from each sib-ship or twin pair 

was randomly selected among participants that had reached an age of ≥ 91 years for DOS, and 

≥ 90 years for LSADT. From the 1905 and 1915 Birth Cohort Studies, participants were 

selected among individuals reaching an age of minimum 96 years. The 1,189 controls (age < 

71 years) consisted of individuals recruited by the Danish Twin Registry (DTR) as part of the 

study of Middle-Aged Danish Twins (MADT). MADT was initiated in 1998 and included 4,314 

twins randomly chosen from each of the birth years 1931-1952 [71]. Surviving participants 

were revisited from 2008 to 2011 [72], where the blood samples used for DNA extraction were 

collected. Signed informed consents were obtained from all participants. Collection and use of 

biological material and survey information were approved by the Regional Committees on 

Health Research Ethics for Southern Denmark, and the study was approved by the Danish Data 

Protection Agency. 

 

The French data set comprised 1,264 individuals (male/female ratio ~ 1/4.5, mean age 102.4 

years; age-range 91-115+ years) [73]. French siblings were recruited when at least two siblings 
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fulfilled the age criterium of 90 years or older; in such a case the oldest sibling was selected for 

the study. All subjects signed a written informed consent form in accordance with the local 

review board. The French controls consisted of 1,830 subjects (age < 62 years) selected in a 

population-based sample of French subjects that had participated in the Supplementation in 

Vitamins and Mineral Antioxidants (SU.VI.MAX) study [74]. 

 

Exomechip genotype calling and quality control 

Study samples were genotyped on the BeadChip Illumina HumanExome-12v1.1 (N = 244,770 

SNVs) or BeadChip Illumina HumanExome-12v1.2 (N = 247,870 SNVs) (Illumina Inc., San 

Diego, USA). Genotype calling was performed using the GenomeStudio software and the 

GenTrain v2.0 clustering algorithm (Illumina Inc., San Diego, USA). To improve genotype 

calling, zCall software v3 [75] and call rate > 95% was used. In order to avoid false positive 

associations, an independent quality control (QC) was performed for samples and SNVs. QC 

was done with the software Plink 1.9 [76]. In total, 224 samples were removed because they 

had failed one or more of the following inclusion criteria: discordant sex information, missing 

genotype < 3%, heterozygosity rate greater or lower than ± 4sd from the mean, and no 

relatedness of individuals. Relatedness was estimated using identity by descent metric (IBD) 

[77]. For related individuals (IBD > 0.1875; halfway between the expected IBD for third- and 

second-degree relative [77], only one individual was included in the analysis. SNVs were 

excluded if the missing rate was too high (> 3%) or, for common SNVs in the control sample, 

if they deviated from Hardy-Weinberg equilibrium (P < 0.0001). Due to the lack of sufficient 

statistical power, SNVs with extremely low minor allele frequency (MAF < 0.003, equivalent 

to a minor allele count (MAC) ≥ 21) were removed. Power calculations were carried out with 

the Gas Power Calculator 

(http://csg.sph.umich.edu/abecasis/cats/gas_power_calculator/index.html). For the single-

variant analysis, the Bonferroni-corrected P-value threshold was based on the number of 

markers tested: P < 8 x 10E-07 (significance threshold 0.05/62,488 number of markers tested). 

Concordantly, the gene-based Bonferroni-corrected P-value threshold was based on the number 

of gene sets tested: P < 3.3 x 10E-06 (significance threshold of 0.05/14,790 gene sets). 

 

Prior to further analysis, a confounder correction was conducted based on gender, linkage 

disequilibrium (LD) and population stratification. Population substructure was evaluated with 

the principal component analysis (PCA) using a common set of independent markers (N = 

16,782 SNVs). The principal components (PC) were calculated using PLINK 1.9 [76], and the 
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first five PCs were selected to identify potential confounders for the correction. Additionally, 

stratification outliers were identified based on the local outlier factor (LOF > 1.7) [78] and 

excluded to mitigate population stratification. 

 

Association analysis in the German sample 

Single-variant association analysis was performed using the logistic regression test 

implemented in PLINK1.9 [76], assuming an additive genetic model. Candidate longevity 

SNVs with a discovery P-value < 1 x 10E-04 were selected for replication. This threshold is 

less stringent than 1 x 10E-06 which was proposed for EWAS [31]. Relaxation in the selecting 

threshold allows the identification of longevity SNVs which usually have small effects on the 

phenotype [79]. To identify additional association signals and to test for independency of the 

newly identified SNVs from the effects of the known longevity-associated locus 

TOMM40/APOE/APOC1 [9, 11, 30], a conditional association test was performed considering 

the SNVs rs2075650, rs4420638, and rs769449. The conditional test was done using the logistic 

regression test in PLINK1.9 [76]. The genomic inflation was estimated based on the P-values 

of the association. The Sanger imputation service 

(http://www.sanger.ac.uk/science/tools/sanger-imputation-service) and the 1000 Genomes 

phase I v.3 reference panel was used to enrich the common SNV pool. 

 

In addition to the single-variant association testing, a gene-based analysis was performed. 

Potential cumulative effects of rare and common variants with longevity were tested using both 

burden and non-burden (i.e. SKAT) approaches from the algorithm RC-SKAT [80]. Both 

approaches were considered because burden tests were shown to perform better if multiple 

variants in the regions are causal and influence the phenotype in the same direction [81], while 

non-burden tests, like SKAT [82], are more advantageous if SNVs in the region interact or 

show opposing directions of effect [83]. From the 244,770 SNVs on the HumanExome-v12 

BeadChip, a gene-set file was prepared using the R-package biomaRt [84]. The overall effect 

of rare and common variants in a gene was evaluated based on the adaptive sum test [80] in 

combination with either burden or SKAT. 

 

Synergistic effects among SNVs were assessed using SNPsyn [38]. SNPsyn uses an 

information-theoretic approach for a synergistic interaction analysis. A synergy between a pair 

of SNVs is measured as the difference between the information of the SNV-SNV phenotype 

and the sum of the information encoded by the two individual SNVs [38]. Shared information 
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(depicted in the information score) between SNV pairs can be either positive (synergistic SNVs) 

or negative. If negative, the two SNVs carry redundant information; an effect that is frequently 

observed among highly correlated SNVs. The significances of the information scores were 

calculated using permuting genotype data across samples 500 times. The scores were corrected 

for multiple testing using false discovery rate (FDR) [85]. SNV interactions were considered 

significant if the corrected P-value < 0.001. 

 

The list of core genes (annotated to SNVs from both the SNV-SNV interaction analysis and 

association analyses) was used together with GeneMANIA Cytoscape plugin (under default 

parameters) [39] to enrich the functional context of the gene-associated candidates. 

GeneMANIA uses a network weighting approach to determine how genes in a gene list are 

connected to one another or for determining which types of functional or genomic data are the 

most useful to collect for finding more genes like those in the query list [86]. Later, functional 

annotation was performed in the context of the Gene Ontology (GO) terms [87], KEGG [88] 

and REACTOME [89] pathways using ClueGo Cytoscape plugin [40]. ClueGo creates first a 

binary gene-term matrix using gene's annotations, similar as descried by Huang et al. [90]. GO 

terms and pathways with less than three annotated genes were filtered out. A chance-corrected 

measure of co-occurrence between pair of terms (kappa statistics) was used to determine the 

association strength between terms [91]. Thus, ClueGo creates a network that represents the 

terms as nodes linked based the kappa score level (> 0.3). Functional groups in the network 

were created by iterative merging and those with a corrected (FDR) P-value < 0.05 were 

selected for the representation. 

 

Genotyping in the replication cohorts 

DNA was extracted from dried blood spot cards using either the DNA Mini or Micro Kits 

(Qiagen, Hilden, Germany) or the Extract-N-AmpTM Blood PCR Kit (Sigma-Aldrich, St. 

Louis, MO, USA) followed by amplification using the GenomePlex Complete Whole Genome 

Amplification (WGA) Kit (Sigma Aldrich, St. Louis, MO, USA), or from whole blood using a 

manual [92] or a semi-automatic (Autopure, Qiagen, Hilden, Germany) salting out method. 

 

Danish LLI were genotyped using the Illumina HumanOmniExpress Array (Illumina Inc., San 

Diego, CA, USA). Pre-imputation quality control included filtering of SNPs on genotype call 

rate <95%, HWE P<10-4, and MAF < 1%, and individuals on sample call rate <95%, 

relatedness and gender mismatch. After imputation to the 1000 Genomes phase I v.3 reference 
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panel, genotype probabilities were converted to hard-called genotypes in Plink (using a cut-off 

of 90%) [76]. For the Danish controls, data of the SNPs rs1063192, rs1046896 and rs13119846 

was extracted from quality controlled genotype data created using the Illumina Infinium 

PsychArray (Illumina Inc., San Diego, CA, USA). 

