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CLASSIFICATION OF ONE-CLASS SPINOR GENERA FOR

QUATERNARY QUADRATIC FORMS

A. G. EARNEST AND ANNA HAENSCH

Abstract. A quadratic form has a one-class spinor genus if its spinor

genus consists of a single equivalence class. In this paper, we determine

that there is, up to equivalence, only one primitive integral positive

definite quaternary quadratic form which has a one-class spinor genus

but not a one-class genus. In all other cases, such quaternary forms

either have a genus and spinor genus which coincide, or the genus splits

into multiple spinor genera, which in turn split into multiple equivalence

classes.

1. Introduction

An integral quadratic form is said to have a one-class (spinor) genus

if its (spinor) genus consists of a single equivalence class (that is, if the

(spinor) genus of the form has (spinor) class number 1). Recent work of

Kirschmer and Lorch [14], which completes the determination of all one-

class genera of positive definite primitive integral quadratic forms in at least

three variables, brings us naturally to revisit the corresponding problem for

one-class spinor genera of such forms; that is, the classification of forms

whose spinor genus consists of a single equivalence class. Our goal here is

to complete this determination in the final remaining case of quaternary

forms. The main result will be explicitly stated in Theorem 1.1.

1.1. Previous Results. For brevity, the term form will refer throughout

this paper to a positive definite integral quadratic form. By a general result

of Rehmann [22, Satz 2], it is known a priori that there exist only finitely

many one-class spinor genera of primitive forms of rank at least 3. It was

proven by Earnest and Hsia that for forms of rank at least 5, the notions of

one-class genus and one-class spinor genus coincide [7]. However, when the

rank is less than or equal to 4, there exist one-class spinor genera which lie

in genera containing multiple classes.

When the rank is equal to 3, there are 27 such forms appearing in Jagy’s

list of spinor regular ternary forms (that is, forms that represent all integers

represented by their spinor genus) that are not regular [12]. In light of the
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2 A. G. EARNEST AND A. HAENSCH

work of the present authors in [4], it is now known that this list is complete,

in the sense that it contains representatives from all one-class spinor genera

of primitive ternary forms that are not regular. A check of the forms of class

number exceeding 1 which appear in the list of 913 regular ternary forms

given in [13] yields an additional 18 forms with spinor class number 1. There

is thus a total of 45 one-class spinor genera of primitive ternary forms that

have class number exceeding 1. For completeness, a list of representatives

of these one-class spinor genera will be given at the end of this paper.

To complete the determination of all one-class spinor genera for forms

in at least three variables, it thus remains to fully investigate the one-class

spinor genera of quaternary forms. There is one example of a quaternary

form which lies in a one-class spinor genus, but not a one-class genus, that

has appeared several times in the literature. In his book [24, p. 114], Watson

notes that the spinor genus of the quaternary form

x2 + xy + 7y2 + 3z2 + 3zw + 3w2(1.1)

of discriminant1 36 = 729 contains only one class, but its genus contains

more than one spinor genus. It can be checked that the genus of this form

consists of two spinor genera and a total of three classes. In his book [18]

which contains tables of all quaternary quadratic forms of discriminant at

most 1732, Nipp notes on p. 14 that the only discriminant in this range that

could admit multiple spinor genera is 729, and he goes on to show that for

all forms of discriminant 729 other than those equivalent to (1.1) the genus

and spinor genus coincide.

In the case of a quaternary form that is equivalent to the norm form on a

quaternion order, of which the form (1.1) is an example, there are interesting

connections between one-class spinor genera and algebraic properties of the

underlying order. Over general Dedekind domains in global fields, Nipp [17]

gives a characterization of one-class spinor genera in terms of the ideal the-

ory of the order. In the same paper, Nipp also shows that for ternary forms

the one-class spinor genus property is equivalent to an ideal-theoretic prop-

erty of an associated quaternion order. In the case of rational quaternion

orders, Estes and Nipp [9] give a characterization of the one-class spinor

genus property in terms of factorization in the order, extending investiga-

tions of Pall and Williams [20], [26] who characterized the one-class genera

of quaternion orders in terms of quaternion factorization and determined

the 39 orders having this property. The form (1.1) appears in both of the

1By the discriminant of a form f , denoted disc(f), we will mean the determinant of

the matrix of second partial derivatives of the form.
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papers [17] and [9]. In fact, Parks [21] subsequently proved that the lattice

corresponding to this form is a representative of the only isomorphism class

of definite quaternion orders in rational quaternion algebras that lies in a

spinor genus of one class, but a genus consisting of multiple classes. The

forms covered by that result are rather special; for example, they all have

square discriminant and represent 1.

1.2. Main Result. In the present paper, we show that in fact the form

(1.1) is a representative of what is essentially the only equivalence class of

quaternary forms that coincides with its spinor genus but not its genus.

More precisely we prove:

Theorem 1.1. Let f be a primitive integral positive definite quaternary

quadratic form for which the spinor genus and class coincide. Then either

the genus and class of f coincide or f is equivalent to the form (1.1).

1.3. Method of Proof. To prove this result, the general strategy is as

follows. Using a transformation µp introduced by Gerstein in [10], which is

similar to the “p-mapping” defined by Watson in [25], we first associate to

each one-class spinor genus form a one-class genus form whose discriminant

has the same prime factors as the original form. By cross-referencing with

the list of one-class genus quaternary forms appearing in the classification

by Kirschmer and Lorch in [14], we produce a small list of possible prime

divisors for discriminants of one-class spinor genus forms. We then system-

atically eliminate candidate discriminants by using the µp transformations

to show that the associated genus does not split into multiple spinor genera,

and hence the form is not of relevance to us, or by using a version of the

Minkowski-Siegel mass formula to show that the spinor genus must contain

more than one class. For any cases that do not succumb to these methods,

we generate all equivalence classes of forms of a targeted discriminant, and

then explicitly compute the numbers of classes in the genus and spinor genus

in each case.

This strategy makes use of three critical and interconnected computa-

tional components. The first is the online L-Functions and Modular Forms

Database [16], in which the lattice database contains the full list of one-

class genus forms determined by Kirschmer and Lorch [14]. Downloading

the list, the entries can be viewed as objects in the class of quadratic forms

in Sagemath [23], enabling quick computations of discriminant and local

structure of the forms. From here, it can be easily determined what sort of

local splittings and discriminant divisors are admissible by one-class genus
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forms. In certain cases, we will need to generate a list of equivalence classes

of forms of a fixed discriminant. This is done by means of an algorithm first

given by Pall [20] and described in [8, Lemma 3], in conjunction with the

functionality for testing local and global isometry in Magma. Once a list of

potential candidates has been determined in these cases, local structures can

be computed and compared against those already computed in Sagemath.

For all remaining candidates, Magma can be used to explicitly compute the

number of classes in the genus and spinor genus.

1.4. Organization. The remainder of this paper is organized as follows.

In §2, relevant notation and terminology for lattices are summarized. The

µp-transformations are reviewed in §3, some explicit local computations for

the action of these transformations are given and a first list of possible

prime divisors of the discriminants of one-class spinor genera is produced.

The Conway-Sloane version of the mass formula is described in §4, bounds

are computed for the factors in the mass formula for forms with one-class

spinor genera, and bounds are obtained for the powers of certain primes

that could possibly occur as discriminants of one-class spinor genera. In

§5, the list of possible prime divisors of discriminants of one-class spinor

genera will be systematically reduced, ultimately showing that only 2 and

3 can occur. Then, using the µp-transformations, mass formula bounds,

and explicit examination of forms of several targeted discriminants, in §6

all remaining candidates for one-class spinor genera are eliminated except

for 36, as claimed. Two appendices are given in §7. In the first, explicit

computer code is given for the implementation of the algorithm of Pall used

to generate representatives of the equivalence classes of quaternary forms of

discriminant Dp2 from those of discriminant D. Finally, §7.2 contains the

list of one-class spinor genera of primitive ternary forms for which the genus

and spinor genus do not coincide.

2. Preliminaries and Notation

For the remainder of this paper we will abandon the language of forms,

and instead adopt the geometric language of lattices as favored in the re-

cent literature on this topic, especially [14]. Any unexplained notation and

terminology, as well as basic background results, can be found in [19]. To

set the context, let R be an integral domain with field of quotients F of

characteristic not 2, and let (V,Q) be a nondegenerate quadratic space over

F with associated symmetric bilinear form B : V × V → F for which

B(v, v) = Q(v) for all v ∈ V . An R-lattice on V (or simply R-lattice if it is
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unnecessary to specify the underlying quadratic space) is a finitely gener-

ated R-submodule of V for which FL = V . For an R-lattice L, the norm,

scale and volume ideals of L, as defined in [19, §82E], will be denoted by

n(L), s(L), and v(L), respectively. The lattice L will be said to be integral

if s(L) ⊆ R and primitive if s(L) = R. For a fractional R-ideal A of F , an

R-lattice L of rank n is A-modular if v(L) = (s(L))n. An R-lattice is said

to be modular if it is A-modular for some A, unimodular if it is R-modular,

and a-modular for some a ∈ R if it is aR-modular. For an R-lattice L and

0 6= a ∈ F , let aL = {av : v ∈ L} and LaR = {x ∈ L : B(x, L) ⊆ aR}. Note

in particular that s(aL) = a2s(L) and n(aL) = a2n(L).

