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Tex2Shape: Detailed Full Human Body Geometry From a Single Image
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Figure 1: We present an image-to-image translation model for detailed full human body geometry reconstruction from a single image. An
input image is transformed into an incomplete texture, then our Tex2Shape network translates the texture into normal and displacement
maps. The maps augment a smooth body model with details, hair, and clothing. Result visualized in ground truth pose.

Abstract

We present a simple yet effective method to infer detailed
full human body shape from only a single photograph. Our
model can infer full-body shape including face, hair, and
clothing including wrinkles at interactive frame-rates. Re-
sults feature details even on parts that are occluded in the
input image. Our main idea is to turn shape regression
into an aligned image-to-image translation problem. The
input to our method is a partial texture map of the visible
region obtained from off-the-shelf methods. From a par-
tial texture, we estimate detailed normal and vector dis-
placement maps, which can be applied to a low-resolution
smooth body model to add detail and clothing. Despite
being trained purely with synthetic data, our model gen-
eralizes well to real-world photographs. Numerous results
demonstrate the versatility and robustness of our method.

1. Introduction

In this paper, we address the problem of automatic
detailed full-body human shape reconstruction from a sin-
gle image. Human shape reconstruction has many applica-
tions in virtual and augmented reality, scene analysis, and
virtual try-on. For most applications, acquisition should
be quick and easy, and visual fidelity is important. Recon-
structed geometry is most useful if it shows hair, face, and
clothing folds and wrinkles at sufficient detail — what we re-

fer to as detailed shape. Detail adds realism, allows people
to feel identified with their self-avatar and their interlocu-
tors, and often carries crucial information.

While a large number of papers focus on recovering
pose, and rough body shape from a single image [36, 26, 37,
10], much fewer papers focus on recovering detailed shapes.
Some recent methods recover pose and non-rigid deforma-
tion from monocular video [58], even in real-time [16].
However, they require a pre-captured static template of
each subject. Other recent works [4, 2] recover static body
shape, and clothing as displacements on top of the SMPL
body model [33] (model-based), or use a voxel representa-
tion [51, 34]. Voxel-based methods [51, 34] often produce
errors at the limbs of the body and require fitting a model
post-hoc [51]. Model-based methods are more robust, but
results tend to lack fine detail. We hypothesize there are
three reasons for this. Firstly, they rely mostly on silhou-
ettes for either fitting [4], or CNN-based regression plus
fitting [2], ignoring the rich illumination and shading in-
formation contained in RGB values. Secondly, the regres-
sion from image pixels directly to 3D mesh displacements
is hard because inputs and outputs are not aligned. Further-
more, prediction of high-resolution meshes requires mesh-
based neural networks, which are very promising but are
harder to train than standard 2D CNNs. Finally, they rely
on 3D pose estimation, which is hard to obtain accurately.

Based on these observations, our idea is to turn the shape
regression into an aligned image-to-image translation prob-



lem (see Fig. 1). To that end, we map input and output pairs
to the pose-independent UV-mapping of the SMPL model.
The UV-mapping unfolds the body surface onto a 2D image
such that every pixel corresponds to a 3D point on the body
surface. Similar to [35], we map the visible image pixels to
the UV space using DensePose [5] obtaining a partial tex-
ture map image, which we use as input. Instead of regress-
ing details directly on the mesh, we propose to regress shape
as UV-space displacement and normal maps. Every pixel
stores a normal and a displacement vector from a smooth
shape (in the space of SMPL) to the detailed shape. We call
our model to Tex2Shape.

We train Tex2Shape with a dataset of 2043 3D scans of
people in varying clothing, poses, and shapes. To map all
scan shapes to the UV-space, we non-rigidly register SMPL
to each scan, optimizing for model shape parameters and
free-form displacements, and store the latter in a displace-
ment map. Registration is also useful for augmentation; us-
ing SMPL, we render multiple images of varying pose and
camera view. We further augment the renderings with real-
istic illumination, which is a strong cue in this problem. As-
suming a Lambertian reflectance model, we know that color
forms from the dot product of light direction and the sur-
face normal times albedo. Shape-from-shading [61] allows
to invert the process and estimate the surface from shad-
ing, which was used before to refine geometry of stereo-
based [56] or multi-view-based human performance capture
results [57, 30]. After synthesizing image pairs, we train a
Pix2Pix network [20] to map from partial texture maps to
complete normal and displacement maps and a second small
network for estimating SMPL body shape parameters.