 

French individuals were genotyped by TaqMan (Thermo Fisher Inc., Waltham, Massachusetts, 

USA) on a 7900HT Fast Real-time PCR System (Thermo Fisher Scientific Inc., Waltham, 

USA). Association analysis was performed using logistic regression accounting for gender as 

covariate in the software Stata [93] and Plink [76]. 

 

Meta-analysis was performed with Plink [76]. Fixed and random effect models were used to 

estimate the effect size. Cochran's Q statistics and I2 metric were calculated to measure 

between-study heterogeneity. 
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Tables 

Table 3.1. Association statistics for the 11 longevity-associated SNVs identified by the single-variant association approach in the whole German study population. 

   MAFa   Basic association test  Conditional analysis 
SNV Gene Chr LLI C MA  ORb Pd   ORb Pd  

       [95% C.I.]c   [95% C.I.]c  
rs769449 APOE 19 0.056 0.109 A  0.48 [0.40 - 0.58] 7.77E-15   -   -  
rs4420638 APOC1 19 0.109 0.169 G  0.60 [0.52 - 0.69] 3.55E-13   -   -  
rs2075650 TOMM40 19 0.109 0.147 G  0.70 [0.61 - 0.80] 3.51E-07   -   -  
rs1046896 FN3KRP 17 0.276 0.324 T  0.78 [0.71 - 0.86] 7.40E-07  0.77 [0.70 - 0.85] 2.32E-07 
rs55882518 NOTCH3 19 0.013 0.005 T  2.69 [1.73 - 4.18] 1.07E-05  2.77 [1.78 - 4.30] 6.23E-06 
rs13119846 TMEM131L 4 0.486 0.438 C  1.22 [1.11 - 1.33] 1.73E-05  1.21 [1.11 - 1.32] 2.45E-05 
rs1063192 CDKN2B 9 0.482 0.439 G  1.21 [1.11 - 1.32] 2.99E-05  1.22 [1.12 - 1.33] 1.08E-05 
rs184214819 SPZ1 5 0.009 0.003 A  3.01 [1.77 - 5.11] 4.72E-05  2.79 [1.64 - 4.74] 1.52E-04 
rs200956599 SKOR1 15 0.014 0.006 T  2.34 [1.55 - 3.54] 5.24E-05  2.29 [1.52 - 3.47] 8.65E-05 
rs63750412 GRN 17 0.008 0.002 T  3.57 [1.93 - 6.61] 5.18E-05  3.34 [1.80 - 6.18] 1.29E-04 
rs1790706 DSC2 18 0.159 0.189 A   0.79 [0.70 - 0.89] 9.59E-05   0.78 [0.69 - 0.88] 3.35E-05 
 

APOC1, apolipoprotein C1; APOE, apolipoprotein E; CDKN2B, cyclin dependent kinase inhibitor 2B; DSC2, desmocollin 2; FN3KRP, fructosamine 3 kinase 
related protein; GRN, granulin precursor; NOTCH3, notch 3; SKOR1, SKI family transcriptional corepressor 1; SPZ1, spermatogenic leucine zipper 1; TMEM131L, 
transmembrane 131 like; TOMM40, translocase of outer mitochondrial membrane 40 
Long lived individuals (LLI); controls (C); chromosome (Chr) 
aMinor allele frequency, MAF; the definition of the minor allele (MA) is based on controls 
bOdds ratio for longevity, OR; based on the MA in controls 
c95% confidence interval, 95% C.I.; C.I. for the OR 
dAllelic P-values, calculated with chi - squared test with one degree of freedom 
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Table 3.2. Single-variant replication and meta-analysis statistics for candidate SNVs in the French and Danish populations. 

   MAFa   Basic association test  Conditional analysis 
SNV Gene Chr LLI C MA  ORb Pd   ORb Pd  

       [95% C.I.]c   [95% C.I.]c  
rs769449 APOE 19 0.056 0.109 A  0.48 [0.40 - 0.58] 7.77E-15   -   -  
rs4420638 APOC1 19 0.109 0.169 G  0.60 [0.52 - 0.69] 3.55E-13   -   -  
rs2075650 TOMM40 19 0.109 0.147 G  0.70 [0.61 - 0.80] 3.51E-07   -   -  
rs1046896 FN3KRP 17 0.276 0.324 T  0.78 [0.71 - 0.86] 7.40E-07  0.77 [0.70 - 0.85] 2.32E-07 
rs55882518 NOTCH3 19 0.013 0.005 T  2.69 [1.73 - 4.18] 1.07E-05  2.77 [1.78 - 4.30] 6.23E-06 
rs13119846 TMEM131L 4 0.486 0.438 C  1.22 [1.11 - 1.33] 1.73E-05  1.21 [1.11 - 1.32] 2.45E-05 
rs1063192 CDKN2B 9 0.482 0.439 G  1.21 [1.11 - 1.32] 2.99E-05  1.22 [1.12 - 1.33] 1.08E-05 
rs184214819 SPZ1 5 0.009 0.003 A  3.01 [1.77 - 5.11] 4.72E-05  2.79 [1.64 - 4.74] 1.52E-04 
rs200956599 SKOR1 15 0.014 0.006 T  2.34 [1.55 - 3.54] 5.24E-05  2.29 [1.52 - 3.47] 8.65E-05 
rs63750412 GRN 17 0.008 0.002 T  3.57 [1.93 - 6.61] 5.18E-05  3.34 [1.80 - 6.18] 1.29E-04 
rs1790706 DSC2 18 0.159 0.189 A   0.79 [0.70 - 0.89] 9.59E-05   0.78 [0.69 - 0.88] 3.35E-05 
 
C, younger controls; CDKN2B, cyclin dependent kinase inhibitor 2B; FN3KRP, fructosamine 3 kinase related protein; LLI, long-lived individuals; TMEM131L, transmembrane 131 like. Listed are 
rs-numbers, annotated gene name, chromosome, allele frequencies in cases and controls, the minor allele, odds ratios with 95% confidence intervals and allelic P-values for each study population. 
The effective size of the German population was 1,248 LLI and 6,762 younger controls; for the French 1,270 LLI and 1,824 younger controls, and for the Danish 1,002 LLI and 737 younger controls. 
aMinor allele frequency, MAF; the definition of the minor allele (MA) is based on controls 
bOdds ratio for longevity, OR; based on the MA in controls 
c95% confidence interval, 95% C.I.; C.I. for the OR 
dAllelic P-values, calculated with chi-squared test with one degree of freedom; Pcorr, corrected P-value using false discovery rate (corrected for three tests in the French and Danish study populations 
and for 62,488 tests in the German sample) 
eRandom-effects meta-analysis P value; fRandom-effects OR estimate; gP-value for Cochrane's Q statistic, Q; hI2 heterogeneity index (0-100) 
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Table 3.3. Association statistics for the 16 longevity-associated genes identified by the gene-based association approach in the whole German study population. 

    SNVs 
Gene Chr P_skato P_burden All Tested Rare Common No. rs 

APOE 19 3,25E-15 3,25E-15 2 2 1 1 rs769449, rs769452 
APOC1 19 2,59E-11 1,77E-02 3 3 0 3 rs439401, rs445925, rs4420638 
TOMM40 19 1,35E-06 4,34E-02 3 3 1 2 rs157580, rs2075650, rs142412517 
PGP 16 2,50E-06 8,90E-07 3 3 2 1 rs200526199, rs116977380, rs200615324 
OTOL1 3 2,56E-04 7,11E-06 5 5 3 2 rs199791179, rs149127996, rs199985412, rs3921595, rs202021352 
FN3KRP 17 9,19E-06 3,75E-02 5 5 3 2 rs138953335, rs61743692, rs144986629, rs142718764, rs1046896 
SETD9 5 1,19E-05 6,95E-05 6 6 4 2 rs2257505, rs149334074, rs40497, rs141692637, rs150526244, 

