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Sevoflurane Pre-conditioning 
Ameliorates Diabetic Myocardial 
Ischemia/Reperfusion Injury Via 
Differential Regulation of p38 and 
eRK
Dina Xie1,2, Jianli Zhao1, Rui Guo3, Liyuan Jiao4, Yanqing Zhang3, Wayne Bond Lau1, 
Bernard Lopez1, Theodore christopher1, Erhe Gao4, Jimin cao3, Xinliang Ma1 & Yajing Wang1*

Diabetes mellitus (DM) significantly increases myocardial ischemia/reperfusion (MI/R) injury. During 
DM, cardioprotection induced by conventional pre-conditioning (PreCon) is decreased due to impaired 
AMP-activated protein kinase (AMPK) signaling. The current study investigated whether PreCon with 
inhaled anesthetic sevoflurane (SF-PreCon) remains cardioprotective during DM, and identified the 
involved mechanisms. Normal diet (ND) and high-fat diet (HFD)-induced DM mice were randomized 
into control and SF-PreCon (3 cycles of 15-minute period exposures to 2% sevoflurane) groups before 
MI/R. SF-PreCon markedly reduced MI/R injury in DM mice, as evidenced by improved cardiac function 
(increased LVEF and ±Dp/dt), decreased infarct size, and decreased apoptosis. To determine the 
relevant role of AMPK, the effect of SF-PreCon was determined in cardiac-specific AMPKα2 dominant 
negative expressing mice (AMPK-DN). SF-PreCon decreased MI/R injury in AMPK-DN mice. To explore 
the molecular mechanisms responsible for SF-PreCon mediated cardioprotection in DM mice, cell 
survival molecules were screened. Interestingly, in ND mice, SF-PreCon significantly reduced MI/R-
induced activation of p38, a pro-death MAPK, without altering ERK and JNK. In DM and AMPK-DN mice, 
the inhibitory effect of SF-PreCon upon p38 activation was significantly blunted. However, SF-PreCon 
significantly increased phosphorylation of ERK1/2, a pro-survival MAPK in DM and AMPK-DN mice. We 
demonstrate that SF-PreCon protects the heart via AMPK-dependent inhibition of pro-death MAPK in 
ND mice. However, SF-PreCon exerts cardioprotective action via AMPK-independent activation of a 
pro-survival MAPK member in DM mice. SF-PreCon may be beneficial compared to conventional PreCon 
in diabetes or clinical scenarios in which AMPK signaling is impaired.

Diabetic patients endure increased mortality following acute myocardial infarction1. Conventional precondition-
ing (short-term ischemic episodes before an extended ischemic period) has been extensively studied in hearts 
achieved from animals and patients. Although conventional preconditioning significantly rescues damaged heart 
tissue, its clinical application remains a significant challenge2. Volatile anesthetics (such as sevoflurane) are myo-
cardial protective3–5, and are widely used in the induction of patients experiencing coronary artery bypass graft-
ing (CABG) surgery in the operative and perioperative period. However, clinical trials have noted conflicting 
results in patients with obesity and diabetes6. Determining the etiology of the discrepancy between clinical and 
experimental data may reveal an important mechanistic understanding of the value of preconditioning by volatile 
anesthetics, and may yet yield their clinical applicability in diabetic patient cardioprotection.

Both basic and clinical studies demonstrate the susceptibility of the diabetic heart to MI/R injury due to 
impaired AMP-activated protein kinase (AMPK, a key regulator of metabolism) signaling7,8. A recent scientific 
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report demonstrated sevoflurane is an AMPK activator9. Whether any potential benefit of sevoflurane precondi-
tioning against MI/R injury in a diabetic heart is associated with AMPK remains unknown.

The present study determined whether sevoflurane preconditioning (SF-PreCon) in a high-fat diet induced 
diabetic model diminishes MI/R-induced cardiac injury. Employing AMPKα2 dominant negative expressing 
(AMPK-DN) mice, we determined the influence of AMPK signaling on the observed effects.

