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Allgemeine Analyse der Skalensetzung in

Klassisch konfs ltiskalar Modellen:

In dieser Arbeit untersuchen wir die grundlegenden Eigenschaften von radiativ in-
duzierter, spontaner Symmetriebrechung (RSSB) in multiskalaren Modellen, ohne
klassischen Massenterm. Um das Hierarchieproblem mit Hilfe einer Erweiterung
des konform-symmetrischen Standard Modells (¢SM) anzugehen, préasentieren wir
einen allgemeinen Formalismus um die Erzeugung nicht-trivialer Minima des ein-
loop effektiven Potentials, anhand einer Reihe von exakten Kritikalitdsgleichun-
gen, zu analysieren. Auf Grund der intuitiven Beschaffenheit dieser Gleichun-
gen sind wir in der Lage systematisch RSSB in klassisch, konformen Modellen
zu untersuchen. Im speziellen untersuchen wir das Zusammenspiel von Beitrégen
verschiedener Teilchen an der Kondensationsskala und im Renormalisierungsgrup-
penlaufen der Kopplungen. Wir vergleichen die beobachteten Eigenschaften von
RSSB mit Resultaten aus Analysen mit Hilfe der géngigen Gildener-Weinberg
Néherung, welche zusétzlich die Existenz einer flachen Richtung auf tree-Level
voraussetzt. Ohne der Annahme von klassischer Skaleninvarianz noch weitere
hinzu zu fiigen finden wir schon Félle, in denen die ein-loop Eichbeitrage generell
von der gleichen Gréfsenordnung sein konnen wie die skalaren tree-Level Terme.
Dies erlaubt das Erzeugen von nicht-trivialen Vacua ohne eine flache Richtung
auf tree-Level. Die Analyse mit Hilfe unseres Formalismus offenbart qualitativ
neue Szenarien von RSSB, verglichen mit denen der Gildener-Weinberg Néherung
und erlaubt daher das intuitive Untersuchen der fundamentalen FEigenschaften
der Skalensetzung ohne weitere Annahmen zu der der klassischen Skaleninvarianz
hinzu zu fligen.

General analysis of scale-setting in
classically conformal multiscalar models:

In this thesis we investigate the fundamental features of radiatively induced spon-
taneous symmetry breaking (RSSB) in multiscalar models without classical mass
terms. Motivated by addressing the hierarchy problem via the extension of the
conformal standard model (¢SM) we present a general formalism to analyze the
generation of non-trivial minima in the one-loop effective potential via a set of ex-
act criticality equations. Given the intuitive nature of these equations we are able
to systematically analyze the RSSB in classically conformal multiscalar models.
Specifically, we investigate the interplay of contributions by different particles at
the scale of condensation and in the renormalization group running of the coupling
parameters. We compare the observed features of RSSB to results obtained when
using the commonly used Gildener-Weinberg approximation, which additionally
assumes the existence of a flat direction at tree-level. Without making further
assumptions to classical scale-invariance we already find cases where one-loop
gauge contributions can generally be of the same order of magnitude as the scalar
tree-level terms. Thus, allowing for the generation of non-trivial vacua without a
tree-level flat direction. The analysis using our approach reveals qualitatively new
scenarios of RSSB compared to the Gildener-Weinberg approximation and allows
for an intuitive investigation of fundamental properties of scale-setting without
making further assumptions to classical scale-invariance.
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Conventions and notations

e In this work we use the natural units, such that the speed of light ¢ and the
reduced Planck constant h are equal to one

c=h=1.
e If not stated otherwise we work in d = 4 dimensions such that four-vectors are
denoted by p = p,,, while their spacial part would be written as p.

e Dealing with divergent integrals we use the dimensional regularization method
with d = 4 — € and the MS renormalization scheme. As a result the counter-
terms are proportional to

1
Cuv = {Z — v+ ln(47r)} :

where 75 is the Euler-Mascheroni constant.

e Unless stated otherwise we work in Landau gauge, thus we generally do not
require ghost-compensation terms. The free gauge bosons propagator is then
given by

—1
P2+ ie

A, with A, = <7hw — p“f”) ,
b

where A, denotes a projection operator with its usual properties and 7, the
Minkowski metric with the signature (+, —, —, —).

e We use the full Planck mass given in Ref. [1]

My, = 1.22089(14) x 10" GeV .




Introduction

The standard model (SM) of particle physics is a theoretically self-consistent de-
scription of the fundamental interactions of elementary particles. With the recent
discovery of the Higgs boson at the LHC in 2012, all of the model’s crucial predic-
tions, e.g. new particles are now experimentally validated, and especially the Brout-
Englert-Higgs mechanism is confirmed to be responsible for the mass generation of
gauge bosons and fermions in the SM. Despite its huge success of explaining almost
all observed phenomena in particle physics, there are still several open problems
that are not explained by the SM, like dark matter, matter-antimatter asymmetry,
inflation, neutrino masses, the hierarchy problem and arguably most important, the
unification with gravity. There are lots of attempts to extend the SM to explain ei-
ther a specific one of these aspects or all together, with the supersymmetric (SUSY)
version of the SM being probably the widest studied one. Nevertheless, the lack
of experimental confirmation of the predicted supersymmetric partners of the SM
particles makes it favorable to consider alternative, more minimalistic extensions of
the SM. These have the advantage that if one manages to include problems like dark
matter without introducing a new physical scale, one utilizes the fact that the SM
already denotes a valid effective field theory for energies up to the Planck mass.

One promising attempt is based on the conformal extension of the SM. The
conformal SM (cSM) is set to be classically scale-invariant’ by omitting the Higgs’
mass term in the Lagrangian and was first considered by W. Bardee in Ref. [5] to
mitigate the electroweak (gauge) hierarchy problem. In this model the electroweak
symmetry is still broken spontaneously by the (physical) Higgs field’s non-vanishing
vacuum expectation value, yet not due to classical a negative mass-squared term in
the Lagrangian, but by including quantum corrections. The corresponding mecha-
nism of radiatively induced spontaneous symmetry breaking (RSSB) in classically
conformal systems was introduced in the seminal paper by and named after S. Cole-
man and E. Weinberg in Ref. [6]. They found that quantum corrections (already
at one-loop level) can break conformal symmetry and generate non-trivial vacuum
expectation values for the fields. This feature is also called dimensional transmuta-
tion, as quantum loops induce dimensionful quantities in a previously scale-invariant
theory. Due to the absence of the Higgs boson’s mass term in the Lagrangian the
necessary fine-tuning of the hierarchy problem between its tree-level mass and its
quantum corrections is converted into a (smaller) fine-tuning problem in the val-
ues of dimensionless couplings at the scale of renormalization, e.g. the Planck scale
My,. However, generating the experimentally measured Higgs mass via RSSB in the
cSM is prevented by the large top mass, which destabilizes the (one-loop) effective
potential, as seen in Refs. [7—10]|. Thus, extensions of the cSM are necessary to natu-
rally and dynamically generate the observed VEV of the Higgs field via spontaneous
breaking of the initial conformal symmetry by quantum corrections.

Several extensions including different combinations of fields like real or complex
scalars, multiple scalars, fermions and gauge bosons have been proposed. In addition

1" As we always refer to the classical symmetry of a four-dimensional unitary and renormalizable
quantum field theory, conformal and scale-invariance are classically equivalent, c.f. Refs [2-4].
Hence we use both terms interchangeably.




to addressing the hierarchy problem these models can incorporate the phenomena
not explained by the SM like dark matter, neutrino masses and matter-antimatter
asymmetry, c.f. Refs. [[1-21]. In Ref. [22] it was shown that additional fermions
have a destabilizing effect on the non-trivial vacuum and that the minimal ¢SM
extension model that produces the correct RSSB to match observations is given by
two additional scalar singlets. E. Gildener and S. Weinberg introduced a formalism
in Ref. [23] that allows to approximately describe RSSB in multiscalar theories. Since
the minimization of the general one-loop effective potential in multiscalar models
is not trivial, the Gildener-Weinberg approximation is widely used to investigate
the above motivated conformal extensions of the cSM (e.g. Refs. |9, 10, 22, 24-27]).
In their work they assume the existence of a flat direction at tree-level that allows
them to reduce the multidimensional problem of RSSB for multiple scalars to an
investigation of the effective potential along the tree-level flat direction. They argue
that non-trivial vacua can only be generated along this tree-level flat direction where
quantum corrections are large enough to distort the effective potential accordingly.
Yet the original S. Coleman and E. Weinberg publication, c.f. Ref. [(], already
addressed the fact that a tree-level flat direction is not a necessary condition for
RSSB as the gauge sector’s quantum corrections can generally be of the same order of
magnitude as the tree-level contribution within the applicability of the perturbative
expansion. Thus, the commonly used Gildener-Weinberg formalism to describe the
dynamical generation of masses in conformal extensions of the SM comes with loss
of generality, when considering the natural generation of scales, as the tree-level
flat direction only depends indirectly, through the renormalization group running of
the scalar couplings, on particle content other than the scalars themselves. As the
Gildener-Weinberg method is so widely used to describe RSSB in extensions of the
c¢SM in attempts to solve the hierarchy problem, there has to be quantification of
whether this simplification is appropriate. Furthermore, we see that there are forms
of RSSB that are not covered by the Gildener-Weinberg formalism such that there
might be extension models that were falsely excluded for being phenomenologically
ruled out and new ones that were not considered yet.

Therefore, we propose a general formalism for arbitrary multiscalar extensions of
the ¢cSM, while directly including contributions of all particle content to analyze their
fundamental properties of scale-setting and hence addressing the hierarchy problem
by generating the observed Higgs mass via quantum corrections (RSSB). For a n
scalar system we do not need to assume the existence of a flat direction at tree-
level, but rather give n analytical criticality equations and solve them numerically
in generalized n-dimensional spherical coordinates for the vacuum expectation values
of the scalar fields. These n criticality equations contain n—1 angular and one radial
equation in which we nicely see the interplay between contributions of particles with
different spin that allow for the generation of non-trivial vacuum expectation values
of the fields. In this context we derived general and exact tree- and one-loop level
vacuum stability conditions to further ensure that any dynamically generated non-
trivial vacuum is stable and in the range of applicability of our theory. These
also yield fundamental information on the effects of particles with different spin,
thus help to construct successful extensions of ¢SM. One example is recovering the
statement that the large mass of the top quark prevents RSSB in the ¢SM alone.




To assess unapparent conditions on the initial coupling parameters at the Planck
scale, when e.g. assuming the existence of a flat direction at tree-level, we aim
to either examine their whole parameter space or the regions that are allowed by
the correct RSSB if one assumes random renormalized couplings. Since we do not
make further assumptions apart from classical scale-invariance we aim to understand
the fundamental properties of mass generation via RSSB in conformal symmetric
multiscalar models with gauge contributions.

The intuitive nature of our criticality equations allows for scale-setting to be un-
derstood similar to quantum chromodynamics (QCD). While in the non-perturbative
case of QCD the scale of spontaneous symmetry breaking is determined by the
dimensionless gauge coupling becoming large, in the perurbative breaking of elec-
troweak symmetry, condensation occurs when the couplings reach a certain size,
determined by the conditions given by our criticality equations, such that the tree-
and loop-level contributions are of the same magnitude. Furthermore, with this
exact formalism we are able to determine when the simplification of the Gildener-
Weinberg formalism loses general applicability.

This thesis is structured as follows. At first in Section 1 we review the quantum
field theoretical formalism that is necessary to calculate the quantum effective po-
tential, the contributions by particles of different spin and the general form of the
effective potential itself. Then in Section 2 we briefly discuss spontaneous breaking
of conformal symmetry by the example of massless ¢* theory and scalar quantum
electrodynamics (QED). Here, we already see differences in mass generation when
coupling the scalar to a gauge group, as already pointed out in the original Coleman-
Weinberg publication, Ref. [6]. Section 3 is dedicated to introducing our general
formalism to describing RSSB in multiscalar field models, explain the numerical
methods used to solve for the non-trivial vacua and discuss the importance of the
coupling parameters’ renormalization group (RG) running. Therefore, we revisit
the scalar QED model and gain first insights using the aforementioned approach,
while giving a short overview of the Gildener-Weinberg approach to make further
comparisons easier. Subsequently, in Section 4, we analyze the simplest conformal
symmetric multiscalar models using our general formalism and compare to results
obtained by a Gildener-Weinberg analysis. To see the influence on RSSB of the the-
ory’s gauge sector we start off with just two massless real scalars and then extend
the theory’s gauge sector. We first couple one of the massless scalars to a U(1)
gauge group, then both to the same gauge group and finally both scalars two inde-
pendent U;(1) gauge groups. Respectively we discuss fundamental features of RSSB
and compare with the Gildener-Weinberg formalism. At last, in Section 5 we recap
and assess the results, discuss their connection to phenomenologically interesting
extensions of the ¢SM and give an outlook of what to expect in the future.




1 EFFECTIVE ACTION OF QUANTUM FIELD THEORY

1 Effective action of quantum field theory

To analyze radiatively induced and spontaneous symmetry breaking (RSSB) and
therefore the generation of non-trivial vacuum expectation values (VEV) of the
quantum scalar fields we need to study the quantum effective potential Veg. To
derive the said effective potential we must introduce a concept comparable to the
classical action which takes into account quantum effects of all loop levels, the
effective action of quantum field theory or quantum effective action. In analogy to
the classical action, the quantum field equations are obtained by variation and the
correlation functions of the full quantum field theory are given by suitable functional
derivatives of the quantum effective action. Following Refs. [6, 28-30] we derive the
effective action, from there on the effective potential in Section 1.1 and identify at
contributions to Vg of particles with different spins in Sections 1.2 to 1.4.

Let us start by considering the theory of one scalar field ¢ with its general
functional Lagrange density £ [¢(x)] and its corresponding action

smzjéwmwm. (L1)

Now we introduce the presence of a local, external source,’the scalar field J(x), that
is coupled linearly to ¢(z). In the presence of this external source, the generating
functional Z [J] of the Green’s functions G,, (x1,xa, ..., x,) is given by

7l :Z%/d‘lxl dizy .. dizy Gy (21, 7s ) J(@) T (2) . () - (1.2)
n=0

Functional differentiation in combination with setting the external sources to zero
confirms that Z [J] in Eq. (1.2) is indeed the generating functional for the Green’s
functions (i.e. time ordered n-point functions)

G (21,22, - 2n) = (0[TS(21) (2 ) - @(xn)] 0) (1.3)
- Z1] (1.4)
Z[J] 52J($1)51J( 2) ... 08 (Tn) | ;g '

Using only the properties of canonical quantization, functional integrating over con-
figuration phase space and regularization,®the generating functional of the Green’s
functions can be written as

:/waMMﬁﬂ+¢J», (1.5)

where Dy denotes a path integral over ¢ and ¢ - J is shorthand notation for the

2 This is applicable since there are many physical situations where external fields are actually
present, e.g. the gravitational field or a scalar field with non-vanishing vacuum expectation
value.

3 The need for regularization arises as the integration over configuration space induces a functional
measure, which always contains the ill-defined §(0).




source term
w-J= /d4a: o(x)J(z) . (1.6)

We want to note here that this form of the generating functional Z [J] of Eq. (1.5)
is the consequence of canonical quantization and regularization. It is therefore uni-
versal in the sense that it can be derived in analogy for a regularized and arbi-
trary canonically quantized theory, e.g. different particle content. Furthermore, in a
physical sense, the functional Z [J] of Eq. (1.5) represents the transition amplitude
between two vacuum states in the presence of an external source Z [J] = (Oin|Oous) ;-
It is calculated as the sum over all connected and disconnected Feynman diagrams
of the above mentioned amplitude. Here, the Feynman rules for the calculation of
the diagrams are given by the Feynman rules of the vanishing external source J = 0,
i.e. dictated by the classical action S [¢], with an additional incorporation of a new
vertex induced by the source term ¢ - J.

From Z [J], the generating functional of the Green’s functions we can derive
a generating functional for the connected Green’s functions W[.J], introducing the
relation

ZJ] =" (1.7)

where the connected Green’s functions G¢(z1, za, ..., z,|J), evaluated at arbitrary
source field J, are defined by the functional derivative of W{[J]

¢ B "WJ]
Gulws 22, anlJ) = Gy i) (1.8)

Proof that W{[J] actually generates connected Green’s functions is found through
induction and is illustrated by the simplest, non-trivial example, a two-point function
(n =2). We can express the full Green’s function Gy(xy,x2|J) in terms of one- and
two-point connected Green’s functions

GQ(ZL‘l, ZL'Q) == ZG;(ZE”J) ZG?(.’L’QL]) + ZG;(J]l, l'2|<]) s (19)
with G{(z) following from differentiation of Eq. (1.7) with respect to the source for
n=1

1 6Z[J]

Gi(z) = Z 71517 () =iG{(z) . (1.10)

Furthermore, differentiation of Eq. (1.7) with respect to the source field J and using




1 EFFECTIVE ACTION OF QUANTUM FIELD THEORY

Eq. (1.4) leads us to

1 627 [J]
Go(x1,22]J) = 717151750 (2] (1.11a)
1 ez[J) 1 oez[J] . &W[J]
= 2100 (x0) Z [ 6id(za) ST ()eid (za) (1.11b)
el e . W]
= 1G5 (21)iG(xa) + 262,(](%)5“(@) : (1.11¢)
Comparing the above Eq. (1.11) to Eq. (1.9) we see that
c _ W]
G (1, 22| ) = 577 (210017 (2) (1.12)

and therefore indeed W[J| is the generating functional of the connected Green’s
functions, as the argument generalizes to arbitrary n. Proof by induction can be
found on p. 43-45 in Ref. [28]. In terms of Feynman diagrams the connected
Green’s functions G¢ are equivalent to connected Feynman graphs. Since functional
derivatives of Z[.J] with respect to the source correspond to Fourier transformations,
the expectation value (also mean, background or classical field) of ¢(x) is given by
the one-point function

1 62[J]

= ¢,(z) . (1.13)

Note that, in the context of this work, the external field J(z) is a purely artificial
construct with no physical representation. By setting J to zero we go from any
theoretical vacuum state to the physical (“true”) vacuum state. Thus, one can only
discuss the “true” vacuum in the absence of external fields. But for now, combining
Eq. (1.7) and Eq. (1.13) we obtain the relation

W]

i 5iJ(x)

(1.14)

We use this to solve for J(x) since it links ¢;(z) and J(z) as conjugate objects.
Hence, ¢;(z) becomes an independent functional argument and the external source
term J(z) can be express as a functional of the mean field

os(z) = o(x), J(z) = Jy(x) . (1.15)

The quantum effective action I'[¢] is then obtained by a functional Legendre trans-
formation of W[.J,]

0l = WU - [ d'e o), (1.16)

Note that the quantum effective action I'[¢] is now a functional of the mean field
¢(z). Looking at the derivative of the effective action with respect to the mean field




1.1 Effective potential

we find the equation of motion for ¢(z) to be

ol [¢]
0¢()

where we differentiated Eq. (1.16), using Eq. (1.14) and the delta distributions defi-
nition 0*(z —y) = dé(x) /dé(y). Here, we see that I'[¢] plays the role of the classical
action in the quantum theory, giving the equations of motion by differentiation.
Furthermore, Eq. (1.17) shows that the equation of motion of ¢(z) in absence of the
external field reduces to

= —J(z), (1.17)

oTlel|
o), 0. (1.18)

Hence, for vanishing external sources the expectation value of the quantum field
¢ is obtained by a stationary principle of the action functional I'[¢] analog to the
classical theory, but accounting for all quantum corrections.

Furthermore, it was shown that I'[¢] is the sum of all connected one-particle
irreducible graphs in the presence of the external source J and that W/[J]| may be
calculated as the sum of connected tree-level graphs for the vacuum to vacuum
amplitudes. The vertices are calculated using the quantum effective action I'[¢]
instead of the classical action S[¢], as seen e.g. in Ref. [30] on p. 65-67.

