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1 Introductory Remarks

The expectations about the development of a single selected variable, e.g. price or re-

turn rate, in the next period influences long-term decisions of economic agents. While

homogeneous rational expectations are still the ruling paradigm in economic theory, ex-

pectations in reality are more diversified. Among others, Akerlof and Shiller (2009) state

that agents making economic decisions are often emotional and intuitive and they tend

toward irrational decisions. Therefore an alternative approach needs to be considered. It

should incorporate that these decisions are based on an opinion index which captures a

’market mood’ or ’sentiment’.

One approach to formalize this idea in a canonical framework goes back to the work

of Weidlich and Haag (1983). They assume that agents can choose between two opin-

ions in a probabilistic manner. Models incorporating sentiment dynamics mostly focus

on two attitudes, i.e. positive/negative, optimistic/pessimistic or bullish/bearish. There

exists a large variety of economic related models incorporating the idea of a sentiment

index. The modeling of opinion formation, based on interactions between two groups

has attracted the interest of an increasing number of researchers, cf. Franke (2007),

Toscani (2006), Düring et al. (2009) and Lux (2012).

The main objective of this thesis is a more plausible modeling of the dynamic com-

ponents, i.e. sentiment dynamics, in a stochastic framework. Therefore it is necessary

to review the existing definitions of sentiment variables by extending the possible set of

attitudes of the agents. Let us consider a boom phase of the economy in which most of

the agents are optimistic. These agents will become sceptical if bad news arrive. How-

ever, this does not imply that they immediately adopt the opposite extreme attitude, i.e.

the pessimistic attitude. Instead, many situations are conceivable where these optimistic

agents first wait and check if there are any changes regarding their objective function.

In a formal model this behavior could be represented by letting part of the agents first

switch from optimism to neutrality. One may hope that additional phenomena might

emerge in the new framework that could not possibly occur previously.
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1 INTRODUCTORY REMARKS

There are already models in the literature which contain three or even more attitudes

in a setup of opinion dynamics, see Hohnisch et al. (2005), Gomes and Sprott (2017) and

Franke and Westerhoff (2019). We follow the latter contribution and include the neutral

sentiment into different versions of stochastic models. This is partially motivated by the

fact that most surveys include data on neutrality but in the empirical literature it is often

neglected in favor of the two extreme attitudes. These models have no neutral sentiment

incorporated and therefore they ignore the corresponding data or redistribute the relevant

shares. At best the neutral attitude is understood as intermediate state.

Empirical literature on investor sentiment related to financial markets can be found

for several data providers: ZEW (Lahl and Hüfner (2003), Franke (2007)), sentix (Hen-

gelbrock et al. (2013), Menkhoff et al. (2010), Heiden et al. (2013), Schmeling (2007)),

animusX (Lux (2010)) and AAII (Fisher and Statman (2000), Brown and Cliff (2004))

and other providers (Akhtar et al. (2011), Entorf et al. (2012)).

There is also literature on macroeconomic applications of such sentiment models,

cf. Franke and Westerhoff (2017) and Franke (2012). These contributions use two ap-

proaches which equip the agents with time-varying probabilities for switches between

alternatives. One approach introduces the concept of transition probabilities and the

second one uses logit probabilities from discrete choice theory. In both cases, the proba-

bilities are functions of other variables in the model. The transition probability approach

typically includes a majority index in a way that makes it possible to capture herding,

while applications of the discrete choice approach mostly refer to the current utility of

two options. However, in both approaches the probabilities can depend on the same set

of variables.

Both approaches are pursued in this thesis. They lead to three-state models of senti-

ment dynamics with attitudes bold, cautious and neutral. Individual transition probabili-

ties cause shifts in the shares of these three groups of agents. Additionally an embedded

’herding’ component allows for behavioral changes.

This thesis is organized as follows. In Section 2, we introduce the agents’ feedback-

guided transition probabilities that govern their switches between three attitudes and

2



1 INTRODUCTORY REMARKS

two deterministic adjustment equations for the aggregated attitudes are presented. The

stability and bifurcation behavior of the system are analyzed. We consider a version with

modified feedback index in terms of included weight and the corresponding dynamical

system is subject to a bifurcation analysis. The next section deals with a discrete-choice

version of the original model. The stability and bifurcation behavior are analyzed. In

Section 4 a three-state stochastic model of investor sentiment is presented and the pa-

rameters are estimated via maximum likelihood. Details on the data and estimation

methodology are provided. Additionally, several parameter restricted models are ana-

lyzed and their out-of-sample forecasts are compared. Concluding Remarks are given in

Section 5. Additional figures, respectively proofs of some technical results and mathe-

matical derivations are provided in the Graphical Appendix, respectively Mathematical

Appendix.
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2 Transition Probability Approach

This chapter presents a three-state model of sentiment dynamics with attitudes bold,

cautious and neutral. Individual transition probabilities cause shifts in the shares of

these three groups of agents, an embedded herding component allows for behavioral

changes.

2.1 Introduction

Transition probabilities are incorporated in several models of investor sentiment. In

Barberis et al. (1998) probabilities are assigned to two states by one single agent. These

states differ in their process of governing earnings. A more traditional definition of

transition probabilities refers to the change of attitudes between groups. This is possible

for more than two sentiments, cf. Gomes and Sprott (2017). They formulate a model

with five categories of agents and their transition probabilities are not individual but

uniform for all categories.

Franke and Westerhoff (2019) have designed a macroeconomic agent-based model

with three-state sentiment dynamics. They also use the framework of transition proba-

bilities for changes between attitudes and they include a Goodwinian augmentation of

these sentiment dynamics which has not been considered in the macroeconomic litera-

ture so far. In a similar way Franke (2018) presents a two-state approach and a three-state

approach which are separately integrated into a macroeconomic framework.

We also apply the extension of these latter contributions and include the neutral

sentiment into two versions of a transition probability approach. Each group of agents

is equipped with their own set of individual transition probabilities. The definition of

these probabilities hinges on the specification of sentiment indices; or broader feedback

indices. Here a rare sentiment ratio including the neutral attitude is defined and extended

such that we obtain feedback indices. Furthermore we present an augmented feedback

component which gives rise to more complex dynamics. In this second scenario agents

use a linear combination of the traditional sentiment variable, i.e. the difference of the

4



2.2 SENTIMENT DYNAMICS

two extreme attitudes, and the novel sentiment variable including neutrality. This second

version tries to mimic the considerations taken into account by agents in more detail.

Assume there is a small-sized share of bearish traders on a financial market during

a period of rising stock prices. The share of inactive traders holding stocks, i.e. neutral

traders, is small-sized as well. It is obvious that the large-sized share of bullish traders

has an influence on the other groups of traders and this scenario is captured by the

augmented version.

It needs to be mentioned that this chapter contains purely theoretical considerations

and an extensive analysis of the resulting nonlinear dynamical systems.1

2.2 Sentiment Dynamics

Let the business sector be populated byN firms, or more general, agents, whose number

remains invariant. At each point in time a single agent can be characterized as having

one of three attitudes: optimistic or bold (b), pessimistic or cautious (c), and neutral (0).

Correspondingly, let nbt , n
c
t and n0

t be the number of bold, cautious and neutral agents,

respectively, and bt = nbt/N , ct = nct/N the fractions of bold and cautious agents. The

fraction of neutral agents is expressed in terms of the residual 1− bt − ct .

Agents may change their attitude over time. For the moment being, we consider

this process in discrete time with adjustment periods of length ∆t > 0. The changes

will depend on a great variety of macroscopic aspects and idiosyncratic circumstances,

which one will not want to specify in all of their details. It rather seems suitable to

introduce random elements in this respect, in order to keep the modeling simple and

to avoid arbitrary assumptions. Therefore, the basic concept to describe the changes

in the business climate are the transition probabilities of the individual agents: at time

t, let πrst be the probability per unit of time that an agent changes from attitude r to

attitude s with r, s ∈ {b, c, 0} , r 6= s. More precisely, ∆t πrst is the probability that an

agent with attitude r at time t will have turned to attitude s at the end of the period at

1In Medio (1992) and Medio and Lines (2003) several applications of nonlinear dynamical systems in the
field of economics can be found.
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2.2 SENTIMENT DYNAMICS

t+∆t . These probabilities are predetermined and fixed within that period, though they

will endogenously evolve over time in response to the evolution of other variables in the

economy.

With more information the behavior of individual agents could be described in terms

of probabilities, conditional on events at the micro level, or each agent could be equipped

with transition probabilities of its own. Hence, being interested in the macroscopic ad-

justments, we can abstract from the idiosyncratic circumstances of the agents that are

currently entertaining attitude r and view πrst as their representative transition probabil-

ity of switching to attitude s, given the realizations of the aggregate variables considered

below.

To derive a law of motion for the macroscopic population shares bt and ct, we draw

on an elementary argument put forward by Alfarano and Lux (2005).2 For simplicity,

we assume that the agents do not directly switch from one extreme to the other; only

neutral agents can become bold or cautious within an adjustment period. Hence, the

number of bold agents evolves over time

nbt+∆t = nbt + k0b
t − kb0t , (1)

where k0b
t is the number of originally neutral agents that have turned bold by the end

of period, and kb0t is the number of agents that have switched from bold to neutral.

The number k0b
t arises from n0

t random draws, one for each neutral agent, with prob-

ability ∆t π0b
t for the event that the agent switches to bold. That is, k0b

t is the sum of the

cases when this event occurs. Accordingly, when viewed as a random variable, k0b
t has

a binomial distribution B(n0
t ,∆t π

0b
t ) .3 By the same token, the number of agents kb0t

converting from bold to neutral is distributed as B(nbt ,∆t π
b0
t ) .

2They present it in Appendix A1 and A2 because the apparatus of statistical mechanics is needed for their
analysis.

3A binomial distribution B(m,π) is the probability distribution for the number of successes (k) in a
sequence of m independent success/failure experiments, each of which yields success with probability
π. The probability of getting exactly k successes is given by

(
m
k

)
πk (1−π)m−k , the mean of the

distribution is mπ, and the variance mπ(1−π) .

6



2.2 SENTIMENT DYNAMICS

The expected values of these variables are

E(k0b
t ) = (1− bt − ct)N ∆t π0b

t ,

E(kb0t ) = btN ∆t πb0t

and their variances amount to

V ar(k0b
t ) = (1− bt − ct)N ∆t π0b

t (1−∆t π0b
t ),

V ar(kb0t ) = btN ∆t πb0t (1−∆t πb0t ).

If the expected values are large enough, the two binomial distributions are well approx-

imated by the Gaussian distributions with the same first and second moments. This is

ensured if there are sufficiently many agents and the population shares are not too close

to the boundaries, i.e. bt � 0 and 1− bt− ct � 0 . We assume that the following

conditions hold

k0b
t = E(k0b

t ), kb0t = E(kb0t ).

Furthermore, the difference of two normally distributed random variables is normally

distributed as well, its mean being the difference between the two single means and its

variance the sum of the two single variances. For the random variable kt = k0b
t − kb0t ,

we thus have

E(kt) = ∆t · [(1−bt−ct) π0b
t − bt πb0t ] ·N

V ar(kt) = ∆t · [(1−bt−ct) π0b
t (1−∆t π0b

t ) + bt π
b0
t (1−∆t πb0t )] ·N

To derive the law governing the adjustments of bt a sufficiently large population is as-

sumed, so that the intrinsic noise from different realizations can be neglected. By di-

viding Eq. (1) by N and the changes in the number of groups are directly given by

the product of size and transition probability. The fraction of bold agents decreases by
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2.2 SENTIMENT DYNAMICS

∆t bt π
b0
t due to the agents leaving this group, and it increases by ∆t (1−bt−ct) π0b

t

because of the neutral agents who newly join in. We thus arrive at a deterministic ad-

justment equation that governs the changes in the fraction bt of bold agents,

bt+∆t = bt + ∆t · [(1−bt−ct) π0b
t − bt πb0t ] (2)

As in the derivation of Eq. (2) the population size N was supposed to be large. Fur-

thermore, the process of letting the adjustment period shrink to zero is well defined in

the limit ∆t → 0 and allows for a continuous time setting. Since the changes in the

fraction ct of cautious agents can be derived analogously to Eq. (2), the analysis so far

can thus be summarized by the following two differential equations

ḃ = (1−b−c) π0b − b πb0,

ċ = (1−b−c) π0c − c πc0.
(3)

The further exploration of system (3) hinges on the specification of the transition prob-

abilities π0b, πb0, π0c and πc0.

2.2.1 Feedback-based Transition Probabilities

The transition probabilities change in response to the variations of a set of several vari-

ables that the agents observe. These effects can generally be summarized in a single

feedback index fb when we consider the flux of agents towards and out of a bold atti-

tude. The index is allowed to attain positive and negative values in different stages the

economy goes through. Let positive and negative values of fb be related to the proba-

bility π0b of switching from neutral to bold. That is, an increase in the feedback index

increases π0b and decreases the probability πb0.

In the concept of Weidlich and Haag (1983) it is assumed that the changes of the tran-

sition probabilities depend on the changes of the index fb in a linear way. More precisely,

they assume that the relative changes are linear in fb, so that we have dπ0b/π0b = Adfb

for some constant A. Without loss of generality, A can be taken to be unity. Symmetry
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2.2 SENTIMENT DYNAMICS

is another natural assumption to make. Here, we refer to symmetry of transition proba-

bilities, which gives us dπb0/πb0 = −dfb . Note that possible risk aversion, according to

which the agents show a greater tendency to switch to neutral rather than to one of the

extreme attitudes, can be captured by a suitable specification of the feedback index.

The transition probabilities of switches in and out of a cautious attitude can be sim-

ilarly treated by referring to a feedback index fc. Introducing ν > 0 as constant for

the speed of adjustment, the functional specification of the four transition probabilities

reads,

π0b = π0b(fb) = ν exp(fb), πb0 = πb0(fb) = ν exp(−fb),

π0c = π0c(fc) = ν exp(fc), πc0 = πc0(fc) = ν exp(−fc).
(4)

Certainly, employing the exponential function ensures positive values of the probabili-

ties. The complementary condition that the feedback index is bounded in order to en-

sure that the probabilities in terms of the fixed time unit are bounded, too, should be a

property of the model into which the specifications in (4) are incorporated. Using the

transition probabilities in (4), the two differential equations in (3) for the evolution of

the population shares b and c become

ḃ = ν [ (1−b−c) exp(fb) − b exp(−fb) ],

ċ = ν [ (1−b−c) exp(fc) − c exp(−fc) ].
(5)

The variables b and c are supposed to take values within the co-domain of the unit

simplex

S := {(b, c) ∈ [0, 1]2| b+ c ≤ 1}.

For carefully chosen feedback indices fb and fc, it is immediately observed that the

pair (b, c) does not leave the unit simplex. Additionally, the pair (b, c) is also repelled

from its boundary. In fact, when the fraction of bold agents b (or cautious agents c)
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2.2 SENTIMENT DYNAMICS

tends toward unity, the second term in the square bracket of system (5) will eventually

dominate the first one, so that the derivative of b will become negative from then on (or

ċ < 0, respectively). On the other hand, when the neutral attitude tends to attract all of

the agents, such that b + c → 0 , the right-hand side of system (5) will eventually turn

positive and we have ḃ > 0 as well as ċ > 0.

The exponential function in the specification of the transition probabilities in (4) has

been introduced to make their relative changes linearly dependent on the changes in the

feedback index, thus preventing the probabilities from falling down to zero. It bears

emphasizing that apart from the exponential function no further nonlinearity is required

for this global self-stabilization mechanism to work out. As far as the adjustments of the

population shares of bold and cautious agents and their impact on the macroeconomy

are concerned, there is no need for additional restrictions on the model parameters.

While the equations in (4) provide a first and useful organizational device, the mean-

ingfulness of the model rests on the variables that make up the feedback indices. Here

we first concentrate on the interactions of the agents without a feedback from fundamen-

tal macroeconomic data.

2.2.2 Pure Sentiment Dynamics

A key word to describe pure sentiment dynamics is herding.4 Literally taken, a single

firm asks other firms, e.g. friends, business partners and competitors for their opinion

about the future, and it may then show a certain tendency to join the majority. The chan-

nels of opinion propagation may, however, also be more indirect, through the media or

more specialized sources from which the firms can derive information about the distri-

bution of current attitudes. In any case, the basic concept is that a widely disseminated

attitude will attract further adherents. This is in line with the previous literature, such as

Düring et al. (2009), Lux and Marchesi (1999) and Toscani (2006).

4Lux (1995) analyzes herding in speculative markets and the emergence of bubbles due to contagion of
opinions. A business sentiment variable with a herding component in a macroeconomic framework is
defined in Franke (2012).
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Considering the probability π0b (π0c) of switching from neutral to bold (cautious),

the concept implies that π0b (π0c) increases if the number of bold (cautious) agents rises

relative to the number of neutral agents. The differences between the adherents of the

two attitudes enter the feedback indices fb and fc, respectively, where they are expressed

as percentage ratios,

nb − n0

N
= b− (1−b−c) = 2b+ c− 1 ,

nc − n0

N
= c− (1−b−c) = 2c+ b− 1 .

(6)

The intensity of this herding is measured by two positive coefficients φhb and φhc. To

account for a possible risk aversion of agents we introduce two coefficients αb and αc.

The two feedback indices are thus given by

fb = −αb + φhb (2b+ c− 1)

fc = −αc + φhc (2c+ b− 1)
(7)

Positive coefficients αb and αc express a risk aversion of the agents to switch from

neutral to a bold or cautious attitude rather than into the opposite direction. This is

most clearly seen when the other term in the feedback index vanishes, in which case,

according to specifications in (4), π0r = ν exp(−αr) < ν exp(αr) = πr0 for r =

b, c . Different coefficients allow for the possibility that the agents’ risk aversion may be

different for turning bold and cautious. Of course, a negative coefficient αb or αc can be

interpreted as risk-seeking behavior.

To sum up, the pure sentiment dynamics is constituted by the two differential equa-

tions in (5) together with the specification of the feedback indices in (7). The basic

properties to which this dynamical system gives rise will already be seen from the case

of neutral risk aversion and uniform herding, i.e., αb = αc = 0 and φ = φhb = φhc .5

5A similar model, which likewise can exhibit multiple equilibria, is Foster and Flieth (2002).
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2.3 Stability Analysis

After establishing the basic principles of the dynamical system, the following analy-

sis focuses on the analytical calculation of the explicit solutions of the two differential

equations given by the nonlinear system (5), if possible, and on the numerical derivation

of solutions.6

Stability analysis exhibits what will happen if the system starts not exactly at the

equilibrium point, but in the neighborhood of it. It is not only crucial to know whether

the system will converge to the equilibrium or diverge from it but also the nature of

the dynamic paths, when the dynamical system is perturbed and moves away from the

equilibrium.

