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Summary

In a cluster randomized trial (CRT), groups of people are randomly assigned to di↵erent in-

terventions. Existing parametric and semiparametric methods for CRTs rely on distributional

assumptions or a large number of clusters to maintain nominal confidence interval (CI) coverage.

Randomization-based inference is an alternative approach that is distribution-free and does not

require a large number of clusters to be valid. Although it is well-known that a CI can be obtained

by inverting a randomization test, this requires randomization testing a non-zero null hypothesis,

which is challenging with non-continuous and survival outcomes. In this paper, we propose a
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general method for randomization-based CIs using individual-level data from a CRT. This fast

and flexible approach accommodates various outcome types, can account for design features such

as matching or stratification, and employs a computationally e�cient algorithm. We evaluate this

method’s performance through simulations and apply it to the Botswana Combination Preven-

tion Project, a large HIV prevention trial with an interval-censored time-to-event outcome.

Key words: Cluster randomized trial; Confidence interval; Correlated data; Interval-censored; Permuta-

tion test; Randomization-based inference.

1. Introduction

In a cluster randomized trial (CRT), groups of people rather than individuals are randomly as-

signed to receive di↵erent interventions. The correlation between individual-level outcomes must

be taken into account in the statistical analysis. With continuous, count, or binary outcomes,

this is typically done using a generalized linear mixed model (GLMM) fit via likelihood-based

methods (Breslow and Clayton, 1993) or a marginal model fit via a generalized estimating equa-

tion (GEE) (Liang and Zeger, 1986). Similar mixed and marginal approaches exist for correlated

right-censored time-to-event outcomes (Cai and Prentice, 1995; Ripatti and Palmgren, 2000; Th-

erneau and others, 2003; Wei and others, 1989) and interval-censored outcomes (Bellamy and

others, 2004; Gao and others, 2019; Goggins and Finkelstein, 2000; Kim and Xue, 2002; Kor

and others, 2013; Li and others, 2014). These parametric and semiparametric methods generally

require correct specification of distributional assumptions or a large number of clusters to main-

tain nominal type I error and confidence interval (CI) coverage. Although various small-sample

corrections have been proposed, their performance can vary depending on the particular CRT

scenario (Scott and others, 2017; Leyrat and others, 2018).

Randomization-based inference is an alternative approach that is distribution-free and exact.
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That is, it does not require specification of a particular parametric family of probability distribu-

tions and does not rely on a large number of clusters to be valid (Edgington, 1995; Ernst, 2004).

Recently, there has been a resurgence of interest in randomization-based inference for CRTs, but

this body of work has focused on hypothesis testing, not CIs.

It is well-known that, in theory, a randomization-based CI can be obtained by inverting a

randomization test, i.e. by searching for and selecting the most extreme treatment e↵ect values

not rejected by the test. This approach requires carrying out randomization tests of a non-zero

null hypothesis, such as H0 : ✓ = ✓0 where ✓0 6= 0. With continuous outcomes and two treatment

groups, this can be done by transforming all individual-level outcomes in one group by some

fixed value (Edgington, 1995, Section 4.1). Beyond continuous outcomes, however, randomization

testing a non-zero null—and consequently calculating a CI—is more di�cult. Among the papers

that have considered randomization-based CIs for non-continuous outcomes in the CRT setting,

most resort to a cluster-level approach (Gail and others, 1996; Hughes and others, 2019; Raab

and Butcher, 2005; Thompson and others, 2018). For example, Gail and others (1996) used

randomization-based inference in a large smoking cessation CRT with a binary outcome, but

used a cluster-level summary statistic to calculate a CI. This allowed them to apply the usual

transformation approach to a continuous cluster-level measure. Cluster-level approaches based

on unweighted summary statistics can su↵er from suboptimal e�ciency when cluster sizes vary

substantially because they do not incorporate the di↵ering amounts of information contributed

by each cluster. Although weighting methods or incorporation of individual-level covariates can

improve the e�ciency of a cluster-level analysis, the former typically requires accurate estimation

of the intracluster correlation coe�cient, which is di�cult to obtain in practice, and the latter

typically requires a two-stage approach (Hayes and Moulton, 2017, Section 11.1).

Individual-level regression approaches, on the other hand, more naturally incorporate proper

weights and covariate information in a single model; however, only a handful of papers have
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considered individual-level approaches for randomization-based CIs. For exponential family out-

comes, although the duality of testing and CIs has been pointed out (Braun and Feng, 2001;

Ji and others, 2017), no details were given as to how to carry out the necessary non-zero null

hypothesis test for non-continuous outcomes. In discussing methods for covariate-adjusted ran-

domization tests and their application to balanced CRTs, Raab and Butcher (2005) mentioned

an approach for binary outcomes by introducing an o↵set term into a logistic model to calculate

adjusted residuals, but did not pursue or develop this idea further. For time-to-event outcomes,

Wang and De Gruttola (2017) briefly described in the discussion how permutation tests can be

inverted to obtain interval estimates when the parameter of interest is one in an accelerated fail-

ure time model. This approach required transformation of the unknown time-to-event outcomes

and cannot be used to make inference about a treatment e↵ect based on a Cox proportional

hazards model. The di�culty in constructing randomization-based CIs for non-continuous and

survival outcomes can manifest in an inconsistency between the p-value and CI reported in prac-

tice, where the former is based on randomization and the latter is not. For example, in the

Botswana Combination Prevention Project, a recently published large HIV prevention trial with

an interval-censored outcome, the authors used a randomization test for the primary analysis,

but resorted to a semiparametric Cox model to calculate a CI (Makhema and others, 2019).

In this paper, we propose a general method to construct randomization-based CIs for the

intervention e↵ect using individual-level data from a CRT. This fast and flexible approach ac-

commodates various outcome types (e.g. continuous, binary, count, right- or interval-censored

time-to-event), can account for design features in randomization (e.g. matching, stratification),

and employs a computationally e�cient algorithm. We introduce notation and present our ap-

proach in Section 2. Simulations in Section 3 demonstrate the properties of our method and

compare it to alternatives. In Section 4, we re-analyze data from the Botswana Combination Pre-

vention Project using our novel approach to obtain a randomization-based CI for the intervention
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e↵ect. We conclude with a discussion in Section 5 and give a link to our R package in Section 6.