In the following we look further into the diagrammatic interpretation of the
effective action I'[¢]. Similar to classical action, the effective action is the generating
functional for the quantum n-point vertex functions (or correlation functions). These
include the classical vertex functions, with the classical action as their generating
functional, plus all their quantum corrections.

1.1 Effective potential

Introducing the n-point vertex functions I',, as the coefficients in an expansion of
the quantum effective action with respect to the mean field ¢(x)

Tlg] = Z:l % /d4:p1 d*zy ... d*, Th(zy, 20, ..., 20)0(21)0(22) . .. d(,) ,  (1.19)

the vertex functions are given by functional derivatives

_ o"L'[g]
Loz, o, ..., xy,) = 5@ 00(ma) . 00 (1.20)

In the following we show that the relation Eq. (1.20) is fulfilled and hence I'[¢] is
indeed the generating functional for the quantum vertex functions I',(z1, ..., z,).

For n = 1, we simply recognize the one-point vertex function to be given by the
source J(x) (up to the arbitrariness of the sign), c.f. Eq. (1.17). For n = 2, we use

8



1 EFFECTIVE ACTION OF QUANTUM FIELD THEORY

the relations Eq. (1.14) and Eq. (1.17) to evaluate the following term

L OPWJ] T 4 08(x) 0T (y) _ 58y — &
/d ’ 5J(2)6.J(y) 6 (y)de(z) /d y 5J(y) 66(2) o ( ). (1.21)

By considering the result for the connected 2-point function in Eq. (1.12), we arrive
at

0*I'[¢)
0¢(y)dp(2)

Thus, the two-point vertex function I's(y, 2) is given by the inverted connected two-
point function (G§) ™"

/d4y GS(z,y|J)——r— = (2 — 2) . (1.22)

0*I[¢]
0¢(y)o¢(2)

which can be interpreted as the amputated one-particle irreducible (1PI) Green’s
function. Note that 1PI means that a connected Feynman diagram cannot be made
disconnected by cutting one internal line. Furthermore, the example of n = 2
corresponds to the inverse propagator. The argument can be extended to arbitrary
n by looking at further functional derivative with respect to the mean field ¢(z,)
of the already known T'y(x1,...,2x) with & = n — 1, leading to the corresponding
one-particle irreducible n-point vertex. This is nicely shown in a diagrammatic way
in Ref. [28] on p. 47-51.

Now that we know how to calculate the n-point vertices it is advantageous to look
at their Fourier transformation, since we are generally interested in translationally
invariant quantities (the VEV of the field)

To(21,...,x /H[

With Eq. (1.24), the Fourier transformation of the mean field ¢(p) and the integral
representation of 6*(p;, ..., pn)

oy, z) = =[G (9, 21J) (1.23)

L exp zplxl)] (2m)*0* (p1 + ... + pn) f‘n(pl, cooypn) - (1.24)

diz ,
S'pr+...+py) = /W exp (—iz(p1+...+pn)) , (1.25)
we can rewrite the quantum effective action to be

_ii'/q U/dm(ﬁm(%)] /d4x Fulpr,--- ) exp (iZ(xi—w>pi> . (1.26)

i=1

Expanding the Fourier transformed vertex function I',, around vanishing momenta,

. . ~ O (p1y .- Pn
F(pryeeeipn) = Tal0,...,00 + Y (p(})pu Pn)

i=1 i

Dip+ -, (1.27)

pi=0




1.1 Effective potential

we can rewrite the effective action of I'[¢] Eq. (1.26) as a derivative expansion

T'[g] :Z%/d%fn(o,...,m ¢(m)"+%/d4x 2() 2200 | (128)

Ox+ Oz,

where Z(¢) denotes the mean fields normalization factor. Now every term on the
right hand side is a function of ¢(z) rather than a functional. We have to note
that the expression in Eq. (1.28) implicitly assumes a mean field ¢(z) that is slowly
changing in space-time such that the effective action, that is in general a non-local
object, is shown in the form of its so-called local approzimation.

In analogy to the classical action, the non-derivative terms in this local approxi-
mation of the effective action (Eq. (1.28)) can be identified as the effective potential

Vert(9)
V(@) = = Y lfn(o, s 0) B(x)" (1.29)

Diagrammatically speaking this means that the effective potential (up to a minus
sign) is given by the sum over all 1PI Feynman diagrams with n external legs con-
nected to the constant brackground field ¢(z) = ¢ = const., as implied by evaluation
at vanishing external momenta p; = 0. Since we are interested in the non-trivial
“true” vacua of the theory, induced by RSSB, we furthermore assume the absence of
external fields, i.e. J = 0. In the case of constant background field ¢ it is obvious
that the calculation of the effective action in Eq. (1.28) yields the effective potential

Io(e) = o) = ~Vialo) [ a'e. (1.30)

such that in absence of external sources and for a translation invariant (constant)
background field, the stationary principle of the quantum action functional, c.f. Eq. (1.18),
reduces to the condition for a stationary point in the effective potential

IWVerr(¢) Lo, (1.31)

O

Consequently this means that the value of the field for which the effective poten-
tial has a total minimum, i.e. fulfills Eq. (1.31), is equivalent to the “true” vacuum
expectation value (VEV) of the classical field ¢. This gives us a geometrical inter-
pretation of the analysis of spontaneous symmetry breaking at quantum loop-level
in terms of the investigation of a potential in field space. Even though Eq. (1.31)
just requires the effective potential to be stationary, the need for a ground state and
hence stability of the potential (being bound from below), makes the analysis of the
theories vacua equivalent to the search for minima in the effective potential (local
minima correspond to false vacua).

Yet the actual problem of calculating Vg still exists, as it, c.f. Eq. (1.29), is given
by an infinite summation of Feynman graphs, i.e. the 1PI n-point quantum vertex
functions I',(0,...,0) at vanishing external momenta. Thus a sensible approxima-

10



1 EFFECTIVE ACTION OF QUANTUM FIELD THEORY

tion approach is needed. One diagrammatically well understood and convenient
approximation approach for calculating the effective potential is the loop-expansion.
Its main idea is to introduce loop-order specific contributions to the effective poten-
tial V(™ that now only contain trivial infinite summations over given n-loop-order
diagrams. Therefore, approximating the effective potential only to zero order in
loops, Vg is given by the sum over all 1PI tree-level graphs with zero external mo-
menta. Hence, at zero-loop order the effective potential reduces to the tree-level
(classical) potential V(@)

Ver(9) = VO(9) = Va(9) , (1.32)

or equivalently, the n-point quantum vertex functions are equal to the classical vertex
functions given by the classical potential V;(¢) from the Lagrangian £. Moving on
to one-loop order in the expansion, the effective potential now contains the tree-
level contribution V), as discussed above, and a one-loop contribution V1) (often
referred to as the Coleman-Weinberg potential) given by

(o) 1 B
v =3" ﬁrg)(o, ,0) ()" (1.33)
n=1

In analogy to Eq. (1.29) we can see that the one-loop contribution to the effective
potential V(1) is given by the sum over all 1PI Feynman diagrams containing one
closed loop and n external legs connected to the mean field ¢, each contributing a
factor ¢ and evaluated at vanishing external momenta. As the one-loop contributions
V() are renomalizeable, only a finite number of counter-terms need to be added to
account for the divergencies (e.g. self-energy diagrams). These counter-terms are
denoted by the contribution AV (¢) and need to be determined self-consistently
order by order in the loop-expansion by imposing renormalization conditions for
each quantity, i.e. wave-function, mass and coupling constant respectively. Hence,
the “full” one-loop effective potential is given by

Ver(9) = VO () + VD (9) + AV (9) . (1.34)

In this manner the effective potential can be calculated for arbitrary order n in the
loop-expansion scheme. Yet, we only take into account contributions up to one-loop
order to the effective potential as a sensible approximation for the analysis of RSSB.
This is not only because of simplicity of calculations but more importantly it is
motivated by the fact that contributions of higher loop order n are suppressed by
higher powers of the loop factor (1/1672)". Hence, we expect the one-loop order
contribution to be the leading order of quantum corrections to the initial, classical
potential and its vacuum structure and symmetry breaking properties. As we are
not interested in the infinite parts of the one-loop effective potential, we from here
on discuss V.g in the form of

Var(9) = VO(¢) + VD (g) (1.35)

where V(0 (¢) and V1 (¢) denote the remaining finite contributions after cancella-

11



1.2 Scalar fields

tion of the divergences with the counter-terms.

In the following Sections, we show that, using dimensional regularization and
the minimal subtraction scheme (MS), the remaining one-loop contribution to the
effective potential V") can be written in the general form

2

2:‘/ (MWQEZ(—lf”nmnﬂé)(m[ﬂ%g@}-—q), (1.36a)

i

where i runs over all particles contained in the theory, m;(¢) denotes the particle’s
field dependent mass, s; their spin, n; the particle’s real degrees of freedom and ¢; a
particle species specific constant. We see that, e.g. the coefficients ¢; are determined
to be

(1.37)

%, for scalar fields and fermions
Q=9 .
¢, for gauge bosons .

As the zero-loop order contribution is given by the tree-level (classical) potential,
in the follwoing the particle-specific one-loop contributions are calculated in a dia-
grammatic way, following Refs. [29, 31|. Other examples of calculating the one-loop
contributions are, e.g. given in Refs. [32, 33].

1.2 Scalar fields

To illustrate the contribution of a scalar field to the one-loop effective potential Vs(l),
we consider the simplest model of one real scalar field ¢. This can be easily extended
to complex scalar fields by rewriting the complex scalar in terms of two real scalar
fields and applying the following method to each one respectively.

We consider the Lagrangian of a real scalar field that is given by

ﬁ:%&w@¢—v@wy with (1.38)
VO(9) = cm + 1A, (1.39)

where V) (¢) denotes the classical (tree-level) potential. Recalling Eq. (1.33), the
one-loop contribution can be calculated by summing up all Feynman diagrams con-
taining one closed loop, with vanishing external momenta and n external legs con-
nected to the scalar field ¢. The diagrams contributing to VS are graphically shown
in Fig. 1.1. As seen, every vertex has two external legs,*the n-th diagram contains n
vertices and therefore 2n external legs. Since every external leg is connected to the
mean field ¢, they give the overall factor of $?". With the Feynman rules from the
Lagrangian Eq. (1.38) the n propagators contribute a factor of i" (p> — m? + ie) "
and the contribution of the n vertices is (—% )n While the % in the contribution
of the vertex is due to a interchange symmetry between the two external legs, the
overall symmetry factor of the n-th diagram consists of a factor of % due to rota-

tional symmetry and a factor of % due to the diagrams symmetry under reflection.

4 Since the four-point vertex is the only one possible in a ¢* theory, like the one considered here.

12



1 EFFECTIVE ACTION OF QUANTUM FIELD THEORY

Figure 1.1: The one-loop, 1PI Feynman diagrams that contribute to the effective
potential given by the Lagrangian in Eq. (1.38).

Furthermore, under consideration of integration over the loop momentum and an
extra factor of 4, given by the definition of the generating functional from Eq. (1.7),

the one-loop contribution Vs(l), c.f. Eq. (1.33), is calculated to be

o0

e =iy [ ek (AR (1.100)

=) (2m)"2n \p* — m® + ie

:_1/ @y {1—A¢—2/2} : (1.40D)

2 ) (2n)* p? —m? +ie

where we performed the summation over n after interchanging summation and in-
tegration to get from the first to the second line. Introducing the shifted (field
dependent) mass m?(¢)

(0) 3¢
2(@ _ 821(/9;2(@ (1.39) m2 + %)@2 : (1.41)

Wick-rotating into Euclidean space and dropping the field-independent term (as it
only denotes an infinite constant) we arrive at

v(6) = / D 7+ (o) (142)
5 =3 ) @y n|p“+m : .
Calculating this integral via dimensional regularization and canceling infinite terms
using the by the MS scheme determined counter-terms, we are left with the one-
loop contribution to the effective potential (the explicit calculation is shown in,
e.g. Ref. [29])

V) = getto) (| - 2) (143

 64n? L 2

Since a real scalar field has a spin equal to zero (s = 0) and only one real degree of
freedom (n = 1), comparing this result with Eq. (1.36) and Eq. (1.37) leads to the
conclusion, that they are identical.

13



1.3 Fermion fields

1.3 Fermion fields

To calculate the contribution of N spin s = 1/2 particles ¢; (i = 1,..., N), linearly
coupled to a scalar field ¢, we start with the general Lagrangian

L = ithe, 0"V — v [My(9)]5 0", (1.44)

where [My(¢)], = Y,*¢ already defines the fermionic field dependent mass to be
given by the product of the background field ¢ and the Yukawa coupling matrix
Y,*. We recall that the trace over an odd number of y-matrices is zero. While every
fermion propagator carries the factor of a v-matrix, this property of the y-matrices,
leads to contributions from diagrams with an odd number of fermion propagators
(or vertices) being zero. Hence, the non-zero contributions are given by the sum over
all 1PI Feynman diagrams with one fermion loop, 2n fermion propagators and 2n
vertices, connected to 2n external legs of the background field ¢, as seen in Fig. 1.2.
The 2n propagators contribute a total factor of

Tr, [ (7 p)™ (o +ie) ] (1.45)

where T'ry denotes the trace over spinor indices and (7 - p) = (7, p*). Then the 2n
vertices give the factor

Tri [—i"Mg(¢)*"] , (1.46)

with 7 indicating a trace over different fermion fields. Combining Eq. (1.45) and
Eq. (1.46) with an overall combinatoric factor of % (due to rotation and reflection
symmetry of the diagrams), dropping the ie term for convenience, accounting for
the (—1) from the fermion loop and using the relation (v - p)? = p? we arrive at

_iTTi [Mf(¢)2n]

Tl (1.47)

~

Figure 1.2: The fermionic 1PI Feynman graphs that contribute, as seen in Eq. (1.44),
to the one-loop effective potential.
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1 EFFECTIVE ACTION OF QUANTUM FIELD THEORY

Here I, denotes the identity matrix of the fermion’s spinor space. Hence, the factor
Trgl, gives the number of degrees of freedom of the fermion, which is equal to 2 for
Weyl and to 4 for Dirac fermions. For simplicity we express this term as

2, Weyl fermion
4, Dirac fermion

Trgls=p= { (1.48)

The one-loop contribution by fermion fields to the effective potential is then given

by Vil (¢)

vV (¢) ——sznZ/ @p 1 { f(f)} , (1.49)

27r 49n

with, analogous to the scalar contribution in Section 1.2, the factor ¢ from the
definition of the generating functional Eq. (1.7). Assuming a diagonal mass matrix
My (¢)? = m3(¢)Iy, the trace over the different fermion fields reduces to the number
of fermions with the same mass mf(¢), i.e the number of flavour states N

TriM(¢)? = m7(¢)Trily = Nm3(9) . (1.50)

Wick rotating into euclidian space and disregarding field independent terms we
arrive at

Vi) = (<oN) 5 [ o [+ o)) (151)

Seeing that the remaining integral is of the same structure as in Eq. (1.42), the final
fermion contribution to the one-loop effective potential is given by

-l ([ ).

only differing from the scalar contribution in Eq. (1.43) by the factor (—pN), that
accounts for the fermion’s number of degrees of freedom (color, spin, charge) and
the sign given by the fermion loop. Identifying n; = p/N and given the fermion’s
spin s = % this result is perfectly in agreement with Eq. (1.36) and Eq. (1.37).

1.4 Gauge fields

For the spin s = 1 particles contribution we consider one gauge boson coupled
to a scalar field. We choose to be in Landau gauge, where the free gauge boson
propagator is given by Eq. (1.1) and no ghost-compensation terms are required.
The Lagrangian is of the form

1 1

L — _ZTT [F, F™) + 5 (D,¢)" (D" ) | (1.53a)
1 1

2 —ZTT [Flu F*) + §q2e2A”A“¢2 ) (1.53b)
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1.4  Gauge fields

where we highlighted the only vertex that contributes at one-loop level and simul-
taneously defines the field dependent mass m?%(¢) of the gauge boson to be

mi(0) = ¢*e¢” . (1.54)
Furthermore, D, ¢ denotes the covariant derivative of ¢

D,¢ = 0,0 —iqeA,d , (1.55)

with e denoting the gauge coupling and ¢ the charge of ¢ with respect to the gauge
group of A,. In this case, we assume ¢ = 1. Note here, that this is easily generalized
to a theory of multiple scalars and general (more complicated) gauge groups, which
can be seen in Ref. [29], while the structure here is still representative of the general
calculation. To compute the contribution of the gauge boson VA(l) to the one-loop
effective potential we sum up the one-loop diagrams, depicted in Fig. 1.3. As the
diagrams are structurally similar to the scalar ones, c.f. Fig. 1.1, the n-th diagram
has n free gauge boson propagators and n scalar-gauge vertices, each connected to
two external legs of ¢. Hence, the n vertices (including the external legs) contribute

(ie*p* )", (1.56)
while the n propagators contribution can be expressed as
(p* +ie) ™ (—id,)" . (1.57)
Here A, denotes the projector with the properties
Ay = (n,w - %) L (AW =, A=Tr[Al=d-1, (158)

where d is the number of space-time dimensions. Collecting the results above and
accounting for the overall symmetry factor of %, the one-loop gauge boson contri-

/

Figure 1.3: The 1PI Feynman graphs that contribute to the one-loop effective po-
tential, given by the Lagrangian in Eq. (1.53).
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2 SPONTANEOUS SYMMETRY BREAKING OF CONFORMAL SYMMETRY

bution VA(I) to the effective action is given by

Vi0) = 5 [ =1 [+ mi(0)] (1.59)

having already executed the summation, performed Wick-rotation, used Eq. (1.54)
to express it in terms of the field dependent gauge boson mass m?%(¢) and finally
dropped field independent terms. Solving the integral via dimensional regularization
and MS renormalization, the result is altered by the dimension-dependent factor

(d—1) = (3 —e¢), to finally be

V0) = o) (1 [P0 2 (1.60)

While the factor of n; = 3 in front counts the gauge boson’s degrees of freedom
and is therefore physical, the term (—%) is renormalization scheme dependent and
can be arbitrarily altered through redefinition of the technical subtraction (renor-
malization) scale i, which has mass dimension one. While the form of the one-loop
effective potential depends on the regularization method, renormalization scheme
and the definition of fi, the described physics does not. Hence, one should be careful
to use them consistently throughout the calculation of the one-loop effective poten-
tial. Furthermore, we see that the result in Eq. (1.60) agrees with Eq. (1.36) and
Eq. (1.37). Hence, the general formula in Eq. (1.36) and Eq. (1.37) can be used to
derive the one-loop effective potential for an arbitrary particle content with spins 0,
% and 1.

2 Spontaneous symmetry breaking of conformal sym-
metry

As we now have established a method to compute the one-loop effective potential for
general particle contents of the underlying theory, c.f. Egs. (1.36) and (1.37), we can
now look at the properties of radiatively-induced spontaneous symmetry breaking
(RSSB), which corresponds to an analysis of minima of the effective potential. In
other words, we analyze the situation, where the quantum one-loop contributions
are strong enough (compared to tree-level contributions) such that non-trivial vacua
are generated.

In the following we examine examples of the simplest conformal theories to il-
lustrate the underlying Coleman-Weinberg mechanism, compare it to the Gildener-
Weinberg approach and comment on stability and applicability. At first we consider
the massless ¢* theory in Section 2.1, then massless scalar QED (quantum electro
dynamics) in Section 2.2, both originally studied in Ref. [6]. Conformal symmetry
requests the theory to only contain scales with vanishing mass dimension, i.e. scale-
invariant equations. Since no external scales are present, relevant scales are gen-
erated intrinsically by the theory through, e.g. spontaneous symmetry breaking of
said conformal symmetry. Thus, conformal extensions of the standard model are
particularly interesting in attempting to solve the electroweak hierarchy problem.
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2.1 Massless ¢* theory

Because the tree-level mass term of the Higgs boson is omitted there is no need for
fine-tuning it to its quantum corrections. The experimentally observed non-trivial
vacuum expectation value of the Higgs field is then dynamically generated by the
quantum corrections spontaneously breaking the conformal symmetry.