The analysis takes place in the (b, c)-phase plane and concentrates on the qualitative

properties of isoclines which are level curves of the differential equations ḃ and ċ with a

fixed slopem. In order to determine the equilibria of system (5), and check their stability

behavior, the dynamics need to come to rest, i.e. m = 0 or more precisely ḃ = 0 and

ċ = 0. When using the expression isoclines in the following it is done with reference to

these identities.

It is possible to show that for each ordinary differential equation ḃ and ċ with a fixed

herding parameter φ two types of isoclines occur, more precisely the first isocline has a

linear structure for all values of φ while the second isocline, emerging for φ > 1, is of

nonlinear parabolic form.

Additionally this model has no natural time unit incorporated and that is the reason

why without loss of generality the parameter regulating the speed of adjustment can be

set equal to unity, i.e. ν = 1, since only qualitative properties are of interest. This results

in the following system of ordinary differential equations7

6See Khalil (2002) and Seydel (1988) for more information on the stability analysis for nonlinear systems.
7For a subsequent investigation of occurring phenomena related to the herding parameter φ it is useful
to transform the two differential equations in (5) expressed in terms of the exponential function into a
system using hyperbolic functions, see Appendix B.1.1.1 for the derivation.
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ḃ = [ (1−c) tanh(fb) − ( 2b+ c− 1)] cosh(fb)

=: Fb(b, c;φ)

ċ = [ (1−b) tanh(fc) − ( 2c+ b− 1)] cosh(fc)

=: Fc(b, c;φ) ,

(8)

with feedback indices fb and fc containing a neutrality in risk aversion and uniform

herding given by

fb = φ (2b+ c− 1) , fc = φ (2c+ b− 1). (9)

These feedback indices lead to symmetric transition probabilities π0b = πb0 and π0c =

πc0 if the share of agents with neutral attitude and the share of bold, respectively cautious

agents are equal. Hence the feedback components in (6) are zero, i.e. 2b + c − 1 = 0

and 2c + b − 1 = 0 . These identities lead to vanishing feedback effects, i.e. fb =

fc = 0 . Thus, rearranging the two homogeneous differential equations Fb(b, c) = 0

and Fc(b, c) = 0 results in two linear isoclines LIb and LIc

c = LIb(b) := −2b+ 1

:⇒ ḃ = Fb(b, c) = 0,

c = LIc(b) := −1
2
b+ 1

2

:⇒ ċ = Fc(b, c) = 0 .

(10)

It is obvious that both linear isoclines are decreasing functions in c and intersect in

(bs, cs) = (1
3
, 1

3
) which is denoted by the symmetric equilibrium since the fractions of

bold, cautious and neutral agents are divided equally. Additionally it is crucial to men-

tion that both linear isoclines are actually independent of the uniform herding parameter

φ.

In order to analyze the stability behavior of the underlying dynamical system it is
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necessary to determine its Jacobian matrix. Denoting the first-order partial derivatives

of (8) by Fbb =
∂Fb
∂b

, Fbc =
∂Fb
∂c

, Fcb =
∂Fc
∂b

and Fcc =
∂Fb
∂c

the corresponding

Jacobian,

J =

 Fbb Fbc

Fcb Fcc

 , (11)

has the following entries:

Fbb =
[

2φ(1− c)− 2− 2φ( 2b+ c− 1 )tanh(fb)
]
cosh(fb),

Fcc =
[

2φ(1− b)− 2− 2φ( 2c+ b− 1 )tanh(fc)
]
cosh(fc),

Fbc =
[
φ(1− c)− 1−

(
1 + φ( 2b+ c− 1 )

)
tanh(fb)

]
cosh(fb),

Fcb =
[
φ(1− b)− 1−

(
1 + φ( 2c+ b− 1 )

)
tanh(fc)

]
cosh(fc).

Both the main diagonal elements, Fbb and Fcc, as well as both off-diagonal elements, Fbc

and Fcb, are symmetric with respect to the representation of the underlying nonlinear

equations in the state variables b and c. Therefore this matrix has a symmetric structure.

The trace tr(J) and determinant det(J) of the Jacobian J ,

tr(J) = Fbb + Fcc

=
[

2φ(1− c)− 2− 2φ( 2b+ c− 1 )tanh(fb)
]
cosh(fb)

+
[

2φ(1− b)− 2− 2φ( 2c+ b− 1 )tanh(fc)
]
cosh(fc),

det(J) = FbbFcc − FbcFcb

= cosh(fb)cosh(fc)
[[

2φ(1− c)− 2− 2φ( 2b+ c− 1 )tanh(fb)
]

·
[

2φ(1− b)− 2− 2φ( 2c+ b− 1 )tanh(fc)
]

−
[
φ(1− c)− 1−

(
1 + φ( 2b+ c− 1 )

)
tanh(fb)

]
·
[
φ(1− b)− 1−

(
1 + φ( 2c+ b− 1 )

)
tanh(fc)

]]
,
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lead to this discriminant8

∆ = tr(J)2 − 4 det(J)

=
[(

2φ(1− c)− 2− 2φ( 2b+ c− 1 )tanh(fb)
)
cosh(fb)

−
(

2φ(1− b)− 2− 2φ( 2c+ b− 1 )tanh(fc)
)
cosh(fc)

]2
+ cosh(fb)cosh(fc)

·
[

2φ(1− c)− 2−
(

2φ( 2b+ c− 1 ) + 2
)
tanh(fb)

]
·
[

2φ(1− b)− 2−
(

2φ( 2c+ b− 1 ) + 2
)
tanh(fc)

]
.

(12)

The sign of ∆ of the corresponding Jacobian J is fundamental for the determination of

the limit behavior type.

Two cases depending on the herding component φ are considered hereafter.

2.3.1 Herding Intensity φ < 1

The linear isoclines LIb and LIc are given explicitly, and as long as the herding compo-

nent φ does not exceed unity the phase plane representation restricted to the co-domain

of the unit simplex S remains unaltered.9

The following proposition contains a basic conclusion.

Proposition 1: [The analogous statement holds for LIc and Fc(b, c, φ) = 0 ]

If φ < 1, then the linear isocline LIb is the only isocline of ḃ = 0,

i.e. ḃ = Fb(b, c) = 0 ⇒ c = LIb(b).

Taken together, LIb and LIc imply the following statement:

8See Appendix B.1.1.2 for the derivation.
9See Cooper (2001) and Shone (2002) for comments on the setup of phase plane representations.
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Corollary 1:

If φ < 1, then the symmetric equilibrium (bs, cs) = (1
3
, 1

3
) is the only

equilibrium.

We turn to the local stability properties of the system. The resulting Jacobian evaluated

at the symmetric equilibrium is given by

J|(bs,cs) =

 −2 + 4
3
φ −1 + 2

3
φ

−1 + 2
3
φ −2 + 4

3
φ

 .
The Jacobian J is a function of the herding intensity φ. J(φ) is real and symmetric and

therefore a Hermitian matrix with real eigenvalues only, for all values of φ.

The symmetric equilibrium (bs, cs) = (1
3
, 1

3
) is at least a locally stable node for

all herding intensities φ < 3
2

. This equilibrium is even globally stable for a herding

parameter φ < 1 since only linear isoclines occur and a single symmetric equilibrium

point is given (cf. Proposition 1 and Corollary 1).

Figure 1 shows the phase plane representation of the isoclines Fb = 0 and Fc = 0.

The b-axis, respectively c-axis, displays the share of bold agents b, respectively the share

of cautious agents c. Additionally trajectory dynamics for φ < 1 are depicted. The

intersection point of both isoclines constitutes the equilibrium which is stable. From

the trajectories in Fig. 1 and the local stability properties it can be concluded that the

boundaries of the unit simplex are repelling.
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Figure 1: Phase plane representation of isoclines Fb = 0 (black) and Fc = 0 (white),
trajectory dynamics for φ < 1 (red) with stable equilibrium (red dot). +/−
indicate Fb ≷ 0, respectively Fc ≷ 0.

Before we proceed with additional nonlinear dynamics and a global stability analysis a

summary of the fundamental results is provided.

Proposition 2:

With respect to a herding parameter φ < 1 the following holds for system

(8), cf. Fig. 1:

1. The unique symmetric equilibrium (bs, cs) = (1
3
, 1

3
) exhibits global

asymptotic stability (see stable node in Fig. 1) and is approached

monotonically (see trajectories in Fig. 1).

2. For all values of φ two isoclines LIb and LIc are located in the phase

plane, they are linear and strictly decreasing.

3. The linear isoclines LIb and LIc can be computed explicitly and are

given by the equations in (10).
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2.3.2 Herding Intensity φ ≥ 1

So far the focus has been on linear isoclines which lead to simple dynamics only. If

nonzero feedback effects are considered, additional parabolic isoclines PIb and PIc

emerge in the phase plane:

c = PIb(b;φ) ⇒ ḃ = Fb(b, c;φ) = 0,

c = PIc(b;φ) ⇒ ċ = Fc(b, c;φ) = 0 .
(13)

Unlike the linear isoclines LIb and LIc, which can be computed explicitly, it needs to

be mentioned that PIb and PIc are implicit functions.10 Due to their nonlinear form

complex dynamics are possible. Figure 2 shows the phase plane evolution of Fb = 0 for

increasing values of φ.11
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Figure 2: Phase plane representation of upward moving parabolic isoclines Fb = 0 for
increasing φ = 1.0, 1.2, 1.7 and 2.2. Axis of ordinates is extended to show the
first appearance of parabolic isocline for φ = 1.0.

10Numerical solution methods of ordinary differential equations equations can be found in Stanoyevitch
(2005), Zwillinger (1989), Jordan and Smith (2007a) and Jordan and Smith (2007b).

11Lynch (2004) provides an introduction to the theory of dynamical systems with the aid of MATLAB,
especially the Symbolic Toolbox. It is needed for the graphical representation of implicit functions.

18



2.3 STABILITY ANALYSIS

The parabolic isoclines for different values of the herding component φ arise from the

b-axis and their peaks stretch in the direction of the upper left corner of the phase plane.

At some point these isoclines adapt completely to the boundaries of the unit simplex.

The very same evolution can be observed for the second parabolic isocline Fc = 0 but

the isoclines are mirrored at the symmetry line. So they arise from the c-axis and their

peaks stretch in the direction of the lower right corner of the unit simplex, cf. Fig. 3 and

Fig. 4.

In general, for a fixed herding parameter φ equilibrium points are identified as in-

tersection points of two different isoclines Fb = 0 and Fc = 0, i.e. intersections of

LIb with LIc and PIc, respectively intersections of PIb with LIc and PIc. Due to the

symmetric structure of the underlying dynamic system these points of intersection are

either arranged on the symmetry line, i.e. for the intersection points of the parabolic

isoclines, or they emerge pairwise in the phase plane. One equilibrium point can be re-

flected with respect to the symmetry line to obtain the second equilibrium point. There

points originate from intersections of parabolic and linear isoclines.

Besides the two additional parabolic isoclines PIb and PIc no further points of in-

tersection and no change in the system’s dynamics occur for φ = 1.2 in Fig. 3a.

Figure 3b shows the scenario for φ = 1.373. When different parabolic isoclines are

tangent to each other and intersect on the symmetry line, they are tangent to the opposing

linear isoclines as well. Here three new equilibrium points are created at once.

For increasing φ ∈ (1.373, 1.5) six equilibria are generated due to additional inter-

sections. Three of these new equilibria are stable nodes and each located closely to one

of the vertices of the unit simplex S, hence the system exhibits multistability. Three

inner intersection points, which indicate instability, more specifically saddle node sta-

bility, are located in the immediate neighborhood of the stable node (bs, cs) = (1
3
, 1

3
) .

They collide into the symmetric equilibrium for φ = 1.5 which becomes an unstable

node thereafter, see Fig. 4a.

The stability behavior of all seven equilibria persists for increasing values of the

herding parameter φ > 1.5, i.e. three outer stable nodes and three inner saddle points
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Figure 3: Phase plane representation of Fb = 0 (black) and Fc = 0 (white) for φ = 1.2
and φ = 1.373.
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Figure 4: Phase plane representation of Fb = 0 (black) and Fc = 0 (white) for φ = 1.5
and φ = 2.2. Evolution from four equilibria in (a) to seven equilibria in (b).
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which are all scattered symmetrically around the unstable symmetric equilibrium (bs, cs) =

(1
3
, 1

3
) . Exemplified by φ = 2.2, Fig. 4b exhibits the further evolution of the parabolic

isoclines and the points of intersection.

Vector field dynamics for φ = 1.7 are depicted in Fig. 5a. As mentioned above,

they show three attracting points located in the vertices of the simplex. These points

are stable nodes and each represents the majority of one attitude, i.e. bold, cautious or

neutral.

For φ = 1.7 Fig. 5b additionally illustrates the partition of the phase plane into three

stability regions via separatrices. Within each stabilty region, the so called basins of at-

traction, all initial points converge to the associated aforementioned stable node located

within the very same phase plane region. Solely initial values located directly on the

separatrices allow for convergence towards one of the three saddle points, which have

been characterized as (inner) unstable nodes so far. Only a strong shock affecting the

herding component and/or the attitudes of the agents can lead to a shift of an equilib-

rium, i.e. a shift in the configuration of attitudes of the whole population, from one basin

of attraction to another.

Each linear isocline, i.e. LIb and LIc, has only one b-axis intercept for all herding

intensities φ. Due to the appearance of the parabolic isoclines PIb and PIc for φ > 1

additional b-axis intercepts can be detected. The following proposition summarizes all

b-axis intercept characteristics of the isocline LIb.
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Proposition 3:

1. For all values of φ the linear isocline LIb has one b-axis intercept, i.e.

b0 = 0.5.

2. The parabolic isocline PIb appears for φ = 1 at b0 = 0.5.

3. If φ > 1 the parabolic isocline PIb has two symmetric b-axis inter-

cepts,

i.e. b1 is a b-axis intercept of PIb ⇒ b2 = 1− b1 is a b-axis intercept

of PIb.

4. For increasing φ the b-axis intercept b1 > 0.5 converges to 1, respec-

tively lim
φ→∞

b2 = 0

5. Statement 2 - 4 hold for c-axis intercepts ci of PIc, i ∈ {0, 1, 2} .

From subsection 2.3.1 we can conclude that the symmetric equilibrium (bs, cs) = (1
3
, 1

3
)

is repelling for φ > 3
2
. For φ 6= 3

2
it is approached in a monotonic manner, cf. Proposi-

tion 2.

2.3.3 Bifurcation Analysis

In general a dynamical system is called structurally stable if the qualitative dynamic

properties of the system persist with small variations in its structure.

In the following, structural changes of the system due to the variation of the herding

parameter φ are under investigation. We want to determine how the qualitative behav-

ior of the dynamical system evolves under variations of the herding parameter. Thus,

the results of bifurcation theory are especially important to dynamic modeling in eco-

nomics.12

Once the system passes through a critical value the stability behavior changes. These

specific parameter values of φ are called bifurcation values. The parametric sphere

12For an application of stochastic bifurcation theory to the detection of economic bubbles via a nonlinear
dynamical system see Dmitriev et al. (2017). Additional applications in economics are presented in
Zhang (2005).
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together with its characteristic phase space sphere constitute a bifurcation diagram which

is desirable as a result of the qualitative analysis of the given dynamical system (8). A

bifurcation diagram categorizes all possible modes of behavior of the dynamical system

and transitions between these modes, indicated by bifurcation values, under parameter

variations in a very consolidated manner.13

Bifurcations do not necessarily imply a shift between stability and instability, but

they do imply a change in the nature of the disequilibrium dynamics. As a result, if a

confidence region around parameter estimates includes a bifurcation point, various kinds

of dynamics can be consistent with the parameters being within this confidence region.

Possible candidates for bifurcation values φ can be obtained from the set of equilib-

rium points. These are intersection points of all isoclines of the two differential equa-

tions. Due to the homogeneous structure of the differential equations the multidimen-

sional intersection point problem is equivalent to a multidimensional root problem.

Root detection methods in multidimensional nonlinear systems are far from trivial

and not analog to one-dimensional numerical methods. Without further insight, i.e.

additional information on the structure of the isoclines of the nonlinear equations, it is

a time-consuming process to accurately track all roots of the underlying system. This

is also due to the large parameter range for the herding component φ which leads to

innumerable many roots depending on the step size for each parameter of the routine. As

pointed out in Press et al. (2007) the multidimensional numerical algorithm by Newton-

Raphson is an efficient method to find multiple roots. This rather simple method heavily

relies on initial values close to the actual root therefore the step size needs to be chosen

carefully as roots might be omitted otherwise.

In case of this scenario it is possible to take advantage of the symmetric setup of the

dynamical system, see Fig. 3 and Fig. 4. The intersection points of the linear isoclines

LIb and LIc, the parabolic isoclines PIb and PIc and intersection points of LIb and PIc,

respectively LIc and PIb are of interest.

The inspection of the intersection points of the linear isoclines is simple due to the

13See Kuznetsov (2004), Strogatz (1994) and Wiggins (2003) for details on bifurcation theory.
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Brute-force Newton-Raphson Bisection

intersection points 993 989 1030

computing time < 1 s 4533 s 143 s

Table 1: Comparison of computing time of three root detection methods. Number of
intersection points chosen ≈ 1000.

linearity of the equations from system (10). It is obvious that additional intersection

points of LIb and PIc, respectively LIc and PIb are located on the linear isoclines as

well. However the intersection points of the parabolic isoclines PIb and PIc are ar-

ranged on the symmetry line. Including this information into the algorithm decreases

the computing time immensely; from more than one hour when applying the advanced

Newton-Raphson method to only one second using this information-backed Brute-force

method to find a sufficient amount of intersection points (≈ 1000 points) to construct

a bifurcation diagram. Additionally the Bisection method has been applied to find the

most efficient algorithm for root detection, cf. Tab. 1. It turns out that this method is as

well far more efficient than the Newton-Raphson method.

The reduction to four single multidimensional root problems is less demanding than the

suggested calculation of the Jacobian matrix evaluated at each coordinate (b, c;φ) in the

Newton-Raphson method. The resulting simplified algorithm is sufficiently effective

and allows for a rapid determination of equilibrium points.

In order to check the stability properties of the dynamical system these points need to

be explored and possible bifurcation values φ need to be detected. Due to the sensitivity

of the dynamical system regarding the herding parameter φ all changes in the system

behavior occur only within a narrow range of this parameter. Therefore all types of

bifurcations introduced subsequently are local bifurcations in the sense that only the

behavior of the dynamical system in the neighborhood of single steady states is affected.

For the purpose of classifying and visualizing the different modes of stability be-
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havior the corresponding direct product of a one-dimensional phase space and the one-

dimensional parameter space is considered. Due to an adjustment of the two phase plane

components b and c which originates from the symmetric setup of the dynamical system

an easily accessible and comprehensible two-dimensional illustration is chosen.14

Figure 6 shows the bifurcation diagram, including the bifurcation route which indi-

cates the number of equilibria obtained for fixed values of the herding parameter φ. The

bifurcation diagram is adjusted due to the overlapping of two parabolas which have iden-

tical (φ, b)-coordinates and differ only in their c-coordinate. Therefore an augmented

phase space coordinate has been introduced which includes a weight ε ∈ (0, 1) for all

c-coordinates. The qualitative behavior of the equilibrium points is not affected by this

transformation.