2. Methods

2.1 Setting and notation

Consider a CRT with two groups: intervention (or treatment) and no intervention (or control).

Suppose we have a total of K clusters, nk individuals in the kth cluster, k = 1, . . . ,K, and

N =
PK

k=1 nk total observations in the study. Let Xk = 1 indicate assignment to the interven-

tion, Xk = 0 for no intervention, and X = (X1, . . . , XK)T denote the entire random treatment

vector. Assign K1 =
PK

k=1 Xk clusters to intervention and the remaining K0 = K �K1 to no in-

tervention according to some predefined randomization scheme. Let x = (x1, . . . , xK)T denote the

resulting observed treatment vector post-randomization. In this paper, we consider a wide range

of outcomes including continuous, binary, and count data, as well as time-to-event data subject

to right- or interval-censoring. For exponential family outcomes, let Yki, i = 1, . . . , nk, denote the

outcome random variable for the ith individual in the kth cluster. Collect all cluster-specific out-

comes in a vector Yk = (Yk1, . . . , Yknk)
T and all study outcomes in a vector Y = (YT

1 , . . . ,Y
T
K)T .

When outcomes of interest are times-to-event, we follow the conventional notation. For right-

censored data, let Tki and Cki denote the underlying survival time and potential censoring time

for an individual measured from study entry. The observation for an individual is (Uki, �ki),

where Uki = min(Tki, Cki) and �ki = I(Tki 6 Cki) is an indicator of whether Tki is observed.

We use (Uk, �k) and (U, �) to denote cluster-specific and all study outcomes, respectively. We

assume that censoring is noninformative: that is, T and C are conditionally independent given

X. For interval-censored data, we again let Tki denote the time-to-event measured from study

entry. We consider M distinct monitoring times {Zki,m,m = 1, . . . ,M} at which the outcome of

interest is assessed. The interval-censored outcome for an individual is (Lki, Rki], where Lki is

the last observed monitoring time individual i in cluster k is event-free, and Rki is the first
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observed monitoring time the event of interest for this individual has occurred. Individuals

who remain event-free at the last observed monitoring time are right-censored with observed

interval (Zki,M ,1). We use (Lk,Rk] and (L,R] to denote cluster-specific and all study out-

comes, respectively. We again assume noninformative interval censoring conditional on X, i.e.

P (T 6 t|L = l, R = r, L < T 6 R,X = x) = P (T 6 t|l < T 6 r,X = x).

Throughout, our focus is on estimating the randomized intervention e↵ect.

2.2 Randomization-based confidence intervals

We propose a randomization-based approach to construct a CI for the intervention e↵ect that

does not rely on parametric distributional assumptions or a large number of clusters to be valid.

This method can be used to make inference about a marginal (i.e. cluster-average) or conditional

(e.g. covariate-adjusted, cluster-specific) intervention e↵ect, and applies for exponential family

outcomes (Section 2.2.1) and right- or interval-censored survival outcomes (Section 2.2.2).

2.2.1 Exponential family outcomes Let us conceive of the sample of clusters as being represen-

tative of some hypothetical reference population of clusters. In our case, consider the population

model

(Yk|Xk = x) ⇠ F (⌘x,�), ⌘x = g{E(Yki|Xk = x)} = µ+ ✓x , (2.1)

for all i = 1, . . . , nk and k = 1, . . . ,K. Here, F is an arbitrary multivariate distribution charac-

terized by ⌘x and �, a vector of nuisance parameters not a↵ected by treatment assignment (i.e.

X only a↵ects Y through the mean model). For example, if outcomes were generated from the

linear mixed model Yki = µ
⇤ + ✓

⇤
Xk + �k + ✏ki with random cluster intercepts �k ⇠ N(0,�2

�)

and independent residual error terms ✏ki ⇠ N(0,�2
✏ ), these data would coincide with population

model (2.1) where F is the multivariate normal distribution with each element of the mean vec-

tor corresponding to ⌘x = µ
⇤ + ✓

⇤
x and an exchangeable covariance matrix parameterized by
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� = (�� ,�✏). For now, we define the parameter of interest as the marginal treatment e↵ect

✓ = g{E(Yki|Xk = 1)}� g{E(Yki|Xk = 0)} . (2.2)

With a continuous outcome and the identity link, ✓ corresponds to the di↵erence in means between

populations under intervention and no intervention; with a binary outcome and the logit link, ✓

corresponds to the log odds ratio between these two populations; with a count outcome and the

log link, ✓ is the log incidence rate ratio.

Invariance can be used to justify the validity of a randomization test under a population

model like (2.1) (Lehmann and Romano, 2005, Section 15.2). Under population model (2.1)

and H0 : ✓ = 0, ⌘0 = ⌘1 = µ. This implies that the distribution of (Y|X) is invariant under

permutations of X that adhere to the cluster-level randomization scheme used in the study.

Thus, by Theorem 15.2.1 of Lehmann and Romano (2005), a randomization test using a statistic

based on our data Y and X will be level ↵, the pre-specified type I error rate, and can be carried

out in the following way. First, we fit the marginal model

g{E(Yki|X(p)
k )} = µ+ ✓X

(p)
k , (2.3)

using the observed treatment vector X(1) = x to obtain the observed marginal treatment e↵ect

estimate, ✓̂(1) = ✓̂. Then for p = 2, . . . , P , we randomly permute elements of x in accordance with

the randomization scheme, fit model (2.3) using the permuted treatment vector X(p), and obtain

a new estimate ✓̂
(p). The p-value is calculated as the proportion of {✓̂(p)}Pp=1 as or more extreme

than ✓̂. This Monte Carlo approximation to the exact p-value is used in practice because complete

enumeration of all possible treatment assignment vectors is often infeasible (Dwass, 1957). We

reject the null hypothesis of no treatment e↵ect if this p-value is less than ↵. We can obtain

✓̂
(p) in various ways, e.g. via GEE or by fitting a generalized linear model (GLM) via maximum

likelihood. An appropriate number of permutations P for the randomization test can be based

on the standard error (SE) of the Monte Carlo approximation, i.e. by ensuring the SE expression
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p
a(1� a)/P is adequately low for a particular p-value = a, or most conservatively for a = 0.5.