If L is a free R-lattice with basis {x1, . . . , xn}, then the Gram matrix of

L with respect to {x1, . . . , xn} is the symmetric n×n-matrix (B(xi, xj)). For

a symmetric n × n-matrix M , we will write L ∼= M to indicate that there

exists a basis for L such thatM is the Gram matrix of L with respect to that

basis. In particular, L ∼= 〈a1, . . . , an〉 will mean that L has an orthogonal

basis for which the Gram matrix is the diagonal matrix with the indicated

diagonal entries. For a Z-lattice L, all Gram matrices of L have the same

determinant; this common value is the discriminant of L, which will be

denoted here by d(L).

For our purposes, the ring R will always be either the ring Z of rational

integers or the ring Zp of p-adic integers for some p ∈ S, where S denotes the

set of rational primes. For a Z-lattice L and p ∈ S, Lp will denote the p-adic

localization of L; that is, Lp = L⊗ZZp. For odd p ∈ S, a modular Zp-lattice

can always be written as an orthogonal sum of rank 1 sublattices; for p = 2,

such a lattice can be written as an orthogonal sum of modular sublattices of

rank 1 or 2 [19, 93:15]. In the latter case, it is useful to recall from [19, §93B]

the notation A(α, β) to denote the unimodular matrix
(

α 1
1 β

)

, and 〈A(α, β)〉

to denote a unimodular lattice having A(α, β) as Gram matrix. We also

introduce the special symbols A = 〈A(2, 2)〉 and H = 〈A(0, 0)〉. Note that

if a Z2-lattice does not have an orthogonal basis, then it is split by a binary

modular lattice M such that M ∼= 〈ξA(2, 2)〉 or M ∼= 〈ξA(0, 0)〉 for some

nonzero ξ∈ Z2 [19, 93:11]. For a Z-lattice L, the Jordan splitting provides

a decomposition of Lp into an orthogonal sum of modular components of

different scales. For a primitive Z-lattice L, we will generally write a Jordan

splitting of Lp as

(2.1) L(0) ⊥ L(1) ⊥ L(2) ⊥ ... ⊥ L(tp),
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where each L(i) is pi-modular or 0 with L(tp) 6= 0. The existence of such a

splitting and the extent to which such splittings are unique are discussed in

detail in [19, §91C].

We will follow the definitions and terminology for the genus and spinor

genus of a Z-lattice as given in [19, §102]. In particular, for a Z-lattice

L, cls(L), spn(L), spn+(L) and gen(L) will denote the class, spinor genus,

proper spinor genus and genus of L, respectively. The numbers h(L), hs(L)

and h+
s (L) will denote the numbers of classes in the genus, spinor genus and

proper spinor genus of L, respectively, and g(L) and g+(L) the numbers of

spinor genera and proper spinor genera in the genus of L, respectively. We

will refer to h(L) and hs(L) as the class number and spinor class number of

L, respectively. Thus, our goal in this paper is to determine those Z-lattices

L for which hs(L) = 1 and h(L) > 1, or, equivalently, for which hs(L) = 1

and g(L) > 1. Since all of the numbers h(L), hs(L), g(L) and g+(L) are

invariant under scaling of the underlying bilinear mapping, we will generally

restrict our attention to primitive lattices.

The number g+(L) can be computed by means of an idèlic index formula

given in [19, 102:7]. For the use of this formula, it is necessary to be able

to explicitly compute the local spinor norm groups θ(O+(Lp)) for all p ∈ S,

where θ denotes the spinor norm mapping and O+(Lp) denotes the group

of rotations of Lp. These groups have been completely determined in the

work of Kneser [15], Hsia [11], and Earnest and Hsia [5], and we will make

frequent use of the results of those papers. Of particular use to us will be

the fact that g+(L) = 1 holds whenever the containment

(2.2) Z×
p ⊆ θ(O+(Lp))

holds for all p ∈ S, where Z×
p denotes the group of units of Zp. For odd

p ∈ S (cf. [19, 102:9]), the containment (2.2) is known to hold whenever Lp

is split by a modular Zp-lattice of rank at least 2 [19, 92:5], and for p = 2,

it holds whenever L2 is split by a modular Z2-lattice of rank at least 3 [11,

Proposition A]. In particular, (2.2) holds whenever p does not divide 2d(L),

since then Lp is itself unimodular.

3. Transformations that do not increase spinor class

numbers

An important ingredient in our arguments will be a family of transforma-

tions on the set of Z-lattices on a given positive definite rational quadratic

space defined by Gerstein [10], following Watson [25]. These transformations

have the property that they decrease the powers of primes occurring in the
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discriminant, while not increasing either the class number or spinor class

number. In this section, we will review the definition and basic properties

of these transformations, carry out some local computations that will be

used throughout the remainder of the paper, and produce an initial list of

possible prime divisors of the discriminants of one-class spinor genera.

Let L be a Z-lattice on V and let p ∈ S. Following [10], we define a

lattice µpL on V by

µpL = L+ p−1Lp2Z.

We will see that when p2 | d(L) the mapping taking L to µpL often re-

duces the power of p occurring in the discriminant and simplifies the p-adic

structure of the lattice. Moreover, the transformation µp changes the lattice

locally only at the prime p. For the case of a primitive Z-lattice L, we record

the effect on a Jordan splitting of Lp of applying the µp-transformation.

Lemma 3.1. Let p, q ∈ S. If Lp has Jordan splitting (2.1), then

(µpL)q =

{

Lq for q 6= p

L(0) ⊥ L(1) ⊥ p−1
(

L(2) ⊥ ... ⊥ L(tp)

)

for q = p.

Proof. See [10, 3.3]. �

For a positive integer k, the notation µk
p will denote the k-fold iter-

ated application of the transformation µp. From Lemma 3.1, it follows that

µp(L) 6= L if and only if Lp has a pi-modular component for some i ≥ 2.

Hence the sequence

(3.1) {L, µpL, µ
2
pL, ...}

is eventually constant, terminating at a lattice for which the localization at

p contains at most a unimodular and p-modular component. After localiza-

tion, we obtain from (3.1) a sequence

(3.2) {Lp, (µpL)p, (µ
2
pL)p, ...}

of Zp-lattices that is eventually constant. In [10], the lattice µL is defined

to be the lattice on V whose localization at every p ∈ S is just the constant

limit of sequence (3.2). For our purposes, we will define a related lattice µ̂L

in such a way that, for any p ∈ S,

(3.3) p | d(L) if and only if p | d(µ̂L).

In order to do this, let T denote the set of prime divisors of d(L). Thus,

T = {p ∈ S : Lp is not unimodular}.
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For p ∈ T , let L̂(p) denote the last non-unimodular Zp-lattice occurring in

the sequence (3.2). Then define µ̂L to be the Z-lattice on V such that, for

p ∈ S,

(µ̂L)p =

{

L̂(p) if p ∈ T,

Lp if p ∈ S \ T.

With this definition, it can be seen that (3.3) holds, and the following im-

portant properties can be established as in [10].

Lemma 3.2. Let L and M be Z-lattices on the same underlying rational

quadratic space V . Then the following hold.

(1) If gen(M) = gen(L), then gen(µ̂M) = gen(µ̂L).

(2) If M ∼= L, then µ̂M ∼= µ̂L.

(3) If spn(M) = spn(L), then spn(µ̂M) = spn(µ̂L).

Proof. Proofs of (1) and (2) follow immediately as in the proof of [10, Lemma

3.5], and the proof of (3) follows similarly to that of (2), except replacing φ

with φΣ where φ ∈ O(V ) and Σ ∈ J ′
V , as defined in [19, §101D]. �

Lemma 3.3. Let L be a Z-lattice. Then

(1) h(µ̂L) ≤ h(L), and

(2) hs(µ̂L) ≤ hs(L).

Proof. Assertion (1) follows as in the proof of [10, Theorem 3.6], and (2)

follows similarly, as noted in [7]. �

Let L be a Z-lattice of rank n and let p ∈ S. We define the p-profile

of L to be the non-decreasing n-tuple (a1, . . . , an)p of integers in which the

integer i appears ri times, where a Jordan splitting of Lp contains a pi-

modular component of rank ri. Since the ranks and scales of the Jordan

components are invariants of the lattice, this notion is independent of the

choice of the Jordan splitting. In particular, for a Z-lattice for which

(3.4) Lp
∼= 〈a, pβb, pγc, pδd〉

where a, b, c, d ∈ Z×
p and 0 ≤ β ≤ γ ≤ δ, the p-profile of L is (0, β, γ, δ)p.

Moreover, µ̂L is defined so that the p-profile of L is minimal, but not the

all zeros tuple, at each prime p | d(L). Therefore, since µ̂L is primitive, the

possible resulting p-profiles are

(3.5)
(0, 0, 0, 1)p (0, 0, 1, 1)p (0, 1, 1, 1)p
(0, 0, 0, 2)p (0, 0, 2, 2)p (0, 2, 2, 2)p
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for any p | d(L). Starting from a Z-lattice L with localization at p given by

(3.4), repeated application of Lemma 3.1 then gives:

(µ̂L)p =















µ
δ−1
2

p (Lp) ∼= 〈a, pβ
′

b, pγ
′

c, pd〉 if δ is odd,

µ
δ
2
p (Lp) ∼= 〈a, pβ

′

b, pγ
′

c, d〉 if δ is even, and β or γ is odd,

µ
δ−2
2

p (Lp) ∼= 〈a, pβ
′′

b, pγ
′′

c, p2d〉 if β, γ and δ are even.

where β ′, γ′ ∈ {0, 1} and β ′′, γ′′ ∈ {0, 2}.