rs146260337 
RPS6KB1 17 1,56E-05 1,56E-05 2 2 1 1 rs201316437, rs1051424 
GRN 17 1,59E-05 8,28E-03 4 4 4 0 rs63750723, rs63750043, rs63750541, rs63750412 
PSG7 19 2,64E-05 4,19E-04 2 2 2 0 rs199532805, rs112354282 
SKOR1 15 3,38E-05 9,20E-05 2 2 2 0 rs200956599, rs143419968 
HNF4G 8 3,95E-05 2,17E-02 4 4 3 1 rs2943549, rs201625743, rs138897994, rs148532560 
ASB17 1 4,42E-05 4,22E-05 3 3 1 2 rs149522654, rs11161887, rs3795251 
SPZ1 5 8,09E-05 2,26E-04 5 5 2 3 rs1862136, rs139471643, rs184214819, rs200249535, rs35337118 
BFSP1 20 1,25E-03 6,00E-05 6 6 5 1 rs145703098, rs140116733, rs6080719, rs147718368, rs143865632, 

rs142092768 
HMHA1 19 1,54E-03 3,49E-05 8 8 5 3 rs1801284, rs2074442, rs36084354, rs142614852, rs150294461, 

rs139988914, rs61734935, rs139251906 
 
APOE, apolipoprotein E; APOC1, apolipoprotein C1; ASB17, ankyrin repeat and SOCS box containing 17; BFSP1, beaded filament structural protein 1; FN3KRP, fructosamine 3 kinase related 
protein; GRN, granulin; HMHA1, Rho GTPase activating protein 45; HNF4G, hepatocyte nuclear factor 4 gamma; OTOL1, otolin 1; PGP, phosphoglycolate phosphatase; PSG7, pregnancy specific 
beta-1-glycoprotein 7; RPS6KB1, ribosomal protein S6 kinase B1; SETD9, SET domain containing 9; SKOR1, SKI family transcriptional corepressor 1; SPZ1, spermatogenic leucine 
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Figure legends 

Figure 3.1. Workflow of the association analyses in the case-control study of longevity using the Illumina 

HumanExome BeadChip. 

 

Figure 3.2. Manhattan plot summarizing the findings from the single-variant analysis. The inner plot represents 

the basic association results, the outer plot the association results after conditioning for the longevity-associated 

locus TOMM40/APOE/APOC1. The y-axis shows the -log(P-value), while the red line depicts the P-value 

threshold (1 x 10E0-4). The SNVs with P < 1 x 10E0-4 are highlighted as red dots. 

 

Figure 3.3. Functional annotation map generated by ClueGo. The nodes represent the GO terms. The size of the 

nodes indicate the enrichment significance of the respective term (big node = high significance). 
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Figure 3.1 
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Figure 3.2 
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Figure 3.3. 
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 4.  
Chapter III: Human gut microbiome in 

healthy aging and longevity 
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4.1. Introduction 

Humans experience several changes during the aging process, some of them obvious, but others 

subtle, but still correlated with health maintenance or disease development, like changes in the 

gut microbiome (GM) composition. GM is a complex collection of microorganisms inhabiting 

our gastrointestinal tract. Immediately after birth, the gut is colonized, first by facultative 

anaerobes, followed by several successive remodelling steps which end in the colonization with 

strict anaerobes [1]. After the first settlement, the biodiversity of the GM increases and reaches 

a stable ecology structure at around an age of three years old [2]. In adulthood, the GM remains 

relatively stable and fecal bacteria in healthy adults are dominated by the phyla Firmicutes 

(families Lachnospiraceae and Ruminococcaceae), Bacteroidetes (families Bacteroidaceae, 

Prevotellaceae, and Rikenellaceae), and Actinobacteria (families Bifidobacteriaceae and 

Coriobacteriaceae) [2–5]. 

 

As soon as the GM has reached its biodiversity peak, the composition remains relatively stable 

for long periods of time [6]. However, GM appears to be very sensitive to changes in dietary 

patterns [5, 7], drugs or medical treatment [8, 9]. Furthermore, human genetics, ethnicity, and 

physiological shifts which occur during aging were shown to be relevant factors that shape the 

structure of the GM [10–13]. Interestingly, when humans reach extreme ages (older than 90 

years of age), certain patterns of the taxonomical composition of the GM apparently change, 

which results in a longevity-specific GM profile [14–16]. 

 

Despite extensive efforts to understand GM structure and composition, it remains unclear to 

which degree GM changes are attributed to ethnicity, diet, genetics, gender, and aging, 

respectively. For Germans, no systematic large-scale study on GM changes during aging in 

individuals covering a broad age range, including long-lived individuals (LLI, >90 years of 

age), has been conducted so far. In this study, we performed a human stool metagenomic 

analysis based on 16S rRNA in 1,301 healthy individuals of German ancestry (age range 19 to 

104 years) to i) identify age-related changes in the microbiome composition, ii) determine to 

which extent host genetics (associated with gut microbial composition and metabolic 

conditions) as well as environmental factors affect the gut microbial composition during aging, 

and iii) investigate whether there are any specific microbial patterns that characterize German 

LLI. 
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4.2. Results 

To investigate the characteristics of the gut microbiome in Germans during aging, we 

performed a large-scale 16S rRNA-based microbiome study in 1,301 healthy German 

individuals which covered the broad age range of 19 to 104 years of age. The individuals 

derived from three different sample collections, abbreviated as BSP/SPC, FOC, and AGE, 

respectively, with the latter cohort comprising the oldest (90+ years) participants. The 

characteristics of the different study populations are shown in Figure 4.1 and Supplementary 

table 1. 

 

4.2.1. Physiological parameters remain relatively stable during aging in healthy 

individuals 

Because the symbiotic microorganisms in the gut are susceptible to both external and host 

physiological factors, we first explored how selected physiological parameters of the study 

individuals change during aging and if anthropometric and dietary parameters contribute to 

explaining the morphophysiological changes. We first analyzed medical records of the study 

participants. Parameters with values for at least 70% of the individuals (n(parameters)=47; 

Supplementary table 3) were selected for the analysis. Principal component analysis (PCA) 

showed that both gender (Figure 4.2 A) and age groups (groups covering 30 years each) led to 

anthropometric profiles (Figure 4.2 B, C). Stratification by age was mainly explained by 

anthropometric parameters, while the inter-individual variability was largely due to dietary 

habits (Figure 4.2 B, C). To identify which of the anthropometric parameters correlated with 

age, we used a linear regression model independently for each gender. The model revealed a 

subtle difference between males and females. Along the age spectrum, both males and females 

significantly (P < 0.05) increased their waist-to-hip ratio (WHR), fiber consumption and the 

total energy intake. On the contrary, we observed a reduction of plant protein and long chain 

fatty acid intake as well as water consumption (Figure 4.2 C - E). In addition, in females, blood 

glucose concentrations tended to increase along the age spectrum. 

 

4.2.2. Four enterotype-like clusters stratify the GM and the global microbial diversity 

tends to increase with age, but appears to be lower in LLI 

To investigate potential alterations in the gut bacterial ecology caused by aging, we analyzed 

16S rRNA sequencing libraries of all 1,301 individuals. The assembly and binning of 

50,924,857 sequencing reads led to the identification of 1,255 OTUs (Supplementary table 

3). Subsequent taxonomical annotation revealed that more than 87.9% ± 15.8% of all bacteria 
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belonged to the three phyla Bacteroidetes, Firmicutes, and Proteobacteria, respectively, with 

the latter one representing the least abundant (in our samples 9.9% ± 11.6% of the total bacterial 

load; Figure 4.3). The Shannon index as a measure of alpha-diversity (i.e. the taxonomical 

composition) was not significantly different between the study cohorts (5.1 ± 0.37 for 

BSP/SPC, 4.92 ± 0.39 for FOC, and 4.7 ± 0.77 for AGE). 

 

To explore the gut microbiome stratification, we used a de novo enterotype identification 

approach. We identified four clusters (Figure 4.4 A, B); three were consistent with the already 

known Prevotella (ET_P), Bacteroides (ET_B) and Firmicutes (ET_F) enterotype, and the 

newly discovered fourth enterotype-like structure was driven by Escherichia shigella (ET_Esh) 

(Figure 4.4 A). When we compared the results of our enterotype prediction approach with the 

enterotypes generated with the enterotype classifier (http://enterotypes.org); 62.53% of our 

predicted enterotypes were concordant with the classifier output, 10% were swap-classified 

(ET_B as ET_F and vice versa) and 13.8 % represented a miss-classified enterotype (ET_Esh; 

ET_Esh was supposed to be classified as unknown (XO) as this enterotype is not recognized 

by the enterotype classifier; but instead was classified as either ET_B or ET_F) (Figure 4.4 C). 