Three symmetric parabolas are visible and with increasing herding component φ the

stability behavior varies. For φ = 1.373 three supercritical saddle-node bifurcations oc-

cur at (bsn1 , c
sn
1 ) = (0.5702, 0.2145) , (bsn2 , c

sn
2 ) = (0.2145, 0.5702) and

(bsn3 , c
sn
3 ) = (0.2145, 0.2145) where (bsn, csn) denote the (b, c)-coordinates of the saddle-

node bifurcations.15 These are non-adjusted (b, c)-coordinates which coincide with the

symmetric structure of the equilibria distribution in the phase plane representation. An

additional hyperbolic fixed point occurs for φ = 1.5 and three equilibria collide into the

symmetric equilibrium which undergoes a bifurcation and becomes unstable. Further-

more a Hopf bifurcation cannot occur for any value of the herding intensity φ since the

eigenvalues of the corresponding Jacobian are real.

A non-monotonic sequence of steady-states is created, e.g. from 1− 4− 7− 4− 7

equilibria. This step function exhibits two jumps for φ = 1.5 from seven to four and

back to seven.

14See Appendix A.1.1 for a three-dimensional illustration.
15Saddle-node bifurcations can occur in simple partial-analytical models of the labor market where the

change in the real wage rate is assumed to depend on the excess demand for labor in this market. The
supply of labor and demand for labor, respectively, depend on the real wage. See Lorenz (2012) for
more details.
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2.4 Augmented Feedback

While the previous feedback components fb and fc take into account the attitude of

agents in immediate proximity only, i.e. the differences between the percentage ratios

of bold, respectively cautious, agents and neutral agents, the novel feedback components

incorporate a distant effect which preponderates with increasing weight factor. Direct

switches between the extreme attitude, i.e. from b to c, respectively from c to b, are still

not incorporated.

The augmented feedback indices contain a weighted influence of extreme attitudes,

constituted by the deviation b − c for the feedback index fb and the difference c − b ,

respectively for the feedback index fc:

fb = φ[ (1−ω)(2b+c−1) + ω(b−c)]

fc = φ[ (1−ω)(2c+b−1) + ω(c−b)] .
(14)

The weight is denoted by ω and takes values within [0, 1]. For ω = 0 the original setup

of feedback indices in (7) is ensured. With a weighting component ω = 1 the frac-

tion of neutral agents is not taken into consideration and the feedback on the transition

probabilities entirely depends on the extreme attitudes and their deviations. If b − c is

denoted by x, and c − b by −x respectively, these feedback indices lead back to the

opinion index introduced in Lux (1995) with binary choice in a transition probability

approach.

2.4.1 Stability Analysis for Augmented Feedback

Figure 7, Fig. 8 and Fig. 9 display phase plane representations for three fixed herding

components φ which exhibit the evolution of the parabolic isoclines of Fb, with varying

weight ω = 0.2, 0.5, 0.8. Apparently linear isoclines do not emerge as in the unweighted

feedback scenario.

For the combination of herding and weight (φ = 1.8, ω = 0.2) two types of parabolic

isoclines are visible, cf. Fig. 7. With an increasing weight these two nonlinear isoclines
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2.4 AUGMENTED FEEDBACK

Figure 7: Phase plane representation of Fb = 0 for herding intensity φ = 1.8 and weight
ω = 0.2, 0.5, 0.8. Two nonlinear isoclines for ω = 0.2 and one nonlinear
isocline for ω = 0.5, 0.8 are visible.

Figure 8: Phase plane representation of Fb = 0 for herding intensity φ = 3.5 and weight
ω = 0.2, 0.5, 0.8. Two nonlinear isoclines for ω = 0.2, 0.5 and one nonlinear
isocline for ω = 0.8 are visible.

30



2.4 AUGMENTED FEEDBACK

Figure 9: Phase plane representation of Fb = 0 for herding intensity φ = 10.0 and
weight ω = 0.2, 0.5, 0.8. Two nonlinear isoclines for ω = 0.2, 0.5 and one
nonlinear isocline for ω = 0.8 are visible.

are unified. The same observation can be made for the combination (φ = 3.5, ω =

0.2), cf. Fig. 8, the combination (φ = 10.0, ω = 0.2) and the combination (φ =

10.0, ω = 0.5), cf. Fig. 9. Considering the remaining representations there is only one

single isocline per herding component and weighting intensity displaying the underlying

differential equation Fb = 0, i.e. combinations (φ = 1.8, ω = 0.5), (φ = 1.8, ω = 0.8),

(φ = 3.5, ω = 0.5), (φ = 3.5, ω = 0.8) and (φ = 10.0, ω = 0.8). If the herding

component φ increases all isoclines obtain a distorted shape and adapt to the boundaries

of the unit simplex S.

For further phase plane representations of both differential equations Fb = 0 and

Fc = 0, the values chosen for the herding component φ agree with the values chosen

for the phase plane representations of the single differential equation Fb = 0, cf. Fig. 7,

Fig. 8 and Fig. 9 .

In Fig. 10 and Fig. 11 the phase plane representation for both types of parabolic

isoclines Fb = 0 and Fc = 0 is displayed for a small weight ω = 0.2 and increasing

herding φ. If the herding is small, i.e. φ = 1.0, the symmetric equilibrium (bs, cs) =

(1
3
, 1

3
) is the only intersection point and it is stable, see Fig. 10a.
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For a moderate herding intensity φ = 1.4 this equilibrium turns into an unstable node

and two additional intersection points evolve. The dynamic system exhibits bistability,

cf. Fig. 10b. Additionally corresponding vector field dynamics are displayed here.

They indicate an equilibrium reflecting a stable neutral majority. It is represented by

the coordinates (b, c) = (0, 0) and it is not attainable with this degree of herding for

any initial value. Only the extreme attitudes bold b and cautious c, represented by the

coordinates in the neighborhood of (b, c) = (1, 0) and (b, c) = (0, 1), are attracting.

For each differential equation Fb = 0 and Fc = 0 two types of nonlinear isoclines evolve

in the phase plane for φ = 1.8, cf. Fig. 11a. The recurring reflected representation of

two pairs of isoclines with respect to the symmetry line is evident. Seven points of

intersection can be observed, four unstable equilibrium points which are located close

to the centroid of the unit simplex S and three stable equilibria located close to the

vertices of the simplex.

Figure 11b contains vector field dynamics for φ = 2.5. In this scenario all three

attitudes, i.e. bold, cautious and neutral, have the possibility to maintain a stable major-

ity depending on the initial point. However, the stability region including all attracting

initial values in the neighborhood of (b, c) = (0, 0), representing a majority consisting

of agents with a neutral attitude, is smaller than the other two stability regions.

In Fig. 12 the corresponding phase plane representations for ω = 0.5 and ω = 0.8 are

shown, including vector field dynamics which show regions of attraction.16 The mag-

nitude of herding is chosen such that seven equilibrium points result from intersections

and their locations in the unit simplex S are approximately the same compared to the

previous case for ω = 0.2. It can be concluded that an increasing weighting factor ω, i.e.

the effect of extreme attitudes, b− c and c− b, dominates or the influence of the agents

having a neutral position diminishes, requires an immense increase in the herding inten-

sity to ensure the same (b, c)-coordinates for the stable equilibria, i.e. (b, c) = (0, 0) for a

majority of neutral agents, (b, c) = (1, 0) for a majority of bold agents and (b, c) = (0, 1)

16See Appendix A.1.2 for additional phase plane diagrams showing the isoclines for ω = 0.5 and ω = 0.8
with smaller values of the herding component φ.
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Figure 10: Phase plane representation of Fb = 0 (black) and Fc = 0 (white) for φ =
1.0, 1.4 and ω = 0.2, including vector field dynamics (red arrows).

33



2.4 AUGMENTED FEEDBACK

0 0.2 0.4 0.6 0.8 1

share of bold agents b

-0.2

0

0.2

0.4

0.6

0.8

1
sh
a
re

o
f
ca
u
ti
o
u
s
a
g
en
ts

c
Fb = 0

Fc = 0

stable node

unstable node

symmetry line

(a) φ = 1.8, ω = 0.2, three stable equilibria (red dots), four unsta-
ble equilibria (white dots).
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stable equilibria (white dots). Vector field dynamics pointing
towards three attracting nodes in the vertices of the simplex.

Figure 11: Phase plane representation of Fb = 0 (black) and Fc = 0 (white) for φ =
1.8, 2.5 and ω = 0.2, including vector field dynamics (red arrows).
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(b) φ = 10.0, ω = 0.8, three stable equilibria (red dots), four un-
stable equilibria (white dots). Vector field dynamics pointing
towards three attracting nodes in the vertices of the simplex.

Figure 12: Phase plane representation of Fb = 0 (black) and Fc = 0 (white) for ω = 0.5
and 0.8, including vector field dynamics (red arrows).
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Brute-force Newton-Raphson Bisection

intersection points 502 504 510

computing time 71 s 4282 s 44 s

Table 2: Comparison of computing time of three root detection methods for ω = 0.2.
Number of intersection points chosen ≈ 500.

for a majority of cautious agents. This means the herding needs to be exceedingly high

in order to ensure the existence of a neutral majority at all. For the weighted feedback

scenario multistability of the system is possible as well. It is evident that the symmetric

equilibrium (bs, cs) prevails for all values of herding φ and weight ω.

2.4.2 Bifurcation Analysis for Augmented Feedback

In case of weighed feedback-based herding dynamics it is not possible to consider sym-

metry arguments in the same way as in the unweighted scenario. Therefore the efficiency

and computation time of the three methods used for root detection differ in comparison

to the unweighted feedback case.

Considering the same weight ω and the same herding interval for φ the Newton-

Raphson method needs more than one hour to detect the same amount of intersection

points as the brute-force method which needs only more than one minute. However the

computation time of the Bisection method adds up to even less than one minute, see Tab.

2.

The bifurcation diagrams and the bifurcation routes for weighted feedback are depicted

in Fig. 13, Fig. 14 and Fig. 15. All bifurcation diagrams show one degenerate parabola

with an asymmetrical shape of the manifolds. They are located in the left quarter of

the diagram and part into two manifolds for a herding intensity φ < 1.5. These two

manifolds of each degenerate parabola exhibit the same stability behavior. Furthermore

two regular parabolas are depicted in each bifurcation diagram. They are located in the

36



2.4 AUGMENTED FEEDBACK

right half of the diagram and show different degrees of dilation and compression. The

stability behavior varies only for two manifolds of one of these regular parabolas in

each bifurcation diagram. Additionally the shapes of all parabolas vary with increasing

weight component ω.

The (b, c)-coordinates are denoted by (b j, c j) where superscript j denotes the spe-

cific bifurcation type, i.e. j ∈ {sn, t, p/p sub/sup} where sn is the notation for a saddle-

node bifurcation, a transcritical bifurcation is denoted by t and p/p sub/sup represent a

pitchfork bifurcation.17 Indices sub/sup refer to subcritical, respectively supercritical

versions of this bifurcation.

Figure 13a illustrates the stability behavior of the equilibria for weight ω = 0.2.

For φ = 1.228 two saddle-node bifurcations occur at (bsn1 , c
sn
1 ) = (0.529, 0.204) and

(bsn2 , c
sn
2 ) = (0.204, 0.529) . Increasing the herding parameter slightly to φ = 1.25 one

supercritical pitchfork bifurcation occurs at the symmetric equilibrium (b psub , c psub) =

(0.333, 0.333) . An additional supercritical saddle-node bifurcation is observed at φ =

1.716 with (bsn3 , c
sn
3 ) = (0.2121, 0.2121) . A further increase of φ to 1.724 exhibits one

pitchfork saddle-source bifurcation at (bp, cp) = (0.2449, 0.2449) .18

The final bifurcation is transcritical and occurs at the symmetric equilibrium with (bt, ct) =

(0.333, 0.333) at φ = 1.875. More specifically, it is a transcritical saddle-source bifur-

cation.19 The number of equilibria changes from 1 − 3 − 5 − 3 − 4 − 5 − 7 − 6 − 7

with two jumps in the step function for φ = 1.875 from 7− 6− 7 , cf. Fig. 13b.

The corresponding bifurcation diagram for weight ω = 0.5 is depicted in Fig. 14a.

One pitchfork bifurcation occurs for φ = 1 at the symmetric equilibrium (b psup , c psup) =

17Transcritical bifurcations can occur in a one-dimensional system constructed from standard neoclassical
growth theory where the change in capital intensity depends on per-capita-output, labor growth rate and
the savings rate. Pitchfork bifurcations can occur in versions of the Kaldor model where the change in
capital stock is assumed to depend on the gross investment and savings. See Lorenz (2012) for more
details.

18A pitchfork saddle-source bifurcation is defined as a pitchfork bifurcation with one unstable (source)
manifold and one saddle manifold, see Appendix B.1.3.2 for the definition of a pitchfork bifurcation.

19A transcritical saddle-source bifurcation is defined as a transcritical bifurcation with one unstable
(source) manifold and one saddle manifold, see Appendix B.1.3.3 for the definition of a transcritical
bifurcation.
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(a) Bifurcation diagram for ω = 0.2 with φ ∈ [1, 2.5].
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Figure 13: Bifurcation diagram for ω = 0.2 in (a) and illustration showing the develop-
ment for number of equilibria in (b) with herding intensity φ ∈ [1.0, 2.5].
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(0.333, 0.333) and it is supercritical.

Furthermore a supercritical saddle-node bifurcation is visible at φ = 2.746 with (bsn, csn) =

(0.2185, 0.2185) . Increasing the herding parameter slightly to φ = 2.9, one subcrit-

ical pitchfork bifurcation occurs at (b psub , c psub) = (0.1131, 0.1131) . A transcritical

saddle-source bifurcation occurs for φ = 3.0 at the symmetric equilibrium (bt, ct) =

(0.333, 0.333) . The number of equilibria evolves non-monotonically from 1− 3− 4−
5−7−6−7 and at φ = 3.0 the step function jumps from seven to six and back to seven

again, cf. Fig. 14b.

Figure 15a illustrates the evolution for weight ω = 0.8. For φ = 0.833 one su-

percritical pitchfork bifurcation is visible at the symmetric equilibrium (b psup , c psup) =

(0.333, 0.333) . A supercritical saddle-node bifurcation occurs for φ = 6.866 with

(bsn, csn) = (0.2165, 0.2165) . For φ = 7.5 a transcritical saddle-source bifurcation

occurs at the symmetric equilibrium (bt, ct) = (0.333, 0.333) and for φ = 9.568 a

pitchfork bifurcation occurs at

(b psub , c psub) = (0.0284, 0.0284) which is supercritical. A non-monotonic sequence of

steady-states is created, e.g. from 1−3−4−5−4−5−7 equilibria. This step function

exhibits two jumps for φ = 7.5 from 5− 4− 5 , cf. Fig. 15b.

The bifurcation diagrams for all weights ω = 0.2, 0.5 and 0.8 depict each at least two

stable manifolds for a moderate herding component, i.e. φ < 3. These two manifolds

originate from two supercritical saddle-node bifurcations in the case of ω = 0.2 and

from one pitchfork bifurcation in the case of ω = 0.5 and 0.8. In all cases these stable

manifolds relate to the situation when a majority of bold agents prevails, see upper stable

manifold, and a majority of cautious agents prevails, see lower stable manifold.

In order to inspect the possible stable configurations for a majority of neutral agents

Fig. 16 needs to be considered. It depicts enlarged bifurcation diagrams for ω = 0.2, 0.5

and 0.8 with a focus on pitchfork bifurcations occurring for smaller fractions of bold

agents, i.e. bs < 0.333.

It is evident that with a weighted feedback and a high influence of the extreme at-

titudes, that is with a higher weight ω, a stable majority of neutral agents is possible,
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(a) Bifurcation diagram for ω = 0.5 with φ ∈ [0.5, 5.0].
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Figure 14: Bifurcation diagram for ω = 0.5 in (a) and illustration showing the develop-
ment for number of equilibria in (b) with herding intensity φ ∈ [0.5, 5.0].
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(a) Bifurcation diagram for ω = 0.8 with φ ∈ [0.5, 11.5].
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Figure 15: Bifurcation diagram for ω = 0.8 in (a) and illustration showing the develop-
ment for number of equilibria in (b) with herding intensity φ ∈ [0.5, 11.5].
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but the occurrence requires a relatively high herding parameter, see stable sections of

the manifolds in the bifurcation diagrams in Fig. 16. This result is in line with the

fundamental idea that a higher influence of extreme attitudes leads to stable equilibria

including extreme attitudes bold b and cautious c only.

Knowledge of these bifurcation diagrams provides key insight how complicated dy-

namics can arise in a two-dimensional parameter space (φ, ω).

2.5 Comparison of Pure Feedback and Augmented Feedback

In Sec. 2.3 the isoclines evolve fixed along the symmetry line in the phase plane. Addi-

tionally the equilibrium points are distributed uniformly around the symmetric equilib-

rium point (bs, cs) = (0.333, 0.333) , cf. Fig. 4. The corresponding parabolas to these

equilibrium points are located symmetrically around the straight line (φ, bs+ εcs) in the

bifurcation diagram, see Fig. 6a. This straight line represents the symmetric equilibrium

point for all values of herding φ.

Due to the second parameter, i.e. the weighting component ω, the shape of the

isoclines in the phase plane diagram and correspondingly the setup of the parabolas

in the bifurcation diagrams differ remarkably from the representations shown in the

previous chapter, especially for a weight ω > 0.2. The symmetric evolution of the

isoclines in the phase plane tends to be nonsystematic and the balanced original setup of

the parabolas becomes asymmetrical, cf. Fig. 8 and exemplary Fig. 14a.

The stability behavior of the symmetric equilibrium varies from stability for φ < 1.5

to saddle node stability for φ = 1.5 to instability for φ > 1.5. φ = 1.5 can be called

a stability threshold value. Once the weighting ω is incorporated the stability threshold

value φ for the symmetric equilibrium decreases with increasing influence of ω, i.e.

the higher the weighted influence of extreme attitudes is the lower the herding has to

be to maintain a stable symmetric equilibrium. Additionally the range of the herding

component φ increases from φ = 0.5 to e.g. φ ∈ [1.25, 1.875] for weight ω = 0.2

to ensure saddle node stability of the symmetric equilibrium. The stable equilibrium
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Figure 16: Enlarged bifurcation diagrams for ω = 0.2, 0.5 and 0.8 with share of bold
agents b ∈ [0, 0.5].
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representing a majority of neutral agents only occurs for higher values of the herding

component φ, i.e. φ > 1.373 for the pure unweighted feedback scenario compared to

φ > 1.716 for the weighted feedback ω = 0.2.