A randomization-based confidence set for ✓ can be obtained by inverting this randomization

test. This requires testing null hypotheses of the form H0 : ✓ = ✓0 2 ⇥ and collecting the set of

values not rejected by these tests. For simple settings with continuous outcomes (e.g. a two-sample

t-test), this can be done by subtracting the hypothesized value ✓0 from individual-level outcomes

in one group, which reformulates the problem back into testing a zero null hypothesis. For linear

regression settings, tests can be constructed by removing treatment e↵ects and working with

residuals. However, such approaches do not apply to non-continuous outcomes (e.g. binary, time-

to-event), which are commonly used in CRTs. Our approach overcomes this challenge by working

with model (2.3) directly. Rather than attempting to transform the individual-level outcomes, we

carefully obtain values of the test statistic that form the randomization distribution under each

non-zero null hypothesis. We can rewrite the marginal model as

g{E(Yki|Xk)} = µ+ ✓0Xk + (✓ � ✓0)Xk = µ+ ✓0Xk + ⌧Xk , (2.4)

and test an equivalent null hypothesis of H0 : ⌧ = (✓� ✓0) = 0. This requires obtaining estimates

{⌧̂ (p)}Pp=1 under di↵erent randomizations, each of which can be calculated by fitting the model

g{E(Yki|X(p)
k )} = µ+ ✓0xk + ⌧X

(p)
k , (2.5)

using the observed treatment vector x for the fixed o↵set term ✓0xk and the permuted treatment

vector X(p) for the o↵set-adjusted treatment e↵ect term ⌧X
(p)
k . Under population model (2.1)

and H0 : ⌧ = 0, the only functional relationship preventing (Y|X) from being invariant is a

(transformed) mean shift of ✓0 between treatment and control clusters. By including the fixed

o↵set term ✓0xk in model (2.5) across all P permutations, we eliminate this shift, resulting in

invariance and, thus, a level ↵ randomization test for any ✓0. Carrying out this test across all

✓0 2 ⇥ and collecting the set of values not rejected by these tests provides a (1�↵) randomization-

based confidence set for ✓, the bounds of which form a (1�↵)⇥100% CI for ✓. This method uses
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individual-level data and works for a generic outcome and link function. For a continuous outcome

with the identity link, this coincides exactly with the commonly used approach of transforming

the outcome directly.

Note that like other randomization-based methods, because the randomization distribution

of our test statistic is discrete, an exact arbitrary size ↵ test may require a randomized testing

procedure, i.e., flipping a biased coin for values on the boundary of the rejection region in order

to obtain exact size ↵; otherwise, the test is level ↵ and the corresponding confidence level can be

conservative. For example, if there were only 50 unique equiprobable values of the test statistic

in the randomization distribution, the largest achievable randomization test p-value less than

↵ = 0.05 is 2/50 = 0.04; inverting this test would result in a 96% CI. This conservativeness

becomes negligible as the number of values in the randomization distribution increases.

Summarizing up to this point, we have the following results. Given population model (2.1),

a randomization test of H0 : ⌧ = (✓ � ✓0) = 0 using ⌧̂ from o↵set-adjusted model (2.5) is level

↵. Correspondingly, the set of ✓0 2 ⇥ not rejected by this randomization test form a (1 � ↵)

confidence set for ✓, the bounds of which form a (1� ↵)⇥ 100% CI.

This CI approach is quite flexible: it can be generalized to obtain interval estimates for

covariate-adjusted and cluster-specific treatment e↵ects. Let Vki denote a vector of cluster- or

individual-level covariates. Suppose that we are interested in estimating ✓
† = g{E(Yki|Xk =

1,Vki)}� g{E(Yki|Xk = 0,Vki)}, and the population model is given by

(Yk|Xk = x,Vk) ⇠ F (⌘x,�), ⌘x = g{E(Yki|Xk = x,Vki)} = µ
† +VT

ki�
† + ✓

†
x , (2.6)

where � is not a↵ected by treatment assignment. A level ↵ randomization test of H0 : ⌧ † =

(✓† � ✓
†
0) = 0 can be obtained using the randomization distribution formed by ⌧̂

† from the

o↵set-adjusted model

g{E(Yki|X(p)
k ,Vki)} = µ

† +VT
ki�

† + ✓
†
0xk + ⌧

†
X

(p)
k , (2.7)
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because after controlling for Vki and removing the covariate-adjusted treatment e↵ect ✓†0 via the

fixed o↵set term, the distribution of (Y|X,V) is invariant under permutations of X. Collecting

all ✓†0 2 ⇥† not rejected by this test forms a (1 � ↵) confidence set for ✓
†, the bounds of which

form a (1�↵)⇥ 100% CI. Similar results can be obtained for the cluster-specific treatment e↵ect

✓
⇤ = g{E(Yki|Xk = 1, �k)}� g{E(Yki|Xk = 0, �k)} using the o↵set-adjusted GLMM

g{E(Yki|X(p)
k , �k)} = µ

⇤ + ✓
⇤
0xk + ⌧

⇤
X

(p)
k + �k . (2.8)

These conditional approaches might result in improved e�ciency of the randomization-based CI,

but in general relate to a di↵erent (conditional, not marginal) intervention e↵ect.

2.2.2 Time-to-event outcomes For right-censored data, suppose that we are interested in es-

timating ✓, the marginal log hazard ratio of treatment in the Cox proportional hazards model

�ki(t|Xk = x) = �0(t) exp(✓x). Consider the population model

{(Uk, �k)|Xk = x} ⇠ F (�x,�), �x = �ki(t|Xk = x) = �0(t) exp(✓x) , (2.9)

where � is a vector of nuisance parameters not a↵ected by treatment assignment and where

censoring is noninformative. Following similar arguments to before, a level ↵ randomization test

of H0 : ⌧ = (✓ � ✓0) = 0 can be obtained using the randomization distribution of ⌧̂ from the

o↵set-adjusted proportional hazards model

�ki(t|X(p)
k ) = �0(t) exp(✓0xk + ⌧X

(p)
k ) . (2.10)

A corresponding (1 � ↵) ⇥ 100% CI for ✓ can be obtained by inverting this randomization test.