The next result will be valuable for relating information about the dis-

criminants of one-class spinor genera for quaternary lattices to those of

one-class genera.

Proposition 3.4. If L is a primitive quaternary Z-lattice, then gen(µ̂L) =

spn(µ̂L).

Proof. For any odd prime p, Lp has a Jordan splitting of the type (3.4) and so

the p-profile of µ̂L is one of those listed in (3.5). Hence (µ̂L)p contains a mod-

ular component of rank at least 2, and consequently Z×
p ⊆ θ(O+((µ̂L)p)).

When p = 2, if L2 is split by the scaling of A or H, then (µ̂L)2 will also

be split by some scaling of A or H, and hence Z×
2 ⊆ θ(O+((µ̂L)2)) by [11,

Lemma 1]. Otherwise, L2 is diagonalizable, and hence µ̂L2 has 2-profile

among (3.5). The 2-profiles which admit a ternary modular component will

give Z×
2 ⊆ θ(O+((µ̂L)2)) by [19, 93:20], and the 2-profiles which admit bi-

nary modular components will give the same result by [5, Theorem 3.14]. �

Corollary 3.5. If hs(L) = 1 then h(µ̂L) = 1.

Proof. If hs(L) = 1, it follows from Lemma 3.3 that hs(µ̂L) = 1. More-

over, from Proposition 3.4 we know that spn(µ̂L) = gen(µ̂L); consequently

h(µ̂L) = 1. �

We are now in a position to begin the process of eliminating possible dis-

criminants for one-class spinor genera by restricting the prime factors that

can occur in such discriminants. For this purpose, let Ds denote the set of

discriminants of primitive positive definite quaternary quadratic Z-lattices

whose class and spinor genus coincide but whose class and genus do not

coincide, and let Ps denote the set of prime divisors of discriminants in Ds.

Our goal will be to show that Ds = {729}, for then Theorem 1.1 will follow

from [17] as noted previously. From an examination of the discriminants of

the lattices appearing in [14], it can be seen that

P = {2, 3, 5, 7, 11, 13, 17, 23}
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is the set of all prime factors of the discriminants of primitive positive

definite quaternary quadratic Z-lattices with class number 1. It then follows

from Corollary 3.5 and (3.3) that:

Corollary 3.6. If p ∈ Ps, then p ∈ P.

Based on this, we know that

Ps ⊆ {2, 3, 5, 7, 11, 13, 17, 23}.

It will also be useful to note that if L is a primitive positive definite quater-

nary Z-lattice L with hs(L) = 1, then for any prime p 6∈ P, Lp is unimodular

and hence (2.2) holds at p.

4. Bounding prime powers using the mass formula

The remainder of the paper will be devoted to showing that Ds = {729}.

Consequently, from this point on, the term Z-lattice will always refer to a

primitive positive definite quaternary Z-lattice. Our next step will be to

obtain bounds on the positive integers n for which discriminants of the type

qn could possibly be in Ds for the primes q = 3, 5, 7. For this purpose, we

will use the Minkowski-Siegel mass formula to establish lower bounds on

the mass m(L) of a Z-lattice L for which hs(L) = 1 but h(L) > 1. For the

mass computations we follow the presentation of the mass formula given by

Conway and Sloane in [3]. In general, the mass of a Z-lattice L is given by

m(L) =

h(L)
∑

i=1

1

|O(L(i))|
,

where L(1), . . . , L(h(L)) are representatives of the distinct isometry classes

in the genus of L and O(K) denotes the orthogonal group of the lattice

K. Summing instead over representatives L(1), . . . , L(hs(L)) of the distinct

isometry classes in the spinor genus of L, we obtain the spinor mass

ms(L) =

hs(L)
∑

i=1

1

|O(L(i))|
.

From a proof analogous to that of [15, Satz 1] it can be shown that the mass

is distributed evenly over the spinor genera in the genus of any given L (cf.

[7, p. 134], [18, p. 14]), so mass satisfies

ms(L) =
m(L)

g(L)
.

For any p ∈ S, consider the splitting of Lp into its Jordan components,

Lp = L(−1) ⊥ L(0) ⊥ L(1) ⊥ L(2) ⊥ ...
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where each L(i) is pi-modular or 0. When p = 2 a component L(i) in this

splitting is called type I if n(L(i)) = s(L(i)) and type II if n(L(i)) = 2s(L(i)).

Using formula (2) from [3], specialized to the quaternary case, we have

m(L) = 2π−5 ·

4
∏

j=1

Γ

(

j

2

)

·
∏

p

2mp(L) = π−4 ·
∏

p

2mp(L),

where mp(L) is the local p-mass given by

mp(L) =
∏

−1≤i

Mp

(

L(pi)

)

·
∏

−1≤i<j

(

pi−j
)

1
2
n(i)n(j)

· 2n(I,I)−n(II).

where n(i) is the dimension of L(i). We refer to the left-hand product in

mp(L) as the diagonal product and the other product as the cross prod-

uct. The value n(I, I) counts the number of adjacent pairs, L(i) and L(i+1),

that are both of type I, and n(II) is the sum of all dimensions of type II

components in the Jordan decomposition (the n(I, I) and n(II) values are

only relevant in the case when p = 2). The components of Lp are classified

according to species given in Table 1 [3], which are determined by type and

octane value, which is a measure of the square class of the discriminant of

the component, defined formally on [3, p. 265] .

Lemma 4.1. If L is a Z-lattice with d(L) = qn for some odd prime q and

positive integer n, and Lq has 1-dimensional modular components L(i) for

i ∈ {0, k, l,m} with 0 < k < l < m, then

m(L) ≥
q

3m+l−k
2

29 · 3 · 5
· (1− q−2)2

when n is even, and

m(L) >
q

3m+l−k
2

28 · 32 · 5
· (1− q−4)

when n is odd.

Proof. We will bound the mass of L by first computing the local p-mass at

each prime p. When p = 2, we have the 2-adic splitting

L2 = L(−1) ⊥ L(0) ⊥ L(1)

where both L(−1) and L(1) are 0-dimensional, and

L(0)
∼=











〈ǫ1, ǫ2, ǫ3, ǫ4〉,

A ⊥ A ∼= H ⊥ H, or

A ⊥ H,

(4.1)

where ǫi ∈ Z×
2 . In the first case of (4.1), L(0) is free of type I. Consequently

both L(−1) and L(1) are 0-dimensional bound forms, and therefore each con-

tributes 1/2 to the diagonal product. If ǫ1 · ǫ2 · ǫ3 · ǫ4 ≡ ±1 mod 8, then
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L(0) has species 2+, otherwise L(0) has species 2−. For the cross product,

we have
∏

−1≤i<j

(

2i−j
)

1
2
n(i)n(j)

· 2n(I,I)−n(II) = 1

since there is only one component of non-zero dimension. Therefore, we

obtain

m2(L) =

{

1
4

if L(0) has species 2+
1
12

if L(0) has species 2−.
(4.2)

In the second two cases of (4.1), L(0) is free of type II, and therefore L(−1) and

L(1) are 0-dimensional free forms which only contribute 1 to the diagonal

product. When d(L(0)) ≡ 1 mod 8 then L(0) has species 4+, and when

d(L(0)) ≡ −3 mod 8 then L(0) has species 4−. For the cross product, we

get
∏

−1≤i<j

(

2i−j
)

1
2
n(i)n(j)

· 2n(I,I)−n(II) = 2−4

since there is a single component which has non-zero dimension, and n(II) =

4. Therefore, we have

m2(L) =

{

1
18

if L(0) has species 4+
1
30

if L(0) has species 4−.
(4.3)

We have exhausted all possibilities for local structure at 2. Therefore com-

bining equations (4.2) and (4.3), we can begin to bound m(L) by

m(L) ≥ π−4 ·
1

3 · 5
·
∏

p 6=2

2mp(L).(4.4)

When p = q, we are assuming that L(i) is 1-dimensional for i ∈ {0, k, l,m}

where 0 < k < l < m, and all other components are 0-dimensional. The

1-dimensional terms each have species 1 and therefore each contributes 1/2

to the diagonal product, and the 0-dimensional components all contribute

1. For the cross product, we have

∏

−1≤i<j

(

qi−j
)

1
2
n(i)n(j)

=

[

qk

q0
·
ql

q0
·
ql

qk
·
qm

q0
·
qm

qk
·
qm

ql

]

1
2

= q
3m+l−k

2 .

Therefore, combining the diagonal product and the cross product, we obtain

mq(L) =
q

3m+l−k
2

24
(4.5)

and with this we can further improve upon (4.4), obtaining

m(L) ≥ π−4 ·
q

3m+l−k
2

23 · 3 · 5
·
∏

p 6=2,q

2mp(L).(4.6)
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If p 6= 2, q, then Lp is unimodular and therefore L(0) is 4-dimensional, while

all other components of Lp are 0-dimensional. Because of this, the cross

product equals 1 for mp(L) whenever p 6= 2, q. When n is even, then d(L) is

always a quadratic residue modulo p, and therefore L(0) has genus 4+, and

mp(L) =
1

2(1− p−2)2
.

In this case we can refine the bound in (4.6) to obtain

m(L) ≥ π−4 ·
q

3m+l−k
2

23 · 3 · 5
·
∏

p 6=2,q

1

(1− p−2)2

and hence

m(L) ≥ π−4 ·
q

3m+l−k
2

23 · 3 · 5
· (1− 2−2)2 · (1− q−2)2 · ζ(2)2 =

q
3m+l−k

2

29 · 3 · 5
· (1− q−2)2

which is the inequality we wanted to reach.

