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Abstract: Cellular, organ, and whole animal physiology show temporal variation predominantly
featuring 24-h (circadian) periodicity. Time-course mRNA gene expression profiling in mouse liver
showed two subsets of genes oscillating at the second (12-h) and third (8-h) harmonic of the prime
(24-h) frequency. The aim of our study was to identify specific genomic, proteomic, and functional
properties of ultradian and circadian subsets. We found hallmarks of the three oscillating gene
subsets, including different (i) functional annotation, (ii) proteomic and electrochemical features,
and (iii) transcription factor binding motifs in upstream regions of 8-h and 12-h oscillating genes that
seemingly allow the link of the ultradian gene sets to a known circadian network. Our multifaceted
bioinformatics analysis of circadian and ultradian genes suggests that the different rhythmicity of
gene expression impacts physiological outcomes and may be related to transcriptional, translational
and post-translational dynamics, as well as to phylogenetic and evolutionary components.

Keywords: biological clock; rhythmic gene expression; rhythmic protein expression; circadian
rhythms; ultradian rhythms; electrochemical features

1. Introduction

Tissue and cellular functions underlying physiology of living organisms show time-dependent
variations predominantly featured by 24-h (circadian) periodicity and driven by molecular clockworks
operated by rhythmically expressed genes and proteins hardwiring transcriptional/translational
feedback loops (TTFL) [1–4].
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Circadian expressed genes include a handful of core-clock genes that in turn drive thousands
of downstream clock-controlled genes [5,6]. Experiments performed in animal models showed that
approximately half of the transcriptome shows 24-h oscillations that manage crucial biological processes
such as the cell cycle, proliferation, metabolism, DNA damage repair, apoptosis and autophagy [7–10].

The interacting positive and negative limbs of the TTFL regulate gene transcription through
sequential cycles of transcriptional activation of the expression of clock genes followed by transcriptional
suppression by their protein products [11,12]. The positive limb is operated by CLOCK and BMAL1
that heterodimerize and activate the transcription of cryptochrome genes (Cry1 and Cry2) and period
genes (Per1, Per2 and Per3), which operate the negative limb encoding repressors hindering gene
transcription. Conversely, Bmal1 rhythmic expression is driven by the nuclear receptors REV-ERBα
and RORα through competitive binding at its promoter region [13,14].

Gene expression profiling performed by means of high-throughput measurements with DNA
microarrays and quantitative PCR in mouse liver specimens collected at regular time intervals showed
that two groups of genes oscillate at the second (12-h) and third (8-h) harmonic of the fundamental
(24-h) frequency [15].

The different periodicity of gene expression impacts physiological outcomes [16] and may be related
to transcriptional, translational and post-translational dynamics [17–21], as well as to phylogenetic
and evolutionary components [22].

The aim of our study was to characterize genomic and proteomic features of the clusters of genes
oscillating with harmonics of circadian periodicity. We exploited bioinformatics tools for functional
prediction to identify the biological functions and enriched signalling pathways and to perform
comparative qualitative proteomic analysis. Finally, we implemented several computational strategies
in order to detect the presence of significant de-novo regulatory motifs and known transcription factor
binding sites in the promoter region of clock genes, with respect to the whole mouse genome.

We investigated the following working hypotheses: (i) Circadian genes and genes oscillating
with harmonic frequencies show dissimilar biological facets and encode different proteome profiles;
(ii) canonical and non-canonical DNA structures are found within the upstream regions of the oscillating
genes subsets; (iii) ultradian genes connect to an identified circadian network through distinctive
upstream short nucleotide sequences and DNA binding sites. Our results show that the three subsets of
oscillating genes are hallmarked by very different functional annotation and proteomic features, as well
as peculiar transcription factor binding motives, in addition to canonical binding sites. These are found
within the upstream regions of rhythmically expressed target genes and seemingly allow for the link of
the ultradian gene sets to a known circadian network.

2. Results

To characterize particular features of the gene sets with ultradian and circadian periodicity (8-h,
12-h, 24-h gene sets), we used a variety of computational and bioinformatics methods including
a comprehensive analysis at the gene expression level namely: a sequence analysis for known
transcription factor binding sites, multiple sequence alignment and phylogenetic analysis, enrichment
analysis of the three gene sets, as well as the analysis of epigenetic and non-epigenetic regulation of
oscillating gene expression. We further carried out an analysis at the protein level and investigated
the electrochemical properties of oscillating proteins and completed our analysis by generating
chromosomal co-localization networks created upon homology mapping of oscillating genes.