2.1 Massless ¢* theory

Considering one massless scalar in ¢* theory, its Lagrangian is simply given by
Egs. (1.38) and (1.39) but with tree-level mass equal to zero (m? = 0), such that
the field dependent mass becomes m?(¢) = %)\gbz. Hence, the one-loop effective
potential, calculated via Egs. (1.36) and (1.37), is given by

Ver(@; 1) = VO(gsn) + VW (g;0a), (2.1a)
1., At 2] 3
1 T 2560 (1 {2# } a 5) ’ (2.1b)

where we added fi as a separated argument to emphasize the fact that apart from

the explicit, there is also an implicit dependency on ji, since the coupling depends
on the scale of evaluation (also subtraction or running scale) A\ = A\(z). Through
renormalization, the coupling A is fixed at the renormalization scale A, which is then
called the bare coupling A(A) = Ao, while its value at any given scale is determined
by renormalization group running (RG running), i.e. its S-function

B =g = S 22)

Enforcing that physical observerables should be independent of the chosen scale, one
can use the renormalization group equation (here given in a general form)

G,
( %cbz 96,

with 7; being the fields anomalous dimension, to aquire the RG-improved potential,
which only depends on bare quantities and the field ¢. We leave the renormalization
group running of couplings to be discussed in more detail later in the analysis of
non-trivial vacua.

Furthermore, looking at Eq. (2.1) we see, that the one-loop effective potential
becomes singular at the origin of classical field space (¢ = 0), which is a consequence
of the infrared divergences of the diagrams used to calculate said potential. Using
the condition in Eq. (1.31) to derive the ground state of the theory, respectively the
vacuum expectation value of ¢, we arrive at

OVert(0; [ AN Ag? !
(2. 2 (2] )20,

670 PP A N
g S 2 I  ET TS

Here we nicely see, that for the generation of non-trivial minima (¢ # 0), the

+Bigy ) Ver(o; 1) =0, (2.3)
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2 SPONTANEOUS SYMMETRY BREAKING OF CONFORMAL SYMMETRY

one-loop contribution (on the right) has to be of comparable size to the tree-level
contribution (on the left). The non-trivial minimum is then determined by
Ap?

32m?
Aln | —| = — A 2.
n {2“2} 3 + (2.5)

From the minimum condition in Eq. (2.5) we see, that for the quantum correc-
tions to shift the minimum away from the origin, either A or the absolute value
of Mn [m?(¢)/ji] has to be large. This takes us out of the region of the one-loop
approximation’s applicability, as higher orders in the loop-expansion bring contribu-
tions of higher powers in A1n [m?(¢)/ji] and A. This leads to the conclusion, that the
full effective potential is necessary to analyze the vacuum structure of massless ¢*
theory, while the one-loop approximation is not appropriate, as already pointed out
in the original work, Ref. [6]. However, this is not the case for conformal symmetric
theories in general, but it reminds us to think about the range of applicability in
the analysis of further models with more extended particle content. Therefore, in
the following section Section 2.2, we investigate the simplest extension of massless
¢* theory, i.e. (massless) scalar quantum electrodynamics (scalar QED).

2.2 Scalar quantum electrodynamics

To analyze massless scalar quantum electrodynamics (scalar QED), we consider a
complex scalar & = \%(qh + i¢y) with self-coupling A that is coupled to a U(1)

gauge group via the coupling g and with charge Q(®) = ¢ = 1. Hence, the part of
the Lagrange density necessary for the calculation of the one-loop effective potential
contributions is given by

£2 (D) (Dr®) — VO (@) (2.6)
with the tree-level potential
VO(@) =\ (df0)” . (2.7)

As the complex scalar contains one real and one imaginary degree of freedom, we
can choose without loss of generality that only the real degree of freedom, in this
case ¢, acquires a non-zero VEV

O — Q1+ @, G2 — P2 . (2.8)

Effectively this is a gauge choice and is equivalent to enforcing CP conservation
in our model, since we choose a system in which only the CP even, i.e. the real
degree of freedom, contributes to the effective potential. Hence, ¢ is the classical
(background) field on which the effective potential depends, such that the three field
(¢) dependent masses are given by

mg, (0) = 3%, mg,(9) =A%, mi(e) = g70" . (2.9)
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2.2 Scalar quantum electrodynamics

Note here that m?(¢) is given in Landau gauge, such that with the methods dis-
played in Sections 1.2 and 1.4 the one-loop effective potential is calculated to be

V(3 1) = V(0)<¢. 0 + VO n), (2.10a)
(154 2 3)‘¢2 2 ¢2 2
__A¢ e (9)\ 1n{7} + M\ 1n {u 1—15)\
2 42 5
+3g" ln[ ljb } §g4> : (2.10Db)

where the separately displayed dependency on pi reminds us that apart from the
explicit fi-terms, also the quartic coupling A = A(2) and the gauge coupling g = g(j)
depend on the subtraction scale through the renormalization group. Similar to
Section 2.1, the one-loop effective potential has a non-trivial minimum at (¢) =
¢ # 0, whereas now there is an additional M-independent contribution g*Inm?(¢)
for the one-loop contribution to balance out the tree-level contribution. Thus, the
non-trivial vacuum can be in the regime of applicability of this theory. Investigating
the vacuum structure of scalar QED, we use the stationary condition from Eq. (1.31)
and arrive at

WVer(P; 1) 1 21 [3A¢? 2 [ AP 2
—o - ¢{A+16ﬂ2<9)\1 [u }+A1 [u }—m

+3¢ In [g;¢2] —g )} L0. (211)

To simplify the calculation, we use that the value of the subtraction scale f is arbi-
trary for physical observables and set it to i = ¢¢¢. This is the value the classical
field ¢ acquires at the minimum, i.e. when Eq. (2.11) is fulfilled. Following the
argument of Section 2.1, we know that both A and Alnm?(¢) have to be small
to stay in the region of applicability of our theory. Hence, we can omit the corre-
sponding O(A\?) one-loop terms, which are subleading with respect to terms of O(\).
Therefore, we rewrite Eq. (2.11) to be

39" 2 Ly .
A 162 (m (] - g) =0. (2.12)

We observe, that a non-trivial minimum is generated by one-loop quantum correc-
tions, if the quartic coupling A and the gauge coupling g* are of comparable size (up
to the usual loop-suppression factor) A ~ 161”2 g*In[g?]. Therefore, one-loop contri-
butions of the same order as the tree-level potential do not violate any assumptions
or loop-expansion conditions, and thus lie in the region of applicability of this the-
ory. Here it is important to note that both the quartic as well as the gauge coupling

in Eq. (2.12) are evaluated at the scale @it

)‘ = )‘(ﬂ = gbcrit) = Acrita g = g(ﬁ’ = gbcrit) = Yerit - (213)

20



2 SPONTANEOUS SYMMETRY BREAKING OF CONFORMAL SYMMETRY

Consequently the condition of Eq. (2.12) is not a renormalization group invariant
statement. This leads to a self-consistent definition of the classical field’s VEV
¢, i.e. the scale i1 = ¢y at which the couplings of the theory fulfill the criticality
condition Eq. (2.12) and thus marking the transition from the unbroken conformal
symmetric phase to the non-trivial vacuum of the broken phase. The actual value
of ¢y 18 determined by the renormalization group running of ¢ and A, which is
given by their S-functions. In the case of scalar QED, one can solve analytically for
(M(f2), g(r)) and show that there always exists a scale ¢ that satisfies Eq. (2.12),
if the couplings A and ¢ are small (< O(1)). This is shown, e.g. in Ref. [34].

Furthermore, with the relation between A\ and gei in Eq. (2.12), we can ex-
press the one-loop effective potential in terms of (geis, Perit) instead of (A(f), (1)),
effectively gaining a parameter with mass dimension one. This feature of SSB in
massless theories is called dimensional transmutation, see Ref. [6]. It is a result
of the fact that the numerical value of the dimensionless couplings depends on the
(arbitrary) renormalizion scale. As the criticality condition in Eq. (2.12) is a self-
consistent calculation, where a quantity is determined by its individual tree- and
one-loop contributions it can be understood as a gap-equation similar to the one
from the Nambu-Jona-Lasinio (NJL) model. Similarly, Eq. (2.12) gives a condition
for the running couplings A and g, that determines the scale at which their ampli-
tude induces SSB similar to the theory of quantum chromodynamics (QCD), where
the gap-equation also describes the dynamically induced masses dependent on the
coupling a, c.f. Ref. [35]. Using Eq. (2.12) to express A in Eq. (2.10) in terms of the
gauge coupling g, effectively reorganizing the loop-expansion in terms of g* instead
of A. The one-loop effective potential then takes the form

4 4 2
Vialo) = 2 (| 4| - 1) + 016, 2.1

crit

where we only displayed the terms of leading order in the expansion and dropped
sub-leading terms of O(g®).The one-loop effective potential Vig(¢) and the tree-
level potential V() (¢) are displayed in Fig. 2.1. There it can be nicely seen, how
one-loop contributions induce non-trivial minima. The RSSB induced mass of the
classical scalar field ¢ is then given by the second derivative of the effective potential
evaluated at the minimum

Vg 3
2 e 4 2
My = 75 = _Qgcrit¢crit >0, (215)
8¢ P=dcrit 87T
which verifies that the stationary point calculated in Eq. (2.12) is indeed a local
minimum of the effective potential. The gauge (vector) boson acquires the mass
m? = m4(¢ = Guir) = g°P>.,, such that the mass ratio between the two fields is
calculated to be
m2  3q2.

¢ Yerit
— = === 2.16
m?  8m? (2.16)

This result is only valid at leading order in our approximations and has corrections
of higher order in g, which are not expected to change the vacuum structure, i.e. that
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Figure 2.1: The tree-level (left) and one-loop effective potential (right), given re-
spectively by Eq. (2.10) and Eq. (2.14), with exemplary values for ¢y = 4 GeV,
gerit = 0.9 and using the criticality condition Eq. (2.12) to calculate A = Ay =~
0.006781.

Oerip 1s still the value of the field at which the effective potential has a global min-
imum. To be more precise, the local minimum at ¢ is always lower than any
occurring local minimum at ¢ = 0, whereas our expansion approach is not reliable
for large logarithms and hence large ¢ or field values close to the origin. As the effec-
tive potential and the above discussed corresponding results are still RG-dependent,
in Ref. [6] RG-improvement was used to show that indeed ¢t is a global minimum
of Eq. (2.10) for all ¢.

Summing up the case of RSSB in scalar QED, we saw that quantum corrections
of magnitude comparable to the tree-level contribution induce a minimum away from
the origin, while being still in the range of applicability of the expansion. We ar-
rived at a gap-equation, c.f. Eq. (2.12), that introduced us to the feature dimensional
transmutation (or transportation). We started with a description with two dimen-
sionless quantities and obtained an equivalent description with one dimensionless
and quantity of mass dimension one. Furthermore, and arguably most importantly,
the gap-equation allows for a self-consistent calculation of the scale at which SSB
takes place on the condition that the RG-running of the couplings is known. A
more detailed analysis on the scale of SSB depending on renormalized couplings and
RG-running is discussed in Section 3.4.

3 Approach for the analysis of RSSB

To further analyze RSSB in theories with a more complex particle content, we in-
troduce a general approach with a minimal amount of quantities that depend on
specific models, making it easier to arrive at comparable statements. With this we
expect to see the underlying fundamentals of general Coleman-Weinberg symmetry
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3 APPROACH FOR THE ANALYSIS OF RSSB

breaking, by probing and categorizing effects of increasingly complex models. The
first step, including a gauge symmetry for a single scalar, was already done in Sec-
tion 2.2 with the analysis of massless scalar QED and showed us that the quantum
one-loop contribution of the gauge boson can generate a non-trivial minimum in
the range of applicability of our expansion. In other words, while a massless scalar
cannot break conformal symmetry spontaneously on its own, coupling it to a gauge
group allows for SSB in the perturbative regime and hence a vacuum at a non-zero
field value. Therefore, in Section 3.1 we derive a formalism that describes the con-
tribution of n scalar fields in generalized spherical coordinates, leading to general
criticality equations and one-loop vacuum stability conditions. In Section 3.2, we
comment on scale-setting in the context of the aforementioned general formalism.
Following this, in Section 3.3 we introduce a numerical approach for the calculation
of the non-trivial vacuum in dependence on couplings, that are renormalized at high
energy (Planck-) scale. In Section 3.4 use this formalism to further investigate the
properties of scale-setting, i.e. the critical scale ¢, in massless scalar quantum
electrodynamics (scalar QED).

3.1 General formalism of SSB in classically scale-invariant
models
With the derivation laid out throughout Section 1, the zero-temperature one-loop

effective potential of a theory with n real scalar degrees of freedom ¢q,..., ¢, is
given by

Veg(d1, -y 03 1) = VO (1, 0 ) + VO (y, .. b ) (3.1)

where we again noted the indirect i dependence of the Lagrangian parameters of
the model by including it in the argument. Introducing the generalized spherical
coordinates according to Ref. [36](pp. 593-595) with the radial coordinate ¢ and

n — 1 angular coordinates ¥, ...,3,_1, where ¥,_; ranges over the interval [0, 27]
while the other angles ¥4, ...,9, 5 range over [0, 7|, we can reparameterize the n
fields by

¢1 = p costh

P2 = p sint; cos g

¢3 = @ sint sinvy coss

(3.2)
On_1 = sinty --- sind,,_o cosv, 1

On = p sinty - -+ sind,_o sinv,_; ,

where the radial coordinate ¢ has mass dimension one, whereas the angular coor-
dinates ¢; with ¢ = 1,...,n — 1 each have mass dimension zero. With this we can
rewrite the one-loop effective potential in generalized spherical coordinates to be

~ ~ —

‘/eﬁ"<¢17 <o 7¢TL) Ia) = ‘/Eff(gpﬂ 1917 s 719n71; ﬂ) = %ﬂ‘(@, ,197 ﬂ) ) (33)
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3.1 General formalism of SSB in classically scale-invariant models

where the (n — 1)-component vector J contains all angular coordinates. Considering
that we investigate classically scale-invariant (conformal symmetric) models, we can
make the following statement about the ¢ dependency of the effective potential

VO p,7; 1) oc o, VD (05 1) oc o . (3.4)

Indeed, this is just the result of a general dimensional argument that classically con-
formal models do not contain any Lagrangian parameters (couplings) with non-zero
mass dimension. Since ¢ is the only mass scale, all objects with mass dimension n
are proportional to ¢". Isolating the ¢ dependecy of V(O), the tree-level contribution
can generally be rewritten to be

VO (g, 1) = %Fu(ﬁ; HE (3.5)
where N is the normalization of the tree-level potential and « is a function only
explicitly depending on angular coordinates and implicitly depending on i through
the RG-running of the dimensionless Lagrangian parameters (couplings) of the the-
ory. However, the general ¢ dependence of the one-loop contributions is not derived
as easily, because their explicit form depends on the regularization method and
renormalization scheme. Therefore, we choose to investigate one-loop contributions
as given in Eq. (1.36), which are calculated using dimensional regularization and
the MS renormalization scheme. In the absence of mass terms in the Lagrangian,
the field dependent masses m? have the property that the dependence on the radial

component ¢ and the angular components ¢ can be factorized
m} (i, ;) =} (; 1) &° (3.6)
i@ U i\ Us ) @ .

where both the dependence on all angular variables, as well as the implicit i depen-
dency via the couplings is stored in m?. With Eq. (3.6), we can rewrite the general
one-loop contribution V) (p,d; i) from Eq. (1.36) as

) S . . m2(ip, U; i
VO, 0: 1) = 5 > (=) nimil(p, 7 ) <ln [¥] - Ci) :

%

= 6417T2 Z (_1)231’ n; @4 m;‘.‘(ﬁ; ) <ln [m?(ﬂ’—f)(‘pz] _ Cz’) (3.7

i

Now expanding the logarithm into a sum of logarithms, we can isolate the logarith-
mic dependency on ¢? and factor out the tree-level normalization N. This results
in

VO (¢, 7 1) = { LS (1 nand (0 ) (ln [m?(ﬁ; ﬂ)] — ¢ +1n L%D } o

4
{adm+smn £}, (3.80)
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3 APPROACH FOR THE ANALYSIS OF RSSB

where A(ﬁ; @) and B(J; @) are functions of the f-dependent couplings and the
angular coordinates ¥, defined as

A(9

1% i (0 ) (1n [m200: )] - ) (3.99)

7; |

647T2

B(: 1> (0 i) - (3.9b)

7; |

647T2

In analogy to Section 2.2, let us now assume that the minimum of V.g is of non-
trivial nature which in spherical coordinates translates to it being located at radial
distance g away from the origin ¢ > 0 and of an arbitrary angle 50. Thus, it is
convenient to fix the (generally arbitrary) subtraction scale ji at

= Qerit = Q0 - (3.10)

With this choice and using the results from Eq. (3.5) and Eq. (3.8), we separate
radial and angular dependencies as best we can, such that the one-loop effective
potential of Eq. (3.3) can be written as

2

Varle T ) = 7 {Fsiu) + AT g0+ B | 2| Lot )
where the dependency on the angular coordinates is isolated in the quantities x, A
and B, whereas we are left with a logarithmic ©? and an overall ¢* dependency.
Now following the condition for a stationary point from Eq. (1.31) the vacuum state
(o, 50) must be determined in a self-consistent way by simultaneously solving the
set of n stationary (also criticality or gap-) equations

o - S - 1
%VGH(% Fo0)| = (s 00) + Allo; o) + 3(790» o) =0, (3.12a)
VoVialo. T )| =" Vo sl o) + AT g0)] 20, (3.120)

where “vac” denotes evaluation at the above mentioned non-trivial vacuum state
(¢ = o, U =) and Vy is the (n — 1) dimensional angular gradient Vy = 0/89 =
(0/004,...,0/00,_1)7 resulting in (n — 1) angular stationary equations. Having
solved the stationary equations for the vacuum (y, 50) we can simply transform back
into regular field space (¢; with i« = 1,...,n), calculating the vacuum expectation
values ¢; it of the field (also often called v;) via Eq. (3.2). Verifying that the
calculated stationary point is indeed a local minimum and therefore a viable vacuum
state, the Hessian matrix of the effective potential Hess(V;g) with respect to (¢, 5),
evaluated at (¢, 1;0) has to be positive definite. Given the general expression for
the one-loop effective potential in conformal symmetric models, c.f. Eq. (3.11), its
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3.1 General formalism of SSB in classically scale-invariant models

Hessian at (o, 50) can be written as

— 3 = = T
202 B(Yg; o) o [VﬁB(ﬁH@O)} .
Hess(fo)(goo 50‘900) = 3 4| 0%(k(J;p0)+ A0 ;9):190
€ > = 7 K(V50 3P0 ’
2 [VgB(ﬁ‘; @0)] ig 2 [ 89,09, ] .
—d, =d
(3.13)

with the (n — 1)-dimensional vector J, the 2 x 2 block matrix above represents
a n X n matrix, where the indices ¢ and j range over 7,5 = 1,...,n — 1. Since
partial derivatives on smooth functions are interchangeable, the Hessian is symmetric
by definition. Thus the stability condition of positive definiteness reduces to the
statement about the determinant

det hy >0 Vke{l,...,n}, (3.14)

where hy, is the upper left k& x & submatrix of Hess(f/eff)(gpo,ﬁo; ©o). From a com-
putational point of view, it is a problem that the elements of the Hessian matrix in
Eq. (3.13) contain different powers of ¢y. However, it turns out that all terms in cal-
culating determinants contain the same powers of g so that it can be factored out
in the end. The explanatory calculation is shown in Appendix A.1. Consequentially,
the condition to verify that the stationary point found with Eq. (3.12) is actually a
minimum is also the condition for one-loop vacuum stability and remains the same
as in Eq. (3.14), however hy, is now the k x k submatrix of H(dy; ¢o)

J = - T
) 2B(J0; o) L [%0B )]
H{oi o) = > B0 2 (w(¥; oo . (3.15)
3 [B@e0)] 1 [a ( W’g;?;;www)}
% o J=d,

From the simplest k = 1 case, it follows that B(ﬁo; @) > 0 is a necessary condition
for one-loop vacuum stability. Considering the structure of B (50; ©o), as given in
Eq. (3.9b), the tree-level mass contributions of the fermion fields at the minimum
(90, Uo) have to be smaller than the minimum tree-level contributions of scalar and
boson fields combined. At this point we can calculate the vacuum from the criticality
equations and verify its stability, i.e. it being not only a stationary point of the
effective potential, but a local minimum. To ensure that the minimum is also a
global one we need to compare it to the effective potential value at the origin, since
all non-trivial vacua in range of applicability come out as solutions to our criticality
conditions. We can easily see that the effective potential at the vacuum of (¢, 50) is
in fact lower than any local minimum that might occur at the origin (¢ = 0, J = 6)
Due to the overall ¢* dependency, c.f. Eq. (3.11), the effective potential is zero at the
origin V.g(0,0) = 0, while according to Eq. (3.12) the effective potential at (o, Uo)
is given by

. . 1 -
Vett(0, Vo3 o) = —gB("ﬁo; ©o) 903 <0. (3.16)
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3 APPROACH FOR THE ANALYSIS OF RSSB

Hence, after finding the non-trivial vacuum (o, 50) by solving the criticality con-
ditions and verifying that it is indeed a local minimum of the one-loop effective
potential via the Hessian determinant, we can conclude that it is also the global
minimum in the range of applicability of our expansion, i.e. the perturbative regime
of the theory.