On the other hand, when n is odd, the local p-mass depends on the square

class of d(L). If q is a quadratic residue modulo p then L(0) has species 4+,

otherwise it has species 4−, and thus

mp(L) =

{

1
2(1−p−2)2

when L(0) has species 4+
1

2(1−p−4)
when L(0) has species 4−.

With the additional observation that

1

(1− p−2)2
>

1

(1− p−4)
,

we can further improve the bound (4.6) on m(L) by

m(L) > π−4 ·
q

3m+l−k
2

23 · 3 · 5
·
∏

p 6=2,q

1

(1− p−4)

and thus

m(L) > π−4 ·
q

3m+l−k
2

23 · 3 · 5
· (1− 2−4) · (1− q−4) · ζ(4) =

q
3m+l−k

2

28 · 32 · 5
· (1− q−4)

which is the desired inequality. �

Using this bound on m(L) we can begin to bound the powers of certain

primes appearing in the discriminant of a lattice L having a one-class spinor

genus.

Lemma 4.2. Let L be a Z-lattice with d(L) = qn for some odd prime q and

positive integer n. If hs(L) = 1 and h(L) > 1 then Lq has 1-dimensional
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modular components L(i) for i ∈ {0, k, l,m} with 0 < k < l < m and

3m+ l − k ≤



















16 for q = 3 and n even,

17 for q = 3 and n odd,

11 for q = 5,

9 for q = 7.

Proof. Since Lp is unimodular at every prime p 6= q, it follows that Lq does

not contain any modular components of rank larger than 1, or else (2.2)

holds at every p ∈, which would mean gen(L) = spn(L) and hence h(L) = 1,

contrary to assumption. Since h(L) > 1, we may conclude that gen(L) splits

into multiple spinor genera, and since q is odd, we may say more precisely

that g(L) = 2. Since |O(L)| ≥ 2, if we can show that m(L) > 1, then we

will have shown that ms(L) > 1/2, and consequently the sum

ms(L) =

hs(L)
∑

i=1

1

|O(L(i))|

must be taken over more than one class. In other words, if m(L) > 1 then

hs(L) > 1.

From Lemma 4.1, in order to show that m(L) > 1, it suffices to have

q
3m+l−k

2

29 · 3 · 5
· (1− q−2)2 ≥ 1(4.7)

for n even, and

q
3m+l−k

2

28 · 32 · 5
· (1− q−4) > 1(4.8)

for n odd. This leads to the bounds in the statement, completing the proof.

�

5. Reducing the list of possible prime divisors

The goal of this section is to eliminate all the potential primes from Ps

except for 2 and 3. This will be done in a series of lemmas.

Lemma 5.1. Ps ⊆ {2, 3, 5, 7}

Proof. To prove this claim, we need to show that 11, 13, 17 and 23 all fail

to appear in Ps. The general strategy will be as follows. For a given p ∈

{11, 13, 17, 23} we will suppose that L is a Z-lattice for which hs(L) = 1,

h(L) > 1 and p | d(L). We know from Proposition 3.4 that h(µ̂L) = 1 and

therefore µ̂L appears in the table of 481 lattices in [14]. Moreover, from (3.3),

we know that p | d(µ̂L), so we can narrow down the possible candidates for

µ̂L. For each candidate, we will consider the associated p-profiles (k, l,m, n)p
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for µ̂L. From here, we will define L′ to be a lattice which descends to µ̂L by

one iteration of the µp-transformation, that is, µp(L
′) = µ̂L. Next, we will

examine the p-profiles of such L′, taking note that hs(L
′) = 1 and L′

q
∼= µ̂Lq

for every q 6= p. In most cases, we will see that the p-profile of L′ forces

h(L′) = 1 and hence gen(L′) = spn(L′), meaning L′ is among the lattices in

[14], which will lead to a contradiction.

Suppose first that p = 11. Then µ̂L corresponds to one of 9 lattices in [14]

having a discriminant divisible by 11. These lattices all have discriminants

of the form 2r · 3s · 11t for non-negative integers r, s, t, and 11-profiles from

among

(0, 0, 0, 1)11 (0, 0, 1, 1)11 (0, 1, 1, 1)11.

Letting L′ be a lattice for which µ11(L
′) = µ̂L, then when µ̂L has 11-profile

(0, 0, 0, 1)11, L
′ has 11-profile from among

(0, 0, 1, 2)11 (0, 0, 0, 3)11 (0, 1, 2, 2)11 (0, 0, 2, 3)11 (0, 2, 2, 3)11,

and when µ̂L has 11-profile (0, 1, 1, 1)11 then L′ has 11-profile from among

(0, 1, 1, 3)11 (0, 1, 3, 3)11 (0, 3, 3, 3)11.

In all of these cases, L′
11 contains a modular component of rank at least 2, so

we know that Z×
11 ⊆ θ(O+(L′

11)), and since L′
p
∼= µ̂L′

p for every prime p 6= 11,

we have Z×
p ⊆ θ(O+(L′

p)) for every p ∈ S. Consequently gen(L′) = spn(L′)

and hs(L
′) = 1, implying that h(L′) = 1. However, this is impossible since

it can be checked that the list of lattices in [14] doesn’t contain any lattice

admitting such an 11-profile. On the other hand, when µ̂L has 11-profile

(0, 0, 1, 1)11, there is only one lattice in [14] with such an 11-profile, and it

has the local structure

(µ̂L)11 ∼= 〈1,△11〉 ⊥ 11〈1,△11〉

where for an odd p ∈ S, △p denotes a non-square unit in Z×
p . This implies

that L′
11 will either contain a binary modular component, or will be split

by a sublattice of the form

〈1〉 ⊥ 112〈△11〉 or 〈△11〉 ⊥ 112〈1〉.

and so in any case Z×
11 ⊆ θ(O+(L′

11)). Therefore, again we have h(L′) = 1

and hs(L
′) = 1, but L′ must have 11-profile from among,

(0, 0, 3, 3)11 (0, 0, 1, 3)11 (0, 1, 2, 3)11 (0, 1, 1, 2)11 (0, 2, 3, 3)11,

and no such 11-profile appears in [14]. Thus, we may conclude that 11 6∈ Ps.
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When p = 13 the argument proceeds similarly. In this case µL must

correspond to one of only 3 lattices among those in [14] which have dis-

criminants divisible by 13. These have discriminants 13, 132 and 133, and

13-profiles

(0, 0, 0, 1)13 (0, 0, 1, 1)13 (0, 1, 1, 1)13,

respectively. Moreover, when µ̂L has 13-profile (0, 0, 1, 1)13, we have

(µ̂L)13 ∼= 〈1,△13〉 ⊥ 13〈1,△13〉.

From here the argument proceeds precisely as above, and we conclude that

13 6∈ Ps.

When p = 17 the argument is further simplified, since here d(µ̂L) is

either 17 or 173 with respective 17-profiles,

(0, 0, 0, 1)17 (0, 1, 1, 1)17,

from which we can deduce that 17 6∈ Ps.

When p = 23, d(µ̂L) is one of 3 ·23, 33 ·23, 3 ·233 or 33 ·233 with respective

23-profiles

(0, 0, 0, 1)23 (0, 1, 1, 1)23.

From here we can use precisely the argument as used above to conclude

that 23 6∈ Ps. �

Lemma 5.2. 7 6∈ Ps

Proof. Suppose that 7 ∈ Ps, and suppose that L is a Z-lattice which has

7 | d(L), hs(L) = 1 and h(L) > 1. Then µ̂L must be among the lattices

appearing in [14], which can have either odd or even discriminants. We will

consider these cases separately. The proof will proceed similarly to the proof

of Lemma 5.1, where we define L′ to be the lattice which descends to µ̂L by

one iteration of the µ7-transformation, and thus µ7(L
′) = µ̂L and L′

p
∼= µ̂Lp

for every p 6= 7.

Consider first the case that d(µ̂L) is odd. Then d(µ̂L) = 3k · 7m for

non-negative integers k and m, and possible 7-profiles

(0, 0, 0, 1)7 (0, 0, 1, 1)7 (0, 0, 0, 1)7,

where, in particular, µ̂L corresponding to the profile (0, 0, 1, 1)7 has discrim-

inant 72. When µ̂L has 7-profile (0, 0, 0, 1)7, L
′ has 7-profile from among

(0, 0, 1, 2)7 (0, 0, 0, 3)7 (0, 1, 2, 2)7 (0, 0, 2, 3)7 (0, 2, 2, 3)7,

and when µ̂L has 7-profile (0, 1, 1, 1)7, L
′ has 7-profile from among

(0, 1, 1, 3)7 (0, 1, 3, 3)7 (0, 3, 3, 3)7.
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But in all of these cases L′
7 contains a modular component of rank at least

2, which means that h(L′) = 1 and hs(L
′) = 1, leading to a contradiction,

since no lattices among the list in [14] admit such 7-profiles. On the other

hand, when µ̂L has 7-profile (0, 0, 1, 1)7, L
′ has 7-profile from among

(0, 0, 3, 3)7 (0, 0, 1, 3)7 (0, 2, 3, 3)7 (0, 1, 2, 3)7 (0, 1, 1, 2)7.