We also observed that the proportion of the enterotypes differed between the three cohorts, but 

was not affected by age (Figure 4.4 D). The microbial diversity within the enterotypes was not 

statistically different either between males and females or between the cohorts (Figure 4.4 E); 

however, for all enterotypes, the GM tended to increase with aging. Strikingly, the diversity 

tended to decline in nonagenarians/centenarians, independently of the enterotype, and the lower 

diversity reached statistical significance for ET_Esh (Figure 4.4 E). 

 

4.2.3. Enterotypes explain 19.8% of the bacterial structure variability  

We further investigated changes in the beta-diversity (i.e. the comparison of the taxonomical 

composition between populations) in relation to the microbiome stratification, individual 

genetics, morphometric (Supplementary table 4) and dietary parameters by redundancy 

analysis (RDA; with P < 0.001). The results showed that enterotype, gender, age, WHR, BMI, 

intestinal inflammatory status (estimated from fecal calprotectin measurements), triglycerids in 

blood, dietary parameters (such as protein consumption, fibre, plant protein, alcohol intake), 

and the genetic variants rs958798-T (SNV annotated to KCNC4) and rs6666120-G (SNV 

annotated to ACTL8 ) explained 20.65% of the variability in bacterial abundance (Figure 4.5). 

Impressively, only the enterotypes accounted already for 19.8% of the variability (Figure 4.5 

B). When we considered the bacterial community structure of each enterotype separately, 
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anthropometric parameters, genetics, diet and blood values explained 4.9 % of the total 

variability (Table 4.1). Strikingly, age alone explained not more than 1.33% of the total GM 

variability (Table 4.1). 

 

Next, we tested if there were any differences in the bacterial diversity between the enterotypes. 

Using a zero-inflated Log-normal mixture modeling [17], we observed 32 differentially 

abundant genera between the enterotypes (P < 0.05) (Supplementary table 5). We investigated 

the functional implications of the 32 genera with Tax4Fun [18] and, subsequently, determined 

the distinctive metabolic components using MetaPath thresholds [19]. This approach yielded 

624 significant reactions (P <0.01) and 69 sub-pathways (P < 0.05), which were differentially 

abundant between the four enterotypes (Supplementary figure 1, Supplementary table 5, 6). 

The enriched pathways comprised: for ET_P, those related to folate biosynthesis, vitamin 

B6/B3 metabolism, beta-Alanine metabolism, lipopolysacharides biosynthesis; in ET_B, 

butanoate, synthesis and degradation of ketone bodies, vitamin B3 metabolism; in ET_F, 

pathways related to biosynthesis of ansamycins, thiamine metabolism, porphyrin and 

chlorophyll metabolism, and in ET_Sh, pathways related to tyrosine metabolism. 

 

4.2.4. Microbial changes associated with aging 

One major goal of our study was to identify microbial changes that occur during aging. We 

used the software MaAslin2 [20] to model the effects of age on microbial occurrences and 

included the anthropometric, genetic, and dietary parameters as covariates. The abundance of 

43 genera correlated significantly with age (Figure 4.6, Supplementary table 7). Positive 

correlations were seen for bacterial communities such as Desulfovibrio, Oxalobacter, some 

butyrate-producing bacteria (Roseburia, Butyrivibrio, and Anaerotruncus), and families that 

may influence host metabolism, in particular Coriobacteriaceae Erysipelotrichaceae, and 

Victivallaceae. Interestingly, the families Enterobacteraceae and Peptostreptococcaceae and 

the class Gammaproteobacteria, which were negatively correlated with age in our analyses, 

were previously shown to be associated with health conditions like colorectal cancer, diarrhea, 

and Crohn´s disease [21] [22]. Noteworthy, with increasing age, we observed a significant 

increase in the occurrence of unknown bacteria (P = 8.97E-03, Padj. = 0.097, Figure 4.6). 

 

We payed special attention to differences in the microbial abundance in healthy LLI (>90 years 

of age) compared with younger study participants. MaAslin2 identified 45 genera with 

differential occurrence between LLI and either elderly (75 - 80 years old) or younger adults 
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(<75 years old) (Figure 4.7, Supplementary table 8). In the LLI, we observed a higher 

abundance of so-called "pathobionts" such as Clostridiales, Enterococcus, Enterobacteraceae, 

Klebsiella, Lactobacillus, Prevotella, Pseudomonas and Streptococcus. In contrast, beneficial 

butyrate producers such as Eubacterium, Faecalibacterium, Roseburia and Coprococcus 

showed a lower abundance in the LLI. Furthermore, the LLI exhibited elevated levels of 

Eggerthella, Bifidobacterium, Anaerotruncus, Eggerthella, fusobacterium, and Pseudomonas 

(Figure 4.7). 

 

4.3. Discussion 

We investigated the role of aging on the microbial composition in healthy individuals from 19 

to 104 years old. We identified moderate but significant changes that occur during aging, and a 

specific pattern in nonagenarians and centenarians. Interestingly, the BSP/SPC and FOC 

cohorts exhibited different enterotype proportions (Figure 4.4 D). The correction for 

enterotypes reduced the confounding bias and increased the comparability of findings from the 

different cohorts. 

 

Fecal bacteria in healthy adults are dominated by the phyla Firmicutes (families 

Lachnospiraceae, Ruminococcaceae, and Veillonellaceae), Bacteroidetes (families 

Bacteroidaceae, Prevotellaceae, Porphyromonadaceae, and Rikenellaceae), and 

Actinobacteria (families Bifidobacteriaceae and Coriobacteriaceae) [2–5]. As expected, our 

results were in line with this pattern, apart from the third dominant phylum which, in our case, 

was Proteobacteria (family Enterobacteraceae) (Figure 4.4). For the latter phylum, we 

observed a continuous increase in the abundance of the genera Desulfovibrio, Oxalobacter, 

Klebsiella, and Hafnia with aging. This was independent of both the enterotype class and 

anthropometric parameters of the individuals. Both Klebsiella and Hafnia were shown to be 

able to secrete small molecules known as siderophores, which enable bacteria to compete with 

the host for iron [23, 24]. This competition can disturb the iron pool of the mucosal cells, which 

may in turn provoke the activation of innate and adaptive immune responses including 

proliferation, differentiation and secretion of inflammatory cells and mediators, respectively 

[25, 26]. In mice, members of the phylum Proteobacteria, such as Desulfovibrio, have been 

previously suggested to contribute to the chronic low-grade inflammatory state observed with 

advanced age [27]. Therefore, it is tempting to speculate that Desulfovibrio, Klebsiella and 

Hafnia are active players of the human GM that contribute to the pro-inflammatory status of 

elderly people. 
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Both the gastrointestinal tract as well as dietary habits of humans are known to undergo 

substantial changes with aging, which lead to a gradual shifting of the GM over time [28–30]. 

In our study, dietary patterns substantially explained the inter-individual variation observed 

along the age spectrum and between males and females (Figure 4.2): Examining the taxa profile 

more closely, we identified Parabacteroides (family Porphyromonadaceae), Alistipes (family 

Rinkenellaceae), and Dialister (family Veillonellaceae) as the most abundant genera (Figure 

4.4). These taxa have been previously associated with normal GM in adulthood and they may 

be preventive for obesity [31–33]. Dialister has been related to diets rich in fiber and whole 

grains, and to improvements in physiological measures of the host like reduced plasma 

interleukin-6 (IL-6) and reduced postprandial glucose levels [34]. Therefore, Parabacteroides, 

Alistipes and Dialister may exert health-promoting effects during aging, especially conferring 

resistance to low-grade inflammation (the so-called "inflammaging") [35]. Therapeutic 

measures to increase these beneficial bacteria in the GM could facilitate healthy aging. 

 

Strikingly, the enterotype-like clusters explained most of the inter-individual variation (19.8 

%). It has been suggested previously that enterotypes differ in terms of functional and 

ecological properties. For example, ET_P or Prevotella was shown to be enriched in individuals 

with non-Western and/or fibre-rich diets [36, 37]. Prevotella possess particular hydrolases 

specialized in plant-fiber degradation and a reduced lipolytic and proteolytic fermentation 

potential [38, 39]. In contrast, ET_B was reported to be associated with diets rich in animal 

protein and saturated fats and, additionally, Bacteroidetes were shown to exhibit an increased 

carbohydrate metabolism [38–41]. Accordingly, our functional predictions on the basis of the 

identified enterotypes supported the lipolytic, proteolytic and saccharolytic metabolism of 

ET_B (Supplementary figure 1, Supplementary table 5). For ET_P, we predicted an 

increment in fatty acid, folate, cofactor and vitamin biosynthesis, as reported previously [42]. 

