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Highlights 

 HPA axis genetic profile predicts cortisol increase after psychosocial stress  

 Early life stress effect on emotion recognition depends on HPA axis genetic profile 

 HPA axis genetic profiles may inform our understanding of early life stress effects 

Abstract 

Background:  Early life stress (ELS) affects facial emotion recognition (FER), as well as the underlying brain 

network. However, there is considerable inter-individual variability in these ELS-caused alterations. As the 

hypothalamic-pituitary-adrenal (HPA) axis is assumed to mediate neural and behavioural sequelae of ELS, the 

genetic disposition towards HPA axis reactivity might explain differential vulnerabilities.  

Methods: An additive genetic profile score (GPS) of HPA axis reactivity was built from 6 SNPs in 3 HPA axis-

related genes (FKBP5, CRHR1, NR3C1). We studied two independent samples. As a proof of concept, GPS was 

tested as a predictor of cortisol increase to a psychosocial challenge (MIST) in a  healthy community sample  of 

n=40. For the main study, a sample of n=170 completed a video-based FER task and retrospectively reported 

ELS experiences in the Childhood Trauma Questionnaire (CTQ).  

Results: GPS positively predicted cortisol increase in the stress challenge over and above covariates. CTQ and 

genetic profile scores interacted to predict facial emotion recognition, such that ELS had a detrimental effect on 

emotion processing only in individuals with higher GPS. Post-hoc moderation analyses revealed that, while a 

less stress-responsive genetic profile was protective against ELS effects, individuals carrying a moderate to high 

GPS were affected by ELS in their ability to infer emotion from facial expressions. 

Discussion: These results suggest that a biologically informed genetic profile score can capture the genetic 

disposition to HPA axis reactivity and moderates the influence of early environmental factors on facial emotion 

recognition. Further research should investigate the neural mechanisms underlying this moderation. The GPS 

used here might prove a powerful tool for studying inter-individual differences in vulnerability to early life stress.  

Keywords: early life stress; HPA axis; G-x-E-interaction; emotion recognition; genetic profile  
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1. Introduction 

For humans navigating a social world, facial expressions are a valuable source of information about other’s 

emotional states and adequate behaviour in social interactions. Competency in inferring emotions from 

facial expressions (facial emotion recognition; FER) emerges already in infancy and continues to develop 

with increasing refinement until adolescence (Leppänen and Nelson, 2009). Early life stress (ELS; i.e. 

conditions during childhood that threaten the emotional or physical well-being and exceed the child’s 

coping resources), however, affects this development (da Silva Ferreira et al., 2014). Children who 

underwent maltreatment show a generally poorer performance in FER tasks than their non-maltreated peers 

(Pollak et al., 2000), and adults with a history of ELS show similar impairments (Germine et al., 2015; Jedd 

et al., 2015), suggesting that ELS effects on emotion processing persist throughout the lifespan. 

Such enduring alterations in emotion processing following ELS point to potential changes in 

emotion-related brain circuits. Facial emotion recognition involves a network of regions that critically 

comprises the amygdala (Fusar-Poli et al., 2009). Although neurogenesis in the amygdala is completed by 

birth, it undergoes substantial changes to its anatomy and connectivity with prefrontal regions postnatally 

(Leppänen and Nelson, 2009), making it susceptible to disruptive effects of early life stress. A growing 

body of literature indeed documents structural, functional and connectomic changes of the amygdala 

following ELS (Fareri and Tottenham, 2016; Teicher et al., 2016). Specifically, ELS has been associated 

with an increased excitability of the amygdala towards emotional faces (Dannlowski et al., 2012; McCrory 

et al., 2011; van Harmelen et al., 2013), as well as changed amygdala-prefrontal connectivity during 

emotion processing (Jedd et al., 2015). 

Although these lines of evidence consistently demonstrate changes in emotion processing and the 

involved brain network following ELS, it is still not fully understood what causes this altered development. 