The first three of these can be immediately ruled out since they imply

h(L′) = 1, but no lattices among those in [14] admit such 7-profiles. When L′

has 7-profile (0, 1, 2, 3)7 we know that d(µ7(L
′)) = 72 and hence d(L′) = 76;

therefore we may conclude from Lemma 4.2 that hs(L
′) > 1, since 3(3) +

2 − 1 > 9. But hs(L
′) ≤ hs(L) = 1, so this leads to a contradiction. If L′

has 7-profile (0, 1, 1, 2)7, then h(L′) = 1, and L′ corresponds to the unique

lattice in [14] with such a 7-profile, which has d(L′) = 74. In this case we

define L′′ to be the lattice which descends to L′ by one iteration of the

µ7-transformation. Then d(L′′) must be a power of 7, and L′′ must have a

7-profile from among

(0, 1, 1, 4)7 (0, 3, 3, 4)7 (0, 1, 3, 4)7.

The first two cases can be immediately ruled out since they contain a binary

modular component but do not appear in [14], and the third case can be

ruled out by Lemma 4.2 since 3(4) + 3− 1 > 9.

Now consider the case that d(µ̂L) is even. Then d(µ̂L) = 2k · 7m for

non-negative integers k and m, and possible 7-profiles

(0, 0, 0, 1)7 (0, 0, 1, 1)7 (0, 1, 1, 1)7.

By the same argument used in the odd case, we can immediately rule out 7-

profiles (0, 0, 0, 1)7 and (0, 1, 1, 1)7. Suppose that µ̂L has 7-profile (0, 0, 1, 1)7.

There is a unique lattice among the lattices in [14] with 7-profile (0, 0, 1, 1)7

and even discriminant; this lattice has 2-adic structure

(µ̂L)2 ∼= A ⊥ 22A.

Now L′ must have 7-profile from among

(0, 1, 1, 2)7 (0, 0, 1, 3)7 (0, 0, 3, 3)7 (0, 2, 3, 3)7 (0, 1, 2, 3)7

the first four of which can be immediately ruled out since [14] does not

contain any lattices with even discriminant divisible by 7 admitting such a

7-profile. On the other hand, when L′ has 7-profile (0, 1, 2, 3)7, we will use

the mass formula to show that hs(L
′) > 1. Since L′

2
∼= (µ̂L)2 we have

m2(L
′) = m2(µ̂L) =

1

3
·
1

3
·

(

22

20

)
1
2
·2·2

· 2−4 =
1

32
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and since d(L′) = 24 · 76, we have

m(L′) = π−4 · 2 ·m2(L
′) · 2 ·m7(L

′) · (1− 2−2)2 · (1− 7−2)2 · ζ(2)2 = 7 > 1.

Since m(L′) > 1 it follows that ms(L
′) > 1/2 and hence hs(L

′) > 1, leading

to a contradiction. �

Lemma 5.3. 5 6∈ Ps.

Proof. Suppose that L is a Z-lattice with 5 | d(L), hs(L) = 1 and h(L) > 1.

Then 5 | d(µ̂L) and µ̂L must be from among the lattices in [14]. But among

the lattices in [14], all discriminants divisible by 5 are of the form 2r · 3s · 5t

where r, s are non-negative integers, and t > 0. Moreover, we know that the

5-profile of µ̂L must be from among

(0, 0, 0, 1)5 (0, 0, 1, 1)5 (0, 1, 1, 1)5.

When µ̂L has 5-profile (0, 0, 0, 1)5, L
′ has 5-profile from among

(0, 0, 1, 2)5 (0, 0, 0, 3)5 (0, 1, 2, 2)5 (0, 0, 2, 3)5 (0, 2, 2, 3)5,

and when µ̂L has 5-profile (0, 1, 1, 1)5, L
′ has 5-profile from among

(0, 1, 1, 3)5 (0, 1, 3, 3)5 (0, 3, 3, 3)5.

We can immediately rule out all possible 5-profiles for L′ except for (0, 0, 1, 2)5

and (0, 1, 2, 2)5 since they correspond to L′ with h(L′) = 1, but no lattices

in [14] admit such 5-profiles. If L′ has 5-profile (0, 0, 1, 2)5, then h(L′) = 1

and hence L′ must be one of two lattices in [14] with this profile, both of

which have discriminant d(L′) = 53. If we define L′′ to be the lattice that

descends to L′ by one iteration of the µ5-transformation, then µ5(L
′′) = L′

and L′′
p
∼= L′

p
∼= (µ̂L)p for every prime p 6= 5. Consequently, d(L′′) is a power

of 5, and L′′ has a 5-profile from among

(0, 0, 1, 4)5 (0, 0, 3, 4)5 (0, 1, 2, 4)5 (0, 2, 3, 4)5

and hence by Lemma 4.2 in all of these cases hs(L
′′) > 1. Similarly, when L′

has 5-profile (0, 1, 2, 2)5 then we know that h(L′) = 1 and again L′ must be

one of two lattices in [14] with this 5-profile, both of which have d(L′) = 55.

Hence, d(L′′) is a power of 5, and L′′ has a 5-profile from among

(0, 1, 4, 4)5 (0, 3, 4, 4)5

so again it follows from Lemma 4.2 and hs(L
′′) > 1.

Suppose that µ̂L has 5-profile (0, 0, 1, 1)5. Then d(µ̂L) = 52 or 22 ·52, and

µ̂L is one of 4 possible lattices in [14] which have m2(µ̂L) equal to 1/4, 1/8



ONE-CLASS SPINOR GENERA 19

or 1/36 (computed using Sagemath [23]). If we define L′ as in the previous

paragraph, then L′ has a 5-profile from among

(0, 0, 3, 3)5 (0, 0, 1, 3)5 (0, 2, 3, 3)5 (0, 1, 2, 3)5 (0, 1, 1, 2)5.

and in the usual way the first three of these 5-profiles can be eliminated.

When L′ has 5-profile (0, 1, 2, 3)5, then

m2(L
′) = m2(µ̂L)

and

m5(L
′) =

5
3(3)+2−1

2

24
=

55

24

and hence

m(L′) = π−4·2·m2(L
′)·2·m5(L

′)·(1−2−2)2·(1−5−2)2·ζ(2)2 = m2(µ̂L)·
32 · 5

22
.

But for any possible choice of m2(µ̂L), it follows that ms(L
′) = m(L′)/g(L′)

is not of the form 1/ | O(L′) |, and hence hs(L
′) > 1. When L′ has 5-profile

(0, 1, 1, 2)5, then h(L′) = 1, so we define L′′ to be the lattice which descends

to L′ by one iteration of the µ5-transformation. Then L′′ has 5-profile from

among

(0, 1, 1, 4)5 (0, 3, 3, 4)5 (0, 1, 3, 4)5

and again we can immediately rule out the first two 5-profiles by the usual

method. When L′′ has 5-profile (0, 1, 3, 4)5, thenm2(L
′′) = m2(L

′) = m2(µ̂L) ≥

1/36, and

m5(L
′′) =

5
3(4)+3−1

2

24
=

57

24
.

Hence

m(L′′) = π−4 · 2 ·m2(L
′′) · 2 ·m5(L

′′) · (1− 2−2)2 · (1− 5−2)2 · ζ(2)2 ≥
53

24
.

Since m(L′′) > 1 we may conclude that ms(L
′′) > 1/2 and hence hs(L

′′) >

1. �

6. Completion of proof

The list of possible primes in Ps has now been reduced to 2 and 3. In

this section, the proof of Theorem 1.1 will be completed in two lemmas,

the first dealing with possible discriminants of the type 2n and the second

dealing with remaining discriminants of the type 2k · 3ℓ.

In the proof of the following lemma we will make use of results on the

computation of the 2-adic spinor norm groups from [5]. We remind the

reader that in the terminology of that paper, a Z2-lattice M is said to have

even order if Q(P (M)) ⊆ Z×
2 Q

×
2
2
and odd order if Q(P (M)) ⊆ 2Z×

2 Q
×
2
2
,
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where P (M) denotes the set of all primitive anisotropic vectors whose asso-

ciated symmetries are in O(M). A unary modular component, 2m〈ǫ〉 where

ǫ ∈ Z×
2 , has odd or even order according to the parity of m. Recall also

that from [5, Proposition 3.2], a binary unimodular Z2-lattice M has even

order if and only if M ∼= 〈A(1, 0)〉 or 〈A(1, 4ǫ)〉 and M has odd order if and

only if M ∼= 〈A(0, 0)〉 or 〈A(2, 2ǫ)〉 where ǫ ∈ Z×
2 . It follows that any binary

unimodular Z2-lattices which is neither odd nor even is isometric to one of

the following:

〈1, 1〉, 〈3, 3〉, 〈3, 7〉 or 〈1, 5〉.(6.1)

We refer the reader to [6, p. 531] for the definition of type E, particularly

noting that when a Z2-lattice is of type E, its spinor norm group contains

the full group of units.

Lemma 6.1. There are no powers of 2 appearing in Ds.

Proof. Suppose that L is a Z-lattice with d(L) = 2n for some n > 0, and

suppose that hs(L) = 1 while h(L) > 1. Then Lp is unimodular and thus

(2.2) holds for every odd p ∈ S. Hence, we may conclude that L2 does

not contain any improper modular components or modular components of

dimension 3 or 4, since otherwise gen(L) = spn(L) and thus h(L) = 1.

Therefore, L must have a 2-adic splitting

L2
∼= 〈ǫ1〉 ⊥ 2k〈ǫ2〉 ⊥ 2l〈ǫ3〉 ⊥ 2m〈ǫ4〉

where ǫi ∈ Z×
2 , and 0 ≤ k ≤ l ≤ m. In the remainder of the proof, we

consider the various possible cases for k, l and m.