Results
Sevoflurane preconditioning improved cardiac function and reduced infarct size in high-fat diet 
induced diabetic (DM) mice post MI/R. Normal diet (ND) or high-fat diet (HFD)-induced DM mice 
were randomized to control and SF-PreCon groups prior to MI/R. SF-PreCon significantly improved cardiac 
function in ND mice, as evidenced by increased left ventricular ejection fraction (LVEF, +8.9% compared to 
MI/R, P < 0.05 Fig. 1A) and increased ±Dp/dt (23.7% and 23.4% compared to MI/R, P < 0.05, Fig. 1C). Strain 
analysis was performed on long-axis B-mode images to determine whether regions injected with Pre-SFCon 
exhibited improved contractile activity. Representative 3-dimensional wall velocity diagrams for 3 consecutive 
cardiac cycles are shown from animals at baseline (Sham, MI/R, and SF-PreCon treatment groups, Fig. 1B). All 
hearts from all groups exhibit uniform and synchronous contraction and relaxation at baseline across the LV 
endocardium. In the MI/R group, there was marked reduction in wall velocity across the endocardium of the 
infarct-related anterior wall. Pre-SFCon treated animals exhibited markedly increased wall velocity and strain 
(Fig. 1B top).

SF-PreCon markedly decreased both infarct size (−15.1% compared to MI/R, P < 0.05, Fig. 2A) and apoptotic 
cell death detected by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) asssay (−13% 
TUNEL stain positive cells compared to MI/R, P < 0.05, Fig. 2B and −22.7% caspase-3 activity compared to 
MI/R, P < 0.05, Fig. 2C). We next determined whether SF-PreCon mediated cardioprotection remains present in 
DM mice subjected to MI/R. SF-PreCon significantly augmented cardiac function (LVEF: +8.2% compared to 
MI/R in DM, P < 0.05, Fig. 1A; ±Dp/dt: 22.1% and 21.8% increase compared to MI/R in DM, P < 0.05, Fig. 1C;), 
decreased infarct size (−14.8% compared to MI/R in DM, P < 0.05, Fig. 2A), and decreased apoptosis (−11.9% 
TUNEL stain positive cells compared to MI/R, P < 0.05, Fig. 2B; −29.6% caspase-3 activity compared to MI/R in 
DM, P < 0.05, Fig. 2C). Meanwhile, the cardiac function was obviously augmented in both Longitudinal strain 
and strain rate (Fig. 1B down). Together, these results support SF-PreCon decreases MI/R-induced cardiac dys-
function in both ND and DM mice.

SF-PreCon-mediated cardioprotection intact in AMPK-DN mice. Having demonstrated that 
SF-PreCon-mediated cardioprotection is largely preserved in DM mice, we next determined whether such effects 
are mediated by AMPK, a pro-survival kinase impaired in diabetes. The effect of SF-PreCon upon MI/R injury 
was determined in cardiac-specific AMPKα2 dominant negative mice (AMPK-DN). Surprisingly, SF-PreCon 
preserved cardiac function in AMPK-DN mice (±Dp/dt: 21.7% and 22.2% compared to MI/R, P < 0.05 Fig. 3C; 
LVEF: decreased 15.9% compared to MI/R, P < 0.05, Fig. 3A;) and markedly increased in Longitudinal strain 
analysis (Fig. 3B), reduced infarct size (−15.9% vs MI/R, P < 0.05 Fig. 4A), and reduced apoptosis (−11.8% 
TUNEL stain positive cells compared to MI/R, P < 0.05, Fig. 4B; −27.7% caspase-3 activity vs MI/R, P < 0.05 
Fig. 4C) in AMPK-DN mice. These results indicate that sevoflurane-mediated cardioprotection against MI/R is 
AMPK-independent.

SF-PreCon differentially regulated MAPK family members in diabetic mice subjected to 
MI/R. As stated that AMPK signals was affected in diabetes (Fig. 5A) and to explore the molecular mechanisms 
responsible for SF-PreCon’s cardioprotective effect in DM mice, multiple molecules involved with cell survival 
were screened. Interestingly, SF-PreCon differentially regulated members of the mitogen-activated protein kinase 
(MAPK) family in the heart subjected to MI/R.