In the pure feedback setup only the stability behavior for the symmetric equilibrium

(bs, cs) = (0.333, 0.333) alters with increasing herding, i.e. from stable node to unstable

node. The remaining six equilibria retain their behavior and remain stable nodes and

saddle points.

For all weighting components ω = 0.2, 0.5 and 0.8 the stability behavior of sin-

gle equilibrium points in the phase plane changes more frequently, see Fig. 16. This

augmented dynamical system exhibits a higher number of stability behavior configura-

tions with the same amount of equilibria, i.e. from one symmetric equilibrium to seven

equilibria overall.

It is also revealed that for every intersection of two equilibrium points the stability

behavior of both equilibria changes after the intersection, i.e. when φ increases, except

for the two saddle point manifolds of the supercritical saddle-node bifurcations for ω =

0.2 and φ = 1.25.

The alterations in the amount of equilibria are significantly higher compared to the

unweighted feedback scenario, cf. Fig. 6b and exemplary Fig. 14b. This is in line with

the finding of additional bifurcation values for an increasing herding parameter φ.

Both frameworks deal with local bifurcations, i.e. one equilibrium point changes

its stability property or additional equilibria emerge. In the pure feedback version the

saddle-node bifurcations show that multiple, co-existing stable and unstable equilibrium

points can be observed for relatively small values of the herding component φ. Therefore

a steady state representing a majority of neutral agents is a possible outcome of this

dynamical system.

For the augmented feedback version in addition to saddle-node bifurcations, trans-

critical bifurcations and pitchfork bifurcations show up. The latter bifurcation generates

multiple, co-existing stable and unstable equilibrium points as well. In comparison to

the reduced setup additional new complex dynamics occur only for higher values of φ,
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i.e. at least φ = 1.716 for ω = 0.2, φ = 2.746 for ω = 0.5 and φ = 7.5 for ω = 0.8. For

transcritical bifurcations the stability behavior changes. A stable neutral majority is a

possible outcome of these dynamical systems as well. Note that this outcome becomes

less likely for ω = 0.8 due to the strong herding that is required to obtain this stable

manifold.

Assuming a financial market setting this result can lead to a period with a market

sentiment dominated by bullish traders, bearish traders or neutral traders, i.e. inactive

traders. It is possible to analyze these calm periods on financial markets and relate

them to return rates, volatility or other key figures. This has been done for the regular

sentiment variable defined by the difference of noise traders, i.e. bullish and bearish

traders.

Among others, Lux (2012) studies the influence of sentiment on DAX returns. In

Fisher and Statman (2000) sentiments of three groups and their indication for changes

in the S&P 500 are under review. Four sentiment indicators and their ability to forecast

German economic activity are investigated by Hüfner and Schröder (2002). See Lee

et al. (2002) for an analysis of the impact of investor sentiment on US stock market

volatility.

2.6 Conclusions

This chapter has been concerned with an extended binary choice problem, the three-state

choice problem for agents in a large population.

It provided a framework using a novel model of sentiment dynamics with three atti-

tudes, i.e. bold, cautious and neutral. Individual transition probabilities were introduced

which lead to changes in the shares of these groups of agents. Note that changes be-

tween extreme attitudes, i.e. bold and cautious, were excluded. These transition rates

incorporate so-called feedback indices. The main influence within the feedback comes

from the sentiment components which are weighted with a herding parameter.

Two versions of feedback components were considered. The first approach used a
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sentiment ratio including the neutral attitude. Furthermore we presented an augmented

feedback component. In this second approach agents used a linear combination of the

traditional sentiment variable, i.e. the difference of the two extreme attitudes, and the

sentiment variable including neutrality.

A nonlinear two-dimensional system of ordinary differential equations was obtained

in each version. Our goal was to investigate the generic possibility of complicated dy-

namics, i.e. multiple equilibrium points. The bifurcation analysis exhibited saddle-node,

transcritical and pitchfork bifurcations and complex bifurcation routes with multiple

equilibria. Agents herd towards an extreme distribution of the attitudes, which persist

over time.

The occurrence of these bifurcation types show that the analyzed dynamical systems

can generate multiple, co-existing stable and unstable equilibrium points. Additionally,

several bifurcation values were obtained which indicate structural instability of the dy-

namical system for this value. All types of bifurcations are local bifurcations. Therefore

only the behavior in the neighborhood of a single bifurcation point is affected.

We incorporated neutral agents in the well-established definition of sentiment vari-

ables, i.e. the difference of bold and cautious agents. The analysis of the evolution

of neutral agents revealed that for all versions and specifications a neutral majority

may prevail depending on the herding. Based in these findings further extensions of

both feedback-guided versions of the transitions probability approach of an agent-based

model are feasible. One possibility is to include macroeconomic or finance variables,

see Franke and Westerhoff (2019), and conduct empirical business cycle research. West-

erhoff and Franke (2018) consider two agent-based models for economic policy design.

They present a financial market model as well as a goods market model and analyze the

effectivity of certain regulatory policies.
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3 Discrete Choice Approach

This chapter presents a discrete choice version of a three-state model of sentiment dy-

namics with attitudes bold, cautious and neutral. The agents’ decision to choose a sen-

timent is independent of the previously adopted attitude. A comparison to the transition

probability approach in Chap. 2 is provided.

3.1 Introduction

When we refer to a large population of agents who repeatedly face a binary decision

problem, an alternative description of aggregate sentiment dynamics to the presented

transition probability approach needs to be considered, namely the discrete choice ap-

proach. This approach is broadly known through Brock and Hommes (1997). They

consider a cobweb type model where agents can choose between two types of expecta-

tions. This model is able to generate complex dynamics depending on the specifications.

In Hommes and Ochea (2012) two three-strategy models based on logit dynamics20 are

presented. The occurrence of stable periodic orbits and multiple, interior steady states

is shown.21

There is literature on aggregated sentiment models which consider both specifica-

tions, the transition probability approach and the discrete choice approach. With respect

to macroeconomic models, Franke and Westerhoff (2017) contribute a literature survey

on animal spirits. Furthermore they find that both approaches are closely related and

that they are capable of generating cyclical behavior. Franke (2014) inspects the transi-

tion probability approach as well as the discrete choice approach in a two-dimensional

model of aggregated sentiment dynamics. It is shown that both versions of the two

specifications give rise to essentially the same dynamics.

20Logit dynamics are a version of Best Reply dynamics which belong to the class of belief-based dynamics.
These dynamics are categorized as pairwise comparison dynamics. Together with imitative dynamics
they build the set of evolutionary dynamics.

21For further insights on discrete choice theory in evolutionary dynamics see Hommes (2013) and the
analysis of Logit dynamics in Ochea (2010).
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Following the latter contribution we want to show that our version of a discrete

choice approach including neutral agents and the pure feedback version of the transition

probability approach from Subsec. 2.2 exhibit equivalent dynamics.

This chapter focuses on the qualitative analysis of the resulting nonlinear dynami-

cal system. For literature on different applications including empirical estimation see

Franke and Westerhoff (2017).

3.2 Sentiment Dynamics

In contrast to the concept of transition probabilities, as they have been presented in Chap.

2, in the discrete choice setup the agents’ decision is independent of the previously

adopted attitude. From this follows that in each period all agents become bold (b),

cautious (c) or neutral (0) with the same logit choice probabilities πbt , π
c
t and π0

t .

Following Franke (2014) we obtain the following logit choice probabilities

πbt = πbt (fb) =
exp(βfb)

exp(βfb) + exp(βfc) + exp(βf0)
,

πct = πct (fc) =
exp(βfc)

exp(βfb) + exp(βfc) + exp(βf0)
,

π0
t = π0

t (f0) =
exp(βf0)

exp(βfb) + exp(βfc) + exp(βf0)
.

(15)

Here fb, fc and f0 refer to the feedback indices for the attitudes bold b, cautious c and

neutral 0. They are defined as

fb = φ
nb

N
= φ b ,

fc = φ
nc

N
= φ c ,

f0 = φ
1− nb − nb

N
= φ (1− b− c) .

(16)

The intensity of herding is measured by the positive coefficient φ. The parameter β is
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known as the intensity of choice. If the feedback indices remain unchanged and β is

close to zero these three probabilities are almost identical. For β →∞ the probabilities

highly depend on the explicit composition of the feedback indices. If one feedback

index dominates the corresponding logit choice probability tends towards one and the

remaining probabilities tend towards zero.

In this framework the discrete choice approach with asynchronous updating is in-

troduced. It uses a fixed probability per unit of time µ reflecting that an agent actually

reconsiders its attitude. At the macroscopic level it is sufficient to track the population

shares of the bold and cautious agents since the fraction of the neutral agents is defined

as the residual 1 − bt − ct. Using the probabilities (15), the two differential equations

for the evolution of the population shares b and c become22

ḃ = µ [
exp(βfb)

exp(βfb) + exp(βfc) + exp(βf0)
− b ]

ċ = µ [
exp(βfc)

exp(βfb) + exp(βfc) + exp(βf0)
− c ].

(17)

3.2.1 Stability Analysis

Figure 17, Fig. 18 and Fig. 19 depict the phase plane representations for µ = 1.0,

β = 1.0 and increasing herding parameter φ.23 At first view the evolution of the isoclines

Fb = 0 and Fc = 0 is symmetric and they are mirrored at the symmetry line.

For a herding component φ < 2.75 two single nonlinear isoclines are visible. For

φ = 2.75 two additional ellipsoidal isoclines arise symmetrically and augment their

radii while the herding component φ increases. Their peaks stretch in the direction of

the upper left, respectively lower right, corner of the phase plane. At some point these

isoclines exceed the boundaries of the unit simplex, cf. Fig. 19.

Due to the symmetric structure of the underlying dynamic system the points of inter-

22See Appendix B.2.1 for the deterministic adjustment equations leading to this system of ODEs.
23See Appendix A.2.1 for phase plane diagrams showing the isoclines for µ = 1.0, β = 1.0 and φ =
0, 1.5.
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Figure 17: Phase plane representation of Fb = 0 (black) and Fc = 0 (white) for µ = 1.0,
β = 1.0 and φ = 2.75. Additional ellipsoidal isoclines occur close to the
center of the unit simplex. Four stable equilibria (red dots) and three unstable
equilibria (white dots) are visible.

section are either arranged on the symmetry line or emerge pairwise in the phase plane

and one equilibrium point can be reflected with respect to the symmetry line to obtain

the second equilibrium point.

For the given values of µ and β it is possible to obtain the same qualitative be-

havior of the equilibrium points compared to the transition probability approach with

unweighted feedback.

3.2.2 Bifurcation Analysis

Considering a broader range of the herding parameter φ ∈ [2.5, 5.0] the bifurcation

diagram related to the discrete-choice setup, see Fig. 20, has the exact same qualitative

structure as the bifurcation diagram utilizing transition probabilities with an unweighted

feedback and φ ∈ [1.3, 2.3], cf. Fig. 6a. Both adjusted bifurcation diagrams display the

augmented coordinate introduced in Subsec. 2.3.3 with ε = 0.2.

Three parabolas are visible. Originally they have been symmetric in the non-adjusted

bifurcation diagram. For φ = 2.74 three saddle-node bifurcations occur at (bsn1 , c
sn
1 ) =
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Figure 18: Phase plane representation of Fb = 0 (black) and Fc = 0 (white) for µ = 1.0,
β = 1.0 and φ = 2.9. Four stable equilibria (red dots) and three unstable
equilibria (white dots) are visible.
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Figure 19: Phase plane representation of Fb = 0 (black) and Fc = 0 (white) for µ = 1.0,
β = 1.0 and φ = 3.5. Three stable equilibria (red dots) and four unstable
equilibria (white dots) are visible. Axis of ordinates is extended to show the
accurate shape of the nonlinear isocline Fb = 0.
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Figure 20: Bifurcation diagram with augmented coordinate b+ εc and ε = 0.2, µ = 1.0,
β = 1.0 and φ ∈ [2.5, 5.0].

(0.5702, 0.2145), (bsn2 , c
sn
2 ) = (0.2145, 0.5702) and (bsn3 , c

sn
3 ) = (0.2145, 0.2145) where

(bsn, csn) are the (b, c)-coordinates of the supercritical saddle-node bifurcations. These

are non-adjusted (b, c)-coordinates which coincide with the symmetric structure of the

equilibria distribution in the phase plane representation. An additional hyperbolic fixed

point occurs for φ = 3 and three equilibria collide into the symmetric equilibrium which

undergoes a bifurcation and becomes unstable.

A non-monotonic sequence of steady-states is created, e.g. from 1− 4− 7− 4− 7

equilibria. The step function exhibits two jumps for φ = 3 from 7 to 4 to 7.

This framework deals with saddle-node bifurcations, i.e. local bifurcations. In this

discrete choice approach saddle-node bifurcations show that multiple, co-existing stable

and unstable equilibrium points can be observed for moderate values of the herding

component φ. Therefore a steady state representing a majority of neutral agents is a

possible outcome of this dynamical system.
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DISCRETE CHOICE APPROACH

3.3 Comparison of Transition Probability Approach and Discrete

Choice Approach

Both approaches include an extension of the traditional sentiment dynamics models,

namely the neutral sentiment is considered. The main difference in the setup between the

discrete choice approach discussed in this chapter and the alternative approach presented

in Chap. 2 is the allocation and definition of the underlying probabilities. Additionally

there are alterations in the feedback indices.

The transitions probability approach assigns individual probabilities depending on a

feedback index which includes a sentiment variable. Based on these specifications not

every agent changes its attitude within time period [t, t+∆t]. In fact only a limited num-

ber of agents from each attitude, which arises from random draws with corresponding

probabilities, switch their attitude.

In contrast, with logit choice probabilities in the discrete choice approach all agents

are assigned the same probabilities in each period independent of their previously adopted

attitude. Here the logit choice probabilities are based on feedback indices as well. But

in each case they are the product of the shares of the three attitudes and the herding

component φ. Due to these disparities in the setup of these two approaches the isoclines

evolving in the phase plane have different shapes and almost no similarities in the evolu-

tion process in the phase plane can be detected. This is true for the pure and augmented

feedback version.

First we focus on the comparison of the transition probability approach using pure

feedback indices and the discrete choice approach. Even if the shapes of the nonlin-

ear isoclines differ in both approaches they evolve fixed along the symmetry line in the

phase plane. Additionally it can be detected that the equilibrium points are distributed

uniformly around the symmetric equilibrium point (bs, cs) = (0.333, 0.333) for all val-

ues of the herding parameter φ, cf. exemplary Fig. 4b and Fig. 18. The inspection of the

corresponding parabolas to these equilibrium points reveals that they are located sym-

metrically around the straight line (φ, bs + εcs) in the bifurcation diagram, see Fig. 20.
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This straight line represents the symmetric equilibrium point for all values of herding φ.

This result corresponds to the bifurcation diagram obtained in the unweighted feedback

scenario, cf. Fig. 6a. The very same qualitative behavior and therefore the very same

bifurcation types can be seen.24 This is in line with Franke (2014). The only difference

concerns the scaling of the herding intensity φ. In the previous version an additional

hyperbolic fixed point occurs for φ = 1.5 and three equilibria collide into the symmetric

equilibrium which undergoes a bifurcation and becomes unstable. The exact same fea-

tures occur for the approach presented in this chapter, only for φ = 3. The manifolds in

the latter bifurcation diagram are shifted to the right. For the discrete choice approach a

higher intensity of herding generates equivalent qualitative behavior. Thus there are no

alterations in the amount of equilibria except for the considerd interval of the herding

parameter φ.

The investigation of the differences of the transition probability approach using aug-

mented feedback indices and the discrete choice approach can be adopted from the re-

sults in Subsec. 2.5. Due to the equivalency in qualitative behavior of the transition

probability approach using pure feedback indices and the discrete choice approach all

statements regarding the comparison with the weighted feedback scenario are valid for

this comparison as well.

3.4 Conclusions

We formalized a discrete choice framework using a model of sentiment dynamics with

three attitudes, i.e. bold, cautious and neutral.

The first goal of this chapter was to integrate neutral agents into an existing sen-

timent dynamics model. Therefore the logit choice probabilities for all agents from

Franke (2014) have been augmented by the probability to become neutral. These rates

incorporate feedback indices which are individual for all three attitudes. The main influ-

ence within the feedback comes from the sentiment components which are a weighted

24In the classical coordination game under Logit Dynamics analyzed by Hommes and Ochea (2012) the
same qualitative behavior can be observed for their payoff parameter ε = 0.

54



3.4 CONCLUSIONS

with a herding parameter. The particular sentiment is equal to the share of the respec-

tive group, e.g. b = nb

N
. A nonlinear two-dimensional system of ordinary differential

equations was obtained.

The second goal was to investigate the generic possibility of complicated dynamics,

i.e. multiple equilibrium points. The bifurcation analysis exhibited saddle-node bifur-

cations. The occurrence of this bifurcation type showed that the analyzed dynamical

system can generate multiple, co-existing stable and unstable equilibrium points.

The analysis of the evolution of neutral agents revealed that a neutral majority may

prevail depending on the herding. Based on these findings further macroeconomic ex-

tensions of this extended discrete choice approach for three-state dynamics are feasible.
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4 A Stochastic Model of Investor Sentiment

We present a bi-variate model of investor sentiment with attitudes bold, cautious and

neutral. A bold opinion index and a neutrality index are introduced. Individual transition

rates specify changes between all three groups of agents. Bi-weekly survey data on

American investor sentiment is used to estimate the model parameters via maximum

likelihood estimation.

4.1 Introduction

Various stochastic frameworks of a collective process of opinion formation have been

studied. Models mostly focus on binary decision problems of groups of agents. Among

those and simpler alternative models, there is a bulk of empirical literature on the pa-

rameter estimation of dynamic opinion processes since survey data on sentiment indices

are available from many academic and private institutes.

Hengelbrock et al. (2013) measure the predictive power of German and American

investor sentiment indicators and test whether the market responds immediately to the

release of new sentiment data. For the German market, they use the Sentix value index

and find that for some periods German investor sentiment correctly anticipates equity

market moves over the next few months. For the American market, they use American

Association of Individual Investors (AAII) value index and find that American investor

sentiment once used to be a contrarian indicator for equity market moves over coming

months, but its predictive power has disappeared. Strong evidence that individual in-

vestor sentiment is related to increased volatility in special investment funds is provided

by Brown (1999). See Verma and Verma (2008) and Verma and Soydemir (2010) for

additional studies on AAII data.

Schmeling (2009) applies consumer confidence data from the Directorate Generale

for Economic and Financial Affairs provided by the European Commission and Brown

and Cliff (2004) uses AAII data to investigate the influence of investor sentiment on

stock returns. In Lux (2009a), data from animusX on short-term and medium-term

56



4.1 INTRODUCTION

sentiment for German investors are considered. Evidence for strong social interaction

in short-term sentiment and moderate social influences in medium-run sentiment was

found.