2.1. Known Transcription Factor Binding Sites Are Enriched in the Promoter Regions of the 8-h, 12-h, and 24-h
Rhytmically Expressed Genes

To characterize a putative differential functionality of ultradian genes, we searched for enriched
transcription factor (TF) binding sites in the promoter regions of 8-h and 12-h gene sets as compared
to 24-h rhythmically expressed gene set, using the MEME SUITE AME tool [23]. We found several
significantly enriched binding sites (p > 0.05), Tables S1–S6. The top 5 enriched TF binding sites for the
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3500 bp upstream promoter region of the 8-h, 12-h and 24-h gene sets, as well as the 300 bp downstream
promoter region enriched TF binding sites are depicted in Figure 1. Interestingly, several of the
transcription factors binding to the upstream promoter region are shared between the gene sets, which
might point towards common mechanisms controlling the time-dependent expression of these genes.
The TF found include MAZ (MYC Associated Zinc Finger Protein) that regulates inflammation-induced
expression of serum amyloid A proteins, PATZ1 (POZ/BTB And AT Hook Containing Zinc Finger
1), involved in chromatin modelling and transcription regulation and postulated to be a repressor of
gene expression, and ZNF770 (Zinc Finger Protein 770), which were identified in all three gene sets
and EGR2 (Early Growth Response 2), VEZF1 (Vascular Endothelial Zinc Finger 1), which are shared
between the 12-h and the 24-h rhythmically expressed gene sets. Interestingly, VEZF is a paralog of
MAZ. The downstream regions of the gene sets show little correlation. This partially confirms that the
results for the upstream region are not occurring by random chance. Additionally, we performed an
enrichment analysis for the Reactome pathways related to the TFs with enriched known binding sites
(Figure S1). Our results show that the TFs associated with the 12-h gene set show an enrichment of
terms related to the cell cycle, and the TFs associated with the 8-h gene set show an enrichment of
terms associated with myogenesis and senescence.
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promoter sequences (adj. p = 4.99e-2), and in the 12-h gene set in 6.9% of the upstream promoter 125 
sequences (adj. p = 3.75e-8). In particular, we detected CLOCK (adj. p = 1.25e-16) and BMAL1 (adj. p 126 
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Figure 1. The upstream and downstream regions of the promoters of the different. gene sets show
enriched binding sites for known transcription factors. The five transcription factor binding sites with
the lowest adjusted p-value are displayed for the upstream promoter regions of the (A) 8-h (Table S1),
(C) 12-h (Table S3) (E) and 24-h (Table S6) gene sets and for the downstream promoter region of the (B)
8-h (Table S2), (D) 12-h (Table S4) and (F) the 24-h (Table S5) gene sets.

In addition, using the AME tool of the MEME suite we searched for E-boxes and D-boxes,
conserved motifs known to be the present in the promoter region of clock-controlled genes, and bound
by core-clock elements. Both E-boxes and D-boxes were detected in the upstream promoter region of the
8-h gene set and of the 12-h gene set (p < 0.05). However, other motifs are more significantly enriched
(Figure 1). We detected E-boxes in the 8-h gene set in 38.3% of the upstream promoter sequences
(adj. p = 4.99e-2), and in the 12-h gene set in 6.9% of the upstream promoter sequences (adj. p = 3.75e-8).
In particular, we detected CLOCK (adj. p = 1.25e-16) and BMAL1 (adj. p = 5.83e-06) binding motifs in
the upstream promoter regions of the 12-h gene set (Table S3). For the 24-h gene set we detected E-boxes
in 26.7% of the upstream promoter sequences (adj. p = 3.04e-48). Likewise, we detected binding motifs
for both CLOCK (adj. p = 4.81e-90) and BMAL1 (adj. p = 2.67e-55) in the upstream promoter regions
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of the 24-h gene set (Table S6). Interestingly, CLOCK (adj. p = 0.02) and BMAL1 (adj. p = 3.28e-05)
binding motif are also present in the downstream promoter region of the 24-h gene set (Table S5).

2.2. Phylogenetic Analysis Shows Similarity within the Promoter Regions of the 8 h and 12 h Gene Sets

The significantly enriched motifs found point to a common regulatory system for the 8-h and 12-h
gene sets, hence we hypothesized the existence of an evolutionary connection between the promoter
regions of both gene sets as the key mechanism of activation is most likely evolutionary ancient and
well conserved (as the clock itself). To further investigate this hypothesis we generated phylogenetic
trees, as an output visualization of the multiple sequence alignments of the 3500 bp upstream
promoter region of the 8-h and 12-h gene sets (Figure 2). First, we produced a multiple sequence
alignment of the promoter region sequences together with 10 control sequences of non-oscillating
genes. Second, we created phylogenetic trees from the resulting alignment using the Felsenstein
(F84) (Figure 2A) and Jukes-Cantor (JC) (Figure 2B) nucleotide substitution models [24]. We tagged
the 8-h oscillating genes with red markers in the resulting trees and the 10 control genes with green
markers. When utilizing 10 non-oscillating genes as control sequences, the 8-h and 12-h gene sets do
not show a clustering pointing at strong evolutionary conservation of the entire sequence regardless of
the substitution model used. Hence, while individual binding sites for TFs are highly enriched and
conserved, the promoter sequence itself varies greatly and may allow for the fine-tuning of expression
for individual genes.
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Figure 2. Phylogenetic analysis of the promoter regions shows little variation between the promoters
of the corresponding gene sets. A multiple sequence alignment and phylogenetic tree construction was
performed on the upstream promoter regions of both the 8-h and the 12-h gene sets with Felsenstein
nucleotide substitution model (A) and a Jukes-Cantor substitution model (B). A control set of 10
non-oscillating genes was added to the phylogenetic analysis (green markers). The red markers
represent the position of the 8-h oscillating genes. The 12-h oscillating genes are the unmarked positions.
A high-resolution figure is provided as Figure S2.