Moreover, there are considerable inter-individual differences in how severely people are affected by ELS, 

both regarding behaviour and neural endophenotypes (da Silva Ferreira et al., 2014; Teicher et al., 2016), 
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the origins of which remain unclear. Investigating this variability may help to identify the neurobiological 

mechanisms underlying the sequelae of early life stress and may inform preventive and therapeutic 

interventions.  

The neuroendocrine stress response has been suggested as the main mediating factor in ELS-caused 

changes to the amygdala, as it is rich in glucocorticoid receptors (Lupien et al., 2009) and both endogenous 

cortisol and pharmacologic agonism of the HPA axis trigger amygdala activation (Bogdan et al., 2016). In 

animals, protracted GR stimulation in the amygdala alters synaptic functioning between the amygdala and 

frontal regions in a pattern similar to ELS-caused changes in humans (Myers et al., 2014). These data 

suggest that the HPA axis plays a role in how early life stress brings about changes to the core structure in 

facial emotion recognition. Accordingly, individual differences in HPA axis function might be moderating 

the effects environmental stress exerts on FER.  

HPA axis activity is highly heritable (Federenko et al., 2004) and multiple genetic association 

studies have identified polymorphisms in genes coding for HPA axis-related proteins that are associated 

with variability in the cortisol response to a psychosocial or pharmacological challenge (Supplementary 

Table 3; for an overview see DeRijk, 2009). Single nucleotide polymorphisms (SNPs) in three such genes, 

CRHR1, NR3C1, and FKBP5, are studied here (the selection process is outlined below). The CRHR1 gene 

codes for a receptor that binds corticotropin-releasing hormone and is thus a mediator of HPA axis 

activation. By contrast, the  NR3C1 gene which codes for the glucocorticoid receptor and the FKBP5 gene 

which codes for a binding protein fine-tuning GR availability,  are involved in the negative feedback loop 

of the HPA axis (Pagliaccio et al., 2014). 

Further, HPA axis relevant SNPs moderate the effects of early life stress exposure. In particular, 

neural ecophenotypes of early life stress (increased amygdala volume, increased reactivity to emotional 

stimuli, and decreased connectivity with prefrontal regions) are more pronounced in individuals with a 

genetic disposition towards greater HPA axis activity (Di Iorio et al., 2017; Holz et al., 2015; Pagliaccio et 
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al., 2015a, 2014; White et al., 2012).  Similarly, SNPs conferring greater HPA axis activity might also 

moderate the impairments of emotion recognition following ELS. Specifically, SNPs coding for important 

switch points of the HPA axis could potentiate the neuroendocrine and subsequent downstream effects of 

exposure to environmental stress, but otherwise have little differential effect in the absence of stress. 

Based on these previous findings, the present study examined whether a genetic profile score (GPS) 

reflecting functionally relevant variation in 6 loci in 3 genes coding for integral HPA axis proteins 

moderated the relationship between ELS and facial emotion recognition. This approach of building 

biologically informed genetic profile scores has previously been capable to significantly explain variance 

of endophenotypes when individual SNPs would not (Nikolova et al., 2011; Pagliaccio et al., 2014). This 

approach is especially valuable for G-x-E-interaction studies that are constrained by both the low frequency 

of risk-conferring variants and the frequency of environmental stressors. Genetic profile scores have the 

advantage of assessing higher-order function of a signalling cascade instead of the effects on single 

components of a signalling cascade that single SNPs might exert. The phenotype of HPA axis activity has 

previously been mapped in different polygenic score models (Bogdan et al., 2016) that we used to guide 

our approach (Pagliaccio et al., 2014). As a proof of concept, we tested whether the here proposed genetic 

profile predicted cortisol increase towards a psychosocial stress challenge. 