Sentiment data usually contain information on the share of neutral agents. How-

ever, in the literature these data are often neglected or divided and allocated equally to

optimistic and pessimistic sentiment. Sentiment variables in the dynamic adjustment

processes are often defined in such a way that neutrality is a possible state, i.e. senti-

ment variable x with domain x ∈ [−1, 1] and x = 0 represents a state with an average

neutral majority.25 However, the transition rates do not explicitly reflect the additional

behavioral specifics of neutral agents. In fact neutrality is understood as an intermediate

state.

We close this gap by incorporating neutrality in a separate sentiment index. There-

fore three types of attitudes are considered, i.e. bold, cautious and neutral. Transition

rates for a dynamical process are formulated for all configurations of possible changes.

These transition probabilities include a bold opinion index and a neutrality index accord-

ingly. The probability fluxes for every configuration of sentiment change are summa-

rized. The resulting model of investor sentiment is estimated via maximum likelihood

estimation and AAII sentiment data to check if the incorporated neutrality index is able

add explanatory power. The sensitivity analysis tests the robustness of this benchmark

model by gradually restricting the influencing model parameters and compare the per-

formance of the models. The most significant models are used for an out-of-sample

forecast in order to evaluate the models’ overall significance.

25In Boudin and Salvarani (2009) methods from statistical mechanics are utilized for an opinion formation
model. See Toscani (2006), Düring et al. (2009) and Lux (2012) for further models of opinion formation.
Düring et al. (2018) study a rating model for a large number of players motivated by the well-known
Elo rating system. Their ’sentiment’ variable is defined by the difference in strength of the two players.
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4.2 INVESTOR SENTIMENT DATA

4.2 Investor Sentiment Data

Since 1987 the American Association of Individual Investors (AAII) Investor Sentiment

Survey collects weekly data from members regarding their vote on the direction of the

U.S. stock market over the next six months. The survey measures the percentage of indi-

vidual investors who obtain a bullish, bearish and neutral attitude on the stock market. A

vote for an upward, respectively downward movement of the stock market is considered

bullish, respectively bearish. A neutral attitude is assumed if the member expects that

stock prices will not change over the next six months. AAII states the survey is able to

work as a prompt to determine whether a buying, selling or rebalancing opportunity ex-

ists. Since 2013 around 300 members take the survey online on an average week. AAII

having 160.000 members, the response rate is less than 0.2 %. Additionally, data on the

weekly high, low and close values of the S&P 500 are provided.

4.2.1 Time Series Analysis

Figure 21 shows the bi-weekly time series of the S&P 500 index and the quarterly mov-

ing average from 1999 until 2018. This period comprises the development and burst of

the Dot-com Bubble from 1999 until end of 2002 as well as the Global Financial Crisis

starting in 2007 and its aftermath. The bi-weekly time series of the S&P 500 return rates

and the quarterly moving average are depicted in Fig. 22.

Figure 23, Fig. 24 and Fig. 25 show bi-weekly time series of the AAII Investor Senti-

ment Survey data from 1999 until 2018. The panels depict bullish, bearish and neutral

sentiment shares and their corresponding mean values and quarterly moving average

curves. It is worthwhile to consider these two types of time series, i.e. stock indices and

sentiment shares, and correlate these data.

The attitude of individual investors swings from bullish to bearish. These swings

reflect attitudes toward the direction of the stock market, the state of the economy and

other macroeconomic factors impacting individual investors short-term outlook for stock

prices, e.g. the period from November 2007 through February 2009, when bearish sen-
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Figure 21: Bi-weekly time series of S&P 500 points (blue line). Quarterly moving aver-
age curve highlights trend (red line).
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Figure 22: Bi-weekly time series of S&P 500 return rates (blue line). Quarterly moving
average curve highlights trend (red line).
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Figure 23: Bi-weekly time series of AAII Bullish Sentiment Survey data. Quarterly
moving average curve highlights trend (red line). Mean value is equal to
0.39 (black line).

timent dominated and reached the record high share of 0.7 on March 5, 2009. Neutral

sentiment reached its record low share of 0.08 on October 9, 2008. The record high for

bullish sentiment is 0.75, set on January 6, 2000. Bearish and neutral sentiment have

a historical average share of 0.31 over the life of the survey. Bullish sentiment has a

historical average share of 0.39.

It can be observed that historically high levels of neutral sentiment have been followed

by an above-average market performance of the S&P 500 over the preceding 26- and

52-week periods, i.e. a median 26-week rise in the S&P 500 of 8.6 % with a median

return of 5.2 % for the same period, respectively a median 52-week rise of 17.7 % with

a median return of 10.7 % for the same period.

High levels of neutral sentiment indicate that investors remain stock holders even if

they are not as active on the market as investors with bullish sentiment. Therefore the

share of the neutral sentiment is trendsetting for the direction of the index. This is not

true for the Dot-com Boom as well as for the Global Financial Crisis. In this case the

neutral sentiment serves as an indicator for a reverse trend of the market performance.
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Figure 24: Bi-weekly time series of AAII Bearish Sentiment Survey data. Quarterly
moving average curve highlights trend (red line). Mean value is equal to
0.31 (black line).
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Figure 25: Bi-weekly time series of AAII Neutral Sentiment Survey data. Quarterly
moving average highlights trend (red line). Mean value is equal to 0.31 (black
line).
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4.2 INVESTOR SENTIMENT DATA

During the period of the Dot-com Boom the share of neutral sentiment decreases

significantly while the share of bullish sentiment increases drastically. An increase of the

share of bearish sentiment can be observed only after the burst of the Dot-com Bubble

which is quite intuitive. The shares of bullish and neutral sentiment drop during the

Global Financial Crisis while the share of bearish sentiment rises drastically due to

increasing insecurity. Investors are highly risk-averse and do not want to hold stocks,

they are active on the market.

In Fig. 26 the annualized and averaged standard deviations for all three types of

sentiment are depicted. Additionally Tab. 3 provides summary statistics. It can be seen

that the share of neutral sentiment exhibits less pronounced peaks and less fluctuations

compared to the shares of bullish and bearish sentiment, i.e. total standard deviation of

neutral sentiment of 0.08 to approximately 0.1 for bullish and bearish sentiment.

Investors with a neutral position have the expectation of no movements on the mar-

ket. They still own stocks, but the neutral attitude is more considered an investment

strategy.

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
0.02

0.04

0.06

0.08

0.1

0.12

Standard Deviation
yearly SD bullish
yearly SD bearish
yearly SD neutral

total SD bullish
total SD bearish
total SD neutral

Figure 26: Yearly standard deviation of bullish, bearish and neutral sentiment (black,
blue and red solid lines). Total standard deviation of bullish, bearish and
neutral sentiment (black, blue and red dashed lines).
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4.2 INVESTOR SENTIMENT DATA

Bullish sentiment Bearish sentiment Neutral sentiment

Maximum 0.75 0.7027 0.5286

Minimum 0.1648 0.0667 0.0769

Mean 0.3961 0.3144 0.2894

Standard deviation 0.1005 0.097 0.0792

Variance 0.0101 0.0094 0.0063

Table 3: Summary statistics for sentiment data from 1999 to 2018.

4.2.2 Correlation Analysis

Figure 27 displays the correlation matrix with regard to all observed key figures. The

histograms of the variables appear along the matrix diagonal while the scatter plots of

variable pairs appear on the off-diagonal. The slope of the least-squares fit in each scatter

plot is equal to the displayed correlation coefficient.

The correlation coefficients and corresponding p-values are displayed in Tab. 4.

Bullish and bearish sentiment have a strong negative linear relationship, see correlation

coefficient equal to −0.68. A moderate negative correlation of −0.44 can be seen for

neutral and bullish sentiment whereas a weak to moderate negative relationship with

coefficient −0.36 can be seen for neutral and bearish sentiment. The S&P 500 index

and bullish sentiment, as well as the index, respectively the S&P 500 return rates and

bearish sentiment exhibit only weak negative linear correlations, i.e. −0.21, −0.16,

respectively−0.25. No correlation is detected for the relationship of the S&P 500 return

rates with the S&P 500 index as well as neutral sentiment, cf. coefficients 0.05, 0.02.

S&P 500 return rates and bullish sentiment have only a weak positive linear relationship,

see correlation coefficient equal to 0.22. A moderate positive correlation of 0.46 can

be seen for neutral sentiment and the S&P 500 index. This is in line with statements
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4.2 INVESTOR SENTIMENT DATA

concerning neutral sentiment in Subsec. 4.2.1.

Figure 27: Correlation matrix with histograms of the variables on the diagonal. Off-
diagonal elements are scatter plots including reference lines (black) with
slopes equal to the displayed correlation coefficients.

It can be determined that the S&P 500 return rates have no significant relationship

with any other observed key figure. However weak to moderate correlations between

neutral sentiment and bullish, respectively bearish sentiment, as well as S&P 500 index

are apparent. This is one additional reason to investigate neutral sentiment more in detail

and incorporate this attitude into a model of investor sentiment.
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4.3 SENTIMENT DYNAMICS

Index Returns Bullish Bearish

Returns 0.05 (0.10) - ∗ ∗

Bullish −0.21 (0.00) 0.22 (0.00) - ∗

Bearish −0.16 (0.00) −0.25 (0.00) −0.68 (0.00) -

Neutral 0.46 (0.00) 0.02 (0.57) −0.44 (0.00) −0.36 (0.00)

Table 4: Correlation coefficients of pairs of all variables and their corresponding p-
values.

4.3 Sentiment Dynamics

The following group dynamics are based on the stochastic framework in Weidlich and

Haag (1983) and Lux (1995). The original setup includes two types of opinions agents

can adopt, e.g. optimistic/bullish and pessimistic/bearish investors or buyers and sellers.

In this chapter this configuration is extended by neutral agents.26 Considering financial

markets a neutral sentiment is assumed if investors hold stocks.

In this model single agents can be characterized as having one of three attitudes:

bold (b), cautious (c) or neutral (0). Let nb, nc and n0 be the number of bold, cautious

and neutral agents. For the overall number N of agents this identity holds:

nb + nc + n0 = N.

We define the following opinion indices based on the number of bold and neutral agents

x :=
nb
N
, x ∈ [0, 1],

y :=
n0

N
, y ∈ [0, 1].

(18)

26Lux (1995) explicitly does not allow for neutral agents.
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4.3 SENTIMENT DYNAMICS

Let x be the bold opinion index and y is a neutrality index.27 The ratio of cautious agents

is expressed in terms of the residual

1− x− y :=
nc
N
.

Agents transition between sentiments over time. These changes occur according to in-

dividual transition rates per unit time pij(n,m) with i, j ∈ {b, c, 0}.
The individual probabilities assume an exponential form and specify changes from

sentiment j to sentiment i:

pbc(nb, n0) = ν0 exp(U11) , U11 = +α0 + α1 nb + α2 n0,

pcb(nb, n0) = ν0 exp(U12) , U12 = −α0 − α1 nb + α2 n0,

pb0(nb, n0) = ν1 exp(U21) , U21 = + β0 + β1 nb − β2 n0,

p0b(nb, n0) = ν1 exp(−U21) ,

pc0(nb, n0) = ν1 exp(U22) , U22 = + β0 − β1 nb − β2 n0,

p0c(nb, n0) = ν1 exp(−U22) .

In comparison to the model assumptions in Chap. 2 direct switches from one extreme

sentiment to the other, i.e. bold, respectively cautious, are incorporated. This allows

for additional dynamics and might capture extraordinary events and periods. Note that

the focus of this formalization is primary on an advanced characterization of individual

behavior. Therefore the parameters for the dynamic part of the stochastic model are

chosen carefully.

The parameters are established in a two-tier structure. The first group of parameters

relates to the transitions between extreme sentiments bold and cautious only while the

second group relates to transitions to and from neutral sentiment.

27In Lux (2012) the index is formalized in such a way that neutrality is not excluded. It is not captured in
a separate opinion index but rather embedded in the opinion index as balanced state (x = 0) between an
optimistic (x = 1) and pessimistic majority (x = −1).
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ν0 and ν1 are parameters related to the individual speed of adjustment of pairs of

agents from different sentiments. They measure the frequency of opinion reevaluation

for bold, neutral and cautious sentiment. The ’long distance’ speed of adjustment pa-

rameter is denoted by ν0. It determines the frequency of changes from bold to cautious

sentiment and vice versa. ν1 is considered a parameter capturing the ’short distance’

speed of adjustment. It determines the frequency of transitions from bold to neutral sen-

timent, from neutral to cautious sentiment and vice versa. This parameter considers the

neutral attitude as intermediate state.

The functions or forcing terms Ukl, k, l ∈ {1, 2}, include all determinants which

have an influence on the decision of agents to transition between sentiments.

The parameters α0 and β0 formalize the bias agents have towards one opinion, i.e.

bold b or cautious c. α0 represents a bias for the transition between the extreme sen-

timents bold and cautious only. It is assumed that this bias is reversed regarding the

direction of the transition between these two sentiments. The remaining transition rates

relate to switches which include the neutral sentiment and have incorporated a bias β0.

Therefore a separate bias for neutrality is not necessary. This bias is supposed to be

identical towards bold and cautious sentiment, cf. pb0 and pc0, and reversed regarding

the direction of the transition between two sentiments, cf. pb0 and p0b.

The coefficients α1 and β1 measure the influence of the fraction of bold agents nb

while the coefficients α2 and β2 measure the influence of the fraction of neutral agents

n0. It is assumed that α1 is opposed and α2 is identical regarding the direction of the

transition between the two affected sentiments bold and cautious. The latter shows that

neutral sentiment has the same weighting in transition rates that do not include this very

sentiment. The parameter β1 is supposed to be reversed regarding the direction of the

transition between two sentiments, e.g. pb0 and p0b, as well as regarding transitions to

and from neutral sentiment, e.g. pb0 and pc0. β2 is assumed to be identical regarding

transitions from and to neutral sentiment, e.g. p0b and p0c, while it is supposed to be

reversed regarding the direction of the transition between two sentiments, e.g. pc0 and

p0c.
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The aggregated and scaled transition rates per unit time Nwij(x, y) = nj pij(nb, n0)

are given by:

wbc(x, y) = ν0 (1− x− y) exp(+α0 + α1 x+ α2 y) ,

wcb(x, y) = ν0 x exp(−α0 − α1 x+ α2 y) ,

wb0(x, y) = ν1 y exp(+ β0 + β1 x− β2 y) ,

w0b(x, y) = ν1 x exp(− β0 − β1 x+ β2 y) ,

wc0(x, y) = ν1 y exp(+ β0 − β1 x− β2 y) ,

w0c(x, y) = ν1 (1− x− y) exp(− β0 + β1 x+ β2 y) .

(19)

In this continuous-time framework the probability distribution over the

sentiment-configuration of all agents N is of interest. Therefore the probability that at

time t the configuration (x, y) prevails, i.e. p (x, y; t), needs to be obtained. The equation

of motion for p (x, y; t) is given by the following Master equation28:

∂p (x, y; t)

∂t
= p (x, y − 1

N
)w0c (xN, yN − 1)− p (x, y)w0c (xN, yN)

+ p (x, y + 1
N

)wc0 (xN, yN + 1)− p (x, y)wc0 (xN, yN)

+ p (x+ 1
N
, y − 1

N
)w0b (xN + 1, yN − 1)− p (x, y)w0b (xN, yN)

+ p (x− 1
N
, y + 1

N
)wb0 (xN − 1, yN + 1)− p (x, y)wb0 (xN, yN)

+ p (x− 1
N
, y)wbc (xN − 1, yN)− p (x, y)wbc (xN, yN)

+ p (x+ 1
N
, y)wcb (xN + 1, yN)− p (x, y)wcb (xN, yN)

28See Weidlich and Braun (1992) for a nonlinear model describing macroeconomic dynamics. They use
a probabilistic approach which leads to a Master equation.
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= p (x, y − 1
N

)w0c (xN, yN − 1)

+ p (x, y + 1
N

)wc0 (xN, yN + 1)

+ p (x+ 1
N
, y − 1

N
)w0b (xN + 1, yN − 1)

+ p (x− 1
N
, y + 1

N
)wb0 (xN − 1, yN + 1)

+ p (x− 1
N
, y)wbc (xN − 1, yN)

+ p (x+ 1
N
, y)wcb (xN + 1, yN)

− p (x, y) ·
[
wbc (xN, yN) + wcb (xN, yN) + w0c (xN, yN)

+wc0 (xN, yN) + w0b (xN, yN) + wb0 (xN, yN)
]
.

(20)

The positive expressions in (20) describe the probability flux into the configuration (x, y)

from configurations in the neighborhood, e.g. a neutral agent changes the attitude to

cautious, i.e. (x, y + 1
N

) . The negative expressions describe the probability flux from

the configuration (x, y) into configurations in the neighborhood.

We use a Taylor series expansion29 and insert transition rates (19) in order to formu-

late a two-dimensional Fokker-Planck equation30 for the density p(x, y; t),

∂p

∂t
(x, y; t) = −

2∑
i=1

∂

∂i
(Ai(x, y)p(x, y; t)) +

1

2

2∑
i,j=1

∂2

∂i∂j
(Bij(x, y)p(x, y; t)) , (21)

with a two-dimensional drift vector A(x, y) and an associated 2 × 2 diffusion matrix

B(x, y). They are given by

A (x, y) =

A1 (x, y)

A2 (x, y)

 =

−wbc (x, y) + wcb (x, y)− wb0 (x, y) + w0b (x, y)

−w0c (x, y) + wc0 (x, y)− w0b (x, y) + wb0 (x, y)

 ,

29See Appendix B.3.1 for the derivation.
30See Curado and Nobre (2003) for the derivation of a nonlinear Fokker-Planck equation as an approxi-

mation to the Master equation. See Risken (1989) for general information on Fokker-Planck equations.
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and

B (x, y) =
1

N

B11 (x, y) B12 (x, y)

B21 (x, y) B22 (x, y)

 ,

B11 (x, y) = wbc (x, y) + wcb (x, y) + wb0 (x, y) + w0b (x, y)

B22 (x, y) = w0c (x, y) + wc0 (x, y) + wb0 (x, y) + w0b (x, y)

B12 (x, y) = B21 (x, y) = −2(w0c (x, y) + wc0 (x, y) + w0b (x, y) + wb0 (x, y)) .

The obtained Fokker-Planck equation describes the time evolution of the probability

density function p (x, y; t) of the underlying stochastic system.

4.4 Empirical Application

The model parameters of the Fokker-Planck equation are estimated via maximum like-

lihood estimation. The empirical results based on American investor sentiment data are

presented.

4.4.1 Estimation Methodology

The large parameter set θ of our stochastic system, i.e. θ = (ν0, ν1, α0, α1, α2, β0, β1, β2),

needs to be estimated, this will be done via maximum likelihood estimation. Thus, the

solution of the Fokker-Planck equation (21) is required. Fokker-Planck equations pro-

vide the exact law of motion for the transient density of a diffusion process with drift

and diffusion terms but for agent-based models, only an approximate law of motion for

the transient density p(x, y; t) is provided.31 Closed-form solutions of Fokker-Planck

equations exist for basic systems only.32 The presented bi-variate nonlinear stochastic

model is too advanced to analytically derive its transient density. Therefore, the param-

31See Lux (2009b) for details on the methodology for estimating the parameters of a dynamic opinion
process.