Apart from ET_B and ET_P, we observed an Enterobacteraceae enterotype, (ET_Esch) with 

Escherichia-Shigella as its main driver. Despite members of the family Enterobacteraceae, 

including E. coli, Klebsiella spp and Proteus spp, were recognized to preferentially settle in 

inflamed environments [43–45], the Enterobacteraceae enterotype has not been associated as 

a cause of a pro-inflammatory status so far [46, 47]. Moreover, our results did not show any 

correlation of ET_Esch either with any of the available pro-inflammatory markers or with age 

or gender. Furthermore, despite our functional predictions of ET_Esch showed enrichment in 

pro-inflammatory pathways (Supplementary figure 1, Supplementary table 5), we did not 
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observe any evidence for a correlation of ET_Esch with a pro-inflammatory status or age-

related diseases or dysbiosis. 

 

From a taxonomical point of view, ET_Esch was enriched in Acinetobacter, Hungatella, 

Coprobacillus, Enterococcus, Klebsiella, Enterobacteriaceae and Escherichia-Shigella. 

Interestingly, we found Acinetobacter to be positively correlated with BMI and Hungatella with 

female gender. Furthermore, abundance of Escherichia-Shigella was inversely correlated with 

water intake and the G-allele of rs4973961 (in the gene Unc-51 Like Kinase 4 (ULK4)) 

(Suppelentary figure 2, Suppelentary table 7). Rs4973961-G has already been associated 

with microbial taxonomies and functional units previously [12]; specifically, a negative 

correlation with both thiamine biosynthesis and presence of Bifidobacteriales (some of its 

members are opportunistic pathogens [48]) has been reported [12]. Here, we observed 

rs4973961-G to be negatively correlated with opportunistic pathogens such as Haemophilus, 

Veillonella and Escherichia-Shigella, but to be positively correlated with Christensenella. The 

latter taxon has been linked to health-promoting effects and was shown to be strongly 

influenced by the genetic makeup of the host [49]. Therefore, our results might indicate a pro-

inflammatory microbial signature in the gut of the study participants carrying this ET, although, 

in our healthy individuals, this was not yet reflected in the values of the collected inflammatory 

markers like calcprotectin. However, in a diseased state, ET_Esch could influence disease 

progression [43–45]. Furthermore, with the association between ET_Esch and rs4973961, we 

showed that the likelihood of carrying ET_Esch could be determined by host genetic factors. 

 

Aging entails significant changes in body constitution. These changes include quantitative and 

qualitative progressive loss of skeletal muscle mass together with a body fat redistribution and 

an increase in low-density lipoprotein levels (LDL), triglycerides and pro-inflammatory 

cytokines (i.e. IL-6), independent of any disease development [50–52]. In the individuals 

included in this study, which were all healthy Germans, BMI, WHR, GGT, HDL, triglycerides, 

calprotectin, creatinine and blood glucose levels correlated with aging (Figure 4.2). 

Additionally, BMI, WHR, triglycerides, calprotectin, and glucose in blood explained changes 

in some specific taxa during aging (Suppelentary figure 2, Suppelentary table 7). However, 

the GM profile of the healthy agers in our study showed a tendency towards a higher diversity 

and several taxa with health-promoting effects such as butyrate-producers and regulators of 

metabolic processes (Figure 4.6). With advancing age, we observed a continuous increase in 

butyrate-producing bacteria (Roseburia, Butyrivibrio, and Anaerotruncus); furthermore, in 
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Oxilobacter, which potentially contribute to protection from calcium oxalate kidney stones [53, 

54], the family Coriobacteriaceae, which plays an important role in fatty liver disease and 

obesity [55], and Erysipelotrichaceae, which were shown to be positively associated with 

changes in liver fat content in humans and host lipid metabolism [56–58]. Moreover, we 

observed a reduction in Peptostreptoccoccus and Gamaproteobacteria, which have been 

associated with colorectal cancer and behavioral disorders, respectively [59]. Interestingly, we 

observed that during aging, the abundance of Bacteroidales S24-7 tended to increase, in contrast 

to a decrease in Coprobacter. Such a pattern has been previously observed in Chinese 

individuals on a high-fat diet [60]; therefore, these bacteria might contribute to the increase in 

BMI and triglycerides observed in our individuals during aging. 

 

Physiological shifts in the gut environment (e.g. higher levels of pro-inflammatory cytokines, 

thinning of the mucosal layer in the gut) during aging allow the colonization of opportunistic 

pathogens [28–30]. In the present study, we identified Cloacibacillus, which has been 

previously reported to be associated with intestinal infections [61]. Furthermore, we found 

Holdemanella, previously shown to be associated with an unhealthy serum lipid profile (low 

HDL cholesterol and/or high triglycerides or high LDL cholesterol) in obese women [62] as 

well as Fusobacterium, Blautia and Enterobacteraceae, which are all typical inhabitants of pro-

inflammatory environments [26, 63]. 

 

It has been previously stated that in LLI, the GM exhibits an adaptive remodeling; in an extent 

that would even justify to consider centenarians as a separate population [14, 15, 64]. Our 

results are in line with this hypothesis and substantiate in large part the microbial profile seen 

in nonagenarians/centenarians from Japan [16], China [65], and Italy [66, 67]. However, we 

observed a few differences from earlier reports, i.e. German LLI exhibited a higher abundance 

of Ordobacter and Parabacteroides, which resembles Chinese centenarians [65]. Furthermore, 

German LLI also displayed depletion in Lachnospiraceae and Akkermansia, which has been 

previously observed in Japanese nonagenarians/centenarians [16]. Some other differences that 

we observed are likely explained by the differences in the dietary patterns between populations 

of different cultures. For example, we noticed an elevated abundance of Halomonas, 

Lactobacillus and Shewanella, which alltogether have been associated with ingestion of 

fermented foods [68]. We also detected an overall reduced bacterial diversity in the LLI 

compared with younger study participants (Figure 4.7) and, specifically, a reduced abundance 

of Coriobacteriaceae, Eubacterium and Oxalobacter, while Lachnoclostridium abundance was 
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increased. This pattern partially resembles the signature of antibiotic treatment [8]. Although 

we excluded individuals who had reported antibiotic treatment, we cannot rule out 

misreporting. Moreover, in the LLI, we found an elevated abundance of Eggerthella, which has 

been linked to cardiac medication [9]. 

 

4.4. Material and methods 

Study populations 

The study included participants from three different sample collections from Schleswig-

Holstein (Germany), abbreviated as BSP/SPC, FOC, and AGE. The BSP/SPC cohort comprised 

601 individuals, 1,115 individuals derived from the FOC cohort, and 22 individuals were 

recruited for the AGE cohort (Supplementary table 1). The study cohorts were recruited 

independently from each other with the help of the biobank Popgen [69]. Popgen also provided 

the corresponding phenotype and genotype information [69]. Fecal samples were collected by 

the participants at home using standard fecal tubes. Samples were kept at room temperature and 

either shipped or brought to the collection center by the participants themselves (within 24 

hours after collection). Samples were stored at −80 °C until further analysis. All study 

participants provided a signed written informed consent prior to enrollment in the study. 

Approval for the study was obtained from the Ethics Committee of the Medical Faculty of Kiel 

University. 

 

Genotyping data 

Samples of the BSP/SPC and FOC cohorts were genotyped on different genotyping arrays. 

BSP/SPC samples were genotyped using the following chips: Affymetrix 6.0, Affymetrix 

Axiom, Illumina 550k, custom Illumina Immunochip and Illumina Metabochip arrays, with 

sample sizes ranging from 678 to 1,218 before quality control and variant coverage of 196,524 

to 934,968 variants. The FOC samples were genotyped on the custom Illumina Immunochip 

(Illumina Inc., San Diego, USA) and the Omni Express Exome (Illumina Inc., San Diego, 

USA), with 1,024 and 1,713 samples before quality control, respectively, and a variant coverage 

of 195,732 to 964,193 variants. For each cohort, genotype data from every array underwent 

quality control separately and, subsequently, data were merged and imputed. For our study, we 

included 325 single-nucleotide variants which had been previously reported to be associated 

with the gut microbiome [11, 12, 49, 70, 71] and 11 SNVs associated with longevity (annotated 

to the genes FOXO3 [72] and APOE [73], respectively) (Supplementary table 2). 
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DNA extraction and 16S rRNA sequencing 

Bacterial genomic DNA was extracted using the QIAamp DNA Stool Mini kit from Qiagen on 

a QIAcube system (Promega Corporation, Madison, USA). The V1–V2 region of the 16S rRNA 

gene was sequenced on the MiSeq platform using the 27F–338R primer pair and dual MID 

indexing (8 nt each on the forward and reverse primers) as described previously [74]. 