In ND mice, SF-PreCon markedly reduced (80.6% less than MI/R, P < 0.01) MI/R-induced activation of p38, 
a pro-death MAPK. Importantly, the inhibitory effect of SF-PreCon upon p38 activation was significantly blunted 
in DM mice. Furthermore, inhibition of p38 activation by SF-PreCon was virtually abolished in AMPK-DN mice 
(Fig. 5B).

Increased phosphorylation of the MAPK extracellular signal-regulated kinase 1/2 (ERK1/2, a pro-survival 
molecule) was observed in DM and AMPK-DN mice subjected to MI/R (41.1% and 68.8% respectively) treated 
by SF-PreCon. ERK1/2 was significantly downregulated in WT mice subjected to MI/R (Fig. 5C). No significant 
JNK activation was observed in mice treated with SF-PreCon subjected to MI/R (Fig. 6A).

Taken together, our results demonstrate SF-PreCon protects the heart via AMPK-dependent inhibi-
tion of pro-death MAPK (p38) in ND mice. However, SF-PreCon exerts its cardioprotective actions via 
AMPK-independent activation of the pro-survival MAPK (ERK1/2) in DM mice.

SF-PreCon augmented cardiac mitochondrial function in WT, DM, and AMPK-DN mice sub-
jected to MI/R. Apoptosis is a hallmark of MI/R injury. Mitochondria contribute largely to cardiomyocyte 
death in response to pathological stress induced by MI/R. We determined mitochondrial function in WT and dia-
betic mice subjected to MI/R. Compared to MI/R, SF-PreCon significantly increased mitochondrial function in 
WT and diabetic mice, evidenced by increased respiratory control ratio (1.37 and 1.31 fold increase compared to 
WT and diabetic mice respectively, P < 0.05, both after MI/R, Fig. 6B) and maximal respiration (25.9% and 37.8% 
increase compared to WT and diabetic mice respectively, P < 0.05, both after MI/R, Fig. 6B). AMPK dominant 
negative mice were treated with SF-PreCon and subjected to MI/R; SF-Precon again augmented mitochondrial 
function (1.29 fold increase compared to mice MI/R group, P < 0.05, Fig. 6B), giving further evidence the effect 
was independent of AMPK signaling.

https://doi.org/10.1038/s41598-019-56897-8
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Discussion
In the present study, we report sevoflurane preconditioning significantly ameliorates cardiac injury via acti-
vation of pro-survival MAPK in DM mice in an AMPK-independent manner. Yet, in ND mice, sevoflurane 
preconditioning diminishes MI/R injury via inhibition of pro death MAPK pathway (illustrated in Fig. 7). 
Additionally, SF-PreCon may protect the heart against MI/R injury during diabetes by augmenting mitochon-
drial function.

It is well accepted that SF-PreCon confers myocardial protection, resulting in markedly increased post-surgical 
cardiac index, reduced postoperative plasma cardiac troponin I (TnIc) levels, and decreased myocardial 

Figure 1. SF-PreCon increased cardiac function in ND and HFD DM mice after MI/R. (A) Sevoflurane 
preconditioning improved cardiac function in ND and HFD DM mice, evidenced by echocardiography. (B) 
Three-dimensional regional wall velocity diagrams showing contraction (orange/positive values) or relaxation 
(blue/negative values) of 3 consecutive cardiac cycles. Vector diagrams showing the direction and magnitude 
of endocardial contraction at midsystole. Global averages of strain and strain rate measured in the longitudinal 
axes across the LV endocardium. (C) ±Dp/dt (via hemodynamics assay) of Sham, MI/R, SF-PreCon+MI/R 
groups. Abbreviations: ND, Normal diet; HFD, High fat diet; DM, diabetes.