Similar results apply to interval-censored data, where instead of (2.9), the population model

would now become {(Lk,Rk]|Xk = x} ⇠ F (�x,�), where �x = �ki(t|Xk = x) = �0(t) exp(✓x).

2.2.3 Other considerations More generally, this randomization-based approach to CIs can be

used to make inference about the intervention e↵ect in models that accommodate an o↵set term.



Randomization-Based Confidence Intervals for CRTs 11

Other than proper randomization, validity of this method relies on correct specification of the

population model. This assumption is more flexible than its counterpart in mixed models because,

although we similarly postulate a common distribution F across clusters, aside from the mean (or

proportional hazards) model, the form of this distribution is left completely unspecified; i.e. cor-

rect specification of a particular probability distribution is not required. It can be more restrictive

than other semiparametric methods (e.g., GEEs) because the population models considered here

limit the e↵ect of intervention to one aspect of the distribution (the mean for exponential family

outcomes and hazard function for survival outcomes). Importantly, however, its validity does not

rely on the number of clusters being large. Another advantage of randomization-based inference

is the ease of accounting for design features, such as matching or stratification, in the analysis.

When carrying out the randomization test, we simply consider only those treatment permuta-

tions possible under that particular design. For example, if 20 clusters were randomized in pairs,

we would sample X(p) from the 210 = 1, 024 possible pair-matched randomizations as opposed

to all 20!/10!10! = 184, 756 unrestricted randomizations. In these scenarios, randomization-based

inference could even outperform parametric and semiparametric methods in terms of e�ciency,

since these alternatives often ignore such aspects of the study design.

2.3 Computational implementation

In addition to the di�culty of testing a non-zero null hypothesis, another stumbling block that

limits the use of randomization-based CIs is the computational challenge. A standard grid or

binary search requires performing randomization tests at many ✓0 to identify the bounds, each

test consisting of a large number of permutations to construct the null distribution. For a typical

CRT-sized data set, this could take hours or days to calculate a single CI. Instead, we adapted an

e�cient search procedure (Garthwaite, 1996) to our o↵set-adjusted approach, which can reduce

the computation time down to seconds or minutes. At each step of this sequential search for the
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lower or upper bound, the estimate is updated based on only a single permutation of the data—

thus, a single model fit. As the number of steps increases, estimates converge in probability to the

correct CI bounds, i.e. the bounds that would be obtained if we carried out a full randomization

test at every possible ✓0 2 ⇥ (Garthwaite, 1996).

More specifically, suppose we carry out a P -step search for U , the correct upper confidence

limit of ✓ defined in (2.2) (note, this P could be di↵erent from that we used for the randomization

test). At the pth step of the search, we fit model (2.5) with the current value of the upper limit

✓0 = U
(p) and permuted treatment vector X(p) to obtain the permuted o↵set-adjusted estimate

⌧̂
(p)(X(p)). We also directly calculate the observed o↵set-adjusted estimate ⌧̂

(p)(x) = ✓̂ � U
(p)

based on the initial fit of model (2.3). We update the upper limit based on whether the permuted

estimate is larger than the observed estimate

U
(p+1) =

(
U

(p) � c(↵/2)
p , if ⌧̂ (p)(X(p)) > ⌧̂

(p)(x)

U
(p) + c(1�↵/2)

p , if ⌧̂ (p)(X(p)) 6 ⌧̂
(p)(x) ,

(2.11)

where c > 0 is a chosen step length constant. On average, this corresponds to stepping down if

the randomization-based p-value of H0 : ⌧ = 0 versus H1 : ⌧ < 0 is smaller than ↵/2 and stepping

up if it is greater than ↵/2. This makes sense, since U would correspond to a p-value of exactly

↵/2 for this one-sided randomization test. An independent search is carried out for the correct

lower limit L in a similar fashion using

L
(p+1) =

(
L
(p) + c(↵/2)

p , if ⌧̂ (p)(X(p)) < ⌧̂
(p)(x)

L
(p) � c(1�↵/2)

p , if ⌧̂ (p)(X(p)) > ⌧̂
(p)(x) .

(2.12)

To avoid early steps changing dramatically in size, the P -step search should begin with p = m

with m = min{d0.3(4 � ↵)/↵e, 50} (Garthwaite, 1996). Thus, [L(m)
, U

(m)] correspond to our

chosen starting values and the final updated values [L(m+P )
, U

(m+P )] are adopted as the CI.

Though this e�cient search algorithm substantially reduces the computational burden of

randomization-based CIs, its performance could be a↵ected by the starting values, step length,

or total number of steps chosen. Detailed guidance on choosing these tuning parameters can
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be found in Section 3 of Garthwaite (1996). Based on their recommendations, we use c =

k(U (p) � ✓̂) and c = k(✓̂ � L
(p)) for the upper and lower bound search, respectively, where

k = 2/{z↵/2(2⇡)�1/2 exp(�z
2
↵/2/2)} and z↵/2 is the upper 100(↵/2)% point of the standard nor-

mal distribution. Starting values are based on ✓̂ ± {(t1 + t2)/2}, where t1 and t2 are the second

smallest and second largest permuted o↵set-adjusted estimates from a randomization test of

H0 : ✓ = ✓̂ using d(4�↵)/↵e permutations. Diagnostic plots (e.g. Figure 3) can be used to guide

(or confirm) adequate choice of P . We can also choose P based on the asymptotic variance of the

coverage of a P -step search

Vp ⇡ ↵(1� ↵/2)/P" , (2.13)

where " ⇡ 0.75 for the recommended value of k above. Using (2.13), we can either choose an

acceptable VP and solve for P , or choose P and ensure this results in an acceptable VP . Finally,

we echo some practical suggestions made by Garthwaite (1996), such as monitoring convergence

of the CI bounds, restarting the procedure if the starting values seem poor, using multiple chains

with di↵erent starting values, and considering di↵erent step length constants—all of which can

be implemented using our R package (see Section 6).