Sequencing was performed with the MiSeq Reagent Kit v2. After sequencing, MiSeq fastq files 

were obtained from base calls for paired-end reads and both indices (I1 and I2) using the 

Bcl2fastq module in CASAVA 1.8.2 (Illumina Inc., San Diego, USA). Stringent de-

multiplexing was carried out by allowing no mismatches in none of the index sequences. 

 

Processing of sequencing dataset 

Paired-end reads were processed with Mothur v 1.36.5 [75]. To minimize effects of sequencing 

errors, sequences that contained more than one undetermined nucleotide, had more than six 

homopolymers, or showed a Q-score average < 25 in a window of 50 pb were trimmed. 

Trimmed sequences with a length <250 pb were eliminated. Spurious sequences were reduced 

in two steps. First, a pre-clustering step for noise reduction was performed as described 

previously [76], and second, a chimeras’ elimination using Vsearch algorithm [77]. High-

quality trimmed reads were used to calculate an uncorrected distance matrix. This matrix was 

used to cluster the sequences into OTUs of 97% similarity with the opticlust algorithm [78]. 

Taxonomical annotation of the OTUs was done using the consensus taxonomy of the sequences, 

which were identified with the Bayesian-RDP classifier [79] and the SILVA reference database 

release 123 [80]. Prior to statistical analysis, the OTU-count table was pre-processed to reduce 

spurious and chimeric OTUs which met the core measurable microbiome threshold (CMMt) 

[81] CMMt was calculated according to pairwise combinations of technical replicates of 49 

different samples. For each sample, CMMt was defined as the minimum number of reads for 

which correlation between technical replicates was higher than 80%. Therefore, only OTUs 

were retained, whose count values were above the average CMMt and which were present in at 

least 2% (size of the smallest cohort (LLI)) of the libraries. 

 

Statistical analysis  

Morphophysiology across samples was explored by multiple factor analysis. Missing values 

where imputed using a multivariate approach [82]. OTU counts were normalized by the total-

sum scaling method [17]. The R packages vegan [83] and metagenomeSeq [17] were used to 

calculate the alpha- and beta-diversity on the basis of the normalized counts. Principal 



113 

Coordinate Analysis (PCoA) based on Bray-Curtis dissimilarity [83] was used to assess 

differences in the community composition across samples. Enterotype-like microbiomes were 

identified using a de novo clustering and reference classification approach. Clusters were 

generated using partition around medoids over a Jensen-Shannon dissimilarity matrix. The 

number of optimal clusters was calculated with the silhouette and gap statistic method with a 

500 times Monte Carlo re-sampling [84]. Additionally, the enterotypes were imputed using the 

enterotype classifier (http://enterotypes.org), which is limited to the identification of three 

enterotypes [7]. Differentially abundant genera between enterotypes were identified employing 

the Log-Normal zero-inflated mixture model [17]. Differentially abundant taxa during aging 

were analyzed using the multivariate statistical framework MaAsLin2 [20] which performs 

boosted, additive, general linear models between metadata and microbial abundance data. 

 

Functional prediction 

Prediction of functional profiles was performed on the basis of SILVA-labeled OTU 

abundances using Tax4Fun [18]. Differentially abundant pathways and reactions were 

identified by MetaPath [19]. Enriched pathways were determined based on two P-values, 

pabund and pstruct [19], and enriched reactions were selected based on pabund only. 
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Tables 

Table 4.1. Environmental factors that significantly contribute to shaping of the microbial structure of the study population. 

Environmental 
factor Explanatory variable 

Explained variability 
ET_Ech  ET_P  ET_F  ET_B 

By variable (%) Total (%)  By variable (%) Total (%)  By variable (%) Total (%)  By variable (%) Total (%) 

Anthropometrics 
Age 0.92 

4.58 

 0.32 

 
 
 
 
 
 
 
 

4.9 

 1.33 

2.7 

 0.41 

3.9 

WHR 1.61  2.1  0.24  1.44 
BMI 0.85       

Blood 
measurements 

Triglycerides     0.33  0.48 
Glucose       0.11 
Calprotectin   0.83     

Dietary 

Alcohol 0.52  1.1    0.31 
Long-Chain faty acids       0.16 
Fibre       0.98 
Total energy   0.55     

Genetic 
HIVEP3_rs12563071_T 0.68       
ACTL8_rs6666120_G     0.54   
KCNC4_rs958798_T     0.21   

 
BMI, Body Mass Index; ET, enterotype [Ech, Escherichia shigella; P, Prevotella; F, Firmicutes; B, Bacteroides]; WHR, Waist-to-hip ratio 
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Figure legends  

Figure 4.1. Age distribution of the individuals enrolled in the study. The age distribution is 

shown separately for males and females. 

Figure 4.2. Relationships among anthropometric measures, dietary parameters and the 

age of the individuals. A - B. Principal component analysis showing how dietary and 

anthropometric parameters shape the inter-individual variability of the 1,301 healthy 

individuals. C - E. Linear regression between anthropometric parameters and age. C. Prediction 

model was explained with determination coefficient of 0.395 for males and 0.306 for females. 

Determination coefficient (R2) was adjusted for the number of prediction variables in the 

model. D. Residual plot of the prediction models. 

Figure 4.3. Gut bacterial diversity of healthy Germans across a broad age range. Relative 

abundances of the ten most abundant phyla, orders, families and genera for each age group. 

Figure 4.4. Microbial stratification and enterotype-specific alpha diversity. A. Principal 

coordinate analysis (PCoA) based on Jensen-Shannon dissimilarity matrix on the basis of the 

GM profiles of the subjects. B. Optimal number of clusters estimated by the gap statistic method 

with a 500 times Monte Carlo re-sampling. C. Enterotype de novo classification in comparison 

with the enterotypes obtained with the enterotype classifier (http://enterotypes.org). D. 

Enterotype distribution in relation to the age sets, population-cohorts and gender. E. GM 

diversity based on the Shannon diversity index in relation to the enterotypes, population-cohorts 

and gender. F. GM diversity based on the Shannon diversity index in relation to the enterotypes, 

population-cohorts and age sets. 

Figure 4.5. Inter-individual GM variability explained by microbial stratification, dietary 

and anthropometrics parameters. A. Redundancy analysis (RDA) biplot representing the 

relationship between the explanatory variables and the relative abundance of bacterial 

communities. The biplot map explains 15.9% of the total variability. B. Contribution plot for 

the explanatory variables; depicted variables explain 21.6% of the total variability. 

Figure 4.6. Taxa whose abundances change during aging. Forty-three genera whose 

occurrence is associated with age. 

Figure 4.7. Differentially abundant taxa in LLI compared with younger subjects. Twenty-

two genera with differential abundance between LLI and younger subjects. 
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Figure 4.1 
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Figure 4.2 
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Figure 4.3 
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Figure 4.4 
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Figure 4.5 
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Figure 4.6 
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Figure 4.7 
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 5.  
Conclusion and outlook 

“Aging seems to be the only available way to live a long life.” 

Daniel-Francois-Esprit Auber, French composer 1782-1871 

 

Every human being on earth faces aging and, so far, no one can escape the aging process. Only 

a few individuals achieve the very special phenotype "longevity". While LLI also do age and 

show clear signs of aging (wrinkles, grey hair, etc.), they seem to grow old in a more healthy 

manner than average-lived people. Disentangling the tight link between aging and longevity is 

difficult and has been occupying researchers all over the world for decades. The work presented 

in this thesis has clearly shown that we are still far from a comprehensive understanding of the 

highly complex mechanisms influencing (healthy) aging and longevity. Thus, only a broad view 

of these phenomena will eventually enable us to identify the underlying regulatory pathways. 

 

Figure 5.1 summarizes the aims, methods and results of the three chapters of the present work. 

Chapter I comprised basic research on aging and development in the relatively simple model 

organism Hydra. Fundamental aging mechanisms and involved genes overlap widely between 

different species like Hydra, Drosophila or mice and humans. Thus, research in animals can 

help overcome experimental and ethical limitations that are often encountered in studies 

involving humans. Chapter III (gut microbiome in aging) once more highlights the complexity 

of aging that is exacerbated if we consider human genome–microbiome-environment 

interactions. Another challenge in aging studies is to unravel causes of aging from its 

consequences. This challenge was met in chapter II (genetics of human longevity), where the 

identified SNVs are constitutive and must therefore underlie the longevity phenotype instead 

of being a consequence of it. 