To search for specific functions of the individual gene sets, we investigated a possible enrichment
of Gene Ontology and Reactome Pathways terms for the 8-h, 12-h and 24-h rhythmically expressed
genes. In all cases, significant enrichments, generated with ConsensusPathDB, are present (p < 0.01).
While the 8-h gene set showed an enrichment of terms related to metabolism, the 12-h set showed an
enrichment of terms related to endoplasmic reticulum (ER)-related processes, splicing, translation and
gene expression regulation. The 24-h rhythmically expressed genes showed an enrichment of terms
related to meiosis, and splicing (Figure S3), which is in line with our previous findings [25–28].
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We further explored the putative connection of the ultradian gene sets to a known circadian
(approximately 24 h rhythmically expressed elements) network (NCRG-network of circadian regulated
genes [10]) for that, we performed a series of simulations based on randomized protein-protein
interaction networks. The random network generation is based on the IntAct database contained
in iRefIndex. We quantified the number of interactions between the elements of the 8-h gene set,
and 100 random networks of the same size as the NCRG. In addition, we also quantified the number
of interactions between the 8-h gene set and the NCRG. While the average interactions between the
8-h gene set and the random networks was 3.99 ± 2.91 (mean and SD), the number of interactions
between the same gene set and the NCRG was 12. We applied the same procedure to the 12-h
gene set and obtained 19 ± 9.25 (mean and SD) connections to the random networks, while the
number of connections between the NCRG and the 12 h gene set was 87. Both sets therefore exhibit a
connectivity to the NCRG that was higher than the connectivity displayed by the random gene sets.
Thus, the randomized network analysis points to a connection between the ultradian rhythmically
expressed genes, the core-clock and clock-controlled genes.

2.3. Epigenetic and Non-epigenetic Regulation of Oscillating Gene Expression

We performed an enrichment analysis for histone modifications associated with the 8-h, 12-h
and 24-h gene sets available in the public Encode 2015 project data [29]. The enriched histone
methylation pattern of H3K79me2 associated with the 12-h and 24-h gene sets is tissue-specific for
the liver in agreement with the original data, generated from liver cells. This points to a tissue
specificity of the methylation pattern and the corresponding expression of rhythmically expressed
genes. The methylation pattern of the 8-h gene set is associated with a different cell line (M. Musculus
MEL, p = 3.555e-02).

The H3K79me2 histone modification is associated with the function of the RNA polymerase II
(Figure S4). RNA Polymerase II plays a major role in the transcription regulation of the 12-h and 24-h
rhythmically expressed genes based on ChIPSeq data from the ENCODE project and as suggested by
the previous histone modification data. However, GABPA (GA Binding Protein Transcription Factor
Subunit Alpha, p = 4.315e-08) TF scores higher in the 12-h oscillating gene set than RNA Polymerase II.
GABPA is related to the mitochondrial gene expression pathway, thus pointing again at the potential
metabolic role of the genes with ultradian oscillations. For the 8-h gene set we detected an enrichment
of TCF12 (Transcription Factor 12) binding. This transcription factor recognizes E-boxes and is involved
in the formation of lineage-specific gene expression. This enrichment illustrates the important role of
the E-boxes, which even though not being the most enriched motif seem to attract the strongest TF
activity (Figure S4).

The enrichment analysis for computationally predicted miRNA targets from the TargetSCAN
2017 database provides significant results for the 24-h and 8-h gene sets. For the 8-h gene set the
targets for miRNA 1295 are the dominant signal (p = 6.563e-03). Computationally determined targets
for the miRNA 4637 are enriched in the 24-h gene set (p = 1.630e-05), while in the 12-h gene set four
microRNAs are enriched: miRNA 344 (p = 6.117e-04), miRNA 344c (p = 6.117e-04), miRNA 1244
(p = 7.081e-04) and miRNA 499 (p = 1.096e-03) Figure S4.

Moreover, we investigated the protein-protein interactions of the transcription factors potentially
influencing the gene sets according to the ENRICHR database [30]. This enrichment showed interesting
candidates–POLE (DNA polymerase Epsilon, Catalytic Subunit, p = 1.026e-02) for the 8-h gene set and
ESR1 (Estrogen receptor 1) for the 12-h (p = 1.137e-07) and 24-h (p = 7.235e-13) gene sets. Figure S4. We
further investigated the role of POLE in a potential cancer context. From publicly available data the
high expression of POLE is an unfavourable marker in renal cancer and melanoma [31] (Figure S5).

Altogether, the enrichment information points towards very specific processes that govern the
regulation and output of the ultradian oscillating genes. Often a single microRNA (such as miRNA-1295
for the 8-h gene set) or a single gene such as POLR2A in the 24-h gene set are predicted to have
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the most significant results in terms of interaction with other genes, regulation of transcription or
computationally predicted targets in the genomic sequence.