Case I: k = 0 and l = m. So L2 has two binary modular components,

N ∼= 〈ǫ1, ǫ2〉 and M ∼= 2m〈ǫ3, ǫ4〉,

where m > 0. According to [5, Theorem 3.14], if M and N both have odd

order, both have even order, or one of each, then (2.2) holds for p = 2 by [5,

Theorem 3.14 (i) and (ii)], and hence gen(L) = spn(L), implying h(L) = 1.

Therefore we may suppose that one of M or N must be from among the

lattices in (6.1). If the other lattice has odd or even order, then (2.2) holds

for p = 2 by [5, Theorem 3.14 (iii)]. Therefore we may suppose that both

M and N have neither odd nor even order. Therefore, M ∼= 〈ǫ1, ǫ2〉 and

N ∼= 〈ǫ3, ǫ4〉 where ǫi ∈ Z×
2 . If M 6∼= N or if m < 4, then (2.2) holds for

p = 2 by [5, Theorem 3.14 (iv)]. Thus, in order to simultaneously have

hs(L) = 1 and h(L) > 1, we may assume that M ∼= N is from among the

binary forms in (6.1) and m ≥ 4. In that case, the mass of the genus is given
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by

m(L) = π−4 · 2 ·m2(L) ·
∏

p 6=2

2mp(L).

Since

L2
∼= L(−1) ⊥ L(0) ⊥(1)⊥ ... ⊥ L(m−1) ⊥ L(m) ⊥ L(m+1),

each L(i) contributes 1/2 to the diagonal product for i ∈ {−1, 1, m− 1, m+

1}. Moreover, since L(0) and L(m) are both 2-dimensional free type I forms

with octane value ±2, they have species 1 and therefore each contribute 1/2

to the diagonal product. Therefore,

m2(L) =

(

1

2

)6

·

(

2m

20

)
1
2
·2·2

· 20−0 = 22m−6

and since d(L2) = 22m ∈ Q×2
we have

m(L) = π−4 · 22m−5 · (1− 2−2)2 · ζ(2)2 = 22m−11

Since g(L) = 2 or 4, it follows that ms(L) = m(L)/g(L) > 1/2 for any

m ≥ 7, and thusms(L) is not of the form 1/ |O(L)|, implying that hs(L) > 1.

On the other hand, when m = 4, 5 or 6 the algorithm from §7.1) can be

used to determine all possible genera for lattices with 2-profile (0, 0, m,m)2.

When m = 4, the algorithm produces 4 genera with 2-profile (0, 0, 4, 4)2 and

2-adic structure M ⊥ 24M , with representative lattices

L1
∼=









2 0 1 −2
0 2 1 −2
1 1 5 −2
−2 −2 −2 20









L2
∼=









1 0 0 0
0 4 2 4
0 2 5 2
0 4 2 20









L3
∼=









8 0 2 4
0 2 −1 0
2 −1 3 1
4 0 1 10









L4
∼=









3 0 0 −1
0 12 −2 6
0 −2 3 −1
−1 6 −1 6









.

Checking the structure of each gen(Li) in Magma we see that only gen(L1)

splits into multiple spinor genera, both containing multiple classes, and for

the remaining cases gen(Li) = spn(Li). When m = 5, there are only 3

possible genera with profile (0, 0, 5, 5)2 and 2-adic structure M ⊥ 25M , and

they have representative lattices

L1
∼=









3 1 −1 −1
1 4 −2 −2
−1 −2 4 4
−1 −2 4 36









L2
∼=









2 0 −1 −2
0 2 1 −2
−1 1 9 0
−2 −2 0 36
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L3
∼=









3 −2 0 0
−2 12 0 0
0 0 3 1
0 0 1 11









.

Of these genera, gen(L1) = spn(L1), while gen(L2) and gen(L3) split into

multiple spinor genera, each containing several classes. When m = 6, there

are 4 possible genera with 2-profile (0, 0, 6, 6)2 and 2-adic structure M ⊥

26M , with representative lattices

L1
∼=









4 −2 0 0
−2 5 −2 0
0 −2 5 0
0 0 0 64









L2
∼=









2 0 1 −2
0 8 2 4
1 2 9 0
−2 4 0 36









L3
∼=









2 −1 0 0
−1 6 1 0
0 1 6 0
0 0 0 64









L4
∼=









6 0 1 6
0 6 3 2
1 3 7 2
6 2 2 28









Again, a check of these genera in Magma reveals that gen(L1) = spn(L1)

and gen(L3) = spn(L3), while the remaining genera split into two spinor

genera, each containing several classes.

Case II: k = 0 and 0 < l < m. So

L2
∼= 〈ǫ1, ǫ2〉 ⊥ 2l〈ǫ3〉 ⊥ 2m〈ǫ4〉.

The unary components are either odd or even according to the parity of l

and m. If the binary component is either odd or even, then in any case (2.2)

holds for p = 2 by [5, Theorem 3.14 (i) and (ii)]. Therefore we may suppose

that the binary component is neither odd nor even, and hence is one of the

lattices in (6.1). If l < 4 or if m − l < 4 then (2.2) holds for p = 2 by [5,

Theorem 3.14 (iv)]. Therefore we may assume that l ≥ 4 and k ≥ 8. Now

we will compute the mass m(L). To compute the diagonal product, we have

a decomposition

L2
∼= L(−1) ⊥ L(0) ⊥(1)⊥ ... ⊥ L(l−1) ⊥ L(l) ⊥ L(l+1) ⊥ ...

... ⊥ L(m−1) ⊥ L(m) ⊥ L(m+1),

where each of the 0-dimensional forms is bound since it is adjacent to a form

of type I, and therefore each L(i) contributes 1/2 to the diagonal product

for i ∈ {−1, 1, l−1, l+1, m−1, m+1}. Moreover, the binary part is free of

type I with octane value ±2, and therefore has species 1, and the two unary

parts are free of type 1 with octane value ±1 and therefore have species 0+.
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Therefore, computing the local mass we have

m2(L) =

(

1

2

)7

· (2m−l)
1
2
·1·1 · (2m)

1
2
·2·1 · (2l)

1
2
·2·1 = 2

3m+2l−14
2 ≥ 29,

and hence

m(L) > π−4 · 210 · (1− 2−4) · ζ(4) =
25

3
.

But since g(L) = 2 or 4, this implies that ms(L) = h(L)/g(L) > 1/2, and

therefore we may conclude that hs(L) > 1.

Case III: 0 < k and either k = l or l = m. So

L2
∼=

{

〈ǫ1〉 ⊥ 2k〈ǫ2, ǫ3〉 ⊥ 2m〈ǫ4〉 when k = l

〈ǫ1〉 ⊥ 2k〈ǫ2〉 ⊥ 2m〈ǫ3, ǫ4〉 when l = m.

In either case, by the argument in the preceding case, we may suppose that

the binary component is neither odd nor even, and we may further assume

that k ≤ 4 and m ≤ 8. Therefore,

m2(L) =

{

2
3m−14

2 when k = l

2
4m+k−14

2 when l = m

and

m(L) > π−4 · 2 ·m2(L) · (1− 2−4) · ζ(4) =
m2(L)

24 · 3
and hence m(L) > 2 in all but the exceptional case when k = l = 4 and

m = 8. In this exceptional case, we have

L2
∼= 〈ǫ1〉 ⊥ 24〈ǫ2, ǫ3〉 ⊥ 28〈ǫ4〉.

This means

(µ2L)2
∼= 〈ǫ1〉 ⊥ 22〈ǫ2, ǫ3〉 ⊥ 26〈ǫ4〉.

Then µ2L has class number 1 by [5, Theorem 3.14], and consequently must

correspond to a lattice in [14] with 2-profile (0, 2, 2, 6)2. There is only one

such lattice in [14] and it has the local 2-adic splitting

〈3〉 ⊥ 22〈3, 7〉 ⊥ 26〈7〉,

and hence

L2
∼= 〈3〉 ⊥ 24〈3, 7〉 ⊥ 28〈7〉.

From here we may conclude from [5, Theorem 3.14] that

θ(O+(L2)) = {c ∈ Q×
2 : (c,−5) = 1} = {1, 5, 6, 14}Q×

2
2
.

Now we can use the formula given in [19, 102:7] to count the number of

proper spinor genera in the genus of L2, namely,

g+(L) =

[

JQ : Q×
∏

p

θ(O+(Lp))

]

,
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where JQ denotes the group of rational idèles. For an arbitrary element x =

(x2, x3, x5, ...) ∈ JQ, we will show that x is in Q×
∏

p θ(O
+(Lp)). Multiplying

x by a suitably chosen scalar a, we know that axp is a unit at every p ∈ S.

If ax2 is either 1 or 5, then ax ∈ Q×
∏

p θ(O
+(Lp)). On the other hand,

if ax2 is either 3 or 7, then 2ax ∈ Q×
∏

p θ(O
+(Lp)). Therefore, we may

conclude that there is only one proper spinor genus in the genus of L, and

since g(L) ≤ g+(L), we conclude that g(L) = 1, and consequently hs(L) = 1

implies h(L) = 1 for such a form.

Case IV: 0 < k < l < m. So

L2
∼= 〈ǫ1〉 ⊥ 2k〈ǫ2〉 ⊥ 2l〈ǫ3〉 ⊥ 2m〈ǫ4〉

where ǫi ∈ Z×
2 ; we will consider the cases when k is odd or even separately.