32Polyanin and Zaitsev (2004) provide exact solutions to more than 1600 nonlinear equations and nonlin-
ear partial differential equations.
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eter estimation is dependent on the numerical solution of the Fokker-Planck equation.

The following log likelihood function L is used for maximization:

log L(θ) = log p(x, y; 0|θ) +
T−1∑
t=0

log p(x, y; t|θ) . (22)

Due to the properties of Fokker-Planck equations, i.e. they are a precise description for

diffusion processes, only an estimation of the diffusion approximation of our underlying

investor sentiment model is possible. Therefore the corresponding maximum likelihood

estimation is essentially not exact.33

For partial differential equations, like the Fokker-Planck equation, several numerical

integration schemes are available.

Following Lux (2012) the Peaceman-Rachford algorithm is selected.34 This algo-

rithm belongs to the class of alternative direction (ADI) schemes.

4.4.2 Sensitivity Analysis

The survey data considered starts in January 1999 and ends in December 2018. Based

on the response rate provided by AAII the number of agents N = 300 is fixed. The data

format matches the definitions of the bold opinion index and the neutrality index, i.e.

the shares of bullish respectively neutral investors correspond to x respectively y.

See Model I in Tab. 5 for the parameter estimates θ = (ν0, ν1, α0, α1, α2, β0, β1, β2),

the standard errors in brackets and the corresponding goodness-of-fit measures, i.e. log-

likelihood values (Log L), Akaike information criterion (AIC) values and Bayesian in-

formation criterion (BIC) values, for the original unrestricted bi-variate stochastic mod-

33Numerical approximations of the Fokker-Planck equation for maximum likelihood estimation of bi-
variate and even tri-variate models can be found in Lux (2013).

34See Lux (2013) and Peaceman and Rachford (1955) for discretization schemes. The latter present
their alternating-direction implicit method in detail for the numerical solution of parabolic differential
equations. For further information on alternative finite difference schemes and ADI schemes for partial
differential equations in higher dimensions see Strikwerda (2004), Thomas (1995) and Morton and
Mayers (2005). A finite difference scheme for the numerical solution of a two dimensional Fokker-
Planck equation and one application is analyzed in detail in Zorzano et al. (1999).
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els of investor sentiment.

For the speed of adjustment parameters we obtain ν0 < ν1. Interactions involving

neutral agents have a higher intensity. It is plausible that the speed of adjustment for

interactions between bold and cautious agents is smaller since these are extreme attitudes

and under regular market conditions their interaction frequency is reduced. Primarily

bold and cautious agents interact with neutral agents, this is reflected by parameter ν1

with a higher value.

A neutral bias α0 for cautious/bold sentiment and a negative bias β0 can be observed.

β0 < 0 indicates a bias towards neutrality. For switches between extreme attitudes

we find positive values for α1 and α2, while α1 > α2. The influence from the bold

sentiment itself, i.e. α1, is relatively high. There is a smaller reinforcement from neutral

sentiment α2. For changes from neutral to bold and from cautious to neutral we find a

negative reinforcement from bold sentiment β1 while β2 > 0 > β1. Changes from bold

and cautious to neutral therefore include a strong positive reinforcement from neutral

sentiment β2. All parameters except for α0 = 0 are significant.

In Fig. 28 the probability distribution of the unrestricted estimated stochastic opinion

dynamics is provided. Since an analytical solution is not available for our nonlinear bi-

variate Fokker-Planck equation (21), we have integrated the transitional density until it

converged to a stationary distribution. We find a unimodal distribution with probability

mass concentrated closely around the calculated mean for both axes, i.e. the share of

bold agents and the share of neutral agents, cf. Tab. 3.35

Additionally a sensitivity analysis is performed. Several restricted versions of the

original general bi-variate stochastic model have been estimated, i.e. Model II to Model

X with parameter estimates and goodness-of-fit measures in Tab. 5, Tab. 6 and Tab.

7. For Model II α2 = 0 is assumed, indicating that neutral sentiment has no influence

on transitions between bold and cautious sentiment. For the sake of completeness we

assume β2 = 0 for the second specific model, i.e. no influence from neutral agents on

35See Appendix A.3.1 for two-dimensional probability distributions for the share of neutral agents n0 and
the share of bold agents nb for the period from 1999 to 2018.
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Model I Model II Model III Model IV

Parameter estimates

ν0 2.8243 (0.0002) 3.0 (0.0643) 2.8432 (0.0002) 2.5899 (0.0002)

ν1 4.0 (0.0) 3.9416 (0.0101) 4.0911 (0.0043) 3.9072 (0.0009)

α0 0.0 (0.0024) 0.0691 (0.0266) −0.0956 (0.0959) −0.4279 (0.001)

α1 0.6741 (0.002) 0.6646 (0.0226) 0.6296 (0.0005) 0.3125 (0.0)

α2 0.1624 (0.0) - 0.17 (0.0002) -

β0 −0.5112 (0.0437) −0.5313 (0.0818) −0.3805 (0.3384) −0.6192 (0.5968)

β1 −0.228 (0.0628) −0.2292 (0.0661) −0.7487 (0.3152) −0.329 (0.0804)

β2 1.2367 (0.0109) 1.234 (0.0119) - -

Goodness-of-fit measures

Log L −424.0169 −444.7883 −1334.1644 −1350.0777

AIC 862.0338 903.5766 2682.3288 2712.1554

BIC 882.1065 923.6493 2702.5015 2729.3606

Table 5: Parameter estimates θ = (ν0, ν1, α0, α1, α2, β0, β1, β2), corresponding standard
errors in brackets and goodness-of-fit measures for the unrestricted bi-variate
stochastic model of investor sentiment (Model I) and three restricted models
regarding the neutrality index (Model II - Model IV).
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Figure 28: Three-dimensional probability distribution for the period from 1999 to 2018.
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changes involving the neutral attitude. Model IV combines α2 = 0 and β2 = 0, so there

is no reinforcement from neutral sentiment on any transition rate at all. This leads to a

uni-variate stochastic model.

For Model II to Model IV we obtain ν0 < ν1 for the speed of adjustment parameters.

The direction of the bias towards bold sentiment α0 is ambiguous for these restricted

versions. For β2 = 0 in Model III and Model IV a bias towards the cautious sentiment

can be observed, i.e. α0 < 0, but this parameter shows statistical significance only for

Model IV. β0 < 0 indicates a rather high bias towards neutrality. For transitions between

extreme attitudes we find positive values for α1 in all models and α2 > 0 in Model III,

while α1 > α2. There is only a smaller reinforcement from neutral sentiment α2 on these

two transition rates. Considering changes for neutral agents we find a moderate negative

reinforcement from bold sentiment for all restricted models. We find β2 > 0 > β1

for Model II and β2 has a relative high value. All of the parameters of Model II are

statistically significant while for Model III α0 and β0 are insignificant. For Model IV

significance is seen for all parameters except for β0.

The log-likelihood values of Model I and Model II have almost the same magnitude,

i.e. from −424 for Model I and −445 for Model II. The values for AIC information

criterion and the BIC information criterion show a similar range. For Model III and

Model IV log-likelihood values around −1334 and −1350 are detected.

The likelihood ratio tests speak in favor of Model I for all three restricted models.

The p-values for Model II, Model III and Model IV are equal to zero. A nominal sig-

nificance level of 0.05 is chosen for the hypothesis tests. The test rejection decisions

indicate rejection of the restricted models in favor of the unrestricted model.

From these results we conclude that the transition rates describing changes between

the extreme attitudes heavily depend on the bold opinion index and less on the neutrality

index, see Model II. Transition rates describing changes between one of the extreme

attitudes and the neutral attitude however are strongly dependent on the neutrality index,

see smaller log-likelihood values of Model III and Model IV with β2 = 0.

The restricted Model V to Model VII, with parameter estimates, standard errors in
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brackets and goodness-of-fit measures in Tab. 6, successively drop the influence of the

bold opinion index, i.e. α1 = 0, β1 = 0 and α1 = β1 = 0.

For all models the speed of adjustment frequency ν0 is smaller than ν1. For Model

V, Model VI and Model VII we see similar parameter estimates for β0 and β2 regarding

transition probabilities involving the neutral state. A negative bias α0 can be observed

for bold sentiment, except for Model VII, while β0 < 0 indicates a bias towards neu-

trality for these restricted models. The influence of neutral sentiment on the interaction

between extreme attitudes, i.e. α2, is positive and of smaller size. The influence of bold

sentiment on the interaction between extreme attitudes and the neutral attitude for Model

V, i.e. β1, is negative while the influence of neutral sentiment on the interaction between

extreme attitudes and the neutral attitude β2 is positive and of similar larger size for all

three restricted models.

The goodness-of-fit tests indicate a slight superiority of the model with no influence

of bold sentiment on the interaction between extreme attitudes, i.e. Model V. The cor-

responding values are close to the goodness-of-fit measures of the original model. The

log-likelihood values of Model VI and Model VII are smaller than the value for Model

V, i.e. from −790 for Model VI, −1045 for Model VII and −444 for Model V. Only the

parameter β0 is statistically insignificant for Model V. All parameters are significant in

case of Model VI, respectively Model VII, except for α2, respectively α0.

p-values are equal to 0, which indicate that there is strong evidence suggesting that

the unrestricted model fits the data better than the restricted model. Therefore the likeli-

hood ratio tests speak again in favor of Model I for all three unrestricted models.

The last set of restricted stochastic models of investor sentiment analyzes the rele-

vance of the initial bias parameters α0 and β0, cf. Tab. 7 for the corresponding parameter

estimates, standard errors in brackets and goodness-of-fit measures.

For Model VIII the goodness-of-fit measures show values slightly below (for the log-

likelihood) and slightly above (for the AIC criterion and the BIC criterion) the values

obtained for the original unrestricted bi-variate stochastic models of investor sentiment.

For Model IX and Model X the goodness-of-fit measures differ and are inferior, cf. the
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Model V Model VI Model VII

Parameter estimates

ν0 2.8775 (0.0001) 2.7777 (0.6179) 2.8243 (0.0388)

ν1 3.9993 (0.0002) 3.9073 (0.339) 4.0 (0.0883)

α0 −0.0318 (0.0024) −0.0952 (0.0047) 0.0 (0.1357)

α1 - 0.5783 (0.2059) -

α2 0.1637 (0.0) 0.2357 (0.2596) 1.624 (0.0722)

β0 −0.5259 (0.5222) −0.4797 (0.0707) −0.5112 (0.2013)

β1 −0.2374 (0.0039) - -

β2 1.2426 (0.0558) 1.0013 (0.1013) 1.2367 (0.478)

Goodness-of-fit measures

Log L −443.6639 −789.9619 −1045.0996

AIC 901.3278 1593.9238 2102.1992

BIC 921.4005 1613.9965 2119.4044

Table 6: Parameter estimates, corresponding standard errors in brackets and goodness-
of-fit measures for three restricted uni- and bi-variate stochastic models of in-
vestor sentiment regarding the bold opinion index x.
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Model VIII Model IX Model X

Parameter estimates

ν0 2.8243 (0.083) 3.0554 (0.2396) 3.0049 (0.0072)

ν1 4.0 (0.0001) 3.3981 (0.1084) 3.8205 (0.1578)

α0 - −0.2145 (0.9511) -

α1 0.6741 (0.0194) 0.2954 (0.0159) 1.0968 (0.0054)

α2 0.1624 (0.0068) −0.0192 (0.8689) 0.0007 (0.009)

β0 −0.5112 (0.0177) - -

β1 −0.228 (0.1846) 0.1681 (0.1786) −1.4882 (0.1753)

β2 1.2368 (0.4599) 0.7485 (0.0346) 0.045 (0.0015)

Goodness-of-fit measures

Log L −427.4224 −1385.4631 −1411.5114

AIC 870.8448 2784.9262 2835.0228

BIC 893.7851 2804.9989 2852.228

Table 7: Parameter estimates, corresponding standard errors in brackets and goodness-
of-fit measures for three restricted bi-variate stochastic models of investor sen-
timent regarding the initial bias parameters α0 and β0.
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log-likelihood values of Model IX, i.e. −1385, and Model X, i.e. −1412.

The speed of adjustment frequency ν0 is smaller than ν1 for all three restricted mod-

els and these parameters are statistically significant for all three restricted models. Model

VIII with α0 = 0 shows results for the parameter estimates close to the estimates of the

original unrestricted Model I.

The parameters α1 and β2 are positive for all three versions. The values for α1 indi-

cate that there is strong reinforcement of bold sentiment on the transition rates governing

the changes between extreme attitudes. For Model IX, with β0 = 0, α0, α2 and β1 are

statistically insignificant. Here it is assumed that there is no initial bias towards any

attitude in the transition probabilities involving neutral agents. All parameters of Model

X with α0 = β0 = 0 show statistical significance.

These findings do not speak in favor of restricted model which neglect the initial bias

regarding neutrality, i.e. β0. They further suggest an initial bias regarding the extreme

attitudes, α0, is not essential for this setup of these sentiment dynamics.

The test rejection decisions indicate that the restricted models should be rejected in

favor of the alternative, unrestricted model. While for the restricted Model VIII a test

statistic p-value of p = 0.0091 is obtained the p-values for Model IX and Model X are

equal to zero and therefore suggest that there is strong evidence for the rejections.

We can conclude that the bias regarding changes between the neutral sentiment and

the extreme attitudes, i.e. β0, definitely has a strong impact on the changes in attitude

for bold, cautious and neutral agents. Model VIII, among the restricted models, has the

best fit compared to Model I.

These results strongly indicate that multi-collinearity cannot be excluded. There

seem to be dependencies between parameters while the bias for transition between the

extreme sentiments bold and cautious, i.e. α0, seems negligible. For the transition

probabilities describing the changes between bold an cautious agents the share of neutral

agents might not be as relevant as the share of extreme attitudes since these types of

agents focus on themselves. However the analysis shows that the transition rates for

bold and neutral agents, respectively for cautious and neutral agents, heavily rely on the

79



4.4 EMPIRICAL APPLICATION

bold opinion index and the neutrality index.36

4.4.3 Out-of-sample Forecast

A further analysis of the unrestricted stochastic benchmark model, i.e. Model I, includes

an out-of-sample forecast. Therefore the model has been estimated for the period from

1999 to 2013. The resulting parameters have been used to forecast investor sentiment

for all three sentiment types, i.e. bullish, bearish and neutral, from 2014 until 2018.

The applied forecast method uses estimation parameters obtained in subsection 4.4.2 to

determine the share of agents with bullish, bearish and neutral sentiment for the next

period, i.e. for one week. The forecast starts with the last observed values of bold,

cautious and neutral sentiment from 2013, i.e. (bT , cT , 0T ). Via transition rates (19)

changes between the sentiments are initiated with a forecast horizon of one week to

obtain the forecasts for period T + 1, i.e. (b̂T+1, ĉT+1, 0̂T+1). In each of the following

forecast rounds the underlying AAII data serves as the initial value. Therefore to obtain

the forecast values for T + 2, i.e. (b̂T+2, ĉT+2, 0̂T+2), the last observed values of bold,

cautious and neutral sentiment serve as initial values, i.e. AAII data in T + 1, which is

the first week in 2014 and so on.

Figure 29, Fig. 30 and Fig.31 show the weekly time series of the AAII Investor Sen-

timent Survey data from 2013. The panels depict bullish, bearish and neutral sentiment

shares and their corresponding forecasts for the period from 2014 until 2018.

The graphical analysis yields that the bullish sentiment forecast, the bearish senti-

ment forecast as well as the neutral sentiment forecast are very close to the original data

for all periods.

The magnitude of the share fits the data quite well as well as the direction of the

trend. For the bullish sentiment forecast a slight underestimation for several forecast

periods can be detected while the opposite is true for the neutral sentiment forecast. The

bearish sentiment forecast shows some periods in which the share is overestimated but

36These findings are supported by two additional restricted models, see Tab. 9 in Appendix B.3.2. Model
XI considers α0 = 0 and α1 = 0 while Model XII assumes α0 = α2 = 0.
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Figure 29: Time series of AAII Bullish Sentiment Survey data with forecast from 2014
to 2018 (red line) for parameter estimates from Model I.

also periods in which the share is slightly underestimated.37

In Tab. 8 the corresponding values of the root-mean-square errors (RMSE) are given

for Model I to Model X and a naı̈ve forecast. This forecast method provides a benchmark

against the investigated more sophisticated unrestricted and restricted models. The naı̈ve

forecast uses past data only, e.g. the forecast for bold sentiment with a forecast horizon

of m weeks b̂T+m is given by the last observed value bT , i.e. b̂T+1 = bT with m = 1.

Additionally the standard deviations for the period from 2014 to 2018 of the original

AAII Sentiment Survey data are given.

The magnitude of the RMS errors for all estimated models, restricted and unre-

stricted, and all sentiment types are below the errors of the naı̈ve forecast. The RMS

errors for the restricted Model IX are approximately twice the size of the errors of the

unrestricted Model I. The RMS errors of the remaining restricted models lie in-between

these two limits. It is noticeable that the RMS errors of neutral sentiment are the highest

among all sentiments for all estimated models while bullish sentiment has the largest

37See Appendix A.3.2 for the time series of AAII Sentiment Survey data with forecasts from 2014 to 2018
for parameter estimates from Model II to Model X.
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Figure 30: Time series of AAII Bearish Sentiment Survey data with forecast from 2014
to 2018 (red line) for parameter estimates from Model I.

2014 2015 2016 2017 2018
0

0.2

0.4

0.6

0.8
Neutral Sentiment

Figure 31: Time series of AAII Neutral Sentiment Survey data with forecast from 2014
to 2018 (red line) for parameter estimates from Model I.
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Bullish sentiment Bearish sentiment Neutral sentiment

Naı̈ve forecast 0.2177 0.1249 0.1138

Model I 0.0059 0.0054 0.0061

Model II 0.0054 0.0055 0.0076

Model III 0.0094 0.0094 0.0123

Model IV 0.0102 0.0075 0.0108

Model V 0.0066 0.0055 0.0077

Model VI 0.0072 0.0064 0.0088

Model VII 0.0094 0.0078 0.0131

Model VIII 0.0064 0.0051 0.0081

Model IX 0.0105 0.01 0.0136

Model X 0.0101 0.0086 0.0125

Standard deviation 0.0781 0.0618 0.0636

Table 8: Root-mean-square errors for AAII Sentiment Survey data and forecast data
from 2014 to 2018 for Model I - Model X in comparison to root-mean-square
errors for naı̈ve forecast data in brackets. Additionally the standard deviations
for AAII Sentiment Survey data from 2014 to 2018 are provided.
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error regarding the naı̈ve forecast and the standard deviation. This indicates that bullish

sentiment is prone to larger fluctuations when the underlying data is considered but the

estimated unrestricted and restricted models do not capture this feature. They rather

overestimate the fluctuations of neutral sentiment. This is due to the incorporation of a

neutrality index in the model set up itself and the strong influence of this state variable

on the dynamics of the system.