Several experiments demonstrate that our proposed data
pre-processing undoubtedly pays-off. Trained only from
synthetic images, our model can robustly produce, in one
shot, full 3D shapes of people with varied clothing, shape,
and hair. In contrast to models that produce normals or
shading only for the visible image part, Tex2Shape halluci-
nates the shape also for the occluded part — effectively per-
forming translation and completion together. In summary,
our contributions are:

e We turn a hard full-body shape reconstruction problem
into an easier 3D pose-independent image-to-image
translation one. To the best of our knowledge, this is
the first method to infer detailed body shape as image-
to-image translation.

e From a single image, our model can regress full 3D
clothing, hair and facial details in 50 milliseconds.

e Experiments demonstrate that, while very simple,
Tex2Shape is very effective and is capable of regress-
ing full 3D clothing, hair and facial details in a static
reference pose in one shot.

e Tex2Shape is available for research purposes [1].

2. Related Work

Human shape reconstruction is a wide field of research,
often jointly approached with pose reconstruction. In the
following, we review methods for human pose and shape
reconstruction from monocular image and video. Full body
methods are often inspired by methods for face geometry
estimation. Hence, we include face reconstruction in our
review. When it comes to detailed reconstruction, clothing
plays an important role. Therefore, we conclude with a brief
overview of garment reconstruction and modeling.

Pose and shape reconstruction. Methods for monocu-
lar pose and shape reconstruction often utilize parametric
body models to limit the search space [0, 17, 33, 40, 24],
or use a pre-scanned static template to capture pose and
non-rigid surface deformation [58, 16]. To recover pose
and shape, the 3D body model is fitted to 2D poses. In
early works 2D poses have been entirely or partially man-
ually clicked [15, 63, 22, 43], later the process was auto-
mated [ 10, 29] with 2D landmark detections from deep neu-
ral networks [38, 19, 12]. In recent work, the SMPL [33]
model has been integrated into network architectures [26,

, 36, 49]. This further automates and robustifies the pro-
cess. All these works focus mostly on robust pose detec-
tion. Shape estimation is often limited to surface correla-
tions with bone lengths. Most importantly, the shape is lim-
ited to the model space. In contrast, we focus only on shape
and estimate geometry details beyond the model space.

Clothing and hair can be obtained by optimization-based
methods [4, 3]. From a video of a subject turning around
in A-pose, silhouettes are fused in canonical pose. In the
same setting, the authors in [2] present a hybrid learning and
optimization-based method, that makes the process com-
pletely automatic, fast, and dependent only on a handful
of images. However, all these methods can only process
A-poses and depend on robust pose detection. The method
in [55] loosens this restriction and creates humanoid shapes
from a single image via 2D warping of SMPL parameters,
but only partially handles self-occlusion. Another recent
line of research estimates pose and shape in form of a voxel
representation [50, 21, 34], which allows for more complex
clothing but limits the level of detail. In [62] the authors al-
leviate this limitation by augmenting the visible parts with
a predicted normal map. In contrast, we present 3D pose-
independent shape estimation in a reference pose with high-
resolution details also on non-visible parts.

Several previous methods exploited shading cues in
high-frequency texture to estimate high-frequency detail.
For instance, they estimated lighting and reflectance to com-
pute shape-from-shading-refined geometry of a human tem-
plate from stereo [56] or multi-view imagery [57, 30].

Face reconstruction. Several recent monocular face re-
construction and performance capture methods use shading-



based refinement for geometry improvement, e.g., in
analysis-by-synthesis fitting [44] or refinement, or in a
trained neural network [45, 18]. Also related to our ap-
proach are recent works integrating a differentiable face
renderer in a neural network to estimate instance correc-
tives of geometry and albedo relative to a base model [48],
or learn an identity geometry and albedo basis from scratch
from video [47].