For longer searches (e.g. P > 200, 000), Garthwaite and Jones (2009) proposed an improve-

ment on this algorithm by taking larger steps during later phases of the search and averaging,

rather than using only the final values, for CI estimation. Details on this extension can be found

in the supplementary material available at Biostatistics online. In addition to the procedure

outlined above, we implemented this alternative search for our data example in Section 4.

3. Simulations

We carried out simulations to evaluate the performance of this randomization-based approach

and compare it to alternative methods. Simulations were run in R 3.4.1 or higher. Results for

each simulation scenario were based on 10,000 independently generated data sets.
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3.1 Binary outcome

First, we considered a parallel CRT with a binary outcome. Data were generated from the GLMM

logit{E(Yki|Xk, �k)} = µ
⇤ + ✓

⇤
Xk + �k , (3.14)

where µ
⇤ was the cluster-conditional log odds of the outcome in the control group, and ✓

⇤ was

the cluster-conditional log odds ratio associated with treatment. We drew random cluster e↵ects

from a normal distribution centered at zero, i.e. �k ⇠ N(0,�2). We set the population-level

prevalence of the outcome in the control group at 25% (µ⇤ = logit(0.25)). We examined di↵erent

intracluster correlation coe�cients (� = 0.1, 0.2, 0.5, which induced ICC ⇡ 0.001, 0.01, 0.05),

underlying treatment e↵ects (✓⇤ = 0, 0.25, 0.5), numbers of clusters (K = 10, 20, 30, 50 with

K0 = K1 = K/2), and ranges of cluster sizes (nk drawn uniformly from 10 to 50 and 100 to 200).

Each true marginal treatment e↵ect ✓ induced by data generating model (3.14) was approximated

using Gauss-Hermite quadrature.

We analyzed each data set with our proposed randomization-based method. We targeted the

marginal treatment e↵ect ✓ defined in (2.2) by using ✓̂ from model (2.3) for the randomization test

of no treatment e↵ect and ⌧̂ from model (2.5) for the randomization-based CI, both with g = logit.

The p-value and each bound of the 95% CI were based on P = 5, 000, which provided su�ciently

accurate p-value estimates (e.g. SE ⇡ 0.003 for p-value = 0.05) and acceptable coverage precision

of the CI search based on (2.13) (e.g. Vp ⇡ 1.3 ⇥ 10�5 for 95% coverage). We also considered

three alternative approaches. First, we fit a marginal model via GEE using the standard sandwich

variance estimator. We also fit a small-sample adjusted GEE using the �5 adjustment proposed

by Fay and Graubard (2001), which has been shown to perform well in CRTs with a small number

of clusters (Scott and others, 2017). Both GEEs targeted the marginal treatment e↵ect ✓ as well.

Finally, we fit GLMM (3.14) via maximum likelihood, which targeted the cluster-conditional

treatment e↵ect ✓⇤ instead. We used a Laplace approximation (default in lme4::glmer() in R)
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to approximate the log likelihood. All three of these alternative models were correctly specified

and used two-sided Wald tests and corresponding 95% CIs. CI coverages were calculated with

respect to the true value of the target parameter, i.e. ✓ for randomization-based inference and

GEE, and ✓
⇤ for GLMM.

Results for ICC ⇡ 0.01 are presented in Figure 1. In general, randomization-based inference

resulted in nominal type I error rates (0.046 to 0.050), nominal CI coverages (0.946 to 0.954),

and moderate CI widths (0.31 to 1.45). The small-sample adjusted GEE resulted in conservative

type I error rates (0.025 to 0.048), nominal to conservative CI coverages (0.948 to 0.978), and

wider CIs (0.31 to 2.19), especially when K = 10 and cluster sizes were small. The GLMM and

standard GEE both had inflated type I error (e.g. 0.10 and 0.12, respectively, for K = 10 and nk

from 100 to 200), undercoverage (e.g. 0.90 and 0.88), and the narrowest CIs.

Results for ICC ⇡ 0.001 and 0.05 are presented in Figures S1-S2 of the supplementary material

available at Biostatistics online. Both GEE approaches got worse as ICC and cluster sizes de-

creased: the standard GEE approach became more liberal while the small-sample adjusted GEE

became more conservative. GLMM size and coverage became more liberal as ICC and cluster

sizes increased. Randomization-based inference performed well for all settings we examined.

In terms of e�ciency, our randomization-based approach outperformed the small-sample ad-

justed GEE, especially with smaller numbers of clusters, cluster sizes, and ICC. Across all sce-

narios, it provided equivalent or better power and CI widths while maintaining nominal type I

error and coverage. While the GLMM and unadjusted GEE methods appeared to yield better

e�ciency, this result was distorted by their inflated type I error rates and undercoverage. In fact,

in scenarios where the asymptotic approaches had close to nominal type I error and coverage (e.g.

K = 50 or ICC ⇡ 0.001 for GLMM), randomization-based inference resulted in very minimal

e�ciency loss compared to these alternative methods.

Computation times in R varied by simulation scenario, but ranged anywhere from about 20
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seconds (N ⇡ 300) to 4 minutes (N ⇡ 7, 500) to calculate a single randomization-based CI with

P = 5, 000 permutations, run in parallel across 2 logical CPUs on a MacBookAir8,1 with a 1.6

GHz Intel Core i5 (see Table S1 in the supplementary material available at Biostatistics online).

3.2 Time-to-event outcome

Next, we considered a pair-matched CRT with an interval-censored time-to-event outcome. This

simulation was designed to align closely with our data example in Section 4, the Botswana

Combination Prevention Project. Event times were generated from an exponential frailty model

�jki(t|Xjk, �jk, ⌘j) = �0(t) exp(✓
⇤
Xjk + �jk + ⌘j) , (3.15)

where now j = 1, . . . ,K/2 and k 2 {1, 2} jointly index each cluster, �jk is a cluster-specific

random e↵ect, and ⌘j is a pair-specific random e↵ect, both drawn independently from a N(0,�2).

Actual study visit times were drawn uniformly within a two-month window centered around an

annually scheduled visit, resulting in an interval-censored outcome. Loss to follow-up occurred

at a constant exponential rate of about 10% each year and individuals were followed for at most

three years. Each data set had K = 30 clusters with sizes ranging from 250 to 350 individuals.