 

Each chapter is a stand-alone project; at different levels, however, they all revolved around the 

central topic of how to influence or manipulate the aging process to achieve healthy longevity. 

Every chapter also revealed either limitations of the respective study design or results that 

cannot be explained with our current level of understanding. 
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Figure 5.1. Overview of the three research projects and their respective outcomes. 

 

CI, control individuals; COG, cluster of orthologous groups; GM, gut microbiome; HDAC, 

histone deacetylase; KEGG, Kyoto Encyclopedia of Genes and Genomes; LLI, long-lived 

individuals; SNV, single nucleotide variant. 

 

Intriguingly, in the three chapters, FOXO has not shown up as a common denominator. The 

important role of this gene in longevity and lifespan regulation is undisputed. Not surprisingly, 

FOXO was recently suggested as a "critical rate-of-aging-regulator" [1].  

In Hydra, FoxO drives developmental processes and stem cell renewal [1]. In the Hydra 

subproject (chapter I) FoxO expression was detected in all the in situ GFP-experiments and also 
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the differential FoxO expression between body and head was observed. However, for unknown 

reasons, this differential FoxO expression was not confirmed either in the microarray or the 

RNA sequencing data. Furthermore, the epigenetic modifications in terms of DNA de-

acetylation apparently left FoxO expression patterns unaffected; at least, they did not change to 

a measurable extent. These results were completely unexpected. It could well be that FoxO 

expression in Hydra is restricted to one specific tissue layer (most likely the epidermal layer 

(ectoderm)) and that by performing a transversal cut through the Hydra tissue during the 

experiment, the expression was diluted to a level below the detection limit. Single-cell 

transcriptomics or layer-specific analyses could help to answer this question in the future. 

FoxO was recently shown to fundamentally affect both the microbiome composition and 

resilience in Hydra [2]. Drosophila exhibited an age-related increase in FoxO activity, which 

correlated with a higher bacterial load [3]. Congruently, Drosophila with impaired FoxO 

signaling were found to be more prone to intestinal infections [4]. In the nematode C. elegans, 

longevity was linked to Bacillus subtilis biofilm formation, driven by Daf16, the worm 

orthologue of human FOXO3 [5, 6]. Furthermore, the pro-longevity effect of metformin, a 

potent FOXO3-inducing drug [7], is known to be indirectly mediated by its influence on 

bacteria, particularly via inhibiting bacterial folate and methionine metabolism [8]. Taking 

these observations into account, it is surprising that in the microbiome subproject (chapter III) 

no influence of FOXO3 variants on the intestinal microbiome was detected. Studies in model 

organisms are generally highly standardized in terms of environment, genetic background, and 

diet, while in humans a potential influence of FOXO3 variants on the microbiome – if present 

– was likely masked by other factors (e.g. diet, genetic background, etc.).  

 

FOXO3 variants were consistently reported to be associated with human longevity. In chapter 

II, no FOXO3 variants were significantly associated with longevity. However, this was 

anticipated as coding variants in FOXO3 had previously been shown to be unlikely key 

determinants - the FOXO3-longevity-association rather seems to be driven by intronic SNVs 

[9]. Therefore, exonic FOXO3 variants covered by the exome chip were a priori not expected 

to yield statistically significant longevity associations. 

 

It is intriguing that despite extensive research efforts, all currently known longevity variants 

together explain not more than approximately 1 or 2% of the estimated total heritability [10]. 

This may point towards an analytical bias that has left many genetic factors contributing to 

human longevity undiscovered so far, in agreement with the research hypothesis of chapter II. 
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However, another possibility is that the longevity heritability is highly overestimated, as 

claimed in a recent paper [10]. The latter option is currently the subject of controversial 

discussion in the longevity community. The work on chapter II also revealed limitations of the 

commonly applied approaches. The analysis of joint effects of rare and common variants within 

one genetic region added substantial value to the initially performed traditional single-variant 

association analysis. This highlights the importance of being open to new methods and/or 

combinations of existing ones as they can help to discover new or validate previous findings. 

Besides, it might be time to rethink longevity association studies - hypothesis-free GWAS prove 

successful in discovering genetic variants with huge effect sizes or associated with highly 

prevalent diseases/phenotypes, but they are obviously unrewarding in longevity research. 

Hypothesis-driven, potentially evolutionary-informed, approaches may be more promising. 

Furthermore, up to date, there is no consensus about an/the ideal design for longevity studies in 

humans, if there is any at all. As a result, published studies are often hard, if not impossible, to 

compare. Longevity is such a rare phenotype that the recruitment of LLI, especially 

centenarians, semi-super-centenarians and super-centenarians is very challenging. The 

selection of proper control individuals is not less problematic when taking into account birth 

cohort effects [11, 12]; there are generally no controls available from the same birth cohort the 

LLI belong to. Cut-offs for cases and controls appear highly variable and sometimes even 

specific to one study. Both hard age cut-offs or age ranges (90+ yrs, 95+ yrs, 98+ yrs, 100+ yrs 

and 50-65 yrs, <65 yrs, <70 yrs, <85 yrs for cases and controls, respectively) and percentile 

thresholds (e.g. >90th/ 99th percentile and <60th percentile for cases and controls, respectively) 

are chosen apparently almost arbitrarily. In view of these challenges, studies with centenarian 

offspring and parental lifespan, respectively, appear promising. However, these studies come 

with the drawback of genotype and phenotype “dilution”. 

 

Environmental factors affect longevity to a much greater extent than genetics, probably even 

more than the currently estimated ~70-80%, if in fact the lower heritability of the phenotype 

proves to be correct. Noteworthy, in contrast to the unchangeable genetic architecture, 

environmental factors are generally modifiable.  

 

The gut microbiome is increasingly gaining attention in aging and longevity research. 

Maintaining a healthy gut microbial architecture appears to be of utmost importance for staying 

healthy while growing old. In chapter III, the microbial composition remained mostly stable in 

healthy individuals during aging, which supports previous findings [13]. Strikingly, age-related 
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diseases often coincide with dysbiosis [14, 15]. The results obtained in chapter III highlighted 

the relevance of environmental factors as determinants of the gut microbial composition. The 

thesis has shown that with only 1% in magnitude, the effects of host genetics on the microbial 

structure in the intestine were remarkably low, while all collected environmental factors 

combined contribute 5% when the microbial population stratification was removed. This is in 

concordance with results obtained by others [16]. The gut microbiota can be regarded as a major 

target of intervention strategies to maintain or restore a stable healthy gut flora. Indeed, first 

attempts to restore a healthy gut microbial structure, e.g. by treatment with pre- and probiotics 

or fecal transplantation yielded promising results [16]. Infants may deserve special attention as 

the importance of environmental factors might be greatest in this age group when the microbial 

architecture has not stabilized yet. Therefore, early factors (e.g. delivery, breast milk, animal or 

formula milk, hygiene) likely have long-term consequences. Noteworthy, the example of the 

metformin-treated C. elegans mentioned above supports the notion that the individual microbial 

metabolic potential can affect the therapeutic response to drugs. This might eventually enable 

us to develop personalized approaches to fight aging and age-related diseases and to achieve 

longevity.  

 

Generally, there is low consistency among microbiome studies. Some of the observed 

differences may be, at least partly, the result of cultural differences in lifestyle and diet. 

However, also methodological issues may contribute to discrepant observations, for instance, 

differences in the sampling procedure, DNA extraction protocol, or handling of sequencing 

errors, to name but a few. To avoid false conclusions, comparisons should ideally be restricted 

to within one study. Furthermore, in future aging-microbiome-studies, it might be advisable to 

stratify elderly participants according to their health status to avoid too much variation in the 

data. This approach would require bigger population sizes to retain statistical power. 

 

One challenge that remains is to distinguish between effects due to the aging process per se and 

those caused by changes in diet and lifestyle associated with aging. The thesis contributed to 

this with deep bioinformatic analyses; however, the complexity of the data and the fact that the 

study participants derived from three different sample collections, for which different (though 

overlapping) phenotypes were collected, made this work particularly challenging. Large-scale 

studies with comprehensive phenotyping and categorization of participants by health status 

might be one way to address the current challenges of microbiome research. To summarize, gut 

microbes are clearly associated with both health and disease and the environment impacts 
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considerably on both the gut microbial composition and the likelihood of becoming long-lived. 

