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a b s t r a c t

Intratumoral heterogeneity (ITH) has been regarded as a key cause of the failure and resistance of cancer
therapy, but how it behaves and functions remains unclear. Advances in single-cell analysis have facili-
tated the collection of a massive amount of data about genetic and molecular states of individual cancer
cells, providing a fuel to dissect the mechanistic organization of ITH at the molecular, metabolic and posi-
tional level. Taking advantage of these data, we propose a computational model to rewire up a topological
network of cell–cell interdependences and interactions that operate within a tumor mass. The model is
grounded on the premise of game theory that each interactive cell (player) strives to maximize its fitness
by pursuing a ‘‘rational self-interest” strategy, war or peace, in a way that senses and alters other cells to
respond properly. By integrating this idea with genome-wide association studies for intratumoral cells,
the model is equipped with a capacity to visualize, annotate and quantify how somatic mutations medi-
ate ITH and the network of intratumoral interactions. Taken together, the model provides a topological
flow by which cancer cells within a tumor cooperate or compete with each other to downstream patho-
genesis. This topological flow can be potentially used as a blueprint for genetically intervening the pat-
tern and strength of cell–cell interactions towards cancer control.

� 2019 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
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1. Introduction

Cancer is composed of genotypically and phenotypically hetero-
geneous cells that are distributed spatially within the tumor, pre-
senting a phenomenon called intratumoral heterogeneity (ITH)
[1–3]. Because of this complexity, cancer pathogenesis is not only
determined by the amount of the constituent cells, but also
depends on how these cells interact with each other and with their
microenvironment in the body [4]. Currently used genome-wide
association studies (GWAS) that sample a set of patients from a
natural population have been instrumental for characterizing key
somatic mutations that cause tumor growth [5–8], but these genes
identified are merely associated with the overall symptom of can-
cer, not with the pattern and strength of ITH [9]. Also, genes
derived from patients’ normal tissues by GWAS may be related
with cancer progression through a myriad of indirect pathways,
rather than directly participate in this event as derivers [6].

To identify direct drivers responsible for ITH, it is crucial to
reveal what general rules govern its structure and organization.
Cancer is actually an ecosystem composed of distinct cell subpop-
ulations that are the equivalence of asexually reproductive, unicel-
lular quasi-organisms [10] and, therefore, its evolution can be
understood by Darwin’s natural selection principle [1,11,12]. By
communicating with each other via hormones, oxygen and nutri-
ents, one cell subpopulation may affect the behavior of other sub-
populations both locally and at a distance. The pattern of such a
communication can be competitive (like a ‘‘war” by which each
subpopulation grows at the cost of others) or cooperative (like a
‘‘peace” by which different subpopulations can benefit from one
another), depending on many factors including the geographic dis-
tribution of cells and somatic mutations [12,13]. Rapid advance in
single-cell analysis provides a possibility to genome-wide geno-
type, sequence and phenotype intratumoral cells spatially located
at different positions within a tumor [14], but the identification
of ITH-related war and peace and their underlying mechanisms
from these data remains a major challenge.

Here, we develop a novel model to investigate the internal
workings of ITH. This model is grounded on the principle of game
theory integrated with ecosystem theory through computational
modeling, thus equipped with a capacity to quantify and interpret
how cells interact with each other ecologically within a tumor and
how genetic mutations rewire up one cell to others geographically
distributed at different places of the tumor. Ecosystem theory aims
to study the emergent property of a system mediated by its
interconnected components [15], whereas game theory strives to
identify a rational strategy chosen by each individual for its maxi-
mum payoff [16,17]. This strategy is called ‘‘rational” because its
choice both relies on and can determine the strategies of other
members in the game. Our unified model can discern the compet-
itive and cooperative pattern of cell–cell interactions that occur
pervasively within a tumor. By analyzing the association between
(epi)genetic variants and cancer phenotypes or endophenotypes,
the new model enables the detection and mapping of cancer-
susceptibility genes that are expressed specifically in response to
the microenvironment of a given patient.