Overall, the quality of the forecast of Model I is considerable. Furthermore it can

be concluded that Model I which incorporates the neutrality index in the transitions be-

tween extreme attitudes has lower RMS errors for all three types of sentiment compared

to Model IV which drops this index as an influence. Therefore the neutrality index

adds additional explanatory power to this stochastic model, at least if we consider the

sentiment data from AAII.

4.5 Conclusions

There is evidence in the literature on the influence of sentiment on returns or volatility

on financial markets, cf. Schmeling (2009) and Lux (2009a). The sentiments defined

in these models focus on the difference between the two extreme attitudes. The neutral

sentiment is neglected for the most part. As a first step towards a more detailed de-

scription of behavioral models of opinion formation the sentiment variables should be

reconsidered regarding neutrality.

The main objective of this chapter was a realistic modeling of the dynamic com-

ponents, i.e. transition rates, of the stochastic framework. Changes between all three

attitudes were modeled. A parameter estimation was supposed to test the explanatory

power of the novel model including neutrality as a separate sentiment component.

Survey data on three sentiments of American investors were used to estimate the pa-

rameters of a stochastic model of opinion formation. The maximum likelihood frame-

work for parameter estimation in bi-variate agent-based models by Lux (2012) was ad-

justed to the underlying setup.
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The sensitivity analysis showed that three restricted models indicate a similar fit to

the data but the unrestricted model still performs best. All of these specific models

concern the parameters regarding transitions between extreme attitudes. One of these

restricted models neglects the initial bias, one drops the influence of bold sentiment

and one ignores the neutrality index for transitions between extreme attitudes. This

might indicate that a more differentiated and less symmetric approach regarding changes

between bullish and bearish sentiment should be analyzed.

There are two explanations for this result. First, the model itself exhibits a realis-

tic description of the underlying group dynamics, including the separate treatment of

the neutral agents, but the data considered cannot completely reflect the complex so-

cial interaction components. The second reason is that the model is overparameterized

and strong dependencies between several parameters cannot be disentangled within this

setup.

If we consider the forecast results of the unrestricted benchmark model the included

neutrality index is very influential. The forecasting performance of the original model

is remarkable in terms of bullish, bearish and neutral sentiment.

We believe these results are important since they provide an indication of the neces-

sary degree of complexity of behavioral models in different scenarios. Overall, it can be

concluded that the neutrality index adds additional explanatory power to this stochastic

model, at least if we consider the sentiment data from AAII.
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The main objective of this thesis was a detailed modeling of the dynamic components,

i.e. transition rates, in a stochastic framework. In addition to bold sentiment and cautious

sentiment neutral sentiment was incorporated.

The first model obtained the transition probability approach and changes in the

shares of these groups of agents are caused by individual transition probabilities. Changes

between extreme attitudes, i.e. bold and cautious, were excluded. The dynamics are ini-

tiated by feedback indices which are mainly influenced by herding. Two versions of

feedback components were considered. The first approach used a sentiment ratio in-

cluding the neutral attitude. In the second approach agents used a linear combination

of the traditional sentiment variable, i.e. the difference of the two extreme attitudes,

and the sentiment variable including neutrality. A nonlinear two-dimensional system

of ordinary differential equations was obtained. The occurrence of several bifurcation

types and complex bifurcation routes showed that the analyzed dynamical systems can

generate multiple, co-existing stable and unstable equilibrium points. The analysis of

the evolution of neutral agents reveals that for all versions and specifications a neutral

majority may prevail depending on the herding.

Another version of a sentiment dynamics model was formalized via the discrete

choice framework using three attitudes. Here the agents’ decision is independent of the

previously adopted attitude. Logit choice probabilities for all agents have been obtained.

These probabilities incorporate feedback indices which are individual for all three atti-

tudes. The main influence within the feedback comes from a herding parameter. We

obtained a nonlinear two-dimensional system of ordinary differential equations. A neu-

tral majority may persist over time. This outcome is highly depended on the herding

intensity.

Based on these findings, when utilizing the transition probability approach for two

model versions as well as the discrete choice approach, further macroeconomic exten-

sions for three-state sentiment dynamics models are feasible.
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The last chapter dealt with an investor sentiment model which considers a bold opin-

ion index and a neutrality index. It includes the specification of individual transition

rates for the changes between all three groups of agents. The probability fluxes for the

configurations of sentiment change were summarized. Survey data on American investor

sentiment was used to estimate the model parameters via maximum likelihood. The ex-

planatory power of the additional neutrality index was under investigation. Therefore a

sensitivity analysis was performed. Nine additional restricted model versions were es-

timated and their performances and the significance of the parameter estimations were

compared. The original benchmark model is not outperformed by any restricted senti-

ment model in the sensitivity analysis. But not all the estimated model parameters were

statistically significant. These findings might indicate overparameterization within the

model setup and multi-collinearity even if the model exhibits a realistic description of

the underlying group dynamics, including the separate treatment of the neutral agents.

All estimated models were used for an out-of-sample forecast in order to evaluate

the models’ overall significance. The results exhibit that the forecasting performance of

the original model is remarkable in terms of all three sentiments.

The findings in these different versions of stochastic modeling frameworks are im-

portant since they provide an indication of the necessary degree of complexity of behav-

ioral models in different scenarios. It can be concluded that the neutrality index adds

additional explanatory power to a stochastic investor sentiment model.
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Düring, B., Torregrossa, M., and Wolfram, M.-T. (2018). Boltzmann and fokker–planck

equations modelling the elo rating system with learning effects. Journal of Nonlinear

Science.

Entorf, H., Gross, A., and Steiner, C. (2012). Business cycle forecasts and their impli-

cations for high frequency stock market returns. Journal of Forecasting.

Fisher, K. L. and Statman, M. (2000). Investor sentiment and stock returns. Financial

Analysts Journal, 56(2):16–23.

Foster, J. and Flieth, B. (2002). Interactive expectations. Journal of Evolutionary Eco-

nomics, 12(4):375–395.

Franke, R. (2007). Estimation of a microfounded herding model on german survey

expecations. Working paper, Kiel University.

Franke, R. (2012). Microfounded animal spirits in the new macroeconomic consensus.

Studies in Nonlinear Dynamics & Econometrics, 16(4):1–41.

Franke, R. (2014). Aggregate sentiment dynamics: A canonical modelling approach and

its pleasant nonlinearities. Structural Change and Economic Dynamics, 31(C):64–72.

Franke, R. (2018). A microfoundation of harrodian instability, entailing also some scope

for stability. Working paper, Kiel University.

89



BIBLIOGRAPHY

Franke, R. and Westerhoff, F. (2017). Taking stock: A rigorous modelling of animal

spirits in macroeconomics. Journal of Economic Surveys, 31(5):1152–1182.

Franke, R. and Westerhoff, F. (2019). Different compositions of aggregate sentiment

and their impact on macroeconomic stability. Economic Modelling, 76:117 – 127.

Gomes, O. and Sprott, J. C. (2017). Sentiment-driven limit cycles and chaos. Journal of

Evolutionary Economics, 27(4):729–760.

Heiden, S., Klein, C., and Zwergel, B. (2013). Beyond fundamentals: Investor sentiment

and exchange rate forecasting. European Financial Management, 19(3):558–578.

Hengelbrock, J., Theissen, E., and Westheide, C. (2013). Market response to investor

sentiment. Journal of Business Finance & Accounting, 40(7-8):901–917.

Hohnisch, M., Pittnauer, S., Solomon, S., and Dietrich, S. (2005). Socioeconomic inter-

action and swings in business confidence indicators. Physica A: Statistical Mechanics

and its Applications, 345(3):646 – 656.

Hommes, C. (2013). Behavioral Rationality and Heterogeneous Expectations in Com-

plex Economic Systems. Cambridge University Press.

Hommes, C. H. and Ochea, M. I. (2012). Multiple equilibria and limit cycles in evolu-

tionary games with logit dynamics. Games and Economic Behavior, 74(1):434–441.
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A Graphical Appendix

A.1 Transition Probability Approach

A.1.1 Pure Sentiment Dynamics

Figure 32 depicts a three-dimensional representation of the adjusted bifurcation diagram

from subsection 2.3.3, cf. Fig. 6a. Through rotation about the straight line of symmetric

equilibria all parabolas can be converted into one another. This symmetric composition

accounts for the need of an augmented component in the adjusted bifurcation diagram

which combines the two phase plane components b and c.
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Figure 32: Non-adjusted three-dimensional bifurcation diagram with herding intensity
φ ∈ [1.3, 2.3].
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A.1 TRANSITION PROBABILITY APPROACH

A.1.2 Augmented Feedback

In Fig. 33, Fig. 34 and Fig. 35 additional phase plane representations for both types

of parabolic isoclines Fb = 0 and Fc = 0 are displayed for a moderate weighting

component ω = 0.5 and increasing herding φ.

If the herding is small, i.e. φ = 0.5, the isoclines are almost linear and the sym-

metric equilibrium (bs, cs) = (1
3
, 1

3
) is a stable point of intersection, see Fig. 33. Once

the herding intensity increases more intersection points, respectively equilibria, are gen-

erated. Analogous statements hold for the weight ω = 0.8, see Fig. 36, 37 and 38.
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Figure 33: Phase plane representation of Fb = 0 (black) and Fc = 0 (white) for φ =
0.5, ω = 0.5. One stable equilibrium (red dot) is visible. +/− indicate
Fb ≷ 0, resp. Fc ≷ 0.
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Figure 34: Phase plane representation of Fb = 0 (black) and Fc = 0 (white) for φ =
2.0, ω = 0.5. Two stable equilibria (red dots) and one unstable equilibrium
(white dot) are visible.
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Figure 35: Phase plane representation of Fb = 0 (black) and Fc = 0 (white) for φ =
2.8, ω = 0.5. Two stable equilibria (red dots) and three unstable equilibria
(white dots) are visible.
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Figure 36: Phase plane representation of Fb = 0 (black) and Fc = 0 (white) for φ =
0.5, ω = 0.8. One stable equilibrium (red dot) is visible. +/− indicate
Fb ≷ 0, resp. Fc ≷ 0.
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Figure 37: Phase plane representation of Fb = 0 (black) and Fc = 0 (white) for φ =
4.0, ω = 0.8. Two stable equilibria (red dots) and one unstable equilibrium
(white dot) are visible.
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Figure 38: Phase plane representation of Fb = 0 (black) and Fc = 0 (white) for φ =
8.0, ω = 0.8. Two stable equilibria (red dots) and three unstable equilibria
(white dots) are visible.
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A.2 DISCRETE CHOICE APPROACH

A.2 Discrete Choice Approach

A.2.1 Sentiment Dynamics and Discrete-Choice Approach

In Fig. 39 and Fig. 40 additional phase plane representations for both types of parabolic

isoclines Fb = 0 and Fc = 0 are displayed for µ = 1.0, β = 1.0 and small values of the

herding component φ.

If there is no herding, i.e. φ = 0, the isoclines are linear and the symmetric equilib-

rium (bs, cs) = (1
3
, 1

3
) is a stable point of intersection, see Fig. 39. Once the herding

intensity increases slightly, i.e. φ = 1.5 the isoclines become nonlinear but the symmet-

ric equilibrium (bs, cs) = (1
3
, 1

3
) remains stable, see Fig. 40.
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Figure 39: Phase plane representation of Fb = 0 (black) and Fc = 0 (white) for µ = 1.0,
β = 1.0 and φ = 0. One stable equilibrium (red dot) is visible. +/− indicate
Fb ≷ 0, resp. Fc ≷ 0.
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Figure 40: Phase plane representation of Fb = 0 (black) and Fc = 0 (white) for µ = 1.0,
β = 1.0 and φ = 1.5. Trajectory dynamics (red) with one stable equilibrium
(red dot) is visible. +/− indicate Fb ≷ 0, resp. Fc ≷ 0.
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A.3 A STOCHASTIC MODEL OF INVESTOR SENTIMENT

A.3 A Stochastic Model of Investor Sentiment

A.3.1 Sensitivity Analysis

In Fig. 41 and Fig. 42 the two-dimensional probability distributions for the share of

neutral agents n0 and the share of bold agents nb for the period from 1999 to 2018 can

be seen.
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Figure 41: Two-dimensional probability distribution for the share of neutral agents n0

for the period from 1999 to 2018.
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Figure 42: Two-dimensional probability distribution for the share of bold agents nb for
the period from 1999 to 2018.
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A.3.2 Out-of-sample Forecast

Figure 43, Fig. 44 and Fig. 45 show the weekly time series of the AAII Investor Senti-

ment Survey data from 1999 until 2013. The panels depict bullish, bearish and neutral

sentiment shares and their corresponding forecasts for the period from 2014 until 2018

for Model II.

2014 2015 2016 2017 2018
0

0.2

0.4

0.6

0.8
Bullish Sentiment

Figure 43: Time series of AAII Bullish Sentiment Survey data with forecast from 2014
to 2018 (red line) for parameter estimates from Model II.

104



A.3 A STOCHASTIC MODEL OF INVESTOR SENTIMENT

2014 2015 2016 2017 2018
0

0.2

0.4

0.6

0.8
Bearish Sentiment

Figure 44: Time series of AAII Bearish Sentiment Survey data with forecast from 2014
to 2018 (red line) for parameter estimates from Model II.
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Figure 45: Time series of AAII Neutral Sentiment Survey data with forecast from 2014
to 2018 (red line) for parameter estimates from Model II.
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Figure 46, Fig. 47 and Fig. 48 show the weekly time series of the AAII Investor

Sentiment Survey data from 1999 until 2013. The panels depict bullish, bearish and

neutral sentiment shares and their corresponding forecasts for the period from 2014

until 2018 for Model III.
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Figure 46: Time series of AAII Bullish Sentiment Survey data with forecast from 2014
to 2018 (red line) for parameter estimates from Model III.
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Figure 47: Time series of AAII Bearish Sentiment Survey data with forecast from 2014
to 2018 (red line) for parameter estimates from Model III.
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Figure 48: Time series of AAII Neutral Sentiment Survey data with forecast from 2014
to 2018 (red line) for parameter estimates from Model III.
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A.3 A STOCHASTIC MODEL OF INVESTOR SENTIMENT

In Fig. 49, Fig. 50 and Fig. 51 the weekly time series of the AAII Investor Sentiment

Survey data from 1999 until 2013 can be seen. The panels depict bullish, bearish and

neutral sentiment shares and their corresponding forecasts for the period from 2014 until

2018 for Model IV.

2014 2015 2016 2017 2018
0

0.2

0.4

0.6

0.8
Bullish Sentiment

Figure 49: Time series of AAII Bullish Sentiment Survey data with forecast from 2014
to 2018 (red line) for parameter estimates from Model IV.
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Figure 50: Time series of AAII Bearish Sentiment Survey data with forecast from 2014
to 2018 (red line) for parameter estimates from Model IV.
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Figure 51: Time series of AAII Neutral Sentiment Survey data with forecast from 2014
to 2018 (red line) for parameter estimates from Model IV.
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In Fig. 52, Fig. 53 and Fig. 54 the weekly time series of the AAII Investor Sentiment

Survey data from 1999 until 2013 can be seen. The panels depict bullish, bearish and

neutral sentiment shares and their corresponding forecasts for the period from 2014 until

2018 for Model V.
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Figure 52: Time series of AAII Bullish Sentiment Survey data with forecast from 2014
to 2018 (red line) for parameter estimates from Model V.
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Figure 53: Time series of AAII Bearish Sentiment Survey data with forecast from 2014
to 2018 (red line) for parameter estimates from Model V.
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Figure 54: Time series of AAII Neutral Sentiment Survey data with forecast from 2014
to 2018 (red line) for parameter estimates from Model V.
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A.3 A STOCHASTIC MODEL OF INVESTOR SENTIMENT

Figure 55, Fig. 56 and Fig. 57 show the weekly time series of the AAII Investor

Sentiment Survey data from 1999 until 2013. The panels depict bullish, bearish and

neutral sentiment shares and their corresponding forecasts for the period from 2014

until 2018 for Model VI.
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Figure 55: Time series of AAII Bullish Sentiment Survey data with forecast from 2014
to 2018 (red line) for parameter estimates from Model VI.
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Figure 56: Time series of AAII Bearish Sentiment Survey data with forecast from 2014
to 2018 (red line) for parameter estimates from Model VI.
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Figure 57: Time series of AAII Neutral Sentiment Survey data with forecast from 2014
to 2018 (red line) for parameter estimates from Model VI.

113



A.3 A STOCHASTIC MODEL OF INVESTOR SENTIMENT

Figure 58, Fig. 59 and Fig. 60 show the weekly time series of the AAII Investor

Sentiment Survey data from 1999 until 2013. The panels depict bullish, bearish and

neutral sentiment shares and their corresponding forecasts for the period from 2014

until 2018 for Model VII.
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Figure 58: Time series of AAII Bullish Sentiment Survey data with forecast from 2014
to 2018 (red line) for parameter estimates from Model VII.
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Figure 59: Time series of AAII Bearish Sentiment Survey data with forecast from 2014
to 2018 (red line) for parameter estimates from Model VII.
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Figure 60: Time series of AAII Neutral Sentiment Survey data with forecast from 2014
to 2018 (red line) for parameter estimates from Model VII.
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Figure 61, Fig. 62 and Fig. 63 show the weekly time series of the AAII Investor

Sentiment Survey data from 1999 until 2013. The panels depict bullish, bearish and

neutral sentiment shares and their corresponding forecasts for the period from 2014

until 2018 for Model VIII.
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Figure 61: Time series of AAII Bullish Sentiment Survey data with forecast from 2014
to 2018 (red line) for parameter estimates from Model VIII.
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Figure 62: Time series of AAII Bearish Sentiment Survey data with forecast from 2014
to 2018 (red line) for parameter estimates from Model VIII.
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Figure 63: Time series of AAII Neutral Sentiment Survey data with forecast from 2014
to 2018 (red line) for parameter estimates from Model VIII.
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In Fig. 64, Fig. 65 and Fig. 66 the weekly time series of the AAII Investor Sentiment

Survey data from 1999 until 2013 can be seen. The panels depict bullish, bearish and

neutral sentiment shares and their corresponding forecasts for the period from 2014 until

2018 for Model IX.
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Figure 64: Time series of AAII Bullish Sentiment Survey data with forecast from 2014
to 2018 (red line) for parameter estimates from Model IX.
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Figure 65: Time series of AAII Bearish Sentiment Survey data with forecast from 2014
to 2018 (red line) for parameter estimates from Model IX.
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Figure 66: Time series of AAII Neutral Sentiment Survey data with forecast from 2014
to 2018 (red line) for parameter estimates from Model IX.
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In Fig. 67, Fig. 68 and Fig. 69 the weekly time series of the AAII Investor Sentiment

Survey data from 1999 until 2013 can be seen. The panels depict bullish, bearish and

neutral sentiment shares and their corresponding forecasts for the period from 2014 until

2018 for Model X.