With this in mind, the identification of the key environmental drivers of these two phenotypes, 

gut microbial architecture and longevity, should be a focus in future studies. 
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 6.  
Summary 

Human aging is characterized by progressive functional decline that coincides with both 

increased morbidity and mortality. Aging affects every human being and only few individuals 

achieve longevity, a very special phenotype marked by extraordinary healthy aging. This thesis 

consists of three chapters; each one is devoted to a separate project that contributes to the 

growing body of knowledge about aging and longevity. The work required the compilation, 

management and analysis of diverse big data sets and the application of cutting-edge statistical 

and computational methods. 

 

Chapter 1 - A functional genomics study was conducted in the potentially immortal freshwater 

polyp Hydra using body part-specific microarray and RNA sequencing data. The results 

revealed gene expression patterns that allow boundary maintenance during Hydra’s continuous 

cell proliferation and tissue self-renewal. Furthermore, this study provided evidence for de-

acetylation as a key mechanism underlying compartmentalization. Surprisingly, FoxO, which 

is known to substantially drive developmental processes and stem cell renewal in Hydra, did 

not seem to be affected by the acetylation status. 

 

Chapter 2 - Long-lived individuals (LLI, >95 years of age) epitomize the healthy aging 

phenotype and are thought to carry beneficial genetic variants that predispose to human 

longevity. Despite extensive research efforts, only few of these genetic factors in LLI have been 

identified so far. In contrast to previous investigations which mainly focused on intronic 

variants, a genome-wide exome-based case-control study was performed. DNA samples of 

more than 1,200 German LLI, including 599 centenarians (≥100 years), and about 6,900 

younger controls were used for single-variant and gene-based association analyses that yielded 

two new candidate longevity genes, fructosamine 3 kinase related protein (FN3KRP) and 

phosphoglycolate phosphatase (PGP). FN3KRP functions in the deglycation of proteins to 

restore their function, while PGP via controlling glycerol-3-phosphate levels affects both 

glucose and fat metabolism. Given the biological functions of the genes, their longevity-

associations appear very plausible. 



140 
 

 

Chapter 3 - In recent years, the intestinal microbiome (GM) has increasingly gained attention 

in aging and longevity research. A 16S rRNA microbiome study was conducted using 1301 

stool samples of healthy individuals (age range: 19 - 104 years) that were drawn from three 

cohorts. The aim was to investigate potential associations among GM composition, host 

genetics and environmental factors during aging. The GM composition changed with age, 

showing an increase of opportunistic pathogens that may generate an inflammatory 

environment in the gut. Age explained only ~1% of the inter-individual variation, whereas 

anthropometric measures, genetic background and dietary patterns together explained 20%. 

Strikingly, clear GM population stratification in terms of four enterotype-like clusters was 

observed, which were predominantly associated with dietary patterns. The correction for these 

clusters was shown to increase the comparability of findings from the different cohorts. In 

addition, the LLI showed a specific gut microbial pattern, which is in line with previously 

published reports. 

 

The present work shows that a thorough bioinformatics expertise helps to address the 

complexity of the two phenotypes aging and longevity. One highlight of the thesis is the 

discovery of two new candidate longevity loci that, in view of the limited output of previous 

study approaches, enlarge the existing database.  
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 7.  
Zusammenfassung 

 
Altern geht beim Menschen mit fortschreitender Funktionalitätsabnahme des Organismus und 

erhöhter Morbidität und Mortalität einher. Jeder Mensch altert, jedoch nur wenige Individuen 

erreichen Langlebigkeit - ein besonderer Phänotyp, der durch eine außergewöhnlich gesunde 

Form des Alterns gekennzeichnet ist. Die vorliegende Doktorarbeit besteht aus drei Kapiteln, 

die jeweils einem separaten Projekt gewidmet sind. Alle drei Projekte tragen zur Erweiterung 

des Kenntnisstandes zu Altern und Langlebigkeit des Menschen bei. Die geleistete 

Forschungsarbeit erforderte Zusammenstellung, Management und Analyse diverser großer 

Datensätze sowie den Einsatz modernster statistischer und bioinformatischer Methoden. 

 

Kapitel 1 - Am potenziell unsterblichen Süßwasserpolyp Hydra wurde eine funktionell-

genomische Studie unter Verwendung von körperbereich-spezifischen Microarray- und RNA-

Sequenzierungsdaten durchgeführt. Die Ergebnisse zeigten Genexpressionsmuster, die die 

Aufrechterhaltung abgegrenzter Körperbereiche während der kontinuierlichen Zellproliferation 

und Selbsterneuerung der Gewebe von Hydra ermöglichen. Darüber hinaus lieferte die Studie 

Belege, dass Deacetylierungsreaktionen eine Schlüsselfunktion bei der Kompartimentierung 

zukommt. Überraschenderweise schien FoxO, ein Gen, das bekanntermaßen 

Entwicklungsprozesse und Stammzellerneuerung in Hydra wesentlich vorantreibt, vom 

Acetylierungsstatus nicht betroffen zu sein. 

 

Kapitel 2 - Langlebige Individuen (engl. long-lived individuals, LLI; >95 Jahre) verkörpern 

den Phänotyp des gesunden Alterns. Es wird vermutet, dass sie genetische Varianten tragen, 

die für Langlebigkeit beim Menschen prädisponieren. Trotz umfangreicher Forschung konnten 

bisher nur wenige dieser genetischen Faktoren in LLI identifiziert werden. Im Gegensatz zu 

früheren Untersuchungen, die sich hauptsächlich auf intronische Varianten konzentrierten, 

wurde im Rahmen dieser Promotion eine genomweite exombasierte Fall-Kontroll-Studie 

durchgeführt. DNA-Proben von mehr als 1200 deutschen LLI, darunter 599 Hundertjährige 

(≥100 Jahre), und etwa 6900 jüngeren Kontrollen wurden für einzelvarianten- und genbasierte 
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Assoziationsanalysen verwendet. So konnten zwei neue Kandidatengene für Langlebigkeit 

identifiziert werden, Fructosamin-3-Kinase-related protein (FN3KP) und Phosphoglykolat-

Phosphatase (PGP). FN3KP wirkt der Glykierung von Proteinen entgegen, während PGP über 

die Kontrolle des Glycerin-3-Phosphatspiegels sowohl den Glukose- als auch den 

Fettstoffwechsel beeinflusst. Angesichts dieser biologischen Funktionen erscheinen die 

Langlebigkeitsassoziationen der beiden Gene sehr plausibel. 

 

Kapitel 3 - Das Darmmikrobiom (engl. gut microbiome, GM) hat in den letzten Jahren 

zunehmend an Bedeutung in der Alterungs- und Langlebigkeitsforschung gewonnen. Im 

Rahmen der Promotion wurde eine 16S rRNA-Mikrobiomstudie mit 1301 Stuhlproben von 

gesunden Personen (Altersbereich: 19-104 Jahre) aus drei verschiedenen Kohorten 

durchgeführt. Untersucht wurden potentielle Assoziationen zwischen GM-Zusammensetzung, 

Wirtsgenetik und Umweltfaktoren während des Alterns. Die GM-Zusammensetzung änderte 

sich mit zunehmendem Alter, insbesondere in Richtung einer Zunahme opportunistisch 

pathogener Bakterien, die ein entzündliches Umfeld im Darm erzeugen können. Das Alter per 

se erklärte lediglich ~1% der interindividuellen Variation, während anthropometrische 

Messungen, genetischer Hintergrund und Ernährungsmuster der Probanden zusammen 20% 

erklärten. Auffällig war die deutliche Stratifizierung der GM-Population in vier Enterotypen-

ähnliche Cluster, die mit verschiedenen Ernährungsmustern assoziiert waren. Erst die Korrektur 

für diese Cluster ermöglichte die Vergleichbarkeit der Ergebnisse aus den verschiedenen 

Kohorten. Darüber hinaus zeigten LLI ein spezifisches GM-Muster, das mit zuvor 

veröffentlichten Berichten größtenteils übereinstimmt. 

 

Die vorliegende Doktorarbeit zeigt auf, wie mittels bioinformatischer Expertise und 

Methodenentwicklung die Komplexität der Phänotypen Altern und Langlebigkeit angegangen 

werden kann. Angesichts des bisher begrenzten Forschungsstandes ist insbesondere die 

Entdeckung der neuen Kandidaten-Loci, die die Datengrundlage zur Langlebigkeit erweitern, 

eine zentrale Forschungsleistung. 
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