2. A model for mutation identification

2.1. Cancer as an ecosystem

The concept of ecosystem was introduced into cancer research
four decades ago [1,4,18]. This pioneering thinking has well been
confirmed by current next-generation sequencing. The cellular
composition of cancer is highly heterogeneous with divergent lin-
eages of transformed cancer cells that evolve into metastasis

through different pathways and at different rates [18,19]. Such
ITH is one of the primary reasons why current several major ther-
apeutic approaches, such as surgery, chemotherapy and radiother-
apy, cannot treat and eradicate cancer completely [20]. A therapy
may kill one dominant population of cancer cells, but it is power-
less to some other minor populations that, after the treatment,
grow and become dominant [21]. Thus, even if successive interven-
tions that often accompany substantial toxicity to patients are
used, cancer would still recur at particular times.

On the other hand, cancer cells do not divide, proliferate and
metastasize in isolation, instead they have evolved sophisticated
strategies for their intimate cooperation and coordination to
achieve maximum fitness in a given host environment [2,3]. Using
the classic MMTV-Wnt1 mouse mammary tumor model, Cleary
et al. [22] observed that breast cancer can propagate only when
its two genetically distinct subclones, luminal Wnt1highHRaswild-

type and basal Wnt1lowHRasmutant, are transplanted together into
mammary fat pads of wild-type host animals. This study convinc-
ingly shows that cell–cell cooperation is a key driver of breast can-
cer growth. Thus, by uncoupling such cooperation of different
types of cells by designing and delivering pharmacological inter-
vention, cancer can be well controlled [3].

2.2. Oligogenic model of ITH

Traditional GWAS through a direct link of patient’s DNA to can-
cer risk does not capture the mechanistic underpinnings of how
internal workings occur within a tumor. It has been evidenced that
cancer is initiated due to point mutations or other genetic alter-
ations on particular regions of the genome [23,24]. Some muta-
tions in a particular cell confer a selective advantage for this cell
to outgrow the cells that surround it, forming a patch of clones.
Such mutations, called ‘‘driver” mutations, are believed to play a
key role in the evolution of tumor from benign to malignant
lesions. Relative to driver mutations, there are also ‘‘passenger”
mutations that have no effect on the neoplastic process. It is of fun-
damental importance in clinical therapies to distinguish the dri-
vers from the passengers although this is usually not an easy
task. Other alterations that cause cancer include copy-number
alterations, translocations and epigenetic changes.

More recently, increasing studies show that many drivers may
provide a relatively modest selective advantage, in contrast to a
few drivers of large effects on cancer development [25]. This so-
called oligogenic model of drivers is analogous to the genetic con-
trol mechanism of many quantitative traits [26]. From this stand-
point, cancer cells can be viewed as individual quasi-organisms
with continuously varying phenotypes modified by many minor
genes and environment. This line of idea is illustrated by a dia-
grammatic tumor (Fig. 1), in which some cells are large, some are
small, whereas most are intermediate from small to large. Muta-
tions that cause the quantitative variation of cell phenotypes or
endophenotypes can be identified by genotyping and phenotyping
individual cells. However, classic quantitative genetic theory is
insufficient to explain such phenotypic variation among cancer
cells, because there exists noted cell–cell interdependence. To take
into account the phenomenon that no organism may live in isola-
tion, Zhu et al. [27] developed a general framework that integrates
game theory into quantitative genetic theory in a way that enables
the estimation of how an individual’s phenotype is jointly con-
trolled by its own genes, the genes from its conspecific, and epistatic
effects between genes derived from two interactive individuals.

2.3. GWAS for intratumoral cells

Today’s genome-wide analysis through sequencing of the
exome or whole genome allows all of genes altered in cancer to
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be characterized at base-pair resolution [14]. These techniques can
not only genotype and sequence individual cancer-cell subpopula-
tions, but also dissect the spatial structure and organization of a
tumor [28]. In Fig. 10s hypothesized tumor spherically populated
by a number of abundance-varying cell populations, variation in
cell abundance may be attributed to different types of mutation.
For example, cell 19 is strikingly larger than cell 20, suggesting that
the former contains specific mutations that leads it to grow faster
than the latter. With no doubt, the genome-wide identification of
such mutations helps our understanding of the genetic mecha-
nisms underlying the bewildering diversity of cancer cells.