We examined coverage and e�ciency of our randomization-based approach across di↵erent

underlying treatment e↵ects (✓⇤ = 0,�0.2,�0.4,�0.8) and within-cluster and -pair correlations

(� = 0.2, 0.5, 0.8). Randomization-based inference was based on ✓̂, the estimated log hazard ratio

from an interval-censored Weibull regression model

�jki(t|X(p)
jk ) = �0(t) exp(✓X

(p)
jk ) . (3.16)

We sampled P = 5, 000 permutations from all possible 215 = 32, 768 pair-matched randomiza-

tions. For comparison, we fit two Weibull frailty models: the first corresponded to model (3.15)

without ⌘j (i.e. only accounting for within-cluster correlation), the second without �jk (i.e. only

accounting for within-pair correlation). This was done because there is currently no reliable soft-
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ware in R to fit an interval-censored survival model with more than one frailty term for data sets

with large cluster sizes. Wald tests and CIs were used for these alternative approaches. We note

that the treatment e↵ect parameter ✓ in marginal model (3.16) or in either single-frailty condi-

tional model is generally di↵erent from ✓
⇤ in the data generating model (3.15). The true values

for these parameters were obtained via simulation. We also point out that data generation model

(3.15), a proportional hazards model conditional on both frailties, does not necessarily induce a

proportional hazards model marginally or conditional on only a single frailty (Martinussen and

Andersen, 2018; Ritz and Spiegelman, 2004). In other words, all three analysis models are mis-

specified, making the precise interpretation of the target parameter di�cult. As such, the results

presented here illustrate the robustness of each method to model misspecification.

Results for � = 0.5 are presented in Figure 2. Across all scenarios, randomization-based in-

ference resulted in nominal type I error (0.048 to 0.053) and coverage (0.935 to 0.952). The

Weibull model with a cluster-specific frailty resulted in conservative type I error (0.012 to 0.037)

and coverage (0.963 to 0.988), while the model with a pair-specific frailty resulted in drastically

inflated type I error (0.082 to 0.592) and severe undercoverage (0.408 to 0.957). Type I error, cov-

erage, and convergence of both frailty models generally got worse as the within-cluster and -pair

correlations increased (see Figures S3-S4 and Table S2 in the supplementary material available

at Biostatistics online). Of note, even these relatively simple parametric survival models with a

single frailty term had trouble converging up to about 15% of the time for these moderately-sized

CRT data sets, whereas randomization-based CIs could always be calculated. For this larger

(N ⇡ 9, 000) and more complex CRT setting, it took approximately 8 minutes to compute a

single randomization-based CI in R with P = 5, 000 permutations (computed in parallel across 2

logical CPUs on a MacBookAir8,1 with a 1.6 GHz Intel Core i5).
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4. Application to the Botswana Combination Prevention Project

The Botswana Combination Prevention Project (BCPP) was a pair-matched CRT to test whether

a combination prevention intervention package could reduce population-level cumulative HIV in-

cidence over three years of follow-up (Makhema and others, 2019). A total of 30 communities

were randomized: 15 to the intervention arm (combination prevention package) and 15 to the

control arm (enhanced standard of care). Randomization was done using a pair-matched design

with community matching based on population size and age structure, existing health services,

and geographic location. The primary individual-level outcome was time to HIV infection, mea-

sured at annual study visits within a cohort of individuals identified as HIV-negative among a

20% random sample of eligible households at baseline. That is, we had an interval-censored time-

to-event outcome for each cohort participant. The HIV-incidence cohort was composed of 8,551

participants with a median of 308 (minimum 106, maximum 392) from each of the 30 commu-

nities. There were a total of 147 HIV infections, 57 in the intervention group (annualized HIV

incidence, 0.59%) and 90 in the control group (annualized HIV incidence, 0.92%). The median

follow-up time was 29 months. The prespecified unadjusted primary analysis, which was based

on a randomization test, yielded a p-value of 0.09. The estimated hazard ratio corresponding to

treatment based on a pair-stratified Cox model was 0.65 with a 95% CI of [0.46, 0.90].

We targeted the marginal log hazard ratio ✓ from model (3.16) and applied our randomization-

based approach to the BCPP data. To confirm an adequate choice of P , in addition to considering

p-value accuracy and coverage precision, we monitored four separate chains of length 5, 000, each

using di↵erent initial values: first using our chosen values, second using initial values based on an

asymptotic Wald CI ignoring within-cluster correlation, and third (and fourth) using initial values

wider (and narrower) than the final values from the first chain. The four chains for each bound

converged towards each other, began to gently oscillate around similar values, and all ended within

0.025 of each other on the hazard ratio scale (see Figure 3). Based on these characteristics, we
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deemed that P = 5, 000 resulted in acceptable convergence and demonstrated adequate robustness

to di↵erent starting values for these data. It was computationally feasible, however, for us to

increase to P = 20, 000 to allow for even further refinement of the final CI limits (see Figure S5

in the supplementary material available at Biostatistics online). This resulted in an estimated

hazard ratio of 0.64 (95% CI [0.37, 1.04], p-value = 0.06). Calculation of the CI based on 20,000

permutations for each bound took about 40 minutes to run in R (computed in parallel across 2

logical CPUs on a MacBookAir8,1 with a 1.6 GHz Intel Core i5). Similar to our simulations in

Section 3.2, we also fit two separate Weibull frailty models to account for the within-community

and -pair correlation. Respectively, these approaches resulted in estimated hazard ratios of 0.64

(95% CI [0.43, 0.95], p-value = 0.03) and 0.64 (95% CI [0.45,0.90], p-value = 0.01). Finally, to

align closely with the CI approach taken in the BCPP, we considered a pair-stratified Weibull

model to estimate the treatment e↵ect. Randomization-based inference for this model yielded a

95% CI of [0.37, 1.05] (p-value = 0.07), while the likelihood-based analysis produced [0.46, 0.91]

(p-value = 0.01), both with point estimates of 0.65. All of these results are summarized in Table 1.

Comparable CIs were found using the improved search procedure in Garthwaite and Jones (2009)

(see Figure S6 and Table S3 in the supplementary material available at Biostatistics online).