2.4. Electrochemical Properties of Oscillating Proteins

Next, we analyzed the electrochemical features of the proteins encoded by circadian and ultradian
genes as compared to a randomly sorted set of proteins encoded by non-oscillating genes (Table 1,
Table S7). The overall stability as predicted by the FoldX algorithm [32] was higher in oscillating
proteins when compared to non-oscillating proteins (although with a barely detectable statistically
significant difference), whereas the terms represented by interresidue Van der Waals’ clashes and
electrostatic interaction (Table S8) between molecules in the precomplex were significantly different.
A correlation analysis showed negative correlation of these terms with free energy values in oscillating
proteins and positive correlation in non-oscillating proteins, suggesting a different contribution to the
overall protein stability.

Among the oscillating proteins subsets, 8-h oscillating proteins showed statistically significant
differences in respect to 12-h and 24-h oscillating proteins, with lower average number of residues and
with higher free energy (lower energy of unfolding), suggesting lower overall stability. In this regard,
the components that were different in a statistically significant way were represented by solvation of
polar and hydrophobic atoms, water binding, Van der Waals energy, steric clashes, hydrogen bonds,
electrostatic interactions (Table 1). Gibbs free energy was negatively correlated with these statistically
significant variables in the 8-h oscillating proteins, while an inverse correlation was found in the set
of 12-h oscillating proteins, hinting at a diverse involvement in the net equilibrium of forces settling
on unfolded or folded protein state. On the other hand, similar correlations were found for 8-h and
24-h oscillating proteins, except for the contribution of hydrophobic groups to free energy difference
(Figure 3 and Figure S6).
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Figure 3. Electrochemical properties. (A) Box plots rendering the interquartile range (IQR) and the
horizontal bar the median relative expression. Expression values that do not fall within 1.5 x IQR
are outliers and are indicated by circles where appropriate. (B) Correlation matrix for parameters of
non-oscillating genes. Numbers in the boxes are Spearman’s correlation coefficients. (C) Correlation
matrix for parameters of oscillating genes. Numbers in the boxes are Spearman’s correlation coefficients.
Asterisks represent statistically significant correlations (* p < 0.05, ** p < 0.01, *** p < 0.001).
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Table 1. Descriptive statistics of energy values as from the FOLD-X energy function (mean ± SD) and results of Kruskal–Wallis one-way analysis of variance with
Residue Number as covariate and Dunn’s post hoc test with false discovery rate (FDR) correction.

Parameter Oscillating
Proteins

Non-Oscillating
Proteins p Period

8 h
Period

12 h
Period

24 h p-value

Residue Number 323.7 ± 193.6 313.3 ± 165.5 0.642 224.0 ± 136.6 373.3 ± 232.1 321.8 ± 188.5 0.044* (8 h vs. 12 h) 0.063 (8 h vs. 24 h) 0.347 (12 vs. 24 h)

Delta_G 23.34 ± 123.04 29.84 ± 91.09 0.065 81.91 ± 133.64 13.53 ± 95.47 21.64 ± 125.74 0.047* (8 h vs. 12 h) 0.047* (8 h vs. 24 h) 0.377 (12 vs. 24
h)

H-bonds_Backbone −206.6 ± 112.7 −209.4 ± 121.7 0.429 −135.4 ± 95.49 −236.2 ± 157.46 −206 ± 104.26 0.022* (8 h vs. 12 h) 0.022* (8 h vs. 24 h) 0.221 (12 vs. 24
h)

H-bonds_Sidechain −88.50 ± 49.24 −89.31 ± 52.65 0.496 −61.66 ± 56.19 −103.98 ± 65.35 −87.67 ± 45.53 0.009** (8 h vs. 12 h) 0.016* (8 h vs. 24 h) 0.125 (12 vs. 24
h)

Energy_VanderWaals −355.8 ± 201.6 −363.0 ± 211.2 0.465 −239.1 ± 168.5 −407.4 ± 260.7 −354.5 ± 191.4 0.033* (8 h vs. 12 h) 0.043* (8 h vs. 24 h) 0.175 (12 vs. 24
h)

Electrostat_Int −13.75 ± 9.226 −14.03 ±
10.912 0.395 −8.291 ± 9.198 −16.011 ± 9.858 −13.710 ± 9.049 0.006** (8 h vs. 12 h) 0.014* (8 h vs. 24 h) 0.091 (12 vs. 24

h)

Penal_PolarGroups 474.9 ± 267.9 486.5 ± 278.3 0.401 335.0 ± 232.3 541.5 ± 339.8 472.6 ± 255.7 0.049* (8 h vs. 12 h) 0.071 (8 h vs. 24 h) 0.162 (12 vs. 24 h)

Cont_Hydrophobic −472.4 ± 268.4 −480.7 ± 281.7 0.470 −311.7 ± 219.0 −542.3 ± 350.6 −470.8 ± 254.0 0.029* (8 h vs. 12 h) 0.037* (8 h vs. 24 h) 0.180 (12 vs. 24
h)