Box 1 provides a statistical procedure for identifying the muta-
tions that govern the growth and variation of cancer cells. Based
on the geographic distribution of cancer cells (Fig. 1), we randomly
sample a set of representative cells to measure their mutations
throughout the entire genome and phenotypes (such as cell abun-
dance) or endophenotypes including transcriptomic, proteomic,
and metabolic profiles by single cell analysis. With the advance of
single-cell sequencing techniques, it has become highly possible
tomeasure time series data for the phenotypes. Genome-wide asso-
ciation studies (GWAS) of mutations and cell phenotypes by which
to characterize drivers for cell growth can be performed by several
statistical methods. They are single-mutation analysis based on
simple regression, epistatic analysis aimed to detect significant
genetic interactions and high-dimensional variable selection for
analyzing all mutations at a time. The first two models are based
on themarginal effects of individual loci or locus pairs, thus neglect-
ing the confounding effect of correlated mutations. The third model
can make a global characterization of all possible significant muta-
tions whose statistical properties have been validated through
empirical data analysis and computer simulation [29,30].

Box 1: Statistical design and algorithm of cancer genome-wide
association studies for intratumoral cells To make it useful
in practice, we implemented a statistical procedure for mate-
rializing the new theory that is the unification of ecosystem

theory and game theory. Using the structural distribution of
cancer cells in Fig. 1 as an example, suppose that we have mea-
sured mutation loci of each labelled cell and its phenotypes or
endophenotypes including transcriptomic, proteomic, and meta-
bolic profiles by single cell analysis. It is possible that time series
data for these phenotypes can be made available with the
advance of single-cell sequencing techniques. To make a com-
parison, these types of information are measured for normal
cells around the tumor. Below is the hypothesized format of data
measured for labeled cancer cells and normal cells:

To reflect the tenet of the new theory, i.e., different cells
interacts to reciprocally affect their phenotypes, we arrange
the data by physical connections of different cells. For exam-
ple, cell population 1 is linked with cell populations 2 and 5,
which suggests that the former should be paired with the lat-
ters. Based on this principle, we obtain the new data format
as follows:

where d.. is the physical distance between different cancer
cells. The phenotypes of adjacent cells (i.e., cancer size) are
also paired in terms of their competitive or cooperative rela-
tionships. To characterize how genetic mutations determine
cancer phenotypes through cell–cell heterogeneity and inter-
actions, we formulate the likelihood of the above re-arranged
data, which, for any mutation locus (say M1), is expressed as.

where cell–cell pairs form four different mutation combi-
nations G � G, G � T, T � T and T � G at this locus; nGG,
nGT, nTT, and nTG are the observations of four mutation combi-
nations, respectively; and f.(zi) is the probability density of a
derivative variable x (denoting a product, ratio, or the inverse
of product; see the second data format), with expected mean
lx

� for a particular combination and variance r2.

By estimating and testing the differences of the expected
mean between these combinations, we can determine
whether this mutation affects the derivative trait. Zhu et al.
[27] developed a method for dissolving the genetic effects

Fig. 1. Topological landscape of a tumor. Some cells are labeled for explanation.
Two-way arrows, one-way arrows and a line ended with two diamonds denote
cooperation, parasitism and competition, respectively. Adapted from Komarova
[36].
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of the derivative variable into direct, indirect and epistatic
effects on the original phenotypic trait of two pairing partners.
Here, the direct effect denotes the genetic effect of a mutation
of a target cell on its own phenotypic trait, the indirect effect
implies the genetic effect of the mutation of this target cell on
the phenotypic trait of its partner, and the epistatic effect is
the across-cell genetic interaction effect of the mutations
derived from the two paired cells on the phenotypic traits of
the two cells. Zhu et al. [27] also provided a procedure of testing
each of these effects based on a likelihood-ratio approach.