3.2 Scale-setting

So far we have discussed the general form of the criticality equations and the verifi-
cation that their solution in fact is the non-trivial minimum induced by SSB. In the
following we give some comments on solving the stationary (criticality) conditions,
their connection to the RG-running of the couplings (\i(z), ¢:(@2), vi(@), ...) and
therefore the process of scale-setting (i.e. dimensional transmutation) of Coleman-
Weinberg symmetry breaking.

Starting off by solving the stationary equations in Eq. (3.12) we notice that they
depend explicitly on 50 and implicitly on ¢y (indicated by the semi-colon). This im-
plicit dependency is due to both Eq. (3.12) not being RG-running invariant, thus ¢
denotes the scale at which the couplings (A\;( = o), g:(it = ©0), vi(f = ©o), -..)
fulfill the criticality conditions with the angles 50. We deal with this by solving
the couplings’ set of S-functions, trading the general dependency of the parameter
on the energy scale i against dependencies of initial values and the (energy-) range
over which it is integrated. Hence, from here on all calculated numerical values of
e.g. (¢o, 50) are be scheme dependent, while the physics of course are not. Keeping
this in mind, there are generally two ways to look at the problem, the bottom-up
and the top-down approach, which arise from the principles of Effective Field Theory
(EFT). As there is no consistent unified theory (yet), all theoretical descriptions are
only valid up to a specific scale (e.g. energy, length, frequency, . ..), which in the case
of RSSB via Coleman-Weinberg is somewhere between the maximal energy range
from the scale of symmetry breaking ¢y up to the Planck scale My,. In terms of
RSSB the bottom-up approach means renormalizing the theory at the scale of SSB
(or condensation), i.e. ensuring the theory is finite by setting the initial values for the
couplings at the critical scale \; o = \;(fi = ¢p), and evolving it to other energies us-
ing the RG-running of the couplings given by the corresponding S-functions. Using
this approach to determine the upper bound, one must check that evolving the cou-
plings does not violate the applicability conditions of the theory, the stability of the
potential, the smallness of couplings (could run into Landau poles) and most impor-
tantly that g is the first instance to fulfill the criticality equations in Eq. (3.12) for
any ”50. In the top-down approach the theory is renormalized at the highest desired
scale, i.e. the initial couplings are set at the Planck scale A\;g = \i(ft = Mp, = fip).
Evolving the theory to lower energies we still have to check for stability of the po-
tential, the smallness of the couplings (now in the infrared (IR) energy regime) and
for all n criticality conditions being fulfilled simultaneously. Therefore, the critical
scale g is given by a “most attractive channel” argument, it is the highest scale at
which the couplings satisfy the criticality conditions.

For our analysis of RSSB in conformal symmetric models we chose to use the
top-down approach. Motivated by possible new high energy physics leaving us with
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3.2 Scale-setting

certain (general) values for the couplings at fip;, which we use to naturally de-
termine at which lower scale the theory transitions from the unbroken, classically
scale-invariant phase into the broken phase with masses. Whereas we do not expect
new physics around the electroweak scale (figw ~ 100 GeV), which could motivate
renormalizing the theory at a lower scale. Furthermore, our main goal is to investi-
gate the hierarchy problem of the exponential scale-separation between fip, and the
scale of electroweak symmetry breaking fizw. Therefore, we probe whether there im-
plicit conditions on the initial couplings at fip, to arrive at critical scales ¢q close to
100 GeV. Here it is important to note that the scale-separation between the renor-
malization scale at [ip; and the scale of electroweak symmetry breaking ¢y does not
result from any logarithms that are explicitly present in the one-loop contributions
to the effective potential, c.f. Eq. (3.8), but it is a direct result from the logarithmic
running of the coupling parameters. The RG-running of the couplings is determined
by their corresponding S-function

M) _ M)

- , Witht:ln[ a ] . (3.17)

Ailim) =07 = o Gev

As discussed before in Section 2.1, unlike the logarithms arising from RG-running,
the logarithms from Eq. (3.8) are part of an expansion parameter and therefore have
to be small to ensure applicability of the theory. Depending on the initial conditions,
i.e. the renormalized couplings (Ao, Gio,--.), a certain “time” of RG-running ¢ is
necessary for the couplings to fulfill the criticality conditions and induce SSB. With
the definition for ¢ above, c.f. Eq. (3.17), it follows that the separation (quotient) of
critical g and high energy-scale iy, depends exponentially on ta

tA =ty — tait = In [Cl-lj;/} —1In [Gio\/} =In {%] , (3.18a)
0
& fr_eta (3.18b)
%o

Furthermore, in Section 3.4 we give the exemplary calculation of scalar QED, that
nicely shows how the logarithm provided by the [S-function results directly in an
exponential scale-separation between high energy jip, and breaking scale .

In conclusion, using the top-down approach as described above, to locate the
vacuum , which is determined by the scale (and angle) at which the couplings fulfill
the criticality equations in Eq. (3.12), we set the renormalized couplings to rather
general values (motivated by possible new physics at high energy) at the Planck
scale and use [-functions of the couplings to finally determine the highest scale at
which SSB can occur in a stable potential. This provides an intuitive formalism
to determine scale and angle of radiatively induced symmetry breaking (o, 50) in
conformal symmetric models. With respect to the critical scale g this means that
just by renormalizing dimensionless couplings at the Planck scale, the dimensional
transmutation feature of Coleman-Weinberg symmetry breaking provides us with
the intrinsically preferred non-trivial vacuum scale that is naturally exponentially
separated from the Planck scale.
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3 APPROACH FOR THE ANALYSIS OF RSSB

3.3 Numerical determination of the vacuum

As we want to probe conformal symmetric multiscalar models as generally as pos-
sible, it is convenient to both solve the criticality and stability conditions as well
as to integrate the p-functions numerically. This is sensible since the S-functions,
c.f. Eq. (3.17), of the scalar content of the theory become hard to solve analytically
if one does not make additional assumptions. Therefore, we choose to restrict our
the precision of our analysis and hence its significance by numerical uncertainties
that we have to assess throughout the calculation, instead of further assumptions
on the scale-dependent, running couplings.

The B-functions have been calculated for most of the common classically con-
formal theories and can be found in publications, but as we might want to choose
a different normalization in the Lagrangian or investigate more exotic models we
use the Python script PyRQTE 2, c.f. Ref. [37], to calculate the corresponding f-
functions. To calculate the scale dependent coupling functions (\;(t), . ..) we fix their
initial values at an arbitrary high energy-scale which we choose to be the Planck
scale (as motivated above)

. :U’Pl 19
Mo = Ailtn),  with = In | 22 ) — 1 12210 . 3.19
,0 ( Pl) Pl CeV [ ] ( )
Then we integrate their S-functions up to the electro-weak energy-scale fpyw =
In [‘%} = In[100] with respect to t = In [é} and as long as the model depen-
dent tree-level stability conditions are fulfilled. We stop at the first scale where any
of the tree-level stability conditions is violated, denoting it with ¢4, and therefore
ensure tree-level stability in all our following calculations. As a consequence we get
individual interpolation functions for the couplings \;(¢) in the range t € [tsiap, tr)-
Due to the A?In \; terms in the criticality equations, solving them simultaneously
causes computational problems. Therefore, we instead calculate the minimum with

respect to @ € [tsap, tpi] and 50 € [0, E} of the sum of squared criticality equations

2

(5 0) + A0 + 3B ) + (% [sF g0 + A 0)] )

= (fr(ﬁo; %))2 + (ﬁz(ﬁo; %))2 ; (3.20b)

where f,(Jo; @) is the radial criticality equation from Eq. (3.12a) and f,(Jo: @)
denotes the n — 1 angular stationary equations of Eq. (3.12b). Since the sum of
squares is necessarily greater than 0, a minimum value equal to zero ensures that
all terms of the sum are identically zero, hence all stationary conditions would
be fulfilled simultaneously. We use the following criteria to check that the found
minimum is indeed, up to numerical uncertainties, a zero contour of the criticality
equations:

1. Smallness of the minimum: We apply a threshold (e.g. a® = 107%) to the value
of the squared criticality equations at the found minimum, ensuring that every
individual term is numerically close to zero and hence the criticality equations
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3.4 Scalar QED analysis

in Eq. (3.12) are fulfilled up to the numerically accuracy of O(«).

2. One-loop vacuum stability: Since tree-level stability is already given by only
looking for a minimum in the range t € [tsap, tpi], we additionally check for
one-loop stability of the vacuum by requiring the numerical vacuum to fulfill
Eq. (3.14), where h denotes the upper left k x k submatrix of H (QSTO; ©p) as
given in Eq. (3.15).

3. Leading term quotient: To fulfill the stationary equations there has to be sig-
nificant cancellation between the individual terms in each stationary equation
for it to be equal to zero. To make sure that the minimum of the squared
equations is actually the “true” vacuum, and not just the case in which all
individual terms of the stationary equations are small, e.g. due to small initial
couplings (at the renormalization scale), we apply a threshold to the quotient of
leading term of the criticality equations and the sum of squared equations. As
k(o; o) is of O()\;), it can be identified as the leading term of both Eq. (3.12).
Therefore we require the true vacuum to surpass the threshold

ff2(2?§0; ©o)
(fr(go;@o)> + (ﬁz(go;@o))

q= 5> eg. 10°. (3.21)

A minimum found to the sum of squared equations in Eq. (3.20a), that passes the
three tests mentioned above, is considered the preferred vacuum of the theory for
the given initial Lagrangian couplings (A, 0, gio, -..). To investigate the behavior of
Coleman-Weinberg symmetry breaking these initial parameters are varied in differ-
ent ways, e.g. all initial parameters are varied linearly over a certain interval, only
two parameters are varied linearly while the others are held constant (gives better
visualization options) or generating random independent initial values of different
orders of magnitude for the initial couplings. Finally, we calculate the values of the
couplings at the critical scale via the interpolation functions \;(¢) from RG-running
and investigate the so calculated data with respect to the critical scale ¢y and angle
Jy of RSSB depending on initial coupling values at high energy-scale My, and the
critical coupling values \;(tcrit)-

3.4 Scalar QED analysis

In the following we closely investigate the running of couplings and use the formalism
introduced above in Sections 3.1 to 3.3 to further investigate RSSB in the case of
massless scalar quantum electrodynamics. Recapping what we already derived in
Section 2.2, the one-loop effective potential is calculated to be as in Eq. (2.14) and
deriving Veg(¢) with respect to the classical field ¢ gave the criticality condition
from Eq. (2.12). From the criticality condition we learned that non-trivial minima
are induced when \ ~ —;¢*In[¢?] is fulfilled at the critical scale ¢y. Now, following

1672
the discussion in Section 3.2, we start the analysis of scale-setting by calculating the
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3 APPROACH FOR THE ANALYSIS OF RSSB

scale dependent coupling functions A(t), ¢g(t) from their S-functions

(47)° Br(N, g) = 2002 — 12)\g> + 6%, (3.22a)
(47)* By(g) = %93 , (3.22b)

for given initial couplings at Planck scale A\g = A(tp) and gy = g(tp). The A(?)
and ¢(t) are displayed in Fig. 3.1 for different choices of initial couplings Ay and
go- There we see that ¢(t) is “almost” constant over variation of ¢ while A(t) is
increasing with ¢. This is easily understood by the structure of their S-functions,
since the variation of ¢(t), given by f,(¢), is of O(g?), such that for gy < 1 it follows
that 8, < 1. On the other hand, f,(¢) contains a A-independent contribution of
O(g*). With g(t) ~ gy = const. as discussed above, deriving () with respect to
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Figure 3.1: The running couplings A(¢) and g(t) of scalar QED with different renor-
malized initial values (A;p, ¢i0), calculated numerically with the S-functions from
Eq. (3.22) shown in the range from ¢, to tgy. The initial couplings were chosen to
be, i = 1: (0.5,0.6), i = 2: (0.4,0.8), i =3: (0.1,0.6), i = 4: (0.6,0.2).

A we find that §5(A) > 0 (for the calculation see Appendix A.2), for all A\(¢) This
assumes that we start with Ao > 0, which is required by tree-level potential stability.
Consequently, if (Ao, go) < O(1) do not already fulfill the criticality condition of
Eq. (2.12), A(iz) decreases going to lower energy-scales until the criticality condition
is fulfilled, inducing SSB or until we reach the end of our investigated stable (A(z) >
0) energy range figy without allowing for Coleman-Weinberg symmetry breaking.
Applying this finite energy range is a (sensible) truncation of the statement made in
Section 2.2, that there always exists a ¢ such that the couplings satisfy Eq. (2.12)
for sufficienlyt small couplings < O(1). Assuming the initial couplings (Ao, go) are
of the same order of magnitude O(1071), evolving both couplings down to lower
energies we quickly arrive in a regime jiqi < i < fip, Where A < g(i)? ~ g2 is
fulfilled. Since A ~ 2= ¢*In[¢?] is required for SSB we can be assured that we are still
in the unbroken phase of the classical conformal symmetry. Since A < g(j1)? ~ g2
implies both \? < g5 and A\g*> < ¢*, we can approximate the S-function of the
quartic coupling in this regime by

6
1672

BMR) = ——g". (3.23)
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3.4 Scalar QED analysis

Integrating this from g to jip we get the energy-scale dependent quartic coupling

6g°* fi
= In | — A 3.24
1672 |:,uPl:| il (3.24)

D

where )\ is the initial quartic coupling. Now for the calculation of the critical scale
(Perit = flerit) Where SSB occurs, we solve the criticality condition for A(f) such that
A(ficri) is given by

3 4ri 1 6 élri 7cri
M flerit) = % <§ — lnggrit) = # In {%} + Ao - (3.25)
Pl

Rearranging for the quotient of critical and Planck scale while omitting terms that
are several orders of magnitude smaller than the leading term, we are left with

eri 1672 \
Lorit :eXp{_ T _0} , (3.26)

e 6 961

which displays nicely the exponential dependency of scale-separation between critical
and high energy-scale with respect to the initial couplings. Now one can already
check whether there are any conditions on the initial couplings required to allow
for RSSB with a critical scale i, around the electroweak scale figw. For further
analysis we use the formalism described in Sections 3.1 to 3.3 to determine the
breaking properties for initial couplings Ao, go € [0.1,0.9]. The result is shown in
Fig. 3.2. The red line denotes the upper bound that is set on Ay, by only allowing RG-
running until ¢gy. It shows for a given gg the maximal \g, such that \(¢) can decrease
enough through RG-running to satisfy the criticality condition from Eq. (2.12), also
shown in the legend of Fig. 3.2. We see that the results from our calculations are
in good agreement with the bound given by the red line. Furthermore that there
is very little fine-tuning necessary in the renormalized couplings at fip, to allow
for a spontaneously generated energy-scale around figy, confirming the relation of
exponential scale-seperation, as calculated in Eq. (3.26).

In the case of multiscalar theories it is not as easy to derive (approximate) ana-
lytical expressions for the dependency of scale-separations on the initial couplings,
compared to scalar QED. Therefore, one either has to make assumptions about
e.g. tree-level flat directions (Gildener-Weinberg approach) or rely on a numerical
analysis. A structurally similar relation to Eq. (3.26) has been derived in Ref. [38] in
the context of RSSB in massless two-scalar theory with assumptions similar to the
Gildener- Weinberg approach. But, since we want to analyze radiatively induced SSB
via the Coleman-Weinberg mechanism, we rely on the numerical analysis using the
approach described in Sections 3.1 to 3.3 to investigate classically conformal sym-
metric multiscalar models without any further assumptions. However, first we give
a brief summary of the Gildener-Weinberg approach, originally derived in Ref. [23],
since it is widely used in various applications in the literature (e.g. Refs. |9, 10,
22, 24-27]. This allows us to easily compare our findings with the corresponding
Gildener- Weinberg results.
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— Acrit + ﬁggrit(lc’g ggrit - 1/3) =0
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Figure 3.2: The condensation scale t.;; depending on the values of the couplings
at renormalization, i.e. the initial values at Planck scale (A(My,),g(Ms)). The
calculation allows for teiy € [tew, tpi]-

3.5 Gildener-Weinberg approach

In the following we review the formalism introduced by E. Gildener and S. Weinberg
in Ref. [23], which describes a systematic approach for minimizing the effective
potential in a (classical conformal symmetric) theory with multiple scalar fields.
They assume couplings of order g2, with g denoting the gauge coupling. As a result,
the tree-level contribution to the effective potential is of O(g?), whereas the one-loop
contribution is of O(g*). Consequently, for the one-loop contribution to perturb the
potential, the tree-level term has to vanish at a specific scale, the Gildener-Weinberg
(GW) scale Agy. With the tree-level potential given by

L1
V(®) = op fumdididndr (3.27)

where @ is the collection of the theory’s real scalar degrees of freedom, the condition
of vanishing tree-level contribution at the Gildener-Weinberg scale Agy, translates
to a condition on the scalar couplings f, the so called Gildener-Weinberg conditions.
In general they can be written in the following way

R(f)|A:AGW =0. (3.28)

Note that the scalar couplings in Eq. (3.27) are subject to RG-running f = f(A),
with A denoting the renormalization scale. That the scalar couplings f fulfill the
condition in Eq. (3.28) corresponds to a valley along a ray in field space with a
minimal value of zero. This ray in field space denotes the flat direction and can be
parameterized by a unit vector of field space 77 and the value ¢ that determines the
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position away from the origin on the ray
Dgar = T . (3.29)

Along the flat-direction, the one-loop quantum corrections can induce non-trivial
minima, while the other directions in field space are dominated by the tree-level
contributions and therefore only contain trivial minima. These minima along the
flat direction lies slightly shifted from the GW scale Agy at (©)

(p) = Aqw - exp (—i - %) : (3.30)

with the one-loop terms A, B given as in Eq. (3.9), up to factors that drop out while
calculating A/B. A derivation of the expression in Eq. (3.30) is found in Appendix
A of Ref. [22]. Then, radiatively induced spontaneous symmetry breaking along Ppia
corresponds to the mass generation of the pseudo-Goldstone boson of broken scale
invariance. Its mass is then proportional to the curvature of the effective potential at
its minimum. Thus, the Gildener-Weinberg formalism reduces the scale dependent
n field dimensional problem of SSB to an analysis of the potential along the flat
direction and at Agw.