Penal_VanderWaals 23.16 ± 49.59 24.85 ± 21.93 0.002* 19.94 ± 27.56 22.23 ± 23.03 23.46 ± 53.31 0.444 (8 h vs. 12 h) 0.444 (8 h vs. 24 h) 0.444 (12 vs. 24 h)

VanderWaals_Torsion 198.7 ± 108.4 191.1 ± 109.7 0.496 126.9 ± 91.05 223.1 ± 151.23 188.2 ± 100.39 0.023* (8 h vs. 12 h) 0.038* (8 h vs. 24 h) 0.140 (12 vs. 24
h)

Backbone_VanderWaals 470.6 ± 272.1 485.1 ± 258.7 0.252 352.1 ± 228.7 532.7 ± 331.3 467.9 ± 263.5 0.081 (8 h vs. 12 h) 0.130 (8 h vs. 24 h) 0.141 (12 vs. 24 h)

Water Bonds 0.699 ± 1.158 0.693 ± 1.024 0.458 0.237 ± 0.451 0.550 ± 0.742 0.745 ± 1.227 0.343 (8 h vs. 12 h) 0.259 (8 h vs. 24 h) 0.343 (12 vs. 24 h)

Electrostatic_HelixDipole 11.66 ± 11.484 12.04 ± 8.639 0.095 8.414 ± 8.079 12.091 ± 9.241 11.769 ± 11.938 0.185 (8 h vs. 12 h) 0.185 (8 h vs. 24 h) 0.284 (12 vs. 24 h)

Cost_PeptideBond −5.348 ± 4.489 −5.511 ± 6.128 0.183 −3.399 ± 3.684 −5.705 ± 5.276 −5.401 ± 4.399 0.131 (8 h vs. 12 h) 0.126 (8 h vs. 24 h) 0.496 (12 vs. 24 h)

Electrostat_Precomplex −1.143 ± 4.972 −3.606 ± 7.590 <0.001* 0.000 ± 0.000 0.000 ± 0.000 −1.373 ± 5.422 0.500 (8 h vs. 12 h) 0.213 (8 h vs. 24 h) 0.073 (12 vs. 24 h)

Interaction_BoundMetals −0.016 ± 0.155 0.000 ± 0.000 0.200 0.000 ± 0.000 −0.053 ± 0.288 −0.011 ± 0.129 0.594 (8 h vs. 12 h) 0.594 (8 h vs. 24 h) 0.594 (12 vs. 24 h)

Energy_Ionisation −4.988 ± 12.64 −6.075 ± 15.55 0.473 −1.984 ± 4.856 −8.547 ± 14.491 −4.628 ± 12.589 0.444 (8 h vs. 12 h) 0.444 (8 h vs. 24 h) 0.444 (12 vs. 24 h)

Entropy_Complex 1.220 ± 0.957 1.108 ± 0.820 0.226 0.865 ± 0.876 1.379 ± 1.0124 1.215 ± 0.951 0.134 (8 h vs. 12 h) 0.146 (8 h vs. 24 h) 0.223 (12 vs. 24 h)

* p < 0.05; ** p < 0.01.
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2.5. Chromosome Mapping of Oscillating Genes

All 8-h subset (56) and nearly all 12-h subset of mouse genes (202 out of 205) were mapped to human
homologs, while only 1826 out of 2054 mouse circadian genes were suitably mapped. The genes of
the three classes were distributed along all chromosomes, with no chromosome left uncovered and no
homolog and paralog gene localized on the same chromosome both in human and in mouse (Figure 4).
Only a few oscillating genes mapped to chromosome Y, precisely one circadian gene in the mouse set, and
one ultradian and one circadian gene in human set (Table S9). The intersection of mouse and human
co-localization networks created upon homology mapping of oscillating genes revealed high localization
conservation for the 8-h gene sets between both species (65%), a moderate conservation for 12-h gene sets
(23%) and poor conservation of chromosomal localization for circadian genes (6%) (Table 2).

Table 2. Topological features of M. musculus and H. sapiens chromosomal co-localization networks
created upon homology mapping of oscillating genes.

M. musculus Network Specifics (after Isolate Nodes Removal)

Network Nodes Edges Components

8 h 51 89 14

12 h 199 1001 20

24 h 1827 105970 20

H. sapiens Network Specifics (after Isolate Nodes Removal)

8 h 49 92 14

12 h 198 1085 23

24 h 1826 95657 23

Intersection Networks Characteristics

8 h 33 29 13

12 h 45 169 312

24 h 103 1801 33439
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3. Discussion

Frequency multiplication is a common occurrence in rhythmic phenomena observed in
multifaceted systems of interest for a variety of scientific disciplines, for instance physics, chemistry,
biology, astronomy. In natural and life sciences, harmonics of circadian frequency have been initially
reported prior to the foundation of chronobiology as a separate area of scientific research addressing
rhythmic phenomena in living beings. Nonetheless, the scientific literature on the multiplication of
circadian periodicity in biological processes remains limited at the present time.