Garment reconstruction and modeling. Body shape un-
der clothing has been estimated without [60] and jointly
with a separate clothing layer [39] from 3D scans and from
RGB-D [46]. [59] introduces a technique, which allows
complex clothing to be modeled as offsets from the naked
body. The work in [53] describes a model that encodes
shape, garment sketch, and garment model, in a single
shared latent code, which enables interactive garment de-
sign. High frequency wrinkles are predicted as a function of
pose either in UV space using a CNN [28, 23] or directly in
3D using a data-driven optimization method [41]. All these
methods [28, 59, 23] target realistic animation of clothing
and can only predict garments in isolation [28, 23]. Learn-
ing based normals and depth recovery [7] or meshes [13]
has been demonstrated but again only for single garments.
In contrast, our approach is the first to reconstruct the de-
tailed shape of a full-body from a single image by learning
an image-to-image mapping.

3. Method

The goal of this work is to create an animatable 3D
model of a subject from a single photograph. The model
should reflect the subject’s body shape and contain details
such as hair and clothing with garment wrinkles. Details
should be present also on body parts that have not been visi-
ble in the input image, e.g. on the back of the person. In con-
trast to previous work [34, 55, 2] we aim for fully automatic
reconstruction which does not require accurate 3D pose. To
this end, we train a Pix2Pix-style [20] convolutional neu-
ral network to infer normals and vector displacement (UV
shape-images) on top of the SMPL body model [33]. To
align the input image with the output UV-shape images,
we extract a partial UV texture map of the visible area us-
ing off-the-shelf methods [5, 26]. An overview is given in
Fig. 2. A second small CNN infers SMPL shape parameters
from the image (see Sec. 5.1). In Sec. 3.1 we describe the
parametric body model used in this work, and in Sec. 3.2 we
explain our parameterization of appearance, normals, and
displacements.

3.1. Parametric body model

SMPL is a parameterized body model learned from scans
of subjects in minimal clothing. It is defined as a function
of pose 8 and shape 3 returning a mesh of N = 6890 ver-
tices and F' = 13776 faces. Shape 3 corresponds to the

first 10 principal components of the training data subjects.
Since scale is an inherent ambiguity in monocular images,
we made 3 independent of body height in this work. Our
method estimates 3 with a standardized height and is inde-
pendent of pose 6. Details that go beyond the SMPL shape
space are added via UV displacement and normal maps (UV
shape-images), as described in Sec. 3.2. During the dataset
generation (see Sec. 4), we use SMPL to synthesize images
of humans posing in front of the camera.

3.2. UV parameterization

The SMPL model describes body shapes with a mesh
containing 6890 vertices. Unfortunately, this resolution is
not high enough to explain fine details, such as garment
wrinkles. Another problem is that meshes do not live on
a regular 2D grid like images, and consequently require
taylored solutions [! 1] that are not yet as effective as stan-
dard CNNs on the image domain. To leverage the power
of standard CNNs, we propose to use a well-established pa-
rameterization of mesh surfaces: UV mapping [8]. A UV
map unwraps the surface onto an image, allowing to repre-
sent functions defined on the surface as images. Hereby, U
and V denote the 2 axes of the image. The mapping is de-
fined once per mesh topology and assigns every pixel in the
map to a point on the surface via barycentric interpolation
of neighboring vertices. By using a UV map, a mesh can be
augmented with geometric details of a resolution propor-
tional to the UV map resolution.

We augment SMPL using two UV maps, namely normal
map and vector displacement map. A normal map contains
new surface normals, that can add or enhance visual details
through shading. A vector displacement map contains 3D
vectors that displace the underlying surface. Displacements
and normals are defined on the canonical T-pose of SMPL.
The input to our neural network is a partial texture map of
the visible pixels on the input photograph (see Sec. 5.3).

4. Dataset Generation

To learn our model we synthesize a varied dataset
from real 3D scans of people. Specifically, we syn-
thesize images of humans in various poses under realis-
tic illumination paired with normal maps, displacement
maps, and SMPL shape parameters 3. The large ma-
jority of scans (1826) was kindly provided from Twin-
dom (https://web.twindom.com/). We additionally pur-
chased 163 scans from renderpeople.com and 54 from axyz-
design.com. These scans do not share the same mesh lay-
out, and therefore we can not directly compute coherent
normal and displacement maps. To this end, we non-rigidly
register the SMPL model against each of the scans. This en-
sures that all vertices share the same contextual information
across the dataset. Furthermore, we can change the pose of
the scans using SMPL. Unfortunately, non-rigid registration