https://doi.org/10.1038/s41598-019-56897-8
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ischemia10. Whether volatile anesthetics have a cardioprotective effect in the diabetic condition is of great interest 
and clinical value. The clinical trials evaluating the cardioprotective effects of sevoflurane in diabetic patients with 
cardiac risk report agents such as sevoflurane are protective against myocardial ischemia in the perioperative set-
ting. However, compelling evidence indicated no survival difference between diabetic and non-diabetic groups11. 
The observed response to preconditioning is not consistent. Therefore, studies targeted towards better under-
standing the mechanisms by which diabetes affects the beneficial effect of conditioning are needed. Different 
organ systems exhibit differential vulnerability and response to ischemia. In the heart, it is well recognized that 
cells subjected to I/R injury undergo cell death by apoptosis, a process strictly regulated by coordinated cellular 
signaling mechanisms. It may therefore be possible to salvage ischemic cells undergoing programmed, regulated 

Figure 2. SF-PreCon reduced MI/R injury in ND and HFD DM mice. (A) Representative images of cardiac 
sections of (left to right) Sham, MI/R, SF-PreCon+MI/R groups. Infarct size was diminished in SF-PreCon 
group compared to MI/R group, both in ND and HFD DM mice after MI/R injury. (B) TUNEL staining (C) 
Caspase-3 activity assay (n = 6–10, *p < 0.05 compared with Sham, #p < 0.05 compared to MI/R).

https://doi.org/10.1038/s41598-019-56897-8
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cell death by interfering with involved apoptotic signaling pathways. Utilizing a high fat diet-induced diabetic 
mouse model, we demonstrated SF-PreCon markedly augmented cardiac function, decreased infarct size, and 
inhibited apoptosis.

The central role of AMPK in maintaining energy homeostasis has made it an attractive target in the inves-
tigation of metabolic diseases such as type 2 diabetes and obesity. In the current study, we demonstrated that 
a high-fat diet significantly decreased AMPK phosphorylation. We also employed a cardiomyocyte-specific 
APMKα2 dominant negative transgenic mouse model in our study experiments. Others and we have demon-
strated that SF-PreCon activates AMPK, improves myocardial recovery, and ameliorates cardiac injury by a 

Figure 3. SF-PreCon increased cardiac function in ND and AMPK-DN mice. To determine the role of AMPK 
in cardioprotection by SF-PreCon, a cardiac specific AMPKα2 dominant negative mouse (AMPK-DN) was 
employed. (A) SF-PreCon significantly increased heart function both in WT and AMPK-ND mice after MI/R, 
evidenced by echocardiography. (B) Three-dimensional regional wall velocity diagrams and vector diagrams. 
(C) Hemodynamic measurements. Abbreviations: WT, Wild type.

https://doi.org/10.1038/s41598-019-56897-8
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caveolin-3 modulated signaling pathway12,13. In consistent fashion, we confirmed the cardioprotective effect of 
SF-PreCon is largely preserved in AMPK-DN mice. Additionally, we demonstrated SF-PreCon cardioprotection 
remains intact in the diabetic condition, despite a compromised AMPK axis. The role of caveolin-3 was not 
addressed in the current study. Whether altered caveolin-3 interferes with the role of SF-PreCon in diabetes needs 
further investigation.

Given its branching communication with many other signaling networks, the MAPK family has garnered 
significant interest. Notably, MAPKs distinctly mediate cardiac development, metabolism, function, and pathol-
ogy14,15. To address the signaling pathway responsible for SF-PreCon cardioprotection in the setting of diabetes, 
we detected MAPK family members in the heart subjected to MI/R. ERK, an important MAPK member, signa-
ling provides cardioprotection against oxidative stress16,17. In our study, we demonstrated that SF-PreCon exerts 

Figure 4. SF-PreCon reduced MI/R injury in ND and AMPK-DN mice. SF-PreCon significantly reduced MI/R 
injury both in WT and AMPK-DN mice. Showing (A) Infarct size. (B) TUNEL staining. (C) Caspase-3 activity. 
(n = 10–15, *p < 0.05 compared with respective MI/R) Abbreviations: WT, Wild type.

https://doi.org/10.1038/s41598-019-56897-8
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cardioprotective effect by significantly increasing pERK1/2 levels in DM and AMPK-DN mice (underlining its 
AMPK-independent mechanism), while suppressing ERK1/2 activity in WT mice.