We extend Zhu et al.’s procedure to estimate the genetic
variances of the phenotypic trait of the target cell by the direct
effect, indirect effect and across-cell epistatic effect, respec-
tively. From these estimates, we can further estimate the pro-
portions of the total genetic variance by each of these effects.
This proportion describes the relative contributions of direct,
indirect and across-cell epistatic effects to the total pheno-
typic variance.

2.4. Worked example

To demonstrate the utility of our model, we reanalyze a pub-
lished data of cancer collected by high-throughput sequencing.
As a conceptual idea, our model can characterize intratumoral

interactions that occur at any level of entities, from cell, cell popu-
lation to geographical region. In a single hepatocellular carcinoma
(HCC) tumor, Ling et al. [31] idebtified 286 representative spatial
regions, of which 23 were genotyped at 269 mutation loci over
19 human chromosomes and phenotyped (Fig. 2a). Each region
may contain a specific cell population and thus, our analysis will
focus on intratumoral interactions at the cell population level.
We use ploidy levels of each region as a phenotypic trait for intra-
tumoral GWAS analysis. The level of ploidy is thought to be an
indicator of cancer pathogenesis [32] so that we can use it as a
fitness-related phenotype of cancer. The tumor is divided into four
quadrants A–D, from each of which 23 regions were randomly and
evenly sampled (Fig. 2b). Of 269 genotyped loci, 87 are segregating
in 23 regions, which are associated with ploidy level through the
analysis of likelihood (Box 1). It can be seen that genetic mutations
occur stochastically over 23 human chromosomes. Of 87 polymor-
phic loci among the sampled cell populations, 16 are significantly
associated with the level of cell ploidy (Fig. 2c). Several significant
mutations, such as CER1, miRNA:has-miR-16–1, and MLL, each
explain 10–15% of the phenotypic variation, remarkably larger
than many others. These loci are the drivers that cause the hetero-
geneity of intratumoral cells.

3. Computing cooperation and competition within a tumor

As can be seen from a tumor (Fig. 1), cell populations 1, 2, 3 and
6 are equally large, possibly implying their involvement of growth-
promoting mutations. Another possibility is that these cells mutu-
ally cooperate to favor their growth and proliferation given their

geographic adjacency. On contrast, two adjoining populations 15
and 16 are small-sized, possibly due to their specific mutations
and mutual conflict. Cell population 19 is much larger than its
neighboring populations, 20, 29, 18, etc., suggesting that the latter
is parasitized by the former. However, precisely characterizing
these competitive (war) or cooperative (peace) types of cell–cell
interactions, as a stepping stone to cancer diagnosis and therapy,
is very challenging and requires a conceptual theory and modeling
framework.

3.1. Game theory

In a tumor, different populations ‘‘live” together following Dar-
win’s rule. Consider two cell populations A and B, each of which
tends to maximize its fitness under Darwinian selection using a
cooperative (+), spite (–) or neutral (0) strategy [33]. If both popu-
lations are cooperative, they benefit from each other. If each pop-
ulation spites its partner, then both grow at a competitive cost of
the counterpart. If one is cooperative but the second gives spite,
then only the latter benefits in an altruistic or parasitic way. It is
not difficult to see that the fitness of any cell population in its
interconnected environment is the net consequence of competi-
tion, cooperation and parasitism. According to evolutionary game
theory, these interaction patterns can be formulated by a strategy
matrix expressed as

Different strategies used by each cell population will form several
types of ecological interactions [2,4]: mutualism (+/+) by which
two populations cooperate and produce factors or bring in
resources that will benefit both interacting parties, peaceful coex-
istence (0/0) by which the two populations can co-exist but have
no dramatic benefit to each other, antagonism (–/–) as the stron-
gest negative interactions arising due to limitation in resources
such as nutrients and oxygen, which can manifest phenotypically
via the secretion of molecules by one population that either kills
or suppresses competitor cells and vice versa, commensalism
(+/0 or 0/+) by which one population can benefit another without
being affected itself, predation/parasitism (+/–) that benefit one
population by consuming biomass at the expense of the other,
although predation is more extreme than parasitism, and amen-
salism (0/– or –/0) that is similar to competition but occurring
more undirectionally, involving the inhibition of one population
by another with the latter being not affected.