UV Transform

3“

Input UV Unwrap

Generator

Discriminator

Figure 2. Overview of the key component of our method: A single photograph of a subject is transformed into a partial UV texture map.
This map is then processed with a U-Net with skip connections that preserve high-frequent details. A PatchGAN discriminator enforces
realism. The generated normals and displacements can be applied to the SMPL model using standard rendering pipelines.

of clothed people is a very challenging problem itself (see
Sec. 4.1), and often results in unnatural shapes. Hence, we
manually selected 2043 high quality registrations. Unfor-
tunately, our current dataset is slightly biased towards men
because registration currently fails more often for women,
due to long hair, skirts and dresses. Of the 2043 scans, we
reserve 20 scans for validation and 55 scans for testing.

In the following, we explain our non-rigid registration
procedure in more detail and describe the synthetization of
the paired dataset for training of the models.

4.1. Scan registration

As discussed in Sec. 3.1, N = 6890 vertices are not
enough to explain fine details. To this end, we sub-divide
each face in SMPL into four, resulting in a new mesh con-
sisting of N = 27554 vertices and ' = 55104 faces. This
high-resolution mesh can better explain fine geometric de-
tails in the scans. While joint optimization is generally
desirable, registration is much more robust when done in
stages: we first compute 3D pose, then body shape and fi-
nally non-rigid details. We start the registration by recon-
structing the pose of the scan subject. Therefore, we find 3D
landmarks by rendering the scan from multiple cameras and
minimizing the 2D re-projection error to 2D joint OpenPose
detections [12]. Then we optimize the SMPL pose parame-
ters 6 to explain the estimated 3D joint locations. Next, we
optimize for shape parameters 3 to minimize scan to SMPL
surface distance. Here, we make sure SMPL vertices stay
inside the scan by paying a higher cost for vertices outside
the scan since SMPL can only reliable explain the naked
body shape. Finally, we recover fine-grained details by op-
timizing the location of SMPL vertices. The resulting regis-
trations explain high-frequency details of the scans with the
subdivided SMPL mesh layout and can be re-posed.

4.2. Spherical harmonic lighting

For a paired dataset, we first need to synthesize images
of humans. For realistic illumination, we use spherical har-
monic lighting. Spherical harmonics (SH) are orthogonal
basis functions defined over the surface of the sphere. For
rendering SH are used to describe the directions from where
light is shining into the scene [42]. We follow the standard

procedure and describe the illumination with the first 9 SH
components per color. To produce a large variety of realistic
illumination conditions, we convert images of the Laval In-
door HDR dataset [14] into diffuse SH coefficients, similar
to [25]. For further augmentation, we rotate the coefficients
randomly around the Y-axis.

4.3. UV map synthetization

To complete our dataset, we calculate UV maps that ex-
plain details of the 3D registrations. In UV mapping every
face of the mesh has a 2D counterpart in the UV image.
Hence, UV mapping is essentially defined through a 2D
mesh. Given a 3D mesh and a set of per-vertex information,
a UV map can be synthesized through standard rendering.
Information between vertices is filled through barycentric
interpolation. This means, given the high-resolution reg-
istrations, we can simply render detailed UV displacement
and normal maps. The displacement maps encode the free-
form offsets, that are not part of SMPL. The normal maps
contain surface normals in canonical T-pose. These maps
are used to augment the standard-resolution naked SMPL,
which eliminates the need for higher mesh-resolution or
per-vertex offsets. We use the standard-resolution SMPL
augmented with the UV maps in all our experiments.

5. Model and Training

In the following, we explain the used network architec-
tures, losses, and training schemes in more detail. Fur-
ther, we explain how a partial texture can be obtained from
DensePose [5] results.

5.1. Network architectures

Our method consists of two CNNs — one for normal and
displacement maps and one for SMPL shape parameters
B. The main component of our method is the Tex2Shape-
network as depicted in Fig. 2. The network is a conditional
Generative Adversarial Network (Pix2Pix) [20] consisting
of a U-Net generator and a PatchGAN discriminator. The
U-Net features each seven convolution-ReLU-batchnorm
down- and up-sampling layers with skip connections. The
discriminator consists of four of such down-sampling lay-
ers. We condition on 512 x 512 partial textures, based on



two observations: First, when mapping pixels from an HD
1024 x 1024 image to UV, the resolution is high enough to
contain most pixels from the foreground, and not too high to
prevent large unoccupied regions. Second, using the mesh
resolution of the training set, larger UV maps would only
contain more interpolated data. See supplemental material
for an ablation experiment using smaller UV maps.