First, we suppose that k is even, so k = 2k′ for some natural number k′,

and define L′ = µk′

2 (L). Then,

L′
2
∼= 〈ǫ1, ǫ2〉 ⊥ 2l−k〈ǫ3〉 ⊥ 2m−k〈ǫ4〉,

where 〈ǫ1, ǫ2〉 is a proper binary modular component. If l − k = 1, then L′

has 2-profile (0, 0, 1, m − k)2, hence (2.2) holds for p = 2 by [5, Theorem

3.14], implying that h(L′) = 1. Therefore L′ is among the lattices in [14],

and must have a 2-profile from among

(0, 0, 1, 2)2 (0, 0, 1, 3)2 (0, 0, 1, 4)2,

all of which in turn would make L of type E, meaning that h(L) = 1. On

the other hand, if l−k = 2, then L′ has 2-profile (0, 0, 2, m−k)2, and again

h(L′) = 1 by [5, Theorem 3.14]. Therefore L′ is among the lattices in [14],

and must have a profile from among

(0, 0, 2, 3)2 (0, 0, 2, 5)2 (0, 0, 2, 4)2.

For the first two 2-profiles this once again forces L2 to be of type E, implying

h(L) = 1. On the other hand, when L′ has 2-profile (0, 0, 2, 4)2, it is possible

that L′ lifts either to a lattice with 2-profile (0, 2, 4, 6)2 or to a lattice with

2-profile (0, 0, 4, 6)2. Using the algorithm from §7.1, we generate all possible

genera bearing such 2-profiles, and a check in Magma reveals that all of the

associated spinor genera split into multiple classes. Therefore in this case,

we are assured that hs(L
′) > 1. Cases where l − k ≥ 3 can be reduced to

one of these two cases above by repeated applications of µ2 to L′.

Suppose that k is odd, so k = 2k′ + 1 for some natural number k′, and

as above, define L′ = µk′

2 (L). Then,

L′
2
∼= 〈ǫ1〉 ⊥ 2〈ǫ2〉 ⊥ 2l−k+1〈ǫ3〉 ⊥ 2m−k+1〈ǫ4〉.
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Now we will consider the possibility that l − k is either odd or even. If

l − k is odd, then l − k + 1 = 2ℓ′ for some natural number ℓ′, and letting

L′′ = µℓ′−1
2 (L′), we have

L′′
2
∼= 〈ǫ1〉 ⊥ 2〈ǫ2〉 ⊥ 22〈ǫ3〉 ⊥ 2m−l+2〈ǫ4〉.

But then L′′
2 is of type E and hence h(L′) = 1 and has 2-profile (0, 1, 2, m−

l + 2)2 where m− l + 2 > 2. As no such profile exists among the lattices in

[14], this case cannot occur. On the other hand, suppose that l− k is even,

so l− k = 2ℓ′ for some natural number ℓ′, and define L′′ = µℓ′−1
2 (L′). Then,

L′
2
∼= 〈ǫ1〉 ⊥ 2〈ǫ2〉 ⊥ 22ℓ

′+1〈ǫ3〉 ⊥ 2m−k〈ǫ4〉,

and hence

L′′
2
∼= 〈ǫ1〉 ⊥ 2〈ǫ2〉 ⊥ 23〈ǫ3〉 ⊥ 2m−l+3〈ǫ4〉.

which is always of type E, and hence L′′ has class number 1 and 2-profile

(0, 1, 3, m− l+3)2 where m− l+3 > 3, but no such lattice exists in [14]. �

Lemma 6.2. Only 36 ∈ Ds.

Proof. Suppose that L is a Z-lattice with hs(L) = 1 and h(L) > 1 for which

3 | d(L). Then in view of the previous lemmas we know that d(L) = 2k · 3m

where k is a non-negative integer andm is a positive integer. By Proposition

3.4 we know that h(µ̂L) = 1, and consequently µ̂L appears among the

lattices in [14], and must thus have one of the following 3-profile types:

(0, 0, 0, 1)3 (0, 0, 1, 1)3 (0, 1, 1, 1)3 (0, 0, 0, 2)3 (0, 0, 2, 2)3 (0, 2, 2, 2)3.

From the proof of Proposition 3.4, we know that Z×
p ⊆ θ(O+((µ̂L)p)) at

every p ∈ S. Define L′ to be the lattice for which µ3(L
′) = µ̂L. Then

L′
p
∼= (µ̂L)p at every prime p 6= 3, and L′ must have 3-profile from among

(0, 0, 0, 3)3 ∗(0, 0, 1, 3)3 (0, 1, 1, 3)3 (0, 0, 0, 4)3 (0, 0, 4, 4)3 (0, 4, 4, 4)3
∗(0, 0, 1, 2)3 ∗(0, 1, 1, 2)3 (0, 1, 3, 3)3 (0, 0, 2, 4)3 (0, 2, 4, 4)3 ∗(0, 1, 2, 2)3
∗(0, 1, 2, 3)3 (0, 3, 3, 3)3 (0, 2, 2, 4)3 (0, 0, 2, 3)3 ∗(0, 2, 3, 3)3 (0, 2, 2, 3)3
(0, 0, 3, 3)3.

We can immediately rule out all but the starred cases, since these profiles

would have to correspond to an L′ with h(L′) = 1, but no such profiles

appear among the lattices in [14]. Suppose that L′ has one of the starred

3-profiles above. Then L′ has h(L′) = 1 (except in certain exceptional cases

corresponding to (0, 1, 2, 3)3) and hs(L
′) = 1. In these cases, we define L′′ to

be the lattice for which µ3(L
′′) = L′. Here we observe again that for every

prime p 6= 3 we have L′′
p
∼= L′

p
∼= µ̂Lp. Then L′′ has a 3-profile coming from
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among

(0, 0, 1, 4)3 (0, 1, 4, 4)3 (0, 0, 1, 5)3 (0, 1, 1, 4)3 ∗(0, 1, 4, 5)3 (0, 4, 5, 5)3
(0, 0, 3, 4)3 (0, 3, 4, 4)3 (0, 0, 3, 5)3 ∗(0, 1, 3, 4)3 ∗(0, 3, 4, 5)3 ∗(0, 2, 3, 4)3
∗(0, 1, 2, 5)3 (0, 3, 3, 4)3 ∗(0, 2, 1, 4)3 ∗(0, 2, 3, 5)3.

Once again, all but the starred cases correspond to profiles that would force

h(L′′) = 1, but no such 3-profiles appear in [14], so these can be immediately

eliminated. The remaining profiles (including (0, 1, 2, 3)3) will be dealt with

case by case.

First, suppose that L′′ has 3-profile (0, 2, 3, 4)3 or (0, 1, 2, 4)3. In this case

µ3(L
′′) = L′ has 3-profile (0, 0, 1, 2)3, and therefore L′ is in [14]. By searching

among the lattices in [14] with 3-profile (0, 0, 1, 2)3 we find, using Sagemath,

that any such lattice has m2(L
′) = 1/6. Consequently, m2(L

′′) = m2(L) =

1/6. From here, we can compute upper and lower bounds for the mass for

L′′. Since
1

(1− p−4)
<

1

(1− p−2)2

and

m3(L
′′) =

3
13
2

24

we can underestimate m(L′′) by

m−(L′′) = π−4 · 2 ·
1

6
· 2 ·

3
13
2

24
· (1− 2−4) · (1− 3−4) · ζ(4) =

31/2 · 5

24
≈ 0.5412

and overestimate m(L′′) by

m+(L′′) = π−4 · 2 ·
1

6
· 2 ·

3
13
2

24
· (1− 2−2)2 · (1− 3−2)2 · ζ(2)2 =

33/2

23
≈ 0.6495

where m−(L′′) < m(L′′) < m+(L′′). But since g(L′′) = 2, and ms(L
′′) =

m(L′′)/g(L′′) this means that

0.2707 < ms(L
′′) < 0.3248.

Consequently, ms(L
′′) is not of the form 1/ | O(L′′) |, and therefore hs(L

′′) >

1.

Next, suppose that L′′ has 3-profile (0, 1, 2, 5)3 or (0, 2, 3, 5)3. Again,

we know that h(L′′) > 1 since no such profiles appear in [14]. On other

other hand, we know that µ3(L
′′) = L′ does appear in [14], and so by

searching among the lattices in [14], and using Sagemath, we determine

that m2(L
′′) = m2(L) = 1/6 or 1/18. Since

m3(L
′′) =

38

24
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for either profile, we obtain

m(L′′) = π−4 · 2 ·m2(L
′′) · 2 ·

38

24
· (1− 2−2)2 · (1− 3−2)2 · ζ(2)2 = m2(L

′′) ·
34

24
.

Since m2(L
′) = m2(L

′′), this implies

ms(L
′′) =

m(L′′)

g(L′′)
= m2(L

′) ·
34

25
,

but this will always have at least one power of 3 in the numerator, and

hence is not of the form 1/ | O(L′′) |. Therefore, we may conclude that

hs(L
′′) > 1. The cases when L′′ has 3-profiles (0, 1, 3, 4)3, (0, 1, 4, 5)3 and

(0, 3, 4, 5)3 follow similarly, except in these cases

m(L′′) = m2(L
′) ·











33

4
for 3-profile (0, 1, 3, 4)3

35

4
for 3-profile (0, 1, 4, 5)3

34

4
for 3-profile (0, 3, 4, 5)3,

where the possibilities for m2(L
′) = m2(L

′′) are

1

22 · 32
,

1

2 · 32
,

1

22 · 3
,

1

32
,

1

22
,
1

3
or 1.