2014 2015 2016 2017 2018
0

0.2

0.4

0.6

0.8
Bullish Sentiment

Figure 67: Time series of AAII Bullish Sentiment Survey data with forecast from 2014
to 2018 (red line) for parameter estimates from Model X.
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Figure 68: Time series of AAII Bearish Sentiment Survey data with forecast from 2014
to 2018 (red line) for parameter estimates from Model X.
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Figure 69: Time series of AAII Neutral Sentiment Survey data with forecast from 2014
to 2018 (red line) for parameter estimates from Model X.
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B Mathematical Appendix

B.1 Transition Probability Approach

In this section mathematical derivations of equations, proofs and additional theoretical

fundamentals are provided for the transition probability approach with unweighted and

weighted feedback.

B.1.1 Derivations

B.1.1.1 Derivation of System of ODEs (8)

For ν = 1 the following relationships for hyperbolic functions are employed,

i.e. exp(x) = cosh(x) + sinh(x), cosh(x) = exp(x)+exp(−x)
2

and tanh(x) = sinh(x)
cosh(x)

.

ḃ = (1−b−c) exp(fb) − b exp(−fb)

= (1−c) exp(fb) − 2b exp(fb) + exp(−fb)
2

= (1−c) cosh(fb) + (1−c) sinh(fb) − 2b cosh(fb)

= (1−c) sinh(fb) − ( 2b+ c− 1) cosh(fb)

= [ (1−c) sinh(fb)
cosh(fb)

− ( 2b+ c− 1)] cosh(fb)

= [ (1−c) tanh(fb) − ( 2b+ c− 1)] cosh(fb) .

It is straightforward to show the identity for the differential equation ċ.

122



B.1 TRANSITION PROBABILITY APPROACH

B.1.1.2 Derivation of Discriminant (12)

∆ = tr(J)2 − 4 det(J)

=
(

2φ(1− c)− 2− 2φ( 2b+ c− 1 )tanh(fb)
)2

cosh2(fb)

+
(

2φ(1− b)− 2− 2φ( 2c+ b− 1 )tanh(fc)
)2

cosh2(fc)

+ 2 · cosh(fb)cosh(fc) ·
(

2φ(1− c)− 2− 2φ( 2b+ c− 1 )tanh(fb)
)

·
(

2φ(1− b)− 2− 2φ( 2c+ b− 1 )tanh(fc)
)

− 4 · cosh(fb)cosh(fc) ·
[

3φ2(1− b)(1− c)− 3φ(1− b)

−3φ(1− c) + 3

+ tanh(fb)
(
− 3φ2( 2b+ c− 1 )(1− b)

+ 3φ( 2b+ c− 1 )

+φ(1− b)− 1
)

+ tanh(fc)
(
− 3φ2( 2c+ b− 1 )(1− c)

+ 3φ( 2c+ b− 1 )

+φ(1− c)− 1
)

+ tanh(fb)tanh(fc)
(

3φ2( 2b+ c− 1 )

·( 2c+ b− 1 )

−φ( 2b+ c− 1 )

−φ( 2c+ b− 1 )− 1
)]
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=
(

2φ(1− c)− 2− 2φ( 2b+ c− 1 )tanh(fb)
)2

cosh2(fb)

+
(

2φ(1− b)− 2− 2φ( 2c+ b− 1 )tanh(fc)
)2

cosh2(fc)

+ cosh(fb)cosh(fc) ·
[
− 4φ2(1− b)(1− c) + 4φ(1− b)

+4φ(1− c)− 4

+ tanh(fb)
(

4φ2( 2b+ c− 1 )(1− b)− 4φ(1− b)

− 4φ( 2b+ c− 1 ) + 4
)

+ tanh(fc)
(

4φ2( 2c+ b− 1 )(1− c)− 4φ(1− c)

− 4φ( 2c+ b− 1 ) + 4
)

+ tanh(fb)tanh(fc)
(
− 4φ2( 2b+ c− 1 )

·( 2c+ b− 1 )

+ 4φ( 2b+ c− 1 )

+ 4φ( 2c+ b− 1 ) + 4
)]

=
(

2φ(1− c)− 2− 2φ( 2b+ c− 1 )tanh(fb)
)2

cosh2(fb)

+
(

2φ(1− b)− 2− 2φ( 2c+ b− 1 )tanh(fc)
)2

cosh2(fc)

− cosh(fb)cosh(fc) ·
[(

2φ(1− b)− 2
)(

2φ(1− c)− 2
)

− tanh(fb)
[

2φ( 2b+ c− 1 )
(

2φ(1− b)− 2
)

− 2
(

2φ(1− b)− 2
)]

− tanh(fc)
[

2φ( 2c+ b− 1 )
(

2φ(1− c)− 2
)

− 2
(

2φ(1− c)− 2
)]

+ tanh(fb)tanh(fc)
(

2φ( 2b+ c− 1 )

·2φ( 2c+ b− 1 )
)

− tanh(fb)tanh(fc)
(

4φ( 2b+ c− 1 )

+ 4φ( 2c+ b− 1 ) + 4
)]
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=
(

2φ(1− c)− 2− 2φ( 2b+ c− 1 )tanh(fb)
)2

cosh2(fb)

+
(

2φ(1− b)− 2− 2φ( 2c+ b− 1 )tanh(fc)
)2

cosh2(fc)

− cosh(fb)cosh(fc) ·
[(

2φ(1− b)− 2
)(

2φ(1− c)− 2
)

− tanh(fb)
[(

2φ(1− b)− 2
)

·
(

2φ( 2b+ c− 1 )− 2
)]

− tanh(fc)
[(

2φ(1− c)− 2
)

·
(

2φ( 2c+ b− 1 )− 2
)]

+ tanh(fb)tanh(fc)
(

2φ( 2b+ c− 1 )

· 2φ( 2c+ b− 1 )
)

− tanh(fb)tanh(fc)
(

4φ( 2b+ c− 1 )

+4φ( 2c+ b− 1 ) + 4
)]

=
(

2φ(1− c)− 2− 2φ( 2b+ c− 1 )tanh(fb)
)2

cosh2(fb)

+
(

2φ(1− b)− 2− 2φ( 2c+ b− 1 )tanh(fc)
)2

cosh2(fc)

− cosh(fb)cosh(fc) ·
[(

2φ(1− b)− 2− 2φ( 2b+ c− 1 )tanh(fb)
)

·
(

2φ(1− c)− 2− 2φ( 2c+ b− 1 )tanh(fc)
)

+2
(

2φ(1− b)− 2
)
tanh(fb)

+2
(

2φ(1− c)− 2
)
tanh(fc)

− tanh(fb)tanh(fc)
(

4φ( 2b+ c− 1 )

+4φ( 2c+ b− 1 ) + 4
)]
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=
[(

2φ(1− c)− 2− 2φ( 2b+ c− 1 )tanh(fb)
)
cosh(fb)

−
(

2φ(1− b)− 2− 2φ( 2c+ b− 1 )tanh(fc)
)
cosh(fc)

]2
+ cosh(fb)cosh(fc) ·

[(
2φ(1− b)− 2

)(
2φ(1− c)− 2

)
− tanh(fb)

[(
2φ(1− b)− 2

)
· 2φ( 2b+ c− 1 )

]
− tanh(fc)

[(
2φ(1− c)− 2

)
· 2φ( 2c+ b− 1 )

]
+ tanh(fb) tanh(fc)

(
2φ( 2b+ c− 1 )

· 2φ( 2c+ b− 1 )
)]

+ cosh(fb)cosh(fc) ·
[
− 2 tanh(fb)

(
2φ(1− b)− 2

)
− 2 tanh(fc)

(
2φ(1− c)− 2

)
+ tanh(fb)tanh(fc)

(
4φ( 2b+ c− 1 )

+4φ( 2c+ b− 1 ) + 4
)]

=
[(

2φ(1− c)− 2− 2φ( 2b+ c− 1 )tanh(fb)
)
cosh(fb)

−
(

2φ(1− b)− 2− 2φ( 2c+ b− 1 )tanh(fc)
)
cosh(fc)

]2
+ cosh(fb)cosh(fc) ·

[(
2φ(1− b)− 2

)(
2φ(1− c)− 2

)
− tanh(fb)

[(
2φ(1− b)− 2

)
·
(

2φ( 2b+ c− 1 ) + 2
)]

− tanh(fc)
[(

2φ(1− c)− 2
)

·
(

2φ( 2c+ b− 1 ) + 2
)]

+ tanh(fb)tanh(fc)
[(

2φ( 2b+ c− 1 ) + 2
)

·
(

2φ( 2c+ b− 1 ) + 2
)]]

=
[(

2φ(1− c)− 2− 2φ( 2b+ c− 1 )tanh(fb)
)
cosh(fb)

−
(

2φ(1− b)− 2− 2φ( 2c+ b− 1 )tanh(fc)
)
cosh(fc)

]2
+ cosh(fb)cosh(fc) ·

[
2φ(1− c)− 2−

(
2φ( 2b+ c− 1 ) + 2

)
tanh(fb)

]
·
[

2φ(1− b)− 2−
(

2φ( 2c+ b− 1 ) + 2
)
tanh(fc)

]
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B.1.2 Proofs

B.1.2.1 Proof of Proposition 1

We consider

ḃ = Fb( b, c; φ) = [ (1−c) tanh(fb) − ( 2b+ c− 1)] cosh(fb)

= 0.

Using cosh(x) ≥ 1, c ∈ [ 0, 1) and the feedback index fb, the differential equation is

reduced to

tanh(φ ( 2b+ c− 1)) =
( 2b+ c− 1)

(1−c)
.

For the following approximations we employ the assumption φ < 1 . Additionally two

cases are examined.

Case 1: 2b+ c− 1 > 0

2b+ c− 1 < ( 2b+c−1)
(1−c)

= tanh(φ ( 2b+ c− 1)) < tanh( 2b+ c− 1).

But tanh(x) is a strictly monotonic increasing function and furthermore tanh(x) < x

holds ∀x ∈ (0, 1] with x = 2b+ c− 1 . Therefore 2b+ c− 1 6> 0 is valid.

Case 2: 2b+ c− 1 < 0

tanh( 2b+ c− 1) < tanh(φ ( 2b+ c− 1))

= ( 2b+c−1)
(1−c) < 2b+ c− 1.

But tanh(x) is a strictly monotonic increasing function and tanh(x) > x holds ∀x ∈
[−1, 0) with x = 2b + c − 1 . Therefore 2b + c − 1 6< 0 is valid. The case-by-case

analysis leads to 2b+ c− 1 = 0 which is equivalent to LIb.

�
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B.1 TRANSITION PROBABILITY APPROACH

It is straightforward to show the implication for the linear isocline LIc.

B.1.2.2 Proof of Proposition 2

For the first statement we consider the trace, tr(J) = −4+ 8
3
φ < 0 , and the determinant

of the Jacobian, det(J) = 4
3
(φ− 3

2
)2 > 0 . The discriminant, ∆ = 16

9
(φ− 3

2
)2 , reveals

monotonic limit behavior for φ 6= 3
2

. For statement 2 and 3 see Proposition 1.

�

B.1.2.3 Proof of Proposition 3

1. See Eq. (10).

2. We consider Eq. (8) = 0 , plug in c = 0 and φ = 1 and apply

cosh(x) ≥ 1 . This results in tanh(2b − 1) − ( 2b − 1) = 0 . Since

tanh(x) = x leads to x = 0 we obtain 2b− 1 = 0⇔ b0 = 0.5 .

3. For c = 0 assume that b1 is a solution of Eq. (8) = 0 . We apply

cosh(x) ≥ 1 and get tanh(φ ( 2b1−1))− ( 2b1−1) = 0 . Since tanh

is symmetric with respect to the origin this leads to

0 = − tanh(−φ ( 2b1 − 1))− ( 2b1 − 1)

= tanh(φ ( 1− 2b1))− ( 1− 2b1)

= tanh(φ ( 2( 1− b1)− 1))− ( 2( 1− b1)− 1)

= tanh(φ ( 2b2 − 1))− ( 2b2 − 1).

4. For b1 > 0.5 lim
φ→∞

tanh(φ ( 2b1 − 1)) − ( 2b1 − 1) = 1 − ( 2b1 − 1)

holds.

Since b1 is a b-axis intercept we know 1−( 2b1−1) = 0 ⇔ lim
φ→∞

b1 =

1 .

Furthermore lim
φ→∞

b2 = lim
φ→∞

1− b1 = 0 .

�

128
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B.1.3 Bifurcation Types

Consider a two-dimensional continuous-time system depending on one parameter

ẋ = f(x, φ), x ∈ R2, φ ∈ R,

where f is smooth with respect to both x and φ. Assume that a bifurcation of the dynam-

ical system occurs at φ = φe for the equilibrium x = xe and the corresponding Jacobian

matrix Je has two eigenvalues λe1 and λe2.

The following annotations are based on definitions in Kuznetsov (2004), Strogatz (1994)

and Wiggins (2003).

B.1.3.1 Saddle-node Bifurcation

A saddle-node bifurcation is a local bifurcation in which two equilibria of a dynamical

system are created. The Jacobian matrix Je has an eigenvalue λe1 = 0 evaluated at the

bifurcation point (xe, φe).

For all the other values of φ 6= φe the behavior of the system is distinct. For φ < φe

there are no equilibria in the system. For φ > φe the system has two equilibria, one is

stable, while the other one is unstable, more specifically it is a saddle-point equilibrium.

The equation f(x, φ) = 0 defines an equilibrium manifold in the bifurcation dia-

gram. This particular type of bifurcation is referred to as a supercritical saddle-node

bifurcation. A subcritical saddle-node bifurcation exhibits two equilibrium points for

φ < φe and no equilibrium for φ > φe.

B.1.3.2 Pitchfork Bifurcation

A dynamical system exhibiting a pitchfork bifurcation is a particular type of local bi-

furcation where the system transitions from one equilibrium to three equilibria. So the

system has an equilibrium for all φ. This equilibrium is stable for φ < φe and unsta-

ble for φ > φe. For φ > φe, there are two additional equilibria branching from the

129



B.1 TRANSITION PROBABILITY APPROACH

bifurcation point (xe, φe) which are stable. This is a supercritical pitchfork bifurcation.

A subcritical pitchfork bifurcation is detected in a system with three equilibria for all

φ. One equilibrium is stable for φ < φe and unstable for φ > φe. For φ < φe, there are

two additional equilibria branching to the bifurcation point (xe, φe) which are unstable.

Continuous dynamical and symmetrical systems generically feature pitchfork bifur-

cations.

B.1.3.3 Transcritical Bifurcation

A transcritical bifurcation is a particular kind of local bifurcation, meaning that it is

characterized by an equilibrium having an eigenvalue whose real part passes through

zero.

A transcritical bifurcation is one in which a fixed point exists for all values of a

parameter and is never destroyed. However, such a fixed point interchanges its stability

with another fixed point as the parameter is varied. In other words, both before and after

the bifurcation, there is one unstable and one stable fixed point. However, their stability

is exchanged when they collide. So the unstable fixed point becomes stable and vice

versa.

For φ < φe, there are two equilibria, the first one is stable and the second one is

unstable. These two equilibria coalesce at φ = φe and exchange their stability behavior.

Hence for φ > φe, the first equilibrium is unstable and the second one is stable.

A transcritical saddle-source bifurcation is defined as a transcritical bifurcation with

one unstable (source) manifold and one saddle manifold.

130
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B.2 Discrete Choice Approach

In this section mathematical derivations of equations are provided for the discrete choice

approach.

B.2.1 Derivations

The deterministic adjustment equations that governs the changes in the fractions bt of

bold agents ct of cautious agents are

bt+∆t = bt + ∆t · [πbt (fb)− bt],

ct+∆t = ct + ∆t · [πct (fc)− ct].
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B.3 A Stochastic Model of Investor Sentiment

B.3.1 Sentiment Dynamics

The following Taylor series expansion around (x, y) is needed to derive the Fokker-

Planck-equation:

∂p (x, y; t)

∂t
= p (x, y) ·

[
w0c (xN + 1, yN − 1)− w0c (xN, yN)

+wc0 (xN − 1, yN + 1)− wc0 (xN, yN)

+w0b (xN + 1, yN − 1)− w0b (xN, yN)

+wb0 (xN − 1, yN + 1)− wb0 (xN, yN)

+wbc (xN, yN) + wcb (xN, yN)
]

+
∂p (x, y; t)

∂x
·
[ 1

N

(
w0b (xN + 1, yN − 1)

−wb0 (xN − 1, yN + 1)

+wcb (xN + 1, yN)

−wbc (xN − 1, yN)
)]

+
∂p (x, y; t)

∂y
·
[ 1

N

(
− w0c (xN + 1, yN − 1)

+wc0 (xN − 1, yN + 1)

−w0b (xN + 1, yN − 1)

+wb0 (xN − 1, yN + 1)
)]

+ . . .
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. . .

+
∂2p (x, y; t)

∂x2
·
[ 1

2N2

(
w0c (xN + 1, yN − 1)

+wc0 (xN − 1, yN + 1)

+w0b (xN + 1, yN − 1)

+wb0 (xN − 1, yN + 1)
)]

+
∂2p (x, y; t)

∂y2
·
[ 1

2N2

(
w0c (xN + 1, yN − 1)

+wc0 (xN − 1, yN + 1)

+w0b (xN + 1, yN − 1)

+wb0 (xN − 1, yN + 1)
)]

+
∂2p (x, y; t)

∂y∂x
·
[ 1

N2

(
− w0c (xN + 1, yN − 1)

−wc0 (xN − 1, yN + 1)

−w0b (xN + 1, yN − 1)

−wb0 (xN − 1, yN + 1)
)]
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B.3.2 Sensitivity Analysis

Model XI Model XII

Parameter estimates

ν0 2.8246 (0.0101) 2.8244 (0.001)

ν1 4.0005 (0.0171) 4.0 (0.0)

α0 - -

α1 - 0.6742 (0.0006)

α2 0.1626 (0.0107) -

β0 −0.512 (0.0118) −0.5127 (0.0696)

β1 −0.23 (0.0887) −0.2244 (0.5049)

β2 1.2352 (0.183) 1.2367 (0.0001)

Goodness-of-fit measures

Log L −456.9092 −498.8798

AIC 925.8184 1009.7596

BIC 943.0236 1026.9648

Table 9: Parameter estimates, corresponding standard errors in brackets and goodness-
of-fit measures for two additional restricted bi-variate stochastic models of in-
vestor sentiment regarding the parameters α0 and α1, respectively α0 and α2.
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