The comprehensive bioinformatics analyses performed on transcriptomics and proteomics data in
mammalian genes expressed with 24-h periodicity and with harmonics of circadian rhythmicity allowed
us to highlight a number of interesting differences among the subsets of oscillating genes: (i) circadian
genes and genes oscillating at the second and third harmonic of 24-h periodicity show divergent
functional annotation and proteomic characteristics; (ii) within their upstream regions unusual
transcription factor binding motives other than canonical binding sites are found; (iii) genes oscillating
at the second and third harmonics are connected by specific regulatory motifs and transcription factor
binding sites to a recognized circadian network.

In particular, concerning shared enriched transcription factor binding sites in the promoter regions
of the circadian and ultradian genes suggest equivalent transcriptional control of time-dependent gene
expression. In the upstream promoter region of ultradian genes, in addition to other motifs more
significantly enriched, we identified E-boxes and D-boxes, which were not found in their downstream
promoter regions. Moreover, the phylogenetic analysis of the promoter regions of the ultradian
gene sets showed variability of the entire promoter sequence, which could eventually allow the
accurate regulation of expression of the different genes. Furthermore, a randomized network analysis
suggested a possible connection between the ultradian genes subset and the circadian clock circuitry.
The subsequent enrichment analysis showed that the 8-h oscillating genes were enriched in terms
related to metabolism, the 12-h oscillating genes in terms related to ER-related processes, splicing,
translation and gene expression regulation, while the 24-h oscillating genes in terms related to meiosis,
and splicing. This is in agreement with previous results [25,26,33].

3.1. Oscillating Proteins Are Hallmarked by Higher Overall Stability when Compared to Non-Oscillating Proteins

Bioinformatics analysis of the electrochemical properties of non-oscillating and oscillating proteins
showed that the oscillating proteins are hallmarked by higher overall stability when compared to
non-oscillating proteins, mainly in relation to significant dissimilarity of two components of free
energy calculation in the FoldX protein design algorithm, one related to inter-residue close contacts
and the other represented by electrostatic contribution of interactions at interfaces, which differently
contributed to the free energy value in the two subsets. Considering the three oscillating proteins
subsets, 8-h oscillating proteins showed lower mean residue number and lower overall stability,
mainly in relation to different polar and hydrophobic desolvation, water binding, Van der Waals energy,
steric clashes, hydrogen bonds, electrostatic interactions, interestingly with opposite correlations when
matched up to the other ultradian subset of proteins. Protein folding allows free volume to decrease
and considerably impacts protein conformational/binding equilibrium and ultimately physiological
function in conditions of macromolecular crowding, such as those hallmarking cellular and sub-cellular
volume-restricted compartments [34,35]. The spatio-temporal gathering of oscillating proteins may
impact the effects of macromolecular crowding on equilibrium stability of proteins with different
folds, cofactors and mechanisms. Protein folding and unfolding kinetics are influenced by crowding,
with stabilizing effects whose degree will hinge on intrinsic stability and protein fold [34,35]. In this
context, the molecular clockwork could manage the phase relation between subcellular oscillation
patterns of folded, intermediate, and unfolded proteins, as well as of molecular chaperones that assist
these transitions, especially considering that macromolecular crowding accelerates folding, but over a
given limit the folding process will be hindered [34,35].
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3.2. Specific Enriched Processes Govern the Regulation and Output of the Ultradian Oscillating Genes

The enrichment analysis for histone modifications showed association with the 12-h and 24-h
oscillating genes of H3K79me2, involved in RNA polymerase II function, whereas 8-h oscillating genes
showed binding enrichment for TCF12, a transcription factor capable of binding to E-boxes. Altogether,
the enrichment information points towards very specific processes that govern the regulation and
output of the ultradian oscillating genes. Often a single microRNA (such as miRNA-1295 for the
8 h gene set) or a single gene such as POLR2A in the 24-h gene set are predicted to have the most
significant result in terms of targets. The enrichment analysis for computationally predicted miRNA
targets pinpointed to the 8-h gene set as targets for miRNA-1295, to the 12-h gene set for miRNA 344,
miRNA 344c, miRNA 1244 and miRNA 499, whereas the 24-h oscillating genes appeared as targets for
miRNA-4637. Furthermore, the protein-protein interactions of the transcription factors potentially
influencing the oscillating gene sets identified as major candidates POLE for the 8-h gene set and ESR1
for the 12-h and 24-h gene sets. Interestingly, elevated POLE expression predicts poorer outcome
marker in renal cancer and melanoma patients.

3.3. Homology Mapping of Oscillating Genes Revealed Different Degree of Localization Conservation for the
Three Gene Sets

Mapping of the 8-h, 12-h and 24-h oscillating genes in mouse and human chromosomes revealed
scattering of the three classes along all chromosomes, with no chromosome left uncovered and
homologs and paralogs of core-clock genes and clock-controlled genes never localized on the same
chromosome. Nevertheless, in both species only a few oscillating genes mapped to chromosome Y,
probably in relation to the peculiar role played by this allosome in male fertility and sex determination
in mammals. In addition, we found high localization conservation for the 8-h genes (65%) between
both species, a moderate conservation for 12-h genes (23%) and a poor conservation of localization for
circadian genes (6%).