More importantly, the current study is the first to present evidence that SF-PreCon markedly reduced WT 
MI/R-induced activation of p38 (another MAPK, typically responding mostly to stressors such as oxidative, 
hyperosmotic, and radiation stress). The role of p38 is somewhat controversial in the literature. Whereas one 
study demonstrated p38 inhibition decreased cardiomyocyte apoptosis and improved cardiac function after 

Figure 5. SF-PreCon ameliorates diabetic myocardial ischemia/reperfusion injury via differential regulation 
of p38 and ERK. (A) High-fat diet markedly reduced AMPK. (B) SF-PreCon reduced MI/R-induced activation 
of p38 in WT mice. The inhibitory effect of SF-PreCon upon p38 activation was blunted compared to WT, and 
virtually abolished in AMPK-DN mice. (C) SF-PreCon had no effect upon ERK1/2 phosphorylation in WT, 
but significantly increased phosphorylation of ERK1/2 in DM and AMPK-DN mice. (n = 10–12, *p < 0.05 
compared to respective MI/R. **P < 0.01, compared with respective MI/R) Abbreviations: ND, Normal diet; 
DM, Diabetes.

https://doi.org/10.1038/s41598-019-56897-8
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MI/R18, others revealed p38 activation may confer cardioprotective effect19,20, mostly induced by ischemic pre-
conditioning. Having demonstrated that SF-PreCon-mediated cardioprotection is significantly preserved in 
DM mice, we determined SF-PreCon did not inhibit p38 activation in DM or AMPK DN animals as in WT 
animals. SF-PreCon exhibited cardioprotection via differential regulation of MAPK family members, namely 
AMPK-dependent inhibition of pro-apoptotic MAPK (p38) and AMPK-independent increase of anti-apoptotic 
ERK activation.

In the current study, we also observed a trend of increased SF-PreCon-mediated activation of JNK in mice 
subjected to MI/R. Similar to p38, JNK plays a dual role in IR, mediating both protective and detrimental effects, 
dependent upon timing and severity of oxidative stress21. Such confounding results suggest that JNK may simul-
taneously and distinctly modulate both pro-and anti-apoptotic signaling pathways in heart22–25. Nevertheless, we 
report limited SP-PreCon induced upregulation of JNK activation in WT, DM, and AMPK-DN mice.

Figure 6. SF-PreCon augmented cardiac mitochondrial function in WT, DM, and AMPK-DN mice subjected 
to MI/R. (A) No significant SF-PreCon-induced effect upon JNK was observed in mice subjected to MI/R. 
(B) SF-PreCon significantly increased mitochondrial function in WT, DM, and AMPK-DN mice, evidenced 
by elevated respiratory control ratio and maximal respiration. (n = 8–12,*p < 0.05, compared to MI/R) 
Abbreviations: ND, Normal diet; DM, Diabetes.

https://doi.org/10.1038/s41598-019-56897-8
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Having shown that SF-PreCon ameliorates diabetic MI/R injury by differential regulation of MAPK members 
(which directly interact with the outer mitochondrial membrane and translocate into mitochondria26–28, or indi-
rectly affect mitochondria via ROS and calcium signaling29–31), we further demonstrated SF-PreCon significantly 
improves mitochondrial function in the WT and AMPK-DN heart subjected to MI/R. The precise mechanisms 
underlying the SF-PreCon-MAPK-mitochondria signaling pathway warrant further study, ongoing currently in 
our laboratory.