3.2. A computing framework

Coordinated cooperation and competition among cancer cells of
differing genetic makeup have important consequences for the
overall behavior of cancer. By combining network analysis and
game theory, a cell-rewiring model was developed to study, dis-
cern and annotate war and peace that occur within the communi-
ties of cancer cells. The model was further reformed to unravel the
genetic architecture that govern the direction and strength of cell–
cell interactions. Let y1 and y2 denote the values of a fitness-related
trait for two co-occurring cell populations A and B, respectively.

Population B

+ 0 – (1)

Population A + Mutualism Commensalism Predation
0 Commensalism Coexistence Amensalism
� Predation Amensalism Antagonism
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The product of y1 and y2 is used to measure the extent of their
cooperation; their ratios reflect the extent of the benefit of one
population relative to the other (altruism); and the inverse of their
product measures the extent of competition. In Box 1, following
Zhu et al.’s [27] game-analytical model, we describe a likelihood
model for characterizing these interactions and the genetic
machineries underlying each interaction.

3.3. Application

By analyzing sequence data from individual regions within the
HCC tumor (Fig. 2A), Ling et al. [31] found the existence of
intratumoral genetic diversity, although it does not obey Dar-
winian evolutionary theory. Our model can identify whether intra-
tumoral genetic diversity results from interactions between
different cell populations. Twenty-three randomly sampled regions
were paired to quantify their cooperative, altruistic and competi-
tive interactions in terms of ploidy level, weighted by their
pairwise distances. Overall, the cooperative network (Fig. 3A)

contains much more connections than does the competitive net-
work (Fig. 3B), suggesting that cell–cell cooperation is more perva-
sive within this tumor studied, compared to cell–cell competition.
It can be seen that region A25 strongly cooperates with the largest
number of other regions, followed by A66, B9 and D25. These
regions connecting with so many other regions, called hub regions,
play a central role in maintaining the stability of cell–cell interac-
tion network (Fig. 3A). Uncoupling the connections of these hub
regions with other regions likely causes the instability of the cell
community and, therefore, affects the holistic behavior of cancer.
Although connections are much sparser in the network of compe-
tition (Fig. 3B), several regions can still be identified to repress the
expression of other regions.

The cell-rewiring model was further used to identify 16 signif-
icant mutation loci distributed in different chromosomes that reg-
ulate intratumor interactions between these regions (Fig. 3C). Each
of these loci pleiotropically affects cooperation, altruism, and com-
petition, although some loci exert a larger effect on one type of
interaction than others. For example, LRRTM4, LRP2, GABRAl1,

Fig. 2. Sample collection and data analysis for an HHC tumor [31]. (a) Honeycomb-like microdissection. (b) Geographic locations of 286 regions, 23 of which (in red) were
monitored in detail. We connected some regions to show their interactions. (c) Manhattan significance test plot of 87 segregating loci that affect cell–cell variation in ploidy
level. LR is the log-likelihood ratio test derived from the likelihood (Box 1). Horizontal line is the genome-wide threshold at the 1% level determined from 1,000 permutation
tests. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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and ZNF498 each exhibit a similar magnitude of their effect on the
three types of interactions, CER1, CLEC18A, SSC4D, miRNA:hsa-
miR-16–1 and JAK2 play a larger role in modulating cooperation
than competition, and other loci, such as PPP1R3B and MLL, are
determinants of cell–cell conflict in the first place and determi-
nants of cooperation in the second place.