The above reviewed Gildener-Weinberg approach seems, at first glance, similar
to the approach used by us to investigate Coleman-Weinberg symmetry breaking, as
it is also built around an equation that determines the scale at which the effective
potential is minimal by requiring the couplings to fulfill certain conditions. But here
lies already the first difference. The Gildener-Weinberg conditions only apply to the
scalar couplings, while our n criticality equations depend on couplings (e.g. quartic,
gauge, yukawa) from all sectors (e.g. scalars, fermions, gauge bosons). In addition,
the Gildener-Weinberg formalism assumes domination of the tree-level contribution
generically in the field space, which we do not assume. If this is not the case, the
GW formalism still gives a correct local minimum along the flat direction. However
this local minimum is not necessarily also the global minimum of the effective poten-
tial. The possibility that the one-loop contribution can compete with the tree-level
potential in general field space is commonly not considered. Thus, in the following
Section 4 we investigate classically scale invariant multiscalar models, not restricting
ourselves to an analysis along possible flat directions but rather investigating the
effective potential in full field space. We also focus on effects caused by the interplay
of the scalar sector with e.g. gauge sector instead of mostly focusing on the scalar
sector itself, as it is done in the GW-method.

4 Classically conformal symmetric two-scalar theo-
ries

In the following we introduce different classical scale-invariant models to investigate
RSSB in the Coleman-Weinberg formalism in the most general way. We want to
develop a systematic or physical intuition of the symmetry breaking properties of
the different particle sectors and especially their interplay. Therefore, we use the
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4  CLASSICALLY CONFORMAL SYMMETRIC TWO-SCALAR THEORIES

methods and general formalism introduced in Section 3 to investigate characteris-
tics of RSSB at the critical scale and its connection to initial couplings through
RG-running. Starting off with the simplest massless two-scalar model we continue
by adding different forms of couplings (e.g. just one scalar coupled to it, both or in-
dividual gauge groups) to a U(1) gauge group, trying to give an intuitive approach
that may be generalized to more complex (toy) models. We compare our results
with findings from a Gildener-Weinberg type analysis and highlight differences that
result from the general approach including non-scalar contributions in the criticality
equations instead of having them contribute only implicitly through RG-running of
scalar couplings as it is done in the Gildener-Weinberg approach. We see that we
are able to fundamentally distinguish different cases of RSSB, while also qualitative
new features of symmetry breaking appear. These are understood given the intuitive
nature of our general criticality equations.

4.1 'Two massless scalars

Let us consider a toy model which only features two massless real scalar fields
¢ and S that both can acquire a non-vanishing vacuum expectation value. The
corresponding Lagrangian reads

L = 10,00"¢ + 10,50"S — Vieo(, S) (4.1)

)

with the tree-level potential
A A As
Viree (0, S) = Z¢4 + Zp¢252 + ZS4 . (4.2)

Note here, that excluding dimension-4 operators such as e.g., »S® is equivalent to
implicitly assuming a Z, symmetry between the two fields ¢ and S. Now following
Section 3.1 for n = 2 scalar degrees of freedom J reduces to . We rewrite the
effective potential with respect to the spherical coordinates

¢ = psind, S =pcost, (4.3)

such that the angular part of the tree-level contribution x(¥; o) (evaluated at the
critical scale i = ¢g) is simply given by

k(95 ¢0) = Asin®d + A\, sin® ¥ cos® ¥ + A, cos* I . (4.4)

Whereas, the one-loop contributions result from two field dependent mass terms
m?2 (J; ¢o) originating from the two-scalar degrees of freedom and hence contributing

to the one-loop terms A(V; o) and B(¥; o) with constants cx = 2, multiplicities
ne = 1 and spin s3 = 0, c.f. Eq. (3.9). These field dependent masses are calculated
to be

1
mi(9; o) = 1 <6 (Asin® 9 + Ag cos®9) + A, (4.5)

+ [16)\12] sin® ¥ cos® ¥ + (6 (Asin® ¥ — A, cos®¥) — A, (sin® ¥ — cos® 19))2} 2) ’
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4.1 Two massless scalars

where the implicit ¢y dependence again denotes that the Lagrangian couplings
(A(t), As(t), Ap(t)) are subject to renormalization group running. How exactly the
couplings change over varying running scale is quantified by their corresponding
[-functions, that are calculated to be

166y = 18X + 12, (4.6a)
16765, = 18\2 + 37, (4.6b)
16725y, = 20,(3A 4+ 3Xs +2),) . (4.6¢)

The resulting functions for the scale dependent Lagrangian couplings (A(), As(t), A, (%))
are exemplary shown in Fig. 4.1. Here we may already note that the portal cou-
pling cannot become negative due to RG-running if not initially already A,o < 0,
since the portal coupling’s S-function depends on ), itself in a multiplicative way,
c.f. Eq. (4.6). In addition we observe, that the absolute value of all couplings mono-
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Figure 4.1: The renormalization group running of the Lagrangian couplings
(A, As, Ap) with respect to t = In [f1/GeV] in the “interesting” energy range of [tgy, tp]
corresponding to the S-functions from Eq. (4.6). Here displayed with different initial
couplings (Ao, Aspo, Apo), i-e. upper left: (0.5,0.2,—0.4), upper right: (0.5,0.2,0.4),
lower left: (0.3,0.5,—0.4), lower right: (0.2,0.5,0.5).

tonically decreases towards lower energies and initially zero couplings only stay equal
to zero in the case of no portal coupling A\, = 0. Furthermore, we need to ensure
vacuum stability for the tree-level and the one-loop effective potential in the region
of interest and especially at the minimum of the effective potential y. From sta-
bility of the tree-level potential, we get the following conditions for the Lagrangian
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couplings

AE) >0, M) >0, A1) > —2VANOND),  VEE [t te], (A7)

where t is the natural logarithm of the running scale p, while tg,, denotes the lower
end of the energy range, as we arenot interested in SSB at scales below 100 GeV,
and accordingly ¢y, makes My, the upper bound for investigated energies as we
would expect our effective field theory to transition into unknown physics at energy-
scales that high. Hence, t;, is the scale at which we set the theory to be finite by
fixing the Langrangian parameters at that scale. This corresponds to “matching
conditions” between two phases of effective field theories and with that we focus on
understanding the effects the choice of initial conditions has on the properties of
RSSB. For the stationary point, calculated using Eq. (3.12), to denote the global
one-loop stable minimum of the effective potential the following conditions have to

be fulfilled
H(300,190) >0 and B(’lgg; g00> >0, (48)

with the one-loop contribution term B(dy; o) as given in Eq. (3.9b) and the Hessian
determinant H evaluated at the vacuum (g, 9o)

H(po, ¥) = % (23(190;%) [8 (k(0; gofja);g A(ﬁ;w))}%9 B [aBﬁ;%)Lﬁ ) ‘

(4.9)

The condition arising from combining Eq. (4.8) with Eq. (4.9) is checked numerically
for all points to ensure that only the “true” non-trivial vacuum is found. Detailed cal-
culations for the determinant of the Hessian and partial derivatives for the classical
scale-invariant two-scalar model are displayed in Appendix A.3. With the stability
of the potential and the conditions for the stationary point being the global min-
imum, we want to turn to the criticality equations before looking at results from
simulations to assess what kind of symmetry breaking we expect to take place. Given
the tree-level contribution in Eq. (4.4) and that only the two field dependent masses
from Eq. (4.6a) contribute to the one-loop term in the effective potential, it is easily
seen that the tree-level contribution is generally of O();) while the one-loop terms
are of O(A?). Thus, we expect only Gildener-Weinberg like symmetry breaking,
since there are no other particle sectors that could compete with the contributions
of the scalars. In other words, we expect an almost flat direction and therefore x is
close to zero, such that the one-loop effects can shift the vacuum of the theory from
the origin to a non-trivial solution. An exact flat direction develops if the couplings
at a certain scale t fulfill one of the following Gildener-Weinberg conditions

0,  A#)=0, (4.10a)
0, M) =0, M) =-2V/NONG . (4.10b)

Following here the same principle of a tree-level flat direction as Gildener and Wein-
berg did in their analysis, our formalism offers a different perspective to understand

For A\, >0 : A(?)
For A\, <0 : (%)
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4.1 Two massless scalars

how symmetry breaking can take place. As the tree-level term s depends only on
an odd power in \; and there is more than one coupling (mixing of scalar fields),
there can be cancellations such that the absolute value of the tree-level term is much
smaller than );, while at the same time the one-loop terms depend on an even power
in the couplings, resulting in no cancellations among themselves. Therefore, unlike
in the massless ¢* theory, c.f. Section 2.1, RSSB in this theory’s region of appli-
cability is possible if the tree-level potential becomes flat enough for the quantum
corrections to induce a non-trivial vacuum.

With these we have a complete description in the context of the general for-
malism introduced in Section 3.1 and start with a linear variation of one of the
quartic couplings and the portal coupling, while holding the other quartic coupling
constant. This gives us a simple access to the symmetry breaking properties, as the
Lagrangian and therefore the effective potential is invariant under exchange of ¢
and S. Additionally, only varying two parameters allows for an easier visualization
of the dependence on the initial conditions of the vacuum (pg, ). The results for
critical scale g = (p) and critical angle Jy = 6 of symmetry breaking for varying
Ao € [0.1,0.9] and A\, € [—0.9,0.9], while the other fields quartic initial coupling is
given by ;o € {0.1,0.3,0.5} are displayed in Figs. 4.2 and 4.3.

() [GeV] o/m
03 10 10 10'? 10% 10 021 0.23 0.25 0.27 0.29
T BT T o

—0.1

-0.3

-0.5
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Viree = 30" + 22¢75% 4+ 2.6
Xs(Mp1) = 0.3

0.3 0.7 0.1 0.3 0.5 0.7 0.9
A Mpl (M)

Figure 4.2: The condensation scale ¢y = (¢) and angle ¥y = 6 depending on the
initial couplings at the Planck scale (A(Ms), Ap(Mp)) € ([0.1,0.9],[—0.9,0.9]) with
Aspo = 0.3. The displayed range of the initial couplings is limited to the areas of
viable solutions and was scanned using a step-size of Ay = 0.001.

Looking at Fig. 4.2, the first important observation is that for initial couplings
of the same order of magnitude (\;o = O(1)), RSSB cannot occur for positive initial
portal couplings. This can be understood quite intuitively if one looks closely at the
criticality equations, especially the radial one from Eq. (3.12a) and its individual
terms. Considering that )\, cannot become negative due to RG-running, if A\, > 0
and tree-level stability dictates A\, Ay > 0 then all terms in & (J9; ¢g) are greater or
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Figure 4.3: The condensation scale ¢y = (p) and angle ¢y = 6 depending on
the initial couplings at the Planck scale (A(Ms,), A\, (My)) € ([0.1,0.9],[—0.9,0.9])
with A\sp = 0.1 (top) and ;o = 0.5 (bottom). The displayed range of the initial
couplings is limited to the areas of viable solutions and was scanned using a step-size
of Alg = 0.01.

equal to zero, c.f. Eq. (4.4), or in other words no cancellation can occur in & (Jo; o).
Therefore k (Yy; po) = O(A\;), with \; being one of the couplings, since all are of the
same order of magnitude, while the one-loop terms are of A (Jo; o), B (Yo; po) =
O(N?), such that Eq. (3.12a) cannot be fulfilled. This is important again when
we look at couplings of different orders of magnitude with negative and positive
portal couplings. Secondly, one sees that the region of allowed RSSB is bound from
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4.1 Two massless scalars

above and below. The boundary from below, as displayed e.g. in Fig. 4.2, originates
from ensuring initial tree-level potential stability via A, > —2v/A)\, from Eq. (4.7).
Whereas, the boundary from above is due to our restriction in the range of RG-
running (only down to tgy), as already seen in Section 3.4, Fig. 3.2. Understanding
the observed structure of symmetry breaking scales is directly linked to the expected
similarity to the Gildener-Weinberg case. The “rainbow’-like structure, where points
with the same critical scale have similar distances to the boundary that is set by tree-
level potential stability, originates from the fact, that said stability condition, if it is
exactly fulfilled (A, = —21/A),),, denotes the Gildener-Weinberg condition for SSB
with non-vanishing VEVs for both scalar fields. Fulfilling the stationary equations in
the massless two-scalar models requires a “kind of flat” direction such that one-loop
and tree-level contributions can be of the same order of magnitude. Thus, the more
an initial point in coupling parameter space deviates from the “flatness” condition
of Gildener-Weinberg, the longer RG-running needs to flatten out the tree-level
potential, resulting in a lower scale of symmetry breaking. In Fig. 4.4 the quartic
coupling A and the portal coupling ), are shown with their values at the critical
scale .. There we see all the points from before moved way closer to the boundary
that is set by GW “flatness” condition, distorting the shape of symmetry breaking
points along the conditions curve. Furthermore, we see that there are no holes

Ap ( tcrit)
Ap(terit)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9
/\(tcrit) /\(tcrit)
5 10 15 20 25 30 35 40 0.22 0.23 0.24 025 0.26 0.27 0.28 0.29

terit Ocrit/mt

Figure 4.4: Condensation scale .4 and angle 0. plotted against the portal and
quartic coupling at the scale of symmetry breaking (A(feit), Apterit). The calcu-
lations are based on the classical scale-invariant two-scalar model given in Sec-
tion 4.1 and varied initial conditions at the Planck scale (A(Mp), \p(Mp)) €
([0.1,0.9],[—0.9,0.9]) with A; o = 0.3. For comparison the displayed parameter space
is identical with the one in Figs. 4.2 and 4.3 while again a step-size of AXA = 0.01
was used.

or unexpected unstable regions, but rather a smooth distribution of condensation
points. This was expected since all the quantities in the criticality conditions are
smooth functions of the scale and angle of condensation (Yy; o). While we find the
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full range of possible symmetry breaking scales, the critical angles 6 only varies a
little around a symmetric value, e.g. ~ 7 for A\,o = 0.3 in Fig. 4.2. As a result the
total (maximal) variation throughout the scanned range of initial couplings is only
about Af ~ 0.087. Seeing as ¥ (and therefore also 9 = 6) describes the mixing of
the two-scalar fields ¢ and S

¥ = arctan (g) : (4.11)

the maximal cancellation in the tree-level contribution x(Jo; o) , c.f. Eq. (4.4), for
given couplings is reached for maximal mixing of the fields, i.e. ¥ = /4. And since
cancellation in x(Jy; g) is essential for RSSB in a theory with only scalar degrees of
freedom, it is only natural that the case of symmetry breaking at maximal mixing
angle is the intrinsically preferred one. In other words, since there is no preferred
direction in field space, the theory aligns around the (symmetrical) angle of maximal
mixing. In the calculation of data for Fig. 4.3 and Fig. 4.4 we used a different step-
size.

Now varying the second quartic coupling As(Mp,) to be either 0.1 or 0.5 instead
of 0.3 (see Fig. 4.3), we observe that the structure of condensation points of both
plots seems to be almost unaffected, while the by tree-level stability excluded region
and the angle of condensation seem to vary. This is exactly what we would expect
as the condition for determining the unstable vacuum region, c.f. Eq. (4.7), depends
directly on A and as the cancellations in k(¥y; o) not only depend on the angle
of mixing ¥ but also on the scalar couplings, an asymmetry among the quartic
couplings results in a shift of the angle for which the cancellations are maximized,
which is equivalent to a rotation in field space and matches the observations from
comparing Fig. 4.2 and Fig. 4.3. This effect is transported from the scale of setting
initial couplings to the critical scale by the RG-running of the couplings.

So far, we only considering initial couplings of the same order of magnitude.
Now we turn to the analysis of RSSB for three random individual initial couplings
with absolute values of |A\;o| € [107°,1]. While A, Aso > 0, as required by tree-
level vacuum stability, this includes both positive and negative portal couplings.
In Fig. 4.5 the critical angle is plotted against the scale of condensation, while
distinguishing points originating from initial positive or negative portal couplings.
Recollecting that the portal coupling cannot change its sign throughout RG-running
we observe the expected Gildener-Weinberg like symmetry breaking. Namely, that
for positive portal coupling at the GW scale the tree-level potential can only develop
a flat direction and therefore allows for GW symmetry breaking along one of the
fields (¥ = 0,7/2) with the quartic coupling of that field equal to zero, c.f. Eq. (4.4).
Yet for negative portal coupling at the GW scale, there can be a flat direction for
an arbitrary v, depending on the ratios between the quartic and portal couplings.
Even though the results of the calculations agree with the findings from the Gildener-
Weinberg formalism, there are two interesting insights to be gained here:

1. While there is SSB for positive portal couplings for couplings of different orders
of magnitude, there is none if the scalar couplings are of the same order of
magnitude. Hence a hierarchy in the (initial) couplings is necessary.
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Figure 4.5: The critical angle Y5 = vy against the condensation (critical) scale
tait = In g, while the color of the points distinguishes between negative and positive
portal couplings (both at Planck and condensation scale).

2. In both cases (with or without coupling hierarchy) SSB in all directions in
field space (all angles ¥) is generally expected for negative portal couplings,
yet we do not find points with SSB (up to numeric uncertainties) along one of
the fields. Thus, a mixed condensation state seems to be preferred.

Both of these observations can be understood in the context of the general approach
that is presented in this work, c.f. Section 3.1. Starting with explaining insight
number one, we want to recall that there is no cancellation possible in x(Jo; o)
as all individual terms are positive and at least the portal term is not equal to
zero, given A\, > 0, yet the tree-level contribution has to be small, i.e. the same
order of magnitude as the suppressed one-loop contributions. Not assuming there
is a hierarchy in the initial couplings then for critical angles of ¥y # 0, 5 the tree-
level term is of k(Jg;00) = O(Margest), While the one-loop contributions are still of
A(o; o), B(00; 90) = O(Mrgest)- Consequently, there cannot be any SSB under
this conditions, since the one-loop terms cannot cancel the tree-level contribution,
such that the criticality equation of Eq. (3.12a) cannot be fulfilled. For critical
mixing angles ¥y = 0, 7 there is still no cancellation in x(J; o), but now it only
depends on one of the quartic couplings A\ or A,

H<790;§00) = {O()\S): 190 :%0 ) (4'12>

such that it can become “almost” flat if the corresponding quartic coupling is initially
hierarchically smaller, with this effect being amplified by RG-running while going to
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lower energy-scales. An example of the amplifying nature of RG-running for hier-
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Figure 4.6: The RG-running of the scalar couplings with hierarchically initial values
of (Ao, As,0, Apo) = (0.0000440, 0.0318, 0.0276) that result in the non-trivial vacuum
(p0,V9) = (1.57,27.7). For reasons of clarity and comprehensibility the numerical
values are rounded to their third non-zero digits. The shown energy range is trun-
cated by ensuring tree-level vacuum stability, particularly A(¢) > 0. Note here the
logarithmic scale for the strength of the couplings.

archic initial couplings is shown in Fig. 4.6. Whereas, for a tree-level flat direction,
the one-loop contributions still depend on the largest contributing scalar coupling in
this scenario, the portal coupling A, A(¥o; o) and B(do; 00) = O(Mest) = O(A2).
As a result the one-loop contributions, even though depending on /\129, can be the
same order of magnitude as the the tree-level term x(vy; po) due to a large enough
hierarchy between one of the quartic couplings and the portal coupling. Therefore,
allowing for the criticality condition in Eq. (3.12a) being fulfilled for positive portal
couplings resulting in possible spontaneously symmetry breaking. The explanation
for the second insight is then rather simple. This theory of purely scalar particle
content needs either cancellations in the tree-level contribution or a large enough
hierarchy between the portal and a quartic coupling, whereas the effect of tree-
level cancellations is much bigger, needs less fine tuning and does not depend on
amplification through RG-running and hence is the preferred one in the top-down
approach of analysis. With tree-level cancellation being the preferred mechanism in
this scenario, it is clear that with the tree-level contribution x(dg;¢g) as given in
Eq. (4.4), that a critical angle of ¥y = 0,5 would result in no cancellation in the
tree-level contribution. RSSB rather occurs at the mixing angle of maximal tree-
level cancellations, which is not necessarily identical to the angle of maximal mixing
but depends on the ratios between the scalar couplings. This result is further moti-
vation to consider general Coleman-Weinberg symmetry breaking via the top-down
approach, since there is initially no reason for the theory to prefer any “form” of
RSSB when looking at the couplings at the critical scale. However, renormalizing
the theory at high energy and evolving it towards low energies shows that through
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the properties of RG-running the preferred (or more natural) solutions for RSSB are
separated from the ones that would need fine-tuning. We also want to note that the
result of a preferred type of Gildener-Weinberg like symmetry breaking in the A, > 0
parameter space, is a result entirely based on RSSB in theories containing only scalar
degrees of freedom. An analysis in the Gildener-Weinberg framework only focuses
on the theories scalar sector and hence one might think that this statement gen-
eralizes to theories with arbitrary particle content, while our approach, including
explicit contributions from non-scalar degrees of freedom, shows that this statement
does not generalize for arbitrary particle content in the most general approach to
RSSB. We see that this is indeed the case when introducing complex scalars that are
coupled to a gauge group in Section 4.2. Somewhat quantifying how well our general
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Figure 4.7: Deviation from the Gildener-Weinberg condition for spontaneous sym-
metry breaking, that is preferred for A\, < 0, i.e. )\12) = 4\); (equivalent to the one
in Eq. (4.10)). The colored data points show the initial couplings at Planck scale
with the resulting criticality scale, while the black data points denote the couplings
evaluated at the condensation scale gy = ().

approach reproduces the findings of Gildener-Weinberg we used the top-down ap-
proach to determine when the scalar couplings would fulfill the GW conditions and
found that deviations of the scale and angle of the non-trivial vacuum (yg, Jy) were
of the O(1072). Furthermore, to analyze the RG-runnings effect on deviations from
Gildener-Weinberg conditions, in Fig. 4.7 we both look at initial deviations from
the condition for GW symmetry breaking with non vanishing VEVs for both scalar
fields (A, < 0), as well as at the coupling parameters deviations at the critical scale.
Here it is seen, that the initial deviations are smoothed out by the renormalization
group running of the couplings, such that a smaller initial deviation from the GW
condition results in less RG-running until condensation and therefore higher critical
scale .