The B-network takes 1024 x 1024 DensePose detections
as input. These are then again down-sampled with seven
convolution-ReL.U-batchnorm layers and finally mapped to
10 B-parameters by a fully-connected layer.

5.2. Losses and training scheme

The goal of our method is to create results with high
perceived quality. We believe structure is more important
than accuracy and therefore experiment with the following
loss: The structural similarity index (SSIM) was introduced
to predict the perceived quality of images. The multi-scale
SSIM (MS-SSIM) [54] evaluates the image on different im-
age scales. We maximize the structural similarity of ground
truth and predicted normal and displacement maps by min-
imizing the dissimilarity (MS-DSSIM): (1 — MS-SSIM)/2.
We further train with the well-established L1-loss and the
GAN-loss coming from the discriminator. Finally, the 3-
network is trained with an L2 parameter loss. We train
both CNNs with the Adam optimizer [27] and decay the
learning-rate once the losses plateau.

5.3. Input partial texture map

The partial texture forming the input to our method is
created by transforming pixels from the input image to UV
space based on DensePose detections, see Fig. 3. Dense-
Pose predicts UV coordinates of 24 body parts of the SMPL
body model (Fig. 3 middle). For easier mapping, we pre-
compute a look-up table to convert from 24 DensePose UV
maps to the single joint SMPL UV parameterization. Each
pixel in the DensePose detection now maps to a coordinate
in the SMPL UV map. Using this mapping, we compute a
partial texture from the input image (Fig. 3 right).

6. Experiments

In the following, we qualitatively and quantitatively
evaluate our proposed method. Results on four different
datasets and comparisons to state-of-the-art demonstrate the
versatility and robustness of our method as well as the qual-
ity of results (Sec 6.1). Further, we study the effect of differ-
ent supervision losses (Sec. 6.2), evaluate different methods
for UV mapping (Sec. 6.3), and measure the robustness for
different visibility levels (Sec. 6.4). Finally, in Sec. 6.5 we
demonstrate a potential application of our proposed method,
namely garment transfer between subjects. More experi-
ments and ablation studies can be found in the supplemen-
tal material. Due to scale ambiguity in monocular images,

Figure 3. To create the input to our method, we first process the
input image (left) with DensePose. The DensePose result (middle)
contains UV coordinates, that can be used to map the input image
into a partial texture (right).

all results are up to scale. Also, our method does not com-
pute pose. For better inspection, we depict results in ground
truth or A-pose. Further, we color-code the results by the
used method for UV-mapping (see Sec. 6.3). Results us-
ing DensePose mapping are green, blue marks ground truth
mapping, red indicates HMR-based [26] texture reprojec-
tion, and ground truth shapes are grey. All results have been
calculated at interactive frame-rates. Precisely, our method
takes on average 50 ms for displacement map, normal map,
and B-estimation on an NVIDIA Tesla V100. UV mapping
using DensePose can be performed in real-time.

6.1. Qualitative results and comparisons

We qualitatively compare our work against four relevant
methods for monocular human shape reconstruction on the
PeopleSnapshot dataset [4]. BodyNet [50] is a voxel-based
method to estimate human pose and shape from only one
image. SiCloPe [34] is voxel-based, too, but recovers cer-
tain details by relying on synthesized silhouettes of the sub-
ject. HMR [26] is a method to estimate pose and shape
from single image using the SMPL body model. In [4] the
authors present the first video-based monocular shape re-
construction method, that goes beyond the parameters of
SMPL. They use 120 images of the same subject roughly
posed in A-poses and fuse the silhouettes into a canonical
representation. However, the method is optimization-based
and requires to fit the pose in each frame first, which makes
the process very slow. In Fig. 6, we show a side-by-side
comparison with our results. Our method clearly features
the highest level of detail, even compared to [4] using 120
frames, while our method only takes a single image as input
and runs at interactive frame-rates.