In addition to identifying how a mutation regulates the fitness
of cancer cells, the model can provide unique insight into the
genetic machineries of cell–cell interactions. For example, the
effect of a mutation on intratumor interactions can be further par-
titioned into three components, i.e., the direct effect of the muta-
tion, carried by a target cell, on the own fitness of this cell, the
indirect effect of this mutation on the fitness of the other cells that

are geographically close to the target cell, and the across-cell epi-
static effect of the mutation derived from a different cell (Box 1).
We estimated the portions of the total genetic variance explained
by the indirect effect, indirect effect and across-cell epistatic effect
for each significant locus as a cooperation gene, altruism gene or
competition gene, respectively. It is interesting to find that the
indirect effect contributes to genetic variance as much as the direct
effect, both generally accounting for 20–30%. Surprisingly, the
across-cell epistatic effect explains a large portion of genetic vari-
ance, which, in most cases, is even larger than those explained by
the direct effect. Beyond all existing approaches, our model can dig
out the hidden genetic architecture of cancer phenotype by identi-
fying indirect and across-cell epistatic effects or variances.

Fig. 3. The networks of cooperative interactions (A) and competitive interactions (B) among 23 sampled cell regions constructed by game theory. Dually arrowed lines
indicate the mutual activation of two cell regions, whereas T-shaped lines represent the inhibition of one cell regions by another. Manhattan significance test plot of genetic
mutations for cell–cell cooperation (red), cell–cell altruism (blue) and cell–cell competition (green) through ploidy level within the HHC tumor (C). LR is the log-likelihood
ratio test derived from the likelihood (Box 1). Horizontal line is the genome-wide threshold at the 1% level determined from 1,000 permutation tests. Numbers in the box at
the upper left are the portions of the genetic variance explained by the direct effect, indirect effect and across-cell epistatic effect of six representative mutation loci. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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4. Discussion

As a complex disease, cancer is jointly controlled by genetic and
environmental factors and their interactions through developmen-
tal pathways. A vast body of cancer research has used genome-
wide association studies (GWAS) to identify genetic loci associated
with cancer risk by comparing differences of DNA sampled from a
natural population [6–9]. However, despite our mounting knowl-
edge gained from GWAS, an overwhelming success in understand-
ing the genetic basis of this disease has still been largely far from
our expectation. We have increasingly recognized that this failure
results largely from a high ITH, characterized by a tumor, but the
systematic identity of individual cell states has not been made pos-
sible until the advent of single-cell sequencing techniques. How to
transform increasingly growing amounts of single-cell data into a
procedure of predicting the mechanistic and regulatory programs
of cancer development has now become one of the most important
tasks.

In this article, we present a novel model that unifies ecosystem
theory and game theory to model, annotate and contextualize
internal workings within a tumor driven by cancer cells. Although
genetic ITH has made it extremely difficult to remove cancer, the
interdependence of cancer cells may open up a new avenue to con-
trol this disease. For example, if cancer growth relies on the coop-
eration of its cells, then a particular pharmacological intervention
can be designed and delivered to uncouple this cooperation. If dif-
ferent cells compete for the same type of resources such as oxygen
and nutrient, specific drugs can be developed to induce and
amplify their conflict, leading to the simultaneous eradication of
these cells. Apart from internal interactions within cancer, cancer
cells also interact with the tissue environment of the host; for
example, immune cells may predate and, ultimately, destroy can-
cer cells. This process has led to the birth of immunotherapies that
control cancer by increasing the patient’s immune capacity [34].

It is possible that the exploitation of cell–cell interrelationships
can give rise to a new cancer therapy that is different from, but
likely to be more effective and efficient in terms of the prevention
of recurrence and side effects, than currently used surgery,
chemotherapy and radiotherapy approaches [35]. The first most
important step to make this assumption a reality is to profoundly
understand how intratumor cells interact internally with each
other and how they interact externally with the immune cells of
the host. Our conceptual model provides a start point to further
chart a detailed atlas of ecological interactions among cancer cells
and the host’s immune cells, and could also stimulate the collabo-
ration of oncologists, pharmacologists and statisticians to deter-
mine and select an optimal treatment for cancer.
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