4. Materials and Methods

4.1. Primary Dataset

Bioinformatics analyses were performed on publicly available genomic data (GSE11923). Briefly,
liver samples were collected every hour for 48 h from n = 3-5, 6-week-old male C57BL/6J mice (Jackson)
per time point, the specimens were pooled, and high-temporal resolution profiling was performed
using Affymetrix arrays to detect cycling genes. Fisher’s G-test at a false-discovery rate of < 0.05 and
COSOPT were jointly exploited to recognize rhythmic transcripts, which were classified, depending on
the length of the oscillation period, as circadian (24 ± 4 h) and ultradian (12 ± 2 h and 8 ± 1 h) [15].
Array probe IDs/nucleotide sequences of 8-h, 12-h and 24-h oscillating genes were registered and by
using BioDBnet (https://biodbnet-abcc.ncifcrf.gov/db/db2db.php) 56, 202 and 2396 Ensembl Transcript
IDs were recovered from the primary dataset, respectively.

4.2. Sequence Analysis for Known Transcription Factor Binding Sites

For the initial data acquisition, we performed an analysis on pre-selected data sets corresponding
to the above-mentioned gene-probes with 8-h, 12-h and 24-h rhythmic oscillations. To perform the
sequence analysis, we extracted and analyzed the 3500 bp flanking sequences upstream and the
300 bp flanking sequences downstream of the complete corresponding genes. The mapping and
sequence selection were carried out with Ensembl biomaRt (Ensembl revision 84). We searched for
enriched known motifs and specific acceptance for gapped motifs with the MEME SUITE software
(http://meme-suite.org/) [36]. The length of the motif correlates with its statistical significance. MEME
defines the most statistically significant motif based on its E-value (low E-value). The E-value of a
motif is based on its log likelihood ratio, width, sites, the background letter frequencies, and the size
of the training set. The E-value is an estimate of the expected number of motifs with the given log

https://biodbnet-abcc.ncifcrf.gov/db/db2db.php
http://meme-suite.org/
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likelihood ratio (or higher), and with the same width and site count, as found in a similarly sized set
of random sequences. We used the AME tool and the HOCOMOCOv11 [37,38] database as motif
sources. The AME tool specifically searches for enrichments of known motifs from the database
selected. The 3500 bp upstream promoter region was scanned, as well as the 300 bp downstream
motif region.

4.3. Multiple Sequence Alignment and Phylogenetic Analysis

Multiple sequence alignments of the promoter regions of the 8-h and 12-h gene sets were created
with MUSCLE (http://www.drive5.com/muscle/). The resulting alignments were used for further
phylogenetic analysis of the promoter regions of the 8-h and 12-h gene sets. Phylogenetic tree creation
was performed with PHYLIP’s neighbor joining method with F84 and Jukes-Cantor substitution
models [24] (http://evolution.genetics.washington.edu/phylip.html).

4.4. Enrichment Analysis of the 8-h, 12-h and 24-h Gene Sets

The enrichment analysis for the mouse gene sets was performed with ConsensusPathDB
(http://consensuspathdb.org) [39]. An analysis for Enriched Reactome and GO terms was performed.
The p-value cut-off was set to 0.01 and the GO terms were set to level 4. Each of the 8-h, 12-h and 24-h
gene sets was analyzed individually.

4.5. Randomized Network Analysis on Ultradian and Circadian Genes

A network analysis to explore the connection between the ultradian genes, and the core-clock
and clock-controlled genes was performed through a series of simulations based on randomized
protein-protein interaction networks. For the network creation the probes were mapped to Uniprot and
Entrez ID. The network was generated from IntAct data contained in the iRefIndex database (snapshot
from 2015) (http://irefindex.org) which summarizes protein-protein interaction data from different
sources. The computations were performed using the iRefR R package with 100 random sets of genes
of matching size.

4.6. Epigenetic and Non-epigenetic Regulation of Oscillating Gene Expression

All epigenetic and non-epigenetic enrichment analysis was performed with the ENRICHR
tool (http://amp.pharm.mssm.edu/Enrichr/enrich), [40] which utilizes publicly available information
from projects such as TargetSCAN 2017 (http://www.targetscan.org/vert_72/) and ENCODE 2015 [41].
All enrichment results are p-value sorted.

4.7. Impact of Protein Expression on Survival

Survival data associated with protein expression was retrieved from the Protein Atlas database [31].