But again, in every case ms(L
′′) is left with a 3 in the numerator, and hence

is not of the form 1/ | O(L′′) |.

Finally, we deal with the case where L′ has 3-profile (0, 1, 2, 3)3. From

[18], we know that there are 33 isometry classes of lattices with discriminant

36, and of these, only 6 have 3-profile (0, 1, 2, 3)3, namely,

L1
∼=









2 0 0 1
0 6 3 0
0 3 6 0
1 0 0 14









L2
∼=









2 1 0 0
1 2 0 0
0 0 18 9
0 0 9 18









L3
∼=









6 3 3 3
3 6 0 3
3 0 8 4
3 3 4 8









where L1, L2 and L3 are the representative classes for a single genus, and

M1
∼=









4 1 1 2
1 4 1 2
1 1 4 −1
2 2 −1 16









M2
∼=









4 2 1 1
2 4 −1 2
1 −1 10 4
1 2 4 10









M3
∼=









2 1 1 1
1 8 −1 2
1 −1 8 2
1 2 2 8









,

whereM1,M2 andM3 are representatives for three distinct genera, each with

class number 1. Here L1 corresponds to the quadratic form (1.1) and gen(L1)

splits into two spinor genera, namely spn(L1) and spn(L2) = spn(L3), and

hs(L1) = 1 while hs(L2) = hs(L3) = 2. Consequently, any lattice L which

descends to L2 or L3 by a series of µp-transformations will already have
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hs(L) > 1. On the other hand, it is still possible to have a lattice L descend

to L1,M1,M2 or M3 by a series of µp-transformations, which has spinor

class number 1. If L descends by µ3, then this would imply that there is a

lattice with spinor class number 1 and 3-profile

(0, 3, 3, 4)3 (0, 1, 4, 5)3 (0, 3, 4, 5)3.

All of these would lead to a contradiction, since (0, 3, 3, 4)3 would have class

number 1 but does not appear in [14], and (0, 1, 3, 5)3 and (0, 3, 4, 5)3 have

already been ruled out in the preceding paragraphs using the mass formula.

Therefore, the only possibility is that L descends to one of L1,M1,M2 or

M3 by a series of µ2-transformations. If we can show that there is no lattice

with spinor class number 1 and discriminant 2k · 36 for k = 2, 4, 6, then

we are done. Using the list of 33 isometry classes with discriminant 36 to

seed the algorithm in §7.1, we can generate all possible isometry classes

of lattices with discriminants 2k · 36 for k = 2, 4, 6. Generating this list in

Magma, we obtain 18 genera, 63 genera, and 135 genera corresponding to

discriminants 22 ·36, 24 ·36 and 26 ·36, respectively. Narrowing this list down

to only the genera which admit 3-profile (0, 1, 2, 3)3, there are 8 genera, 28

genera, and 60 genera corresponding to discriminants 22 · 36, 24 · 36 and

26 · 36, respectively. Among these, there is only one genus which has class

number 1 and is therefore in [14], namely,

K1
∼=









4 2 −1 0
2 10 4 0
−1 4 10 3
0 0 3 12









.

which has local 2-adic structure H ⊥ 2〈1, 7〉. Consequently any lattice which

descends to K1 by a µ2-transformation must have 2-profile (0, 0, 3, 3)2, but

we already know from the algorithm that all lattices of discriminant 26 · 36

have spinor class number greater than 1. �

The proof of Theorem 1.1 now follows by combining the above results

and the fact that Nipp’s tables [18] explicitly cover the discriminant 729.

7. Appendices

7.1. Sagemath and Magma computations. Computations done in Sage-

math were standard lattice computations using the built in functionality of

Sagemath, for example for the computation of local splittings. However, at

several points in the proofs of Lemmas 6.1 and 6.2 we needed to generate rep-

resentatives of all isometry classes of Z-lattices of a given discriminant. As

this is not a standard capability of the available software, it was necessary to



ONE-CLASS SPINOR GENERA 29

develop a method for doing this in cases encountered there. For this purpose,

we produced an algorithm based on [8, Lemma 3], which adapts a method

used by Pall [20], that, in conjunction with some of the built-in functional-

ity in Magma for testing local and global isometry, can be used to generate

representatives of the isometry classes of lattices of discriminant D = D′p2

from those of discriminant D′, where p ∈ S. The code described in what

follows is available at http://github.com/annahaensch/SpinorClass1

The algorithm is seeded with a list of representatives of the isometry

classes of lattices of discriminant D′ given in Nipp’s table [18]. In order to

cross-reference between the language of quadratic lattices, which we have

chosen to use here, and the classical language of quadratic forms adopted

by Nipp, we need to specify our conventions regarding the correspondence

between forms and lattices. First associate to a primitive quadratic form

f =
∑

1≤i<j≤4 fijxixj with fij ∈ Z the matrix F of second partial derivatives

of f ; so disc(f)=det(F ). If fij is odd for at least one i 6= j, then the Z-

lattice Lf with Lf
∼= F is a primitive lattice with n(L) = 2s(L) = 2Z

and d(Lf ) = disc(f). If fij is even for all i 6= j, then the Z-lattice Lf with

Lf
∼= 1

2
F is a primitive lattice with n(L) = s(L) = Z and 16d(Lf ) = disc(f).

The algorithm is explicitly codified in the Github repository for the case

when p = 2, but it can be done similarly when p = 3. For the sake of illus-

tration, we begin with a discriminant D′ = 16 and seed the algorithm with

the set of matrices, Amatrices, associated to the two distinct equivalence

classes of forms of discriminant 16 (cf. [18, p. 23]), and the set of 15 gener-

ating matrices, Pmatrices, as described in [8, Lemma 3]. In general, on the

kth iteration, the algorithm will generate a list of quaternary lattice genera

with associated discriminant 22k ·D′. On all but the last iteration it will also

generate a list of class representatives. Since this becomes a costly calcu-

lation as the discriminant increases, it is omitted from the last step. After

running to completion, Genera will be a list of lists, wherein Genera[k] is a

complete list of quaternary lattice genera with, in this instance, discriminant

22k+4, without redundancy.

7.2. Table of ternary one-class spinor genera. For the sake of com-

pleteness, we provide in Table 1 a list of representatives of all one-class

spinor genera of ternary forms which are not in one-class genera, along

with their discriminants. These forms are by necessity spinor regular, and

in some cases are also regular. The starred forms in the table are those

which are regular. The sextuple [a, b, c, d, e, g] corresponds to the ternary

http://github.com/annahaensch/SpinorClass1
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form f(x, y, z) = ax2 + by2 + cz2 + dyz + exz + gxy and the discriminant

given is disc(f).

*54: [1, 1, 9, 0, 0, 1 ] *2592: [3, 4, 28, 4, 0, 0 ]
*54: [1, 3, 3, 3, 0, 0 ] 2744: [7, 8, 9, 6, 7, 0 ]
*128: [1, 1, 16, 0, 0, 0 ] *3456: [1, 12, 36, 0, 0, 0 ]
128: [2, 2, 5, 2, 2, 0 ] 3456: [4, 9, 12, 0, 0, 0 ]
*162: [1, 3, 7, 0, 1, 0 ] *4096: [1, 8, 64, 0, 0, 0 ]

*216: [1, 1, 36, 0, 0, 1 ] 4096: [4, 8, 17, 0, 4, 0 ]
*216: [1, 3, 10, 3, 1, 0 ] 7776: [4, 9, 28, 0, 4, 0 ]
216: [3, 3, 4, 0, 0, 3 ] 8192: [4, 9, 32, 0, 0, 4 ]
216: [3, 4, 4, 4, 3, 3 ] 8192: [5, 13, 16, 0, 0, 2 ]
256: [1, 4, 9, 4, 0, 0 ] 8192: [9, 9, 16, 8, 8, 2 ]

*486: [1, 7, 9, 0, 0, 1 ] 10976: [8, 9, 25, 2, 4, 8 ]
*512: [1, 4, 16, 0, 0, 0 ] *13824: [1, 48, 48, 48, 0, 0 ]
512: [2, 5, 8, 4, 0, 2 ] *13824: [4, 13, 37, 2, 4, 4 ]
512: [4, 4, 5, 0, 4, 0 ] 13824: [9, 16, 16, 16, 0, 0 ]
648: [1, 7, 12, 0, 0, 1 ] 13824: [13, 13, 16, -8, 8, 10 ]

686: [2, 7, 8, 7, 1, 0 ] 32768: [9, 16, 36, 16, 4, 8 ]
*864: [1, 3, 36, 0, 0, 0 ] 32768: [9, 17, 32, -8, 8, 6 ]
*864: [1, 12, 12, 12, 0, 0 ] *41472: [3, 16, 112, 16, 0, 0 ]
864: [3, 4, 9, 0, 0, 0 ] 124416: [9, 16, 112, 16, 0, 0 ]
864: [4, 4, 9, 0, 0, 4 ] 175616: [29, 32, 36, 32, 12, 24 ]

*1944: [1, 7, 36, 0, 0, 1 ]
*2048: [1, 16, 16, 0, 0, 0 ]
2048: [4, 5, 13, 2, 0, 0 ]
2048: [4, 9, 9, 2, 4, 4 ]
2048: [5, 8, 8, 0, 4, 4 ]

Table 1. Complete list of primitive positive definite ternary
quadratic forms in one class spinor genera, but not one-class
genera, listed with their discriminants. An asterisk before the
entry indicates that the form is regular.
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