Consistent with the results in Makhema and others (2019), the randomization-based p-values

and CIs did not reach the pre-specified 0.05 level, while those based on models with stronger

parametric assumptions or asymptotic approximations did. This discrepancy could be due to

the usual robust-e�ciency trade-o↵ between distribution-free and parametric likelihood-based

methods. As a threshold of 0.05 is not a magic number, all of these methods do provide evidence

supporting an e↵ect of the intervention on reducing HIV incidence. Nevertheless, it would have

been desirable to report a p-value and CI using the same randomization-based analysis method.

This was not possible at the time of the BCPP analysis, however, due to the unavailability of

methods to obtain a randomization-based CI for correlated interval-censored survival outcomes.
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5. Discussion

In this paper, we proposed a fast and flexible approach to randomization-based CIs using individual-

level data from a CRT. We demonstrated that this method has good properties and performs

well compared to other methods, even when the modeling assumptions of those alternatives were

met. Randomization-based inference is especially attractive for analyzing CRTs, as it does not

require specification of a particular distribution and does not rely on a large number of clusters

to maintain nominal type I error and CI coverage. Another advantage of randomization-based

inference is the ease with which one can account for restricted designs simply by limiting the set

of treatment permutations considered in the analysis.

Some have raised concern with randomization-based inference when a di↵erent number of

clusters are randomized to each arm (Braun and Feng, 2001; Gail and others, 1996). It is im-

portant to clarify that a randomization test does guarantee nominal type I error—even with a

di↵erent number of clusters in each arm—under a null hypothesis corresponding to entire distri-

butions being identical, e.g. H0 : ✓ = 0 under population model (2.1). This may not be the case,

however, when testing a weaker null hypothesis corresponding to only some components of the

distributions being equal. For example, if treatment does a↵ect the cluster variances (e.g. where

some component of � in population model (2.1) depends on treatment), then a randomization

test of the null hypothesis of equal means and its corresponding CI would be liberal when the

arm with fewer clusters has larger variance and conservative when it has smaller variance (Gail

and others, 1996; Romano, 1990). This is an important distinction to keep in mind, especially if

imbalanced treatment allocations and di↵erences in variances are expected to be substantial.

As the number of clusters or size of the clusters becomes large, randomization-based CIs

using individual-level data could become computationally burdensome. With a large number of

small clusters (e.g. households), this is luckily where alternative semiparametric approaches like

GEE perform reasonably well. With a small number of large clusters (e.g. entire communities),
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most of the computational burden may be alleviated by using a cluster-level randomization-based

analysis, as many have suggested (Gail and others, 1996; Hughes and others, 2019; Raab and

Butcher, 2005; Thompson and others, 2018). An unweighted cluster-level analysis may lead to

some loss of statistical e�ciency if cluster sizes vary substantially, although this impact would be

minimal when all clusters have large sizes.

More than two (say, T ) treatment groups could be accommodated in a randomization test,

for example, by replacing ✓X
(p)
k in model (2.3) with (X(p)

k )T✓, where X(p)
k and ✓ are vectors of

length T � 1. Similarly for the CI, we would fit model (2.5) replacing ✓0xk with (xk)T✓0 for the

fixed o↵set term and ⌧X
(p)
k with (X(p)

k )T ⌧ for the permuted o↵set-adjusted treatment e↵ect term.

In theory this seems to be a straightforward extension, but in practice this means the CI search

procedure must take place over a T �1 dimensional space, which introduces further complexity in

computing. Complex CRT designs (e.g. stepped wedge) and other outcome types and regression

models could be handled by modifying the model, the permutation procedure, or both.

Finally, we have focused our work on CRTs, but this randomization-based CI approach using

o↵set adjustment can be used with independent outcomes or in other correlated data settings,

such as randomized clinical trials with repeated measurements. For survival outcomes, we focused

on a proportional hazards model, but the method can be applied to an accelerated failure time

model provided the corresponding population model is correctly specified.

6. Software

An R package for our method is available online at https://github.com/djrabideau/permuter.

Supplementary Material

Supplementary material is available online at http://biostatistics.oxfordjournals.org.
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Fig. 2. Simulation results of a pair-matched CRT with an interval-censored time-to-event outcome (� =

0.5). Methods considered included randomization-based inference (Randomization), a Weibull model with

a frailty term for community (Frailty-Cluster), and with a frailty term for pair (Frailty-Pair). This figure

appears in color in the electronic version of this article.

Table 1. Estimated hazard ratio (HR) of the intervention e↵ect in the Botswana Combination
Prevention Project. Methods considered include randomization-based inference (Randomization),
both marginal and pair-stratified, a Weibull model with a frailty term for community (Weibull,
Frailty-Cluster), with a frailty term for pair (Weibull, Frailty-Pair), and a pair-stratified Weibull

model (Weibull, Pair-Stratified).

Method HR 95% CI p-value

Randomization, Marginal 0.640 [0.374, 1.039] 0.064

Randomization, Pair-Stratified 0.646 [0.369, 1.054] 0.068

Weibull, Frailty-Cluster 0.640 [0.432, 0.947] 0.025

Weibull, Frailty-Pair 0.641 [0.453, 0.905] 0.012

Weibull, Pair-Stratified 0.646 [0.457, 0.913] 0.013
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steps of our final CI estimate are indicated by bold black lines; other chains (included to assess adequate

convergence) are indicated by thin colored lines. This figure appears in color in the electronic version of

this article.
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A. Alternative Procedure for Longer CI Searches, Adapted from Garthwaite

and Jones (2009)

For longer searches (e.g. P > 200, 000), Garthwaite and Jones (2009) proposed an improvement
on the algorithm in Garthwaite (1996) by taking larger steps during later phases of the search and
averaging, rather than using only the final values, for CI estimation. This alternative procedure
also adapts to our o↵set-adjusted approach.