In Fig. 17 we show more results of our method. We com-
pare against ground truth on our own dataset and show qual-
itative results on 3DPW [52], DeepFashion [31, 32], and
PeopleSnapshot [4] datasets. Our method successfully gen-
eralizes to various real-world conditions. Please note how
realistic garment wrinkles are hallucinated on the unseen
back of the models. In general, we can see our method is
able to infer realistic 3D models featuring hair, facial de-
tails, and various clothing including garment wrinkles from
single image inputs.
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Figure 4. Our 3D reconstruction results (green) on four different datasets. We compare to ground truth (grey) on our synthetic dataset (rows
1 and 2). Qualitative results on 3DPW (3rd row), DeepFashion (4th row left) and PeopleSnapshot (4th row right) demonstrate, that our
model generalizes well to real-world footage. Details on the back of the models are hallucinated by our model.
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Figure 5. Results using three different methods for partial texture creation compared to input image and ground truth mesh (grey): ground
truth UV mapping (blue), DensePose UV mapping (green), HMR-based texture reprojection (red), cf. Fig. 7.
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Figure 6. Our method compared to other methods for human shape
reconstruction. From left to right: Input image, BodyNet [50],
HMR [26], SiCloPe [34], Video Shapes [4], and ours. Our method
preserves the highest level of detail.

6.2. Type of supervision

In Sec. 5.2, we have introduced the MS-DSSIM loss.
The intuition behind using this loss is that for visual fidelity
structure is more important than accuracy. To evaluate this
design decision, we train a variant of our Tex2Shape net-
work with L1 and GAN losses only. Since it is not straight
forward to quantify better structure, we closely inspect our
results on a visual basis. We find, that the variant trained
with MS-DSSIM loss is able to reconstruct complex cloth-
ing more reliably. Examples are shown in Fig. 8. Note that
the results computed with MS-DSSIM loss successfully re-
construct the jackets.

6.3. Impact of UV mapping

Our method requires to first map an input image to a par-
tial UV texture. We propose to use DensePose [5], which
makes our method independent of the 3D pose of the sub-
ject. In the following, we evaluate the impact of the choice
of UV mapping on our method. To this end, we train three
variants of our network. Firstly, we train with ground truth
UV mappings calculated from the scans. We render the
scan’s UV coordinates in image space, that are then used
for UV mapping, similar to the mapping using DensePose
(see Sec. 5.3). We refer to this variant as GT-UV. Secondly,
we train a variant that can be used with off-the-shelf 3D
pose estimators. To this end, we render UV coordinates of
the naked SMPL model without free-form offsets. This way
only pixels that are covered by the naked SMPL shape are
mapped, what simulates texture reprojection from results of
3D pose detectors (3D pose variant). Finally, we compare
with our standard training procedure using DensePose. A
comparison of partial textures created with the three vari-
ants is given in Fig. 7. Note how we lose large parts of the
texture by using DensePose mapping.

To evaluate the 3D pose variant, we choose HMR [26]
as 3D pose detector. Unfortunately, the results of HMR do

Figure 7. Partial textures computed with different methods. From
left to right: Input, ground truth UV mapping, DensePose, HMR.
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Figure 8. After training with MS-DSSIM loss enabled (green)
complex clothing is reconstructed more reliably, than after training
with L1 loss only (yellow).

not always align with the input image what produces large
errors in the UV space. To this end, we refine the results
by minimizing the 2D reprojection error of SMPL joints to
OpenPose [12] detections. We choose dogleg optimization
and optimize for 20 steps.

In Fig. 5 we show a side-by-side comparison of the three
variants. While GT-UV and DensePose variants are al-
most identical, the 3D pose variant lacks some detail and
introduces noise in the facial region. This is caused by
the fact, that perfect alignment is still not achieved even
after pose-refinement. The GT-UV and DensePose vari-
ants differ the most in hairstyle and at the boundary of the
shorts, what is not surprising since hair and clothing are
only partially mapped by DensePose. However, both vari-
ants closely resemble ground truth results. The DensePose
and 3D pose mapping variants can directly be used on real-
world footage, while only being trained with synthetic data.