In conclusion the model of two real and massless scalar fields ¢ and S behaves like
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one would expect using the Gildener-Weinberg approximation. This is reproduced
by the analysis following our general approach to RSSB, yet it also allowed us to
find systematics that are not obvious from a solemn Gildener-Weinberg analysis,
e.g. that one needs a hierarchy in initial couplings that is amplified by RG-running
to allow for RSSB with A, > 0. Using this more general approach of analysis our
results are in agreement with current literature and publications, e.g. Refs. |31, 38].
Yet we do not need to assume a Gildener-Weinberg case like in Ref. [38], where they
use this to calculate the explicit exponential scale-separation between high energy
renormalization and critical scale and also do not make any statements about the
tree-level and one-loop contribution on generically scales as in Ref. [31] but rather
acknowledge that RG-running can drastically change the hierarchy between the two
terms. While a theory consisting merely of scalar degrees of freedom was expected to
behave like described by Gildener and Weinberg we expect that including particles
of different spin s; # 0 changes this. Particularly including the coupling of gauge
groups to the scalars is expected to establish the option of scalar QED like symmetry
breaking.

4.2 Two massless scalars one coupled to a U(1) gauge group

After analyzing the symmetry breaking properties of the scalar sector with two real
degrees of freedom, we now extend the particle content by charging the scalar ¢ under
a U(1) gauge group with charge Q(¢) = 1, gauge field A, and gauge coupling g¢.
Still enforcing classical scale-invariance in the Lagrangian leaves us with the massless
and real scalar field S and the massless and complex scalar field ¢ = \%(Cbr + i),
which can be expressed by two real scalar fields ¢, and ¢;, but only has one real
degree of freedom, i.e. ¢,. Via gauge fixing we choose that only the real degree of
freedom acquires a non-vanishing VEV, while the imaginary degree of freedom ¢;
is (later) “eaten” by the Goldstone boson. This is equivalent to enforcing that the
theory is invariant under CP transformation, as the effective potential only depends
on the CP-even degree of freedom ¢,. As a consequence we consider the theory’s
Lagrangian to be

L= (D) (D46) + 30,50"S — Viwe(,6.5) (4.13)

with the covariant derivative D,¢ and the tree-level potential Vie(¢', ¢, S) given
by

D,¢ = 0,0 —igALo , (4.14a)

Viree(01,6,5) = A (¢70)” + % (¢7¢) S* + %S‘* : (4.14D)

Again we exclude dimension-4 operators that are odd in one of the fields, e.g. $S3, by
assuming a Zs, symmetry and follow the general formalism introduced in Section 3.1
to derive the one-loop effective potential. With only the two real degrees of freedom
contributing, the tree-level contribution k(Jg; ) is equal to the one from Eq. (4.4),
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with the two contributing fields in spherical coordinates
¢, = @sind, S =pcos? . (4.15)

The one-loop terms A(Yo; ¢o) and B(Yo; ¢o), c.f. Eq. (3.9), on the other hand still
get the same contributions from field dependent masses given as in Eq. (4.6a), but
also gain two additional contributions. A scalar contribution 13 (1J; o)

1
ma (5 @) = Asin® 0 + 5/\1, cos® (4.16)

that contributes with the constant c3 = % and multiplicity ng = 1 and the field
dependent mass term % of the gauge boson

m? (V; o) = g?sin? 9 (4.17)

that originates from the kinetic term of ¢, (D,¢)" (D#¢). Tt contributes to Eq. (3.9)
with the constant cy = % and multiplicity ny4 = 3. Note again, that the as im-
plicit marked dependency in the field dependent masses denotes that the displayed
couplings are subject to RG-running and thus their contributions to the critical-
ity equations depend on the scale ¢y at which the effective potential develops a
non-trivial vacuum. The functions for the running couplings (\;(t), g(t)) are then
determined by integrating their S-functions

167°8, = 1¢° (4.18a)
16726y = 2007 + A2 — 12)g° + 64", (4.18b)
16723, = 18X + A2, (4.18c)
16728y, = 20, (4X + 3\ + 2X, — 3¢7) . (4.18d)

Since the resulting functions depend on the choice of initial conditions for the
renormalized couplings, some examples are shown in Fig. 4.8. There we see the
impact of the gauge coupling g on the running of the scalar couplings, as the ¢’s
running itself is only very small as for the case of scalar QED, c.f. Fig. 3.1. It is
seen that the RG-running of )\ is almost not affected, which is what we expected,
since 8, only depends indirectly through A, on the gauge coupling ¢g. Furthermore,
the RG-running of the portal coupling is slowed down by the g dependent term of
opposite sign in Eq. (4.18) and for a sufficient hierarchy between the gauge coupling
g and the scalar couplings the sign of the whole S-function can be changed. This
results in A, (¢) increasing in absolute value going to lower ¢ (see upper left and right
in Fig. 4.8) instead of decreasing as before. Note that A,(¢) still cannot become
negative due to RG-running. If positive at the renomalization scale A, > 0, then
it stays positive at all scales \,(t) > 0, since its S-function has still only terms that
contain a factor of \, itself (see arguments in Section 4.1). For the quartic coupling
A of the field that is coupled to the gauge group the [-function gains additional
terms both with opposite and identical sign with respect to the terms originating
from the self- and portal coupling. Since the term with opposite sign is of O(\g?),
whereas the other term is rather constant and O(g*) (as g(t) is quite constant),
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Figure 4.8: The renormalization group running of the Lagrangian couplings
(A(E), As(t), A\p(t), g(t)) in energy range of [tsable, tr], Where the tree-level potential
is stable, corresponding to the [-functions from Eq. (4.18). Here displayed with
different initial couplings (Ao, As.0, Apo, o), i-e. upper left: (0.5,0.2,—0.4,0.6), upper
right: (0.5,0.2,0.4,0.8), lower left: (0.2,0.5,0.7,0.3), lower right: (0.2,0.5,0.5,0.7).

the opposing term dominates for couplings of the same order of magnitude and
hence slows down the RG-running of . For sufficiently large gy it can cause the
curvature of A(t) to change its sign, as it is seen in the two right hand plots in
Fig. 4.8. But if there exists a hierarchy between the quartic, and portal coupling
and the gauge coupling, then the O(g*) term dominates and accelerate the decrease
of A(t) towards small ¢. The hierarchy can already be sufficient for both couplings
O(107'). Additionally, the conditions for tree-level and one-loop vacuum stability,
as given in Eqs. (4.7) to (4.9) , as well as the Gildener-Weinberg conditions from
Eq. (4.10) do not change when one includes coupling to gauge groups of the scalar.
Yet the one-loop terms A(dy; po) and B(vYo; ¢p) change according to the previously
introduced additional field dependent masses (see Egs. (4.16) and (4.17)). Thus,
we now can turn to the analysis of non-trivial vacua for different choices of initial
conditions at renormalization scale.

As we did in Section 4.1, we start with investigating the systematics of RSSB
for initial couplings of the same order of magnitude. For comparability we again
choose to vary the initial quartic coupling Ao and the portal coupling A, o, while
keeping the other quartic coupling A, and the gauge coupling gy constant. To see
the effect of varying gy we calculate the condensation scales and angles in Figs. 4.9
to 4.11 for different constant values of initial portal coupling. There we see that the
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Figure 4.9: Condensation scale and angle depending on the initial portal A, and
quartic coupling Xy, with constant A\;o = 0.3, go = 0.2.(top) and g = 0.5 (bot-
tom). Additionally the tree-level stability condition and gauge-breaking bounds are
plotted.

calculations with “small” go = 0.2 (see Fig. 4.9) give the same results as before in
Fig. 4.2, namely only condensation for A, o < 0 at non-trivial angles ¥.i; # 0, 5 and
arbitrary scales bound from below and above respectively by stability conditions and
truncation of the running scale ¢ at tgy. Now with increasing initial gauge coupling
we see that there is condensation possible at positive portal couplings already at
values of gy = 0.5 as seen in Fig. 4.9. This effect is due to the contribution of the
gauge coupling to only the one-loop terms such that, in a scalar QED like fashion,
the one-loop contributions A(Wy; o) and B(dg; o) can cancel out the tree-level term
k(Jo; po) at the vacuum to fulfill the criticality equations from Eq. (3.12). Thus,
when the one-loop contribution of the gauge boson is of equal order of magnitude to
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Figure 4.10: Condensation scale ¢, depending on the initial portal A, and quartic
coupling Ao, with different but constant A,y and go. Additionally, the tree-level
stability condition and the gauge-breaking bounds (like in scalar QED) are plotted.

the tree-level contribution of the scalar and hence allow for spontaneous symmetry
breaking, we call this gauge-breaking. Whereas condensation as seen in Section 4.1
is called scalar-breaking. In analogy to RSSB in scalar QED, we expect the due to
gauge breaking allowed parameter space to be bound by the condition that at the
critical scale

3
mgérit (ln ggm't - 5/6) ) (419)

. ~
crit —

where the right hand side is generally negative, such that the condition contains an
implied absolute value for the right hand side, comparing the sizes of the contribu-
tions rather than their sign. Therefore, in Figs. 4.9 to 4.11 we plotted the lowest
possible A, > 0 for which the condition in Eq. (4.19) can still be fulfilled through
RG-running up to tgy. The scale dependence of this condition is nicely displayed
in Fig. 4.10 where we see that the lowest possible breaking scale from our calcula-
tions fits very nicely the above explained condition that is plotted as a the red line.
Note, that there would actually be a sin® 9y dependency in the natural logarithm of
Eq. (4.19), but via the most attractive channel argument, the first scale that allows
for SSB is always the one with maximal gauge contribution, hence ¥, = 7. For
further investigation Figs. 4.10 and 4.11 display the effect of increasing initial gauge
coupling’s fourth power gi in a linear way. Given the condition in Eq. (4.19), we
expect the allowed condensation parameter space to depend on gj such that critical
scale and angle are displayed for gy = 0.652,0.688,0.738, 0.8308, which is confirmed
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Figure 4.11: Condensation angle 9, depending on the initial portal A,y and quartic
coupling Ao, with different but constant A\;p and go. Additionally, the tree-level
stability condition and the gauge-breaking bounds are plotted.

by Figs. 4.10 and 4.11. Looking specifically at the angles of condensation for initial
couplings of the same O(107!) as displayed in Fig. 4.11 we see that there is a clear
separation between scalar- and gauge-breaking. The gauge-breaking is only possible
in the direction of the field that is coupled to the gauge group, here ¢, = @sind,
resulting in a condensation angle of ¥ = 7. This can be understood in different
ways, in the case of our criticality equations the angle g = 7 means that both ¢,
and A, contribute maximally to the equations, while S does not contribute. There-
fore, the tree-level is dominated by A and the one-loop terms by ¢* In ¢? with “small”
)\12) In A\, contributions. Deviating from this angle, the tree-level would gain contri-
butions that are proportional to A, and A, whereas the one-loop level only gains
additional terms proportional to )\]29 and A2, resulting in an even larger discrepancy
that would need “more” RG-running such that tree-level and one-loop terms are of
the same magnitude and hence induce symmetry breaking, by fulfilling the critical-
ity conditions Eq. (3.12). This means solutions for A, > 0 and non-trivial angles
Yo # 0,3 are in general possible but spontaneous symmetry breaking was already
induced by quantum corrections at a higher scale, leaving it unclear how the the-
ory evolves in the phase of spontaneously broken conformal symmetry. This opens
up a whole different discussion about possible sequential symmetry breaking (or
Coleman- Weinberg tumbling), which would need some more time to investigate and
is beyond the scope of this work. Another way to understand that, gauge-breaking
only occurs at trivial angles ¥y = 0, 7 for positive critical portal couplings is to look
at the geometry of the one-loop effective potential. Here, we have the usual quartic
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rising tree-level with only a minimum at the origin that gains a negative contribution
from the quantum corrections induced by the gauge field A,. But since the gauge
field is only coupled to one of the scalars (here ¢) its contribution is orientated along
the axis of the scalar ¢ and therefore, if large enough, can only induce non-trivial
minima in the direction of the field.

Because of the homogeneous breaking along vy = 7 for A, > 0, the structure
in the A\, < 0 region of the plots in Fig. 4.11 is not accessible with respect to
the analysis of critical angles. Therefore, in Fig. 4.12 the parameter region for
Ap < 0 and breaking along angles 9y # 7 is shown at the example of A,y = 0.3 and
go = 0.8308. There we see, that the structure is similar to scalar-breaking of the
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Figure 4.12: The critical angles ¥ depending on initial portal A, > 0 and quartic
coupling Ao, for constant Ao = 0.3 and gy = 0.8308. Additionally the lower bound,
given by tree-level stability of the potential, is plotted.

conformal two massless scalar model, c.f. Fig. 4.5, yet the range of critical angles
has dramatically increased from Af ~ 0.087 to At =~ 0.157, and is not centered
around 7 but rather shifted towards 7. This result matches nicely with what we
would have expected with the explanation above. On the one hand we still have
the tree-level mechanism of flat direction dominating the properties of symmetry
breaking, which prefers maximal tree-level cancellations, hence for A\, o = 0.3 critical
angles around vy ~ 7 and on the other hand we have the quantum one-loop effects
that are still suppressed enough to not dominate SSB but pull towards the axis of
the ¢, field. Since this effect is not linear in Ay, A but rather scales like g*, which
has a big impact on the RG-runnings of the scalar couplings. It results in a shift
towards higher critical angles and an extension of the range of possible breaking
angles. Furthermore, looking at the distribution of critical scale ¢y in the region
of possible RSSB for given gy (see Fig. 4.10), we see that the parameter space of
condensation is bound from the upper right and from the lower left. The boundary
in the lower left given by the tree-level stability condition (or the GW-condition),
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as already discussed above in Section 4.1, is not altered by the introduction or
variation of gg, since the tree-level stability conditions do not change. Unlike this,
the boundary to the upper right does depend strongly on ¢*, as it denotes how much
deviation from the Gildener-Weinberg condition (in the scalar-breaking case) can be
compensated by the RG-running and what value of A, o is necessary for RG-running
to still allow the couplings to fulfill the breaking condition of gauge-breaking from
Eq. (4.19). For sufficiently large gy the RG-running of X is accelerated towards lower
scales which results in the fact that points with larger initial deviations from the
GW condition still allow for SSB at scales ~ tgy, yet since only the RG-running
of X\ is accelerated while the running of A, stays the same, at the same time the

angle for maximal cancellation is shifted towards Z. Comparing our results with

a Gildener-Weinberg type analysis, we find (up to jncertainties) the same features
of e.g. allowed SSB for positive portal coupling and renormalization values of the
same order for the couplings. The plots for comparison are found in Appendix A .4.
Initially it seemed surprising that Gildener and Weinberg, demanding a flat direction
in the scalar tree-level potential, also fully includes the coupling to a another particle
sector just because the RG-running of the scalar couplings depend on it. This
however just enhances the significance RG-running has in the context of RSSB
in conformal symmetric models and shows that so far even though our approach
seems more general the non-scalar sector is not prominent enough to disturb the
scalar sector that so far is dictating the properties of radiatively generated non-
trivial minima. On the other hand we now have two different formalisms in which
we can understand the calculated features of symmetry breaking to understand
the fundamental characteristics of exponential scale generation in classically scale-
invariant theories. Varying the second initial quartic coupling to A;y = 0.5 has the
same effect as already in Section 4.1, which is expected as it does not couple to the
gauge field A,. We display the corresponding plots in the same manner as above
but for A\;o = 0.5 and go = 0.5 in Appendix A.4.

Turning towards the analysis of renormalized couplings with possible initial hi-
erarchy (orders of magnitudes), we again generate individual random values for the
initial scalar couplings ;o € [107°,1] and gauge coupling go € [1072,1]. With our
results so far pointing towards a gj dependency for symmetry breaking properties,
the gauge coupling is only varied to lowest value of 1072, even though initial cou-
plings gi = O(107®), result in condensation like in the two massless scalar model,
c.f. Section 4.1. The corresponding possible non-trivial vacua are shown in Fig. 4.13,
where we distinguish between cases with negative and with positive portal coupling
Ap. There we see similar structures to the case only containing two massless scalars,
c.f. Fig. 4.5, but we also see deviations, e.g. for positive portal couplings at the
condensation scale. There are only a few points with non-trivial critical angles
Vi # 0,5 while the rest only allow for SSB along one of the fields and hence can
be denoted as Gildener-Weinberg like symmetry breaking. Furthermore, we see the
already discussed effect of the gauge contribution pulling the angle of condensation
towards breaking along ¢, and hence angles of ¥,y ~ 5. With just the two massless
scalars in Fig. 4.5 there was a symmetrical gap between points of non-trivial vacua
and the critical angles ¥ = 0, 5, whereas coupling only one scalar to a gauge
group introduces an asymmetry in contributions such that this symmetrical gap is
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now highly asymmetric, i.e. towards 7 there is no gap anymore, while the gap to-
wards 0 seems unchanged. Furthermore, it can be seen that condensation in general
becomes more ‘natural” when adding a gauge group, since the number of points
that allow for non-trivial vacua has roughly doubled compared to the case of the
two massless scalars, from around 5% to roughly 10%. Now investigating the con-
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Figure 4.13: The critical angles 9.3 and scales t.; that are allowed by randomly
chosen individual initial couplings. The points are separated by the sign of the
portal coupling at condensation scale.

densation for non-trivial angles and positive portal couplings, we find that almost
all observed points have initial couplings of “large” gauge coupling gy = O(1071),
smaller initial quartic coupling A\g = O(1072) and suppressed portal as well as other
quartic coupling A\, o, Aso = O(107°). Therefore, we again look at points of pos-
sible condensation with A\, > 0 for initial couplings in the ranges \q € [1072,1],
As0, Apo € [1074,107%] and g € [1071,1] and display the results in Fig. 4.14. Here
we see that there is still the GW condensation in the direction of ¢, and hence
Vit = 5 but also a lot more allowed vacua for non-trivial angles. Their distribution
is (highly) focused to the upper right corner, meaning that even though there are
deviations from the non-trivial GW condensation-angle, they are mostly very small
and in cases where the theory almost instantly spontaneously breaks the classical
scale-invariance of the model. Further analysis of the properties of these points
yield, that they are somewhat numerically unstable, in the sense that up to nu-
merical uncertainties both criticality equations (c.f Eq. (3.12)) are zero for a range
of angles, that include 7, and scales. Sadly, a more analytic approach of treat-
ing As(ferit)s Ap(ferit) as small perturbations and expanding the criticality equations
around zero was not successful in explaining the observed data points for conden-
sation at non-trivial angles in the case of A,(teit) > 0, whether they are a physical
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Figure 4.14: The critical angles ¥ and scales t.; that are allowed by randomly
chosen individual initial couplings Ay € [1073,1], As0, A\po € [107%,107%] and gy €
[1071,1]. The initial portal coupling and therefore the portal coupling at all ¢ is
chosen to be positive.

feature or purely numerical. At this point, using the previous arguments and results,
we figure that the observed points are rather due to numerical uncertainties than of
physical effects. The most prominent argument for this interpretation is the fact,
that the maximal contribution of the gauge boson is aligned along the coupled scalar
contribution of ¢,, such that it can only induce non-trivial minima along a ray par-
allel to ¢,, i.e. §, as the one-loop contributions are generally suppressed, such that
the maximal contribution is necessary. With this argument we would expect the
situation to change if one couples the other scalar S also to a gauge group (U(1)),
either to the same one or to an individual one. In Sections 4.3 and 4.4 we analyze
these two cases with respect to the already obtained results for RSSB with gauge
and scalar particle content.