Previously, there has been much skepticism that sevoflurane preconditioning is favorable to cardiac func-
tion. Sevoflurane exhibited favorable effects in animal experiments, but clinical evidence indicated no survival 
difference between diabetic and non-diabetic groups11. However, Sevoflurane preconditioning cardioprotection 
is undoubted in clinical applications32–34. Our study demonstrates that preconditioning can directly positively 
influence cell survival signaling (MAPK) in the diabetic condition, rescuing the energetic pathway independently 
of endogenously suppressed metabolism. Additionally, sevoflurane has extra benefit in its support of the injured 
heart via mitochondrial apoptotic cascade regulation. Future studies investigating the clinical applicability of 
sevoflurane and providing more profound mechanisms in the diabetic population are warranted.

Conclusion
In summary, we have demonstrated that SF-PreCon exerts cardioprotection, and inhibits p38 activation in an 
AMPK-dependent manner. In the setting of diabetes, SF-PreCon exerts cardioprotection and upregulates ERK1/2 
activity in an AMPK-independent fashion. Although caution should be taken when extrapolating experimental 
findings to clinical practice, our report suggests that augmenting ERK1/2 activation may be an effective approach 
reducing perioperative cardiac injury in diabetic patients. Sevoflurane may represent an optimal anesthetic 
induction choice for patients with diabetes, a condition in which AMPK signaling is impaired.

Methods
All protocols and experiments associated with this study were performed in strict adherence with the guidelines 
of the IACUC (Institutional Animal Care and Use Committee) at Tianjin Medical University, Shanxi Medical 
University, and Thomas Jefferson University.

High-fat diet induced diabetes model. The high-fat diet induced type 2 diabetes model employed in 
this study was established as previously reported35,36. In brief, C57BL/6 J adult male mice (8–10 weeks, n = 10–15/

Figure 7. Diagram illustrating sevoflurane preconditioning diminishes MI/R injury via inhibition of pro-death 
MAPK pathway.

https://doi.org/10.1038/s41598-019-56897-8
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group) were randomized to receive high-fat diet (HFD, 60%kcal, research Diets Inc. D12492i) or normal diet 
(ND, 10% kcal control, D12450Bi) containing the same protein content as HFD for 12 weeks.

Animal and experiment setup. Cardiomyocyte specific AMPKα2 dominant negative expressing 
(AMPK-DN) and high-fat diet induced diabetic (DM, average body weight after HFD 41.11 ± 0.86 g) mice, 
along with each group’s respective wild-type (WT) littermates (4–5 months weeks old, average body weight 
23.48 ± 0.51 g, n = 10–15/group), were utilized in this study. Prior to MI, animals were individually placed in 
an airtight Plexiglas anesthesia chamber. A calibrated vaporizer connected to the chamber delivered either 0% 
(control group) or 2% sevoflurane (SF-PreCon) gas mixture. Animals randomized to SF-PreCon treatment were 
exposed to 3 cycles of 10 minutes 2% sevoflurane periods interspersed with 15 minutes washout periods. Control 
animals were exposed to 3 cycles of 10 minutes 0% sevoflurane periods interspersed with 15 minutes washout 
periods. Subsequently, all mice were anesthetized with 2% isoflurane, and myocardial ischemia (MI) was induced 
by temporarily exteriorizing the heart and left anterior descending (LAD) coronary artery ligation via 6–0 silk 
suture slipknot as previously described13. Sham operated control mice (Sham) underwent the same surgical pro-
cedures, except the suture placed under the LAD was not tied. After 30 minutes of MI, the slipknot was released. 
Myocardial reperfusion (R) commenced for 3 hours (for signaling assay) or 24 hours (for cardiac function and 
infarct size measurement) as reported previously13. All assays utilized tissue from ischemic/reperfused regions or 
areas at risk (identified by Evans blue-negative staining).