Specifically, suppose we carry out a P -step search for each bound, broken into three separate
phases, with P = P1+P2+P3. Starting values [L(m), U (m)] for Phase 1 and step length constant
c throughout can be chosen as outlined in Section 2.3. Updates are made using the same general
formulas

U (p+1) =

(
U (p) � ap(↵/2), if b⌧ (p)(X(p)) > b⌧ (p)(x)
U (p) + ap(1� ↵/2), if b⌧ (p)(X(p)) 6 b⌧ (p)(x)

L(p+1) =

(
L(p) + ap(↵/2), if b⌧ (p)(X(p)) < b⌧ (p)(x)
L(p) � ap(1� ↵/2), if b⌧ (p)(X(p)) > b⌧ (p)(x) ,

but using a di↵erent step length ap in each phase:

ap =

8
><

>:

c/p, (Phase 1) p = m, . . . ,m+ P1

c/(m+ P1), (Phase 2) p = m+ P1, . . . ,m+ P1 + P2

c/{p(m+ P1)/(m+ P1 + P2)}, (Phase 3) p = m+ P1 + P2, . . . ,m+ P .

⇤To whom correspondence should be addressed.
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2 D. J. Rabideau and R. Wang

1. Phase 1 begins with p = m and [L(m), U (m)] as starting values. We carry out a P1-step
search with ap = c/p. Garthwaite and Jones (2009) suggest keeping this phase short by
choosing P1 = min(5, 000, P/20). Phase 1 ends with estimates [L(m+P1), U (m+P1)].

2. Phase 2 begins with p = m+P1 and [L(m+P1), U (m+P1)] as starting values. We carry out a
P2-step search with ap = c/(m+P1). Garthwaite and Jones (2009) recommend P2 = 14⇥P1

as a reasonable choice. Phase 2 ends with estimates [L(m+P1+P2), U (m+P1+P2)].

3. Phase 3 begins with p = m + P1 + P2 and [L(m+P1+P2), U (m+P1+P2)] as starting values.
We carry out a P3-step search with ap = c/{p(m + P1)/(m + P1 + P2)}. Garthwaite
and Jones (2009) suggest keeping this phase long; they found particularly good e�ciency
for P3 > 200, 000 � P1 � P2, i.e. an overall P > 200, 000. Phase 3 ends with estimates
[L(m+P ), U (m+P )].

Rather than choosing the final updated values [L(m+P ), U (m+P )], the unweighted averages of the
final n values are taken as the final CI, i.e. [L̄, Ū ] where

L̄ =
1

n

m+PX

p=m+P�n+1

L(p) and Ū =
1

n

m+PX

p=m+P�n+1

U (p) .

Garthwaite and Jones (2009) suggest using n = P � 2P1.

B. Supplementary Figures

(See next page)
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Fig. S3. Simulation results of a pair-matched CRT with an interval-censored time-to-event outcome
(� = 0.2). Methods considered included randomization-based inference (Randomization), a Weibull model
with a frailty term for community (Frailty-Cluster), and with a frailty term for pair (Frailty-Pair). This
figure appears in color in the electronic version of this article.
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Fig. S4. Simulation results of a pair-matched CRT with an interval-censored time-to-event outcome
(� = 0.8). Methods considered included randomization-based inference (Randomization), a Weibull model
with a frailty term for community (Frailty-Cluster), and with a frailty term for pair (Frailty-Pair). This
figure appears in color in the electronic version of this article.
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Fig. S5. E�cient search for a randomization-based 95% confidence interval (CI) for the intervention e↵ect
in the Botswana Combination Prevention Project, using the procedure adapted from Garthwaite (1996).
This figure appears in color in the electronic version of this article.
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Fig. S6. E�cient search for a randomization-based 95% confidence interval (CI) for the intervention
e↵ect in the Botswana Combination Prevention Project, using the procedure adapted from Garthwaite
and Jones (2009). This figure appears in color in the electronic version of this article.
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C. Supplementary Tables

Table S1. Average computation time (in seconds) to calculate a single randomization-based CI
with P = 5, 000 permutations for the binary simulation setup. K is the number of clusters, nk is
the cluster size, and E(N) is the mean total sample size. Lower and upper bound searches were
run in R in parallel across 2 logical CPUs on a MacBookAir8,1 with a 1.6 GHz Intel Core i5
processor, times being averaged over 10 data sets (for laptop) and on the O2 High Performance
Compute Cluster, supported by the Research Computing Group at Harvard Medical School, times

being averaged over 100 data sets (for cluster).

K nk E(N) Time on laptop (sec.) Time on cluster (sec.)

10 10 to 50 300 23 47
20 10 to 50 600 31 44
30 10 to 50 900 39 58
50 10 to 50 1500 55 86
10 100 to 200 1500 55 82
20 100 to 200 3000 99 171
30 100 to 200 4500 139 264
50 100 to 200 7500 229 738

Table S2. Model convergence among 10,000 independently generated data sets for di↵erent
interval-censored time-to-event outcome simulation scenarios (i.e. di↵erent values of treatment
e↵ect ✓⇤ and SD of cluster and pair random e↵ect �). Methods considered included randomization-
based inference (Randomization), a Weibull model with a frailty term for community (Frailty-
Cluster), and with a frailty term for pair (Frailty-Pair). Only 2 Frailty-Cluster and 10 Frailty-
Pair (each of 120,000) were deemed not to converge based on a CI width greater than 1010; the
remainder failed when attempting to fit the frailty model in R. No Randomization CIs met this

non-convergence threshold nor failed when fit in R.

✓⇤ � Randomization Frailty-Cluster Frailty-Pair

0 0.2 10000 9998 10000
0 0.5 10000 8874 9548
0 0.8 10000 9391 9024

-0.2 0.2 10000 9999 10000
-0.2 0.5 10000 8808 9475
-0.2 0.8 10000 9388 9005
-0.4 0.2 10000 9993 9999
-0.4 0.5 10000 8670 9285
-0.4 0.8 10000 9451 9044
-0.8 0.2 10000 9897 9990
-0.8 0.5 10000 8304 8809
-0.8 0.8 10000 9596 9090
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Table S3. Estimated CI of the intervention e↵ect (hazard ratio) in the Botswana Combination
Prevention Project, using the P -step search procedure adapted from Garthwaite and Jones (2009).

Method 95% CI

P = 20, 000
Randomization, Marginal [0.373, 1.043]
Randomization, Pair-Stratified [0.369, 1.058]
P = 200, 000
Randomization, Marginal [0.378, 1.031]
Randomization, Pair-Stratified [0.370, 1.046]
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