With the results from the “linear scans”, that we can distinguish between gauge-
and scalar-breaking, we want to analyze how those statements transfer to initial
couplings of different order of magnitude. Hence, in Fig. 4.15 we investigate how the
critical scales and angles (t.it, Vait) dependence on the initial quartic Ay and gauge
coupling g3, motivated by the condition for gauge-breaking from Eq. (4.19). For
reasons of clarity we split the analysis by whether the portal coupling A, is positive
or negative. In the plots displaying the angles of condensation (right hand side) we
nicely see the separation between scalar- and gauge-breaking, as the feature (dark
red) that roughly corresponds to Ay & gj and can be identified with fulfilling the
condition for gauge-breaking from Eq. (4.19) at the vacuum. Furthermore, outside
the parameter region of gauge-breaking we find the usual properties of scalar-breaking
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Figure 4.15: The critical angles ¥.,;; and scales .4 that are allowed by randomly
chosen individual initial couplings \;o € [107°,1], and gy € [1072,1]. The initial
portal coupling and therefore the portal coupling at all ¢ is chosen to be positive in
the upper two plots, while it is negative in the lower two .

like discussed above and also in Section 4.1, i.e. only breaking along one of the fields
for A\, > 0 and along non-trivial angles for A\, < 0. On the other hand, the plots
displaying the critical scales, or radial location of the vacua, i (left hand side),
show the same features that with the analysis of the critical angle can be assigned
either the type of gauge- or scalar-breaking. The upper left feature of gauge-breaking
displays again the region allowed due to RG-running. Starting off from the upper
left with the highest scale, where the gauge-breaking condition and therefore also
the criticality equations from Eq. (3.12) are almost immediately fulfilled we see the
boundary set by truncating RG-running at tgy. The boundary is set to show the
lowest ga that allows for condensation for a given \g, which would extend with
“longer” RG-running, since A(t) decreases faster towards lower ¢ than g* as seen
in the f-functions in Eq. (4.6). In the region of scalar-breaking the fulfillment of
the criticality equations and therefore the scale at which the non-trivial minimum
is induced t., depends much more on the initial second quartic Ay and portal
coupling A, . Since these are random for every data point in the plot it is expected
to not see any (smooth) structure in the distribution of critical scales in the scalar-
breaking region of these plots. These results are well reproduced by an analysis
in the Gildener-Weinberg formalism, where one has to additionally account for the
case that the full one-loop effective potential might be dominated entirely by the
quantum corrections of the gauge sector (this could be the case for the region above
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4.3 Two scalars coupled to the same U(1) gauge group

the gauge-breaking feature), such that the Gildener-Weinberg method might find
a non-trivial minimum, which would violate potential stability at one-loop level,
i.e. render the effective potential imaginary at the vacuum.

In conclusion, we saw that including the simplest gauge group coupled to only
one of the scalars creates an asymmetry that allows for gauge-breaking along the
coupled scalar field. Therefore, it allows condensation for initial couplings of the
same order of magnitude for positive portal couplings. Thus, we can determine the
regions of scalar- and gauge-breaking by analysis of the critical angle and comparison
with the results from the model of two massless scalars in Section 4.1. Here we want
to note, that in some cases it can be easily distinguished that the SSB properties
of the theory are dominated by gauge-breaking, while for other cases one has to
account for a mixed state of the two, e.g. seen in Fig. 4.12 where we are in a scalar-
breaking case but the range of angles is broadened by the influence of the gauge
sector. Another effect of including a gauge group is the amplification of the RG-
running of the scalar coupling such that even the allowed region for scalar-breaking
increases. This leads us to believe that our approach is well suited to describe RSSB
in a more general way including the contributions of the gauge sector explicitly in
the criticality equations while at the same time accounting for the renormalization
group running. At last, we find that a classically scale-invariant multiscalar theory
gains new ways of scale generation (gauge-breaking) and needs less fine-tuning in the
initial conditions for the generation of exponential scale hierarchies by introducing
(even) a simple gauge group.

4.3 Two scalars coupled to the same U(1) gauge group

Now coupling both scalars ¢ and S to the same U(1) gauge group with general
charges Q(¢) = ¢» and Q(S) = g, renders them both complex

1 1

V2 V2

where ¢, ¢;, S,, S; are real scalar fields that respectively denote the complex field’s
real and imaginary degree of freedom. Like before, we disregard any dimension-4
operators that are of an odd power in one of the fields by assuming a Z, symme-
try between the fields, such that the Lagrangian with the corresponding tree-level
potential and covariant derivatives are given by

¢ (or +idy), S (S, +1iS;) , (4.20)

L= (Dug)" (D*) + (D,S)" (D"S) = Viree(d', 6,57, 5) ,  (4.21a
(

)

Viree (01,6, 5T,.9) = A (¢10)” + A, (610) (S79) + A, (515) 4.21b)
D,u¢ = a,uﬁb - iQ¢>gAu¢ ) (421(3)

D,S = 0,5 —iq,9A,S . (4.21d)

By fixing the gauge accordingly we choose only the real degrees of freedom of
the scalar fields to acquire a non-vanishing VEV and consequently only get tree-
and one-loop level contributions that depend on ¢, and S,.. They given in the 2d
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spherical coordinates
¢r = psind, S, = pcost . (4.22)

As a result the general angular tree-level contribution x(1J; ) does not change
compared to the one in Eq. (4.4). On the other hand, the gauge fields contribu-
tion M2 (Y; pg) to the one-loop terms A(VY; pg) and B(J; ) changes to be charge
dependent

m4 (95 ¢0) = ¢° (¢ sin® 9 + ¢ cos®9) (4.23)

while scalar contributions still consist of Mm% (J; o), m3(VJ; ¢o) as given in Egs. (4.6a)
and (4.16) plus an additional contribution by 723 (¢; ¢o)

1
m2(0; po) = As cos? 9 + §Ap sin? ) . (4.24)

Determined by the spin of their corresponding fields the masses 12 (9J; ¢o), ma(J; o),
m3(9; o) contribute with multiplicity n; = 1 and constants ¢; = 3 (i = +,3,4) and
m? (V; ¢o) with ng = 3, cq = %. As usual the implicit scale dependency marked
with the semi-colon in all the quantities denotes that the couplings are subject to
RG-running, such that the above contributions depend on the scale of evaluation,
which is following the approach in Section 3.1 already chosen to be the scale of con-
densation ¢y. The mentioned RG-running of the couplings is determined by their

[-functions, which in this theory are calculated to be

2 2

+ 45
16723, = %gﬁ’ , (4.252)
16728y = 20A% + X2 — 12¢2\g* + 645" | (4.25b)
167° 65, = 2072 + A2 — 12¢2A.9° + 64, 9" (4.25¢)
16728y, = 2, (2X, + 4A +4X, — 3(q) + ¢2)g°) + 12¢3q2g" . (4.25d)

Here we already see, that the only difference in the RG-running of A\ and A\, is
determined by the ratio of their charges ¢, and g with respect to their common U(1)
gauge group. Having already discussed the effect a gauge group has on the coupled
scalars RG-running, c.f. Fig. 4.8, we discuss examples of fields that are charged
asymmetrically g, # gs under their gauge group in Fig. 4.16. With the S-functions
given in Eq. (4.25), the RG-runnings displayed in Fig. 4.16 confirm what we expect,
i.e. that the quartic couplings A(t) and As(t) now both behave individually like the
quartic coupling A in Section 4.2, whereas the portal coupling’s behavior becomes
more complex than before. Due to the additional term, A, does not renormalize
in a multiplicative way anymore, such that it can change its sign throughout RG-
running. This is a fundamental difference to the models before and consequently we
now need to check whether the portal coupling is indeed still positive at the scale
of condensation when setting it initially to A,o. This is displayed in the context
of the analysis of non-trivial condensation angles for positive portal coupling at the
critical scale in Figs. 4.17 and 4.18. With the full description of the theory we turn to
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0.6

0.4

0.0

Figure 4.16: The Lagrangian couplings (A(¢), As(t), Ap(t), g(t)) in [tsable, tr] cOL-
responding to the [-functions from Eq. (4.25). Here displayed with different
charges under the field’s U(1) gauge group Q(¢,S) = (2,1) (left) and Q(¢,S) =
(0.2,0.1) (right). The renormalized couplings are chosen to be (Ao, Aso, Apo, o) =
(0.7,0.2,0.3,0.6).

inspect the results for randomly set initial couplings of (potentially) different orders
of magnitude like in Fig. 4.13, which are displayed for equal charges ¢, = ¢; = 1 in
Fig. 4.17 and for asymmetric field charges ¢, = 1, ¢; = 2 in Fig. 4.18. Comparing
the plots in Fig. 4.17 where the points are separated by the corresponding initial
portal coupling’s sign (left) with the ones where they are separated by the portal
coupling’s sign at the critical scale (right) we see that, up to very few points (like
before), condensation for non-trivial angles only takes place for negative critical
portal coupling. Since, equal charges of the fields under the gauge group lead to
angle invariance of the gauge contribution to the one-loop effective potential

fg=0=q = mi(%e) =9’ =m%i(p) , (4.26)

o Aplterie) >0 ¢ Aplterie) <0
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Figure 4.17: The critical angles V. and scales t.; that are allowed by randomly
chosen individual initial couplings \;o € [107°,1] and go € [1072%,1]. The points are
separated by the sign of the portal coupling at condensation scale and the fields’
charges under the U(1) gauge group are Q(¢) = Q(5) = 1.
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4 CLASSICALLY CONFORMAL SYMMETRIC TWO-SCALAR THEORIES

we expect that this leads to problems fulfilling the criticality equations. Because of
m? being angle independent the gauge boson’s contribution drops out of the second
criticality equation, c.f. Eq. (3.12b), such that we are only left with contributions
from the theory’s scalar sector that cannot allow for non-trivial angles of condensa-
tion as already discussed and seen in Section 4.1. Therefore, we chose unequal or
asymmetric charges which results (Fig. 4.18) in a picture similar to the one from
Section 4.2 with two massless scalars where only one is coupled to the gauge group,
c.f. Fig. 4.13. In addition to numerical uncertainties for these points of non-trivial
critical angles for Ap(tet), (almost) all of them are now at scales tei & tp, such
that one always has to account for the possibility that these points of condensation
are rather numerical solutions at the boundaries of parameter space than actually
physical. At this point we can already infer that by not seeing the desired points

* Apo>0 Ap0<0 * Aplterit) >0 o Aplteit) <0

1.6

1.4 1
1.2 1
1.09 .

o‘§ 08 s
061
0.4

0.2 4

0.0 1

é 1'0 1'5 2'0 2'5 3'0 3'5 4'0 4'5 é 1’0 1’5 2’0 2’5 3’0 3’5 4’0 4’5
terit =109 Qo terie = 109 @o
Figure 4.18: The critical angles ¥ and scales . that are allowed by randomly
chosen individual initial couplings ;o € [107°,1] and go € [1072,1]. The points are
separated by the sign of the portal coupling at condensation scale and the fields’
charges under the U(1) gauge group are Q(¢) = 1 and Q(S) = 2.

of non-trivial angles for positive critical portal couplings so far, they are either not
allowed in this toy-model or they are associated with necessary fine-tuning. There-
fore, they are only conceptional interesting for our analysis to distinguish when the
non-scalar sector of the theory becomes “important” enough to induce effects that
are qualitatively new and not considered by an analysis via the Gildener-Weinberg
approximation. To see when this is the case we turn to two massless complex scalars
that are each coupled to an individual U(1) gauge group in Section 4.4.
Furthermore, we also see the effect of unequal or asymmetrical coupling in
Fig. 4.18 as the condensation points with a non-trivial angle ¥ # 0, 5 are “drawn”
towards the direction of the more strongly coupling field S. Further investiga-
tion of this asymmety is done for couplings of with random orders of magnitudes
Aio € [107°,1] and go € [1072, 1] and equal charges g, = ¢s = 1 in Figs. A.6 and A.7.
We see that there is the same structure of gauge-breaking as seen in Fig. 4.15, but
now for both of the initial quartic couplings Ao and Aso. For reasons of visibility
we again separated the points of positive and negative critical portal coupling. For
the points of positive portal coupling we expect either gauge-breaking identically
along ¢ (Vait = 5) or S (Jee = 0). For fields with equal charges we would expect
a smooth transition of angles in the case of negative portal couplings, as they now
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4.3 Two scalars coupled to the same U(1) gauge group

lack a preferred direction, since both scalar- as well as gauge-breaking are now sym-
metrical in the couplings A and As. This is confirmed in Fig. 4.19, where we exactly
see a sharp distinction at the line of equal initial couplings Ao = A5 for the angle of
condensation in the A, > 0 case (left) and the expected smooth transition with the
symmetrical angle ¢ = 7 for equal initial couplings Ao = Asp and A, o < 0 (right).
Now choosing asymmetric charges for the fields, i.e. g5 = 1 and ¢, = 2 as seen in
Fig. 4.20, we find that the structures only slightly shift towards the corner of large
A and small A\s. This can be understood by looking at the individual terms in the

Ap(tcrit) <0,qp=qs=1

Figure 4.19: The critical angles 9.5 that are allowed by randomly chosen individual
initial couplings \; o € [107°,1] and gy € [1072,1]. The points are separated by the
sign of the portal coupling at condensation scale, A\, > 0 (left) and A, o < 0 (right).
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Figure 4.20: The critical angles ¥,;; that are allowed by randomly chosen individual
initial couplings \;o € [107°,1] and gy € [1072,1]. The points are separated by the
sign of the portal coupling at condensation scale, A\, > 0 (left) and A\, < 0 (right).

criticality equations, especially the radial equation from Eq. (3.12a) and the fact,
that the gauge-breaking condition’s, c.f. Eq. (4.19) left hand side now also depends
on A\, and also A, if the portal coupling is negative at the scale of condensation.

60
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Therefore the angle of condensation via gauge-breaking is determined by

for Aperit >0 @ A sin* 9 4+ \, cost ) ~

62 g*(gzsin® ¥ + g2 cos?¥)?,  (4.27a)
for A\pait <0 @ k(Y5 ) T 294(q§ sin? 9 + ¢2 cos? 9)? , (4.27b)
T

where we again compare the sizes of contributions rather than the sign, such that we
also left out the natural logarithm that would add a factor of O(1) and imply that
this equation has to be fulfilled as a simplification of the radial criticality equation
such that all couplings are evaluated at A = \;(t = twit), 9 = g(tait) and the critical
angle g = uir. With these equations we can understand the shift in Fig. 4.20, as
a higher charge only effects the one-loop contribution, resulting in a compensation
via the angle towards the weaker coupled field and hence moving the points of
condensation towards the upper left corner. While this simple consideration gives
some explanation one should never forget to account for the effects of RG-running
when discussing condensation conditions in dependence of initial couplings. Thus,
also the statement above, e.g. depends on whether gj is large compared to the scalar
couplings and all the other factors that are important in the renormalization group
running. This is also a nice reason to explain (small) irregularities in the plots, as
these are probably points where the RG-running and therefore the SSB is affected
by the not displayed quantities, like A, and go.

In conclusion, a system of two massless scalars that are both coupled (symmet-
rically or asymmetrically) to the same U(1) gauge group does not provide system-
atically new features of RSSB but extends the already observed feature of gauge-
breaking to both scalar fields. We find that this model is still within the margin
of applicable particle content for a Gildener-Weinberg type analysis as we do not
find additional features. On the other hand our approach reproduces the statements
made by Gildener and Weinberg and therefore provides a consistency check as well
as a different point of view to understand the observed features. There is one fea-
ture here that has to be particularly noted, i.e. that the portal coupling A, can
change its sign throughout RG-running allowing for condensation at non-trivial an-
gles ¥y # 0, § at initial portal couplings A, ¢ > 0, yet still at critical portal couplings
Ap(terit) < 0.

4.4 Two scalars coupled to two individual U(1) groups

In this section we only briefly discuss the contributions of this model in the context
of our general formalism from Section 3.1 and give a simple example for new features
that are not covered by a Gildener-Weinberg type analysis, i.e. RSSB at not trivial
angles for positive critical portal coupling. Since with now two individual gauge
groups and thus couplings g4 and gs there are now five parameters that can be
adjusted to gain certain insights or investigate areas of parameter space, we restrict
ourselves to a simple symmetric case and setting them randomly to investigate
the most general (“natural”) case of quantum one-loop induced non-trivial minima.
Further analysis for more combinations of varied parameters is left for upcoming
works and therefore beyond the scope of this thesis.
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4.4  Two scalars coupled to two individual U(1) groups

Now with two different gauge groups Us(1) and Us(1) and the corresponding
gauge fields A, and B, the field definitions, c.f. Eq. (4.20), and the Lagrangian as
well as the tree-level potential are unchanged compared to Eq. (4.21), but with the
covariant derivatives now given by

D“gzﬁ = 6M¢ — iq¢g¢AH¢ s (428&)
D,S = 0,5 —iqs9sB,S . (4.28b)

In the Lagrangian we focus on the terms relevant for the analysis of effective potential
minima, hence the ones that provide contributions to either tree-level or one-loop
level terms, as a consequence we have to note that again we assume a Zy symmetry
between the fields ¢ and S such that operators of odd dimension in one of the fields
are forbidden. Furthermore, for simplicity we set any gauge boson “mixing” terms,
i.e. the product of the gauge fields’ field strength tensors, to zero. This is clearly only
possible with loss of generality but is the easiest model to test for RSSB features
that are beyond the Gildener-Weinberg formalism. Again we fix the gauge such that
only the real degree of freedom of ¢ and S contribute to the effective pontential like
in Section 4.3 The charges of the fields with respect to the gauge groups are then
generally set to

Qd)v, =a5,  Q(P)u, =0, (4.29a)
QS)v, =0,  QS)u, =, (4.29b)

resulting in the field dependent gauge masses

% (% o) = qog5 sin* ¥ (4.30a)
3 (9; o) = ¢392 cos” (4.30b)

where we already used the same 2d spherical coordinates as in Eq. (4.22). Since the
scalar content is unchanged to Section 4.3 the same scalar field dependent masses
m2 (95 o), ma(9; o), M3 (0; ), c.f. Egs. (4.6a), (4.16) and (4.24) contribute to the
effective potential with the constants ¢; = %, c = 2 and multiplicities n;, = 1, n; = 3
for i = 4+,3,4 and | = A, B. The p-functions and therefore the functions of the

running couplings \;(¢) and g;(¢) are given by

2
q
1676y, = 95 (4.31a)
q2
1675y, = S95 (4.31b)
167 By = 20A% + \J — 123 Ag; + 64,9, (4.31¢)
16728y, = 202 + A2 — 12¢2 A2 + 64,92 | (4.31d)
167° 6y, = 2\, (2X, + 4N+ 4X, — 36595 — 3¢297) - (4.31e)

Comparing the above [-functions to the previous ones we already see that the
quartic scalar and gauge couplings behave like before and by omitting gauge field
strength contributions to the Lagrangian we ensured that the portal coupling is
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Figure 4.21: The critical angles 9. and scales t.; that are allowed by randomly
chosen individual initial couplings A\;o € [107°,107!] and g¢;o € [1071,1], for the
symmetrical case of gy = g5, Ao = A5 and gy 0 = gs0 = 1 and A, > 0.

renormalized in a multiplicative way again. Thus, the sign of \,(¢) does not change
when evolving to lower or higher energies and there are no (fundamentally) new
features of the couplings’” RG-running. Starting off with the simple case of ¢4 =
¢s = 1 we analyze symmetry breaking with respect to non-trivial angles for positive
critical portal couplings A,(teit). Because of the portal coupling’s multiplicative
renormalization, c.f. Eq. (4.31), it is sufficient to search in the parameter region of
initial A\, > 0.