4.8. Electrochemical Properties of Oscillating Proteins

To predict the electrochemical properties of proteins encoded by ultradian and circadian genes
we used the corresponding three-dimensional structural data stored in the protein data bank
(PDB; http://www.rcsb.org/pdb/) [42]. All complex analyses were performed with FoldX, which is one
of the best stability predictors and is easily implementable in a pipeline [32]. FoldX is an empirical
force field that was developed or the rapid evaluation of the stability, folding of proteins and nucleic
acids. It is composed of a solvation term, a van der Waals term, H-bond, and electrostatic terms and
entropic terms for the backbone and side chains. In the case of protein complexes, an extra term related
to the electrostatic contribution is also considered. The software package FoldX includes subroutines,
e.g., RepairPDB. The way it operates is the following: first it looks for all Asparagine, Glutamine and
Histidine residues and flips them by 180 degrees. This is done to prevent incorrect rotamer assignment
in the structure due to the fact that the electron density of Asparagine and Glutamine carboxamide

http://www.drive5.com/muscle/
http://evolution.genetics.washington.edu/phylip.html
http://consensuspathdb.org
http://irefindex.org
http://amp.pharm.mssm.edu/Enrichr/enrich
http://www.targetscan.org/vert_72/
http://www.rcsb.org/pdb/
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groups is almost symmetrical and the correct placement can only be discerned by calculating the
interactions with the surrounding atoms. The same applies to Histidine. It does a small optimization
of the side chains to eliminate small VanderWaals’ clashes. This way it prevents moving side chains
in the final step. “RepairPDB” identifies the residues that have very bad energies and mutates them
and their neighbors’ to themselves exploring different rotamer combinations to find new energy
minima. Correlations between the parameters were investigated by pairwise correlation analysis
(Spearman correlation; R package PerformanceAnalytics). The statistical analysis for electrochemical
features of the ultradian and circadian gene sets was conducted using the energy values as from the
FOLD-X [32] energy function and performing a Kruskal-Wallis one-way analysis of variance with
Residue Number as covariate and Dunn’s post hoc test with false discovery rate (FDR) correction.

4.9. Chromosome Mapping of Oscillating Genes

H. sapiens homologs for 8-h, 12-h and 24-h M. musculus oscillating genes (GSE11923) were retrieved
using biomaRt. Genes not matching between mouse and humans were sought manually using the
latest version of Ensembl web portal. In case of multiple homologs (one-to-many or many-to-many
relationships), the following scores were considered, in this order of priority: confidence score; gene
order conservation (GOC) score; target %ID, which refers to the percentage of the sequence in the target
species (human) that matches to the query sequence (mouse); query % ID, which refers to the percentage
of the sequence in the query species that matches to the homologue; dN/dS ratio. The number of
oscillating genes divided by the total number of genes in each chromosome was represented by bar
plots. The extent of gene co-localization overlap was assessed by using networks. Genes of the three
subsets, i.e., 8-h, 12-h and 24-h oscillating genes, were represented as networks, where the genes,
symbolized as nodes, were linked by edges if they were located on the same chromosomes. For each
mouse and human subset of genes networks were built and then intersected by means of Pyntacle
(http://pyntacle.css-mendel.it/). An intersection network was built considering only nodes and edges
in common between the two original networks. Pairs of intersecting genes were considered to be on
the same chromosome in mouse and human, even if the chromosome were not the same between the
two species.

5. Conclusions

High-throughput analysis over time-series microarray expression data unveils harmonics in
oscillation patterns of omics that, intermingling with spatial hierarchical branching networks lapsing
in size-invariant units, could endow a fourth temporal dimension at least complementary to the fourth
spatial dimension blueprinted by fractal-like networks broadly pervasive in nature. Our wide-ranging
characterization of genomic, proteomic and functional properties of oscillating genes and proteins
suggests that ultradian and circadian rhythmicity in omics could subtend or alternatively be related to
specific mechanisms underlying the functioning of various and complex biological phenomena crucial
to make life possible.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/18/4585/s1.
Figure S1. Enrichment analysis for Gene Ontology and Reactome Pathways terms in the transcription factors for
which enriched binding sites were detected in the promoter regions of the 8-h, 12-h and 24-h gene sets. Figure
S2. High-resolution format of Figure 2. Figure S3. Pathways and GO terms enrichment analysis points at the
specific functions for each gene set. Figure S4. Enrichment analysis of histone modifications. Figure S5. High
POLE expression is associated with negative outcome for renal cancer and melanoma. Figure S6. Correlation
matrix for parameters of the 8-hours, 12-hours and 24-hours gene sets. Figure S7. Cytoscape files for the network
in Figure 4. Table S1. Enriched binding sites for known transcription factors in the upstream regions of the
promoters of the 8-h gene set. Table S2. Enriched binding sites for known transcription factors in the downstream
regions of the promoters of the 8-h gene set. Table S3. Enriched binding sites for known transcription factors
in the upstream regions of the promoters of the 12-h gene set. Table S4. Enriched binding sites for known
transcription factors in the downstream regions of the promoters of the 12-h gene set. Table S5. Enriched binding
sites for known transcription factors in the downstream regions of the promoters of the 24-h gene set. Table S6.
Enriched binding sites for known transcription factors in the upstream regions of the promoters of the 24-h gene
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set. Table S7. Descriptive statistics for the data in Table 1. Table S8. Free energy (∆G) terms included in the core
function of FoldX, the empirical force field algorithm aiming to calculate the change of ∆G in kcalmol−1. Table S9.
Chromosome mapping of oscillating genes.
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