Specific Aims and Hypotheses. The aims of the present study were twofold. (1) Build a genetic profile 

score that captures the disposition to greater HPA axis activity and determine its validity by testing it as a 

predictor of the endocrine stress response after a trigger. We hypothesized that the genetic profile score 

would positively predict cortisol increase towards a psychosocial stress challenge. (2) Investigate whether 

genetic variation in the HPA axis as captured by the GPS could explain inter-individual differences in facial 

emotion recognition impairments following early life stress. We hypothesized that the genetic profile score 

would moderate the relationship between ELS and performance in the FER task, such that for individuals 

carrying higher GPS the impact of ELS on facial emotion recognition in adult life is more severe. 
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2. Methods 

Population.  Two independent subsamples from a large-scale (n=541) study conducted at Charité 

Universitätsmedizin Berlin were analysed for this study. The samples followed different protocols, and thus 

had different measures available. Sample 1 consisted of 64 participants who participated in a psychosocial 

stress challenge. Sample 2 consisted of 234 individuals who were presented a FER task. Sample 

characteristics are described in the results section and Supplementary Table 1. Inclusion criteria were age 

18–90 years, absence of present and past diagnosis of psychiatric or neurologic disease, absence of major 

or unstable general medical conditions, and ability to participate in study procedures. Participants represent 

the middle range of socioeconomic status in the general population of Germany, and by self-report 100% 

of participants in sample 1 and 2 are of European descent. Psychiatric disorders were screened for using the 

short version of the Structured Clinical Interview for Diagnostic and Statistical Manual of Mental Disorders 

(Wittchen et al., 1997). IQ was assessed with a German vocabulary test [Mehrfachwahl-Wortschatztest 

(Schmidt and Metzler, 1992)], an equivalent to the Nation Adult Reading Test). All subjects included in 

analyses had an IQ >85. The study was carried out in accordance with the latest version of the Declaration 

of Helsinki and approved by the Institutional Review Board of Charité Universitätsmedizin Berlin. All 

subjects gave written informed consent before screening and were reimbursed for participation.  

Genotyping. DNA was extracted from whole blood. Subjects were genotyped for 14 SNPs in 3 

genes coding for proteins relevant to the HPA axis (Supplementary Table 2) using iPLEX reagents and 

MassARRAY System (Sequenom Bioscience, San Diego, California). A locus-specific polymerase chain 

reaction amplification is followed by a single base extension of the SNP region performed by special 

primers. Subsequently, SNP alleles are identified with matrix-assisted laser desorption/ionisation time-of-

flight mass spectrometry (Gabriel and Ziaugra, 2004; Millis, 2011; Weissensteiner et al., 2013). 

Distribution of the SNPs studied here did not deviate significantly from Hardy-Weinberg-Equilibrium (p-

values are given in Table 1). All SNPs included in further analyses had a genotype missingness quota <5% 
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and a minor allele frequency (MAF) of >5%. FKBP 5 rs4713916 was dropped because of a missingness 

quota >5%. 

 Genetic profile score. We guided the construction of our genetic profile score by a previous 

approach of mapping genetic disposition to HPA axis activity based on prior evidence (Pagliaccio et al., 

2014). Our array contained 3 of the 10 SNPs that were included therein (i.e. CRHR1 rs110402, FKBP5 

rs1360780, NR3C1 rs41423247, marked in Table 1 with asterisks). We therefore included these 3 SNPs, 

maintaining the coding rules applied by Pagliaccio et al. (2014) for reasons of consistency.  

We further added such SNPs from our array that have been functionally associated with differential HPA 

axis functioning in at least one peer-reviewed study. To grant that every SNP conveys independent 

information, only SNPs not in linkage disequilibrium (LD) were included as otherwise, the GPS would not 

linearly reflect genetic disposition. We tested for linkage disequilibrium with χ²-tests applying a 

significance level of p<.001. rs10052957 on NR3C1, as well as rs3777747, rs3800373, and rs7757037 on 

FKBP5, were excluded because they were in LD with NR3C1 rs41423247 and FKBP5 rs1360780, 

respectively (χ²(df=4, N=370)>143.95 p<.001). We identified CRHR1 rs4792887, FKBP5 rs4713902 and 

NR3C1 rs6198 as variants matching these criteria. Hence, the GPS consisted of 6 SNPs in 3 genes (CRHR1 

rs110402 and rs4792887, FKBP5 rs1360780 and rs4713902, and NR3C1 rs41423247 and rs6198). 