Because of the separate gauge contributions to the one-loop terms A(¥; ¢g) and
B(¥; po) via the masses in Eq. (4.30), we expect to find non-trivial angles for a
simple symmetric case, where we chose \g = A\;0 = 0 and g40 = ¢s0. As a result
the S-functions and therefore the functions of RG-running couplings for the gauge
couplings and the quartic scalar couplings are identical, A\(t) = A\;(), g4(t) = g5(¢)
for all t € [tgw,tp]. Investigating the criticality equations, starting with the radial
one, c.f. Eq. (3.12a), we see that the combined gauge couplings contribution is
maximal at ¢ = 7 but also non-zero for ¥ = 0, 7, while the angle at the which the
angular tree-level term £(Jyin; o) is minimal depends on the ratio between A and
Ap. For A, < 2 this angle is given by Ui = 7 and for A, > 2A by ¥, = 0, 5.
In conclusion, under the assumption that the gauge couplings are large enough for
gauge-breaking, for A\p(teit) < 2A(tait) we expect RSSB at the non-trivial angle
Yo = 7 and still positive critical portal couplings and therefore a possibility of SSB
that is not covered by the Gildener-Weinberg analysis, otherwise we are left with
non-trivial vacua at trivial angles. In Fig. 4.21 we see the expected results for random
initial couplings under the symmetric conditions of \g = Ao and g0 = gs0. Since,
Js0 = gs0 are also varied there is also the case that the gauge sectors contribution
is not large enough and the theory generates non-trivial minima via scalar-breaking,
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4.4  Two scalars coupled to two individual U(1) groups

resulting in trivial angles ¥y = 0, . Having shown that in a “simple” scale-invariant
two-scalar model with simple gauge groups (U(1)), there is already a case of RSSB
that is not covered in an analysis via the Gildener-Weinberg formalism, we must note
that this very symmetrical example is highly fine-tuned but possible. For example,
the same analysis with our formalism, but without the symmetry conditions yields
only very few points of RSSB at non-trivial angles, as seen in Fig. 4.22.
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Figure 4.22: The critical angles v and scales t. that are allowed by randomly
chosen individual initial couplings A\;o € [107°,107!] and g¢; € [1071, 1], with g4 =
gs =1 and A\pp > 0.

Altogether, even though the case where we found SSB at positive critical portal
couplings and non-trivial angles was very symmetrical and therefore needs fine tun-
ing when setting the renormalized couplings at the Planck scale, it shows that even in
fairly simple models like the classical scale-invariant two-scalar model coupled to two
U;(1) gauge group provides possible cases for the generation of non-trivial minima
by quantum corrections that are not considered in the widely used approach of the
Gildener-Weinberg formalism. As a result, the initial assumption, that RSSB takes
place if one of the Gildener-Weinberg conditions is fulfilled is not sufficient any more.
Furthermore, one has to check whether the full criticality equations, c.f. Eq. (3.12)
are not fulfilled at a higher scale, such that any assumptions or calculations for lower
scales would have to include that one is already in the spontaneously broken phase
of conformal symmetry when evolving the theory to lower scales than the critical
one tepit-

In the following section, Section 5, we recap our results for the systematics of
RSSB from analyzing classical scale-invariant two-scalar models with different gauge
sectors and discuss the connections for addressing the hierarchy problem via classical
conformal multiscalar extensions of the standard model and their phenomenology.
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5 Conclusion and outlook

Extensions of the SM are necessary to explain the unsolved problems of high-energy
physics like dark matter, the hierarchy problem or the unification with gravity. But
since there is no experimental evidence for the predictions of a supersymmetric stan-
dard model, alternatives like an extended conformal standard model (¢cSM) become
more favorable. Following the observation that the SM itself is already (almost)
scale-invariant at high energy-scales like the Planck scale, extensions to the ¢SM
naturally address the electroweak hierarchy problem. They can be regarded as ef-
fective field theories for sub-Planck scale physics that generate the Higgs and all the
other SM particles’ masses dynamically via spontaneous symmetry breaking of the
(tree-level) conformal symmetry by quantum (loop) corrections. It is necessary to
extend the ¢SM via scalars and gauge bosons to counter the destabilization effects
of the large top mass on the effective potential and generate the experimentally
observed value for the vacuum expectation value of the Higgs boson.

Since the analytical minimization of the one-loop effective potential for classical
conformal multiscalar theories is far from trivial, the Gildener-Weinberg approxi-
mation, assuming that a flat direction is formed at tree-level, is commonly used in
the literature to analyze these. Yet S. Coleman and E. Weinberg already state in
their original publication, Ref. [6], that this does not need to be the case to allow
for the generation of non-trivial minima. There is another possibility of numerical
brute-force minimization, which does not require additional assumptions but lacks
the potential of gaining insight in the basic principles of RSSB in scale-invaraint
multiscalar models. Therefore, we introduce a generalized formalism of exact criti-
cality equations that are solved numerically to investigate the fundamental proper-
ties of RSSB in classically conformal multiscalar models. In Section 3, we derived
generalized criticality equations and conditions for vacuum stability up to one-loop
level that do not need any additional assumptions to the initial one of classical
scale-invariance. With this formalism we gain another access to understanding the
fundamentals of scale generation via RSSB and to the computation of non-trivial
vacuum expectation values of the fields depending only on the values of the dimen-
sionless couplings at the scale of renormalization. This leads us to a more intuitive
concept of scale-setting in classically conformal theories as described in Section 3.2.

Analyzing the conformal symmetric two real scalar model in Section 4.1 we
see that our general approach reproduces the results obtained with the Gildener-
Weinberg approximations almost exactly. Investigating the dependency on the di-
mensionless couplings at renormalization scale of RSSB that generates non-trivial
vacuum expectation values for the scalar fields in the right energy range, we see
e.g. that asymmetric symmetry breaking along one of the fields ¥y = 0 or ¥y = 3
already requires an initial asymmetry (hierarchy) in the dimensionless couplings.
This can be understood via the intuitive nature of our criticality equations. Conse-
quently, the assumption that at tree level a flat direction develops is not generally
applicable to determine the properties of scale-setting, which is often neglected in
the current literature, e.g. in Refs. [24, 38|.

Given the intuitive nature of the criticality equations we can distinguish fun-
damentally different cases of RSSB when including gauge groups into the scale-
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invariant two-scalar models. We observe scalar-breaking where an almost flat di-
rection develops at tree-level, resulting in condensation similar to the one in the
Gildener-Weinberg approximation. Furthermore, we can distinguish the case of
gauge-breaking, where the one-loop terms, dominated by the contribution of the
gauge field(s), are of the same order of magnitude as the tree-level (scalar) contribu-
tions and thus allow for RSSB. The latter form of symmetry breaking corresponds
to the one displayed in the scalar QED case, c.f. Sections 2.2 and 3.4, which is not
considered in the Gildener-Weinberg approximation. With this conceptional differ-
ent form of RSSB our formalism offers the possibility to fundamentally distinguish
forms of spontaneous symmetry breaking in conformal models by the respective par-
ticle sectors that are taking part. Furthermore, because of the analytically given
criticality equations from Eq. (3.12) we can separate between interplay of contribu-
tions by particles with different spins directly at the critical scale and the effects
of renormalization group running that connects the generation of non-trivial vacua
with the conditions on the initial couplings. Conversely, in the Gildener-Weinberg
approximation the conditions for symmetry breaking only depend on the scalar par-
ticle content of the theory, while the contributions from gauge bosons or fermions
are implicitly included via the scalar couplings’ RG-running. Hence, we expect
our formalism to be more generally applicable and intuitive for understanding the
fundamentals of scale-setting in conformal symmetric multiscalar models.

Our results from the analysis of the conformal two-scalar model is reproduced via
the Gildener-Weinberg approach until we coupled the scalars to independent U(1)
gauge groups in Section 4.4. Thus, we conclude that depending on the gauge sector
of the theory the foremost mechanism of RSSB is the RG-running of the couplings.
Only when extending the gauge sector to a certain complexity, the analysis using our
general approach yields possible regions of non-trivial vacua that are not included
in the Gildener-Weinberg approach, c.f. Fig. 4.21. So far, trustworthy observations
of these qualitatively new scenarios of RSSB were only made when coupling two
massless complex scalars to independent U(1) gauge groups with symmetric initial
conditions and charges of the scalars under the corresponding U(1). However, they
serve as examples for the universality of our formalism and for the necessity of a
general analysis in the context of full Coleman-Weinberg symmetry breaking instead
of the Gildener-Weinberg approximation to show that a model extending the ¢SM
solves the hierarchy problem.

In Ref. [22] it was shown that the minimal model of ¢SM extensions that is RG
stable all the way up to the Planck scale and produces the correct radiative breaking
of electroweak symmetry is the ¢SM with two additional scalar gauge singlets. T
hus, the models discussed in Section 4 are phenomenologically not relevant. Yet the
fundamental findings of distinguishable cases of RSSB and additional qualitatively
new features not covered by the Gildener-Weinberg approximation are. Since our
formalism can be generically used for arbitrary multiscalar fields without adding
further assumptions than initial scale-invariance the next step would be the analysis
of a three-scalar model with the right fermion and boson particle content to qualify
as minimal extension of the ¢cSM that adresses the electroweak hierarchy problem.
Because of the generality of the theoretical formalism given in Section 3.1 and the
numerical methods of Section 3.3 we do not expect this to raise insuperable problems
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and hence is subject to future work.

In conclusion, given the generality of our approach, involving all particle con-
tributions in the criticality equations as well as in the RG-running of the couplings
we expect our results to be translatable to theories with extended particle content.
Whereas we already saw that extended non-scalar particle content further limits
the applicability of the Gildener-Weinberg approximation. Thus, the assumption
that there exists a tree-level flat direction comes with some loss of generality as the
generated non-trivial minimum along this flat direction is not necessary the global
minimum and hence the true radiatively induced vacuum of the theory. Contrary
to this, our approach of analyzing the radiatively induced spontaneous breakdown
of conformal symmetry is appropriate to make a statement on whether a theory is
viable to deal with the hierarchy problem via extension of the cSM and generate the
correct non-trivial vacuum expectation values for the fields to match with experi-
mental observations. Because of the exact criticality equations we can intuitively
distinguish qualitatively different cases of RSSB, thus revealing the fundamental
properties of scale-setting in classically conformal multiscalar theories.
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A Appendix

A.1 Scaling of the Hessian determinant

From a computational point of view, it is a problem that the elements of the Hessian
matrix in Eq. (3.13) scale differently with ¢o. However, as thankfully provided by
Ref. [39], it turns out that all terms in calculating the determinant contain the same
power of ¢, so that it can be factored out in the end. To see why, we look only at
the powers of ¢, in each element of the full n x n Hessian matrix and calculate the
determinant using the minor expansion formula with expansion with respect to the
first row

2 3 3

0F ey

I T @ - @ et ... b
N D R T X2 R N SV (A1)
) ' o 4 4 3 4 4

N SO o o P P00 - Do

where both matrices on the right-hand side are (n—1)x(n—1). Since the determinant
is homogeneous of maximal degree, the first term on the right-hand side scales like
()"t = pg" 2. The determinant in the second term on the right-hand side can
be further simplified by expanding it with respect to its first row giving

03 9y - 9 ©5 - 0
T 2 LTV I (A.2)
03 Yo - P 0o .- ©h

where the determinant on the right-hand side is now (n —2) x (n — 2). Using again
homogeneity, this term can be seen to also scale like (¢3)?(¢4)" 2 = 3" 2. In total,
we have shown that

det Hess(veﬁ“)(%@o, 1§)0; po) = @o" 2 - det H(ﬁo; ®o) (A.3)
where the n x n matrix H is given by
5 5 o T
- 2B(Yy; e [V B(vo; ]
H(Jos ) = ( Plloigo) s [VoB i) ) S (A
3 Vo B(do; p0) 7 Hess(k + A)(Jo; ¢o)
where Hess(k + A)(Uo; o) denotes the angular Hessian

B 0?(k + A)

Hess(k + A);; = 5000 with  i,j=1,...,n—1, (A.5)
iOUj

evaluated at the vacuum (o, 50). Consequently, we can use the above matrix H to
determine the stability properties of the one-loop vacuum in practice.
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A.2 Scalar QED g, calculations

Given that g(t) ~ go = const the derivative of \’s -function is calculated to be

(47)? aﬁ(;;A) — 40\ — 1247, (A.6)

such that demanding Eq. (A.6) is identically zero, 5\ becomes stationary at A = % g%
Furthermore, the second derivative of ), with respect to A shows that the before
determined stationary point is a local minimum

0%
2 A
(4m) o

=40>0. (A7)

Investigating quartic couplings A(¢) > 0, we can now say that for all A(t) > 0,
B > 0, since the value at the “domain wall” (A(f) = 0) as well as the value at the
minimum are positive

3 21
(47)* Br(A = 1—092) = 394 >0, (A.8a)

(47)? Br(A = 0) = 6¢* > 0 . (A.8D)

A.3 Hessian determinant in the massless two-scalar model

The first partial derivatives of the effective potential with respect to the polar coor-
dinates are given by

v, 2 1
et 0+ Al )+ Bl (w G+ )] (o)
0
a%ff 904 |: / / / @2
= - |K (U;00) + A'(F;00) + B'(V5900) In =5 |, (A.9b)
a9 1 0 0 0 o2

where the prime denotes derivatives with respect to the angular variable 9. The
second partial derivatives are computed to be

82‘761? 2 ) ] ) (pg 7

8@2 = 390 "{(197 900) + A<197 900) + B(ﬁ, 900) In Eg + 6 ’ (A'loa)
62‘761? 804 i /i 1Zi ()02
D02 1 [/f (93 o) + A"(; 0) + B"(U;0) In 373] , (A.10Db)
82‘765 , , , 302 1
5900 ©° [n (5 ¢0) + A'(F; 00) + B'(3; ¢0) (111 7 + 5)] : (A.10c)

Evaluating Eq. (A.9) at the vacuum reproduces the left-hand sides of Eq. (3.12).
Likewise, evaluating Eq. (A.10) at the stationary points and using the criticality
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conditions in Eq. (3.12) gives

0*Ver

52| T 205 B(9o; o) (A.1la)
62% 5 " "

S| = LR (i o) + A" (Woi o) (A11D)
avieff ()08 /

The corresponding Hessian determinant H (g, Jg) can then be calculated as

H(go, o) = 2F [23@90; 20) (K" (903 ¢0) + A"(Doi 20) ) — B' (o soof] (A122)
68 - 0 (k(V; o) + A(Y; ¢0)) OB (0; ¢o)]?

] <23<ﬁ°’ | o7 ] |75 1) '

(A.12h)

The stationary point (¢g, ) is a minimum of the one-loop effective potential and
thus a proper stable vacuum if

H(QO(), 190) >0 and B(’l907 g00> >0 y <A13>

where the second condition derives from the requirement that 02V.g/d@? (or equiv-
alently 9?V.q/09%) must be positive for the stationary point to be a minimum.

A.4 Additional plots for two scalars one coupled to a gauge
group

Here we show the results if one uses to the top-down approach to determine at which
critical scale and angle one fulfills one of the Gildener-Weinberg conditions from
Eq. (4.10) in the context of the model described in Section 4.2, i.e. the couplings’
p-functions given by Eq. (4.18). The condensation scale depending on the initial
couplings of the same order of magnitude are shown in Fig. A.1, whereas the critical
angles are displayed in Fig. A.2. For further investigation of the structure in the
critical angle distribution for non-trivial angles vy # 0, § and therefore equivalently
Ap < 0 can be seen in Fig. A.3. For comparability with the plots from the two-
scalar model A,y = const. = 0.3 and following Section 4.2 the gauge coupling is
also held constant for each plot and takes values of go = 0.652, 0.688, 0.738, 0.8308.
Furthermore, we give plots to investigate the effect of a variation in Asp in this
model in Figs. A.4 and A.5, where we see, that there are no new features compared
to Section 4.1.
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As,0=0.3 and go=0.652

As,0=0.3 and go =0.688
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Figure A.1: Condensation scale ¢.;; depending on the initial portal A, and quartic
coupling Ao, with different but constant A,y and go. Additionally, the tree-level
stability condition and the gauge-breaking bounds (like in scalar QED) are plotted.
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Figure A.2: Condensation angle ¥ depending on the initial portal \,, and quartic
coupling Ao, with different but constant A\;p and go. Additionally, the tree-level
stability condition and the gauge-breaking bounds are plotted.
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Figure A.3: The critical angles ¥t depending on initial portal A,y < 0 and quartic
coupling Ao, for constant A;y = 0.3 and go = 0.8308. Additionally the lower bound,
given by tree-level stability of the potential, is plotted.
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As,() =0.5 and go = 0.5
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Figure A.4: The critical scales t. and angles ¥, depending on initial portal A,
and quartic coupling Ay, for constant A;o = 0.5 and go = 0.5. Additionally the lower
bound, given by tree-level stability of the potential, is plotted.
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Figure A.5: The critical angles 9, depending on initial portal A,y < 0 and quartic
coupling \g, for constant A\;g = 0.5 and gy = 0.5. Additionally the lower bound,
given by tree-level stability of the potential, is plotted.
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A.5 Additional plots for two scalars both coupled to the same
gauge group

Aplterit) >0, qp=qs=1

100 100
10714 40 10-1 1.4
10724 35 10-2 1.2
1073 1 30 1073 1.0
S 107 25 E <o 10-4 08 :t;
1075 4 20 10-5 ¥ 0.6
107 4 15 10-6 0.4
1077 4 10 1077 4 0.2
108 ; . . . 5 1078 ¥ P i v v 0.0
10-° 104 103 1072 10! 10° 10-5 1074 1073 1072 10! 100
Ao Ao
100 Ap(terit) <0, gy =qs =1 100 Ap(terit) <0, qp=qs=1
‘ 1.4
1.2
1.0
0.8 ;Eg
0.6
15 1076 0.4
10-7 1 10 1077 0.2
10-8 . - L . '.I L 5 10-8 ; ; . NN
105 1074 1073 102 1071 10° 107° 107 1073 1072 107! 10°
Ao Ao

Figure A.6: The critical angles 9. and scales t.; that are allowed by randomly
chosen individual initial couplings ;o € [1075,1], and gy € [1072, 1] in dependence
of the initial gauge gy and one quartic coupling \y. Divided by portal coupling at
terit, the positive points are shown in the upper two plots, while negative ones are
shown in the lower two.
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Figure A.7: The critical angles 9. and scales t.; that are allowed by randomly
chosen individual initial couplings \;o € [107°,1], and go € [1072, 1] in dependence
of the initial gauge go and one quartic coupling Aso. Divided by portal coupling at
terit, the positive points are shown in the upper two plots, while negative ones are
shown in the lower two.
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the upper two plots, while negative ones are shown in the lower two. .
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