6.4. Impact of visibility

In the following, we numerically evaluate the robustness
of our method to different visibility settings caused by dif-
ferent poses and distances to the camera. The following
results have been computed using GT UV mapping to fac-
tor out noise introduced by DensePose. Which pixels can
be mapped to the UV partial texture is determined by the
subject’s pose and distance to the camera. Parts of the body
might be not visible (e.g. the subject’s back) or occluded by
other body parts. If the subject is far away from the camera,
it only covers only a small area of the image and thus only
a small number of pixels can be mapped.

In Fig. 9 we measure how this influences the accuracy
of our results. Over a test-set with 55 subjects, we synthe-
size images of three different poses with various distances
to the camera. The three poses are A-pose, walking towards
the camera, and posing sideways with hands touching. We
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Figure 9. Average displacement error for three different poses (red:

A-pose, blue: walking, green: posing sideways with hands touch-

ing) and different distances to the camera. The shaded region

marks the margin of trained UV map occupancy.

Mean error (mm)
- %)
o =]
| |

-
o
L

(I) 1‘0 2‘0 3‘0 4‘0 5‘0 GI[) 7‘0 8‘0 9‘0
Rotation w.r.t. the camera (°)
Figure 10. Average displacement error for A-posed subjects and
different rotations around Y-axis with respect to the camera. Our
model has been trained on rotations +20°.

report the mean per-pixel error of 3D displacements maps
(including unseen areas) against the percentage of occupied
pixels in the partial texture. For all three poses, the error
increases linearly, even for untrained texture occupations.
Not surprisingly, the minimum of all three poses lies in the
margin of trained occupations. Admittedly, for higher oc-
cupations, the error slightly goes up what is caused by the
fact, that the network was not trained for scenarios where
the subject fully covers the input image.

In Fig. 10, we study the robustness of our method against
unseen poses. We trained the network with images of hu-
mans roughly facing the camera. Therefore, we randomly
sampled poses in our dataset and Y-axis rotations between
420°. In this experiment, we rotate an A-pose around the
Y-axis and report the mean per-pixel 3D displacement error.
From 0° to 30°, the error stays almost identical, after 30° it
increases linearly. Again this behavior can be explained by
the network not being trained for such angles.

Both experiments demonstrate the robustness of our
method against scenarios not covered by our training set.

6.5. Garment transfer

In our final experiment, we want to demonstrate a po-
tential application of our method, namely garment transfer
or virtual try-on. We take several results of our method and
use them to synthesize a subject in new clothing. To achieve
this, we keep the SMPL shape parameters 3. Then we al-
ter normal and displacement maps according to a different
result. Hereby, we keep details in the facial region, to pre-
serve the subject’s identity and hair-style. Since we edit in
UV space, this operation can simply be done using standard
image editing techniques. In Fig. 11 we show a subject in
three different synthesized clothing styles.

Figure 11. Since all reconstructions share the same mesh layout,
we can extract clothing styles and transfer them to other subjects.

Figure 12. Failure cases of our method: The predictor confuses a
dress with short pants, a female subject with a male, and halluci-
nates a hood from a collar.

7. Discussion and Conclusion

We have proposed a simple yet effective method to in-
fer full-body shape of humans from a single input image.
For the first time, we present single image shape reconstruc-
tion with fine details also on occluded parts. The key idea
of this work is to turn a hard full-body shape reconstruc-
tion problem into an easier 3D pose-independent image-to-
image translation one. Our model Tex2Shape takes partial
texture maps created from DensePose as input and estimates
details in the UV-space in form of normal and displacement
maps. The estimated UV maps allow augmenting the SMPL
body model with high-frequent details without the need
for high mesh resolution. Our experiments demonstrate
that Tex2Shape generalizes robustly to real-world footage,
while being trained on synthetic data only.

Our method finds its limitations in hair and clothing that
is not covered by the training set. This is especially the
case for long hair and dresses since they cannot be mod-
eled as vector displacement fields. Typical failure cases
are depicted in Fig. 12. These failures can be explained
with garment-type or gender confusion, caused by missing
training samples. In future work, we would like to further
open up the problem of human shape estimation and ex-
plore shape representations that allow all types of clothing
and even accessories.