Determination of cardiac function, myocardial infarct size. Cardiac function was determined by hemo-
dynamic assay (left ventricular catheterization via Millar 1.2 Fr micromanometer) and echocardiography (VisualSonic 
VeVo 2100, under 2% isoflurane anesthesia). Images were acquired in the short-axis B-mode and M-mode for anal-
ysis of cardiac function and dimensions. Long-axis B-mode images were recorded for longitudinal and radial strain 
analysis by VevoStrain software. Myocardial infarct size was determined by Evans blue-2,3,5-triphenyl tetrazolium 
chloride (1%, TTC) double staining. Briefly, the LAD was re-occluded and cannulated. Even’s blue dye was injected 
into the LAD and left atrium to delineate the anatomic area at risk (AAR, subjected to prolonged occlusion and rep-
erfusion) and the non-ischemic normal zone. The heart was removed and sectioned in a serial transverse fashion. The 
unstained AAR was separated from the blue stained normal area. Slices were incubated at 37 °C for 20–30 minutes 
in 1% TTC in 0.1 mol/L phosphate buffer adjusted to pH 7.4, and photographed with a digital camera. Infarcted and 
non-infarcted myocardium within the AAR was digitally measured by image analysis software (Image J, version 1.47, 
National Institutes of Health, Bethesda, MD). Infarct size was expressed as a percentage of the AAR.

Determination of myocardial apoptosis. Myocardial apoptosis was quantitatively analyzed by ter-
minal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining and caspase-3 activity assay 
as described previously13. The number of TUNEL-positive cardiomyocytes was counted in randomly selected 
high-power fields of the LV free wall at the mid-LV level from the endo- to epicardial portion. The percentage of 
TUNEL-positive cardiomyocytes was calculated by dividing the number of TUNEL-positive cardiomyocytes by 
the total number of cardiomyocytes observed in microscopic fields. Active caspase-3 was measured by assay kit 
on a SpectraMax-Plus microplate spectrophotometer (M5 Molecular Devices, Sunnyvale, CA).

Western blot. Heart tissue was treated by lysis buffer (Cell Signaling) for protein extraction. Samples were 
loaded on 4–20% SDS-PAGE gels, transferred to PVDF membranes, and blotted in 5% film milk. PVDF mem-
branes were probed with primary antibodies against AMPK, pAMPK, MAPK, and actin (Cell Signaling), and 
then incubated with secondary antibody for 1 hour. For protein detection, the Pierce ECL Substrate kit was used 
on a ChemiDoc MP Imager (Bo-Rad, CA). Western blots were quantified by densitometry (Image Lab).

Mitochondrial function measurement. The cardiac mitochondrial function was analyzed using a 
Seahorse Bioscience XFe96 analyzer, as previously described37. Briefly, after cardiac function measurements 
(hemodynamic evaluation), heart tissue (400 mg) was harvested and homogenized in a prepared mitochondrial 
buffer (10 ml of 0.1 M Tris-MOPS and 1 ml of 0.1 M EGTA/Tris in 20 ml of 1 M sucrose). Then, the lysate was 
centrifuged for 10 minutes at 2000 RPM in 4 °C. The collected supernatant was centrifuged for 10 minutes at 5000 
RPM in 4 °C. The mitochondrial buffer (50 μl) was added to the mitochondrial pellet sediment. After detecting 
the protein concentration with bio-ford method, 4 μg of mitochondrial protein was added to a collagen-coated 
plate. The plate was spun for 20 minutes at 2000 g on 4 °C, then sequentially loaded ADP, Oligomycin, FCCP, and 
Antimycin A in the Seahorse XFe96 FluxPak cartridge. The mitochondria coated plate and the cartridge were 
transferred to the XFe96 Extracellular Flux Analyzer (Seahorse Bioscience) for analysis.

Statistical analysis. All results are presented as mean ± SD. Unless otherwise noted, data were evaluated by 
student’s t-tests for two groups or multiple groups with one-way ANOVA followed by Tukey’s multiple comparison 
post hoc test, using GraphPad Prism v7.0 software. P values less than 0.05 were considered statistically significant.

Ethics approval and consent to participate. The IACUC Committee at Tianjin Medical University, 
Shanxi Medical University and Thomas Jefferson University approved the study.

Data availability
All data generated or analyzed during this study are included in this published article.
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