We have shown, that by transferring a hard problem
into a simple formulation, complex models can be outper-
formed. Our method lays the foundation for wide-spread
3D reconstruction of people for various applications and
even from legacy material.
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A. Appendix

We show here additional experiments to understand the
influence of illumination on our model and its robustness
to varying camera intrinsics. We evaluate the S-regression
network and perform an ablation of the UV map resolution.
Finally, we present more qualitative results.

A.1. Influence of Illumination

As already emphasized in the main paper, shading is po-
tentially a strong cue for our model. In the following, we
evaluate the illumination augmentation during training and
the robustness of our model to varying illumination.

In order to evaluate the effect of the illumination aug-
mentation during training, we re-trained our model with
constant ambient illumination. This means we render the
scans using the textures only. While being scanned, the
subjects have been exposed to uniform lighting. However,
shading is still present in wrinkles and smaller structures.
This means, we cannot factor out shading effects com-
pletely. Nevertheless, in Fig. 16 we can see more consistent
details for our final method, especially for the faces.

Our model should produce the same or at least a very
similar result when applied on two different photos of the
same person in the same clothing but under varying illumi-
nation. To validate illumination invariance of our model,
we took 9 photos of two subjects while rotating the light-
source around the subject. In Fig. 14 we show the different
photos and a heat-map illustrating areas with high standard
deviation. We see a consistent picture with varying details
only in areas of likely fabric movement.

A.2. Influence of Camera Intrinsics

Camera intrinsics are mostly unknown at test time, es-
pecially for in-the-wild photos. The focal length is an im-
portant camera parameter, which can affect the results of
our method. We have trained our model with a fixed fo-
cal length. To study the robustness of our method against
varying focal length, we render our test set in A-poses with
different focal length and distance to the camera. We keep
the ratio between distance and focal length fixed, creating
a Vertigo Effect. In Fig. 13, we report the mean vertex-to-
vertex error of the naked SMPL model under varying focal
length. Although the lowest error is obtained for the fo-
cal length assumed during training, different focal lengths
increase the error only slightly, which demonstrates the ro-
bustness of our model.

A.3. Numerical Comparison with HMR

In order to evaluate the S-regression network, we com-
pare our naked results without added displacements against
HMR [26]. Since we do not estimate pose it has to be
factored out before comparison. To this end, we follow
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Figure 13. Mean SMPL vertex-to-vertex error in mm (without
added displacements) over the test-set for varying focal length.

the established procedure in [9] and adjust pose and scale
of the results of both methods to match the ground truth
scans. On our test-set, our method using DensePose map-
ping achieves a mean bi-directional vertex to surface error
of 10.57 + 10.68mm compared to the clothed scans. HMR
achieves 16.28 +17.05mm. Our method can better estimate
the body shapes. This is likely linked to the fact, that our
method directly uses dense image-space detections, while
HMR correlates surface with bone-lengths. With added dis-
placements, our method achieves 5.19 4+ 6.36mm. All re-
sults are up to scale.

A.4. UV Resolution Ablation

To evaluate our choice of the UV resolution (512 x
512px), we train a variant of the network with 256 x 256px
maps. The results look surprisingly good. A close in-
spection of the results reveals missing details and smoothed
edges. An example is shown in Fig. 15. However, this ex-
periment demonstrates that Tex2Shape can be trained with
lower resolution without largely decreased quality.

A.5. Additional Qualitative Results

In Fig. 17, we show more in-the-wild results of our
method on MonoPerfCap [58] and PeopleSnapshot [4]
datasets.
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Figure 14. Displacement reconstruction consistency under vary-
ing illumination. The heatmap illustrates the vector norm of per
surface point standard deviation (dark-red means > 4cm).

Figure 15. Comparison of two variants of our network: Using
256 x 256px resolution (left) decreased the quality only slightly
when compared to the original resolution of 512 x 512px (right).



1
1

Figure 16. Our method (green) compared to our method trained without illumination augmentation (purple) and ground truth (grey).
Looking closely, we notice worse performance specially on the face region, and artifacts for the method without illumination augmentation.
Notice for example the example on the bottom left, the face, legs shape, and chest region is more accurately reconstructed when using

Figure 17. 3D reconstruction results on two in-the-wild datasets: PeopleSnapshot [4] (1st row) and MonoPerfCap [58] (2nd row).
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