Supplementary Table 3 summarizes published evidence on the SNPs that were eventually included.  

Across all loci, we assigned 1, 0.5 or 0 points to genotypes that are conferring of “strong” “intermediate” 

or “weak” disposition to a more reactive HPA axis based on previous evidence. Where it was available 

from the literature, we used information on the genetic model for the SNP (recessive, additive or dominant) 

to decide for the coding. If data on the genetic model was inconsistent or not available, we coded it to be 

additive. Table 1 shows these coding rules. Subsequently, scores were summed across loci resulting in the 

individual’s HPA axis genetic profile score.  GPS ranged from 0-6 with higher scores reflecting a genetic 

disposition to greater HPA axis activity. 

ACCEPTED M
ANUSCRIP

T



Hartling et al: Interaction of HPA axis genetics and early life stress shapes emotion recognition in healthy 

adults 

8 
 

[Table 1] 

Montreal Imaging Stress Task & Cortisol. Psychosocial stress was induced with the Montreal 

Imaging Stress Task (MIST; Dedovic et al., 2005). In the MIST, participants are shown mental arithmetic 

challenges while lying in the scanner. The items are chosen by an algorithm that varies task difficulty to 

yield a constant 45-50% correct response rate by adjusting complexity and time limit to the participant’s 

performance. Feedback is given after each trial and a cumulative performance score is presented aside a 

fictive ‘expected performance’ score of 80%. After half of the trials, participants are told that their 

performance is insufficient for their data to be useful and that they should hence please repeat the task with 

greater effort (i.e. take the parallel second half of the test). These elements of uncontrollability and social 

evaluative threat have been shown to induce behavioural and physiological stress and anxiety responses. 

After the session, subjects are debriefed that the task was designed to be impossible to accomplish and that 

it did not reflect their ability to perform mental arithmetic. 

Saliva samples were collected using the Salivette sampling device (Sarstedt) while subjects were in the 

scanner before (T0) and immediately after the MIST task (T1, roughly 20min after T0; for a full description 

of the procedure, see Grimm et al., 2014). To ensure relatively stable endogenous cortisol levels, all subjects 

arrived between 1 and 3 p.m. in our laboratory.  Saliva derived cortisol was analyzed using a time-resolved 

fluorescence immunoassay (Dressendörfer et al., 1992). We calculated the percentage of increase in saliva 

cortisol in response to the psychosocial stress challenge as follows: 
𝑇1−𝑇0

𝑇0
∗ 100. In a recent study that 

extracted two components among the various cortisol measures used in psychoneuroendocrine research, 

this percentage increase measure was found to represent ‘change in cortisol levels’ (Khoury et al., 2015). 

Early life stress assessment. A retrospective self-report measure, the German version of the Childhood 

Trauma Questionnaire (CTQ; Bernstein and Fink, 1998) was used to assess the extent of early life stress 

that subjects had experienced. The CTQ consists of 28 items (e.g. “When I grew up… …people in my 
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family said hurtful or insulting things to me”) on 5 subscales: physical abuse, physical neglect, emotional 

abuse, emotional neglect and sexual abuse. Scores on each subscale range from 5 to 25, where higher scores 

indicate a more extensive exposure to that kind of stressful experience.  A total score of <29 is considered 

as no exposure, scores of 29-34 as mild, of 34-41 as moderate and of 41 and above as severe (Scher et al., 

2001).  

Facial emotion recognition. We presented participants with 24 short video clips of target emotions 

(11 positive, 13 negative) portrayed by 15 professional actors (7 male, varying age (20–50 years)). In total, 

four basic (happy, disgusted, fearful, surprised) and 20 complex (interested, amused, aggrieved, troubled, 

jealous, enthusiastic, apologetic, disappointed, relieved, expectant, bored, compassionate, contemptuous, 

pardoning, embarrassed, wistful, furious, content, confident, doubtful) emotions were covered. The video 

clips were mute offering only visual cues. Subjects were seated in front of a screen, that showed the target 

video in the upper centre. Four emotion labels (one correct and three distractors) were provided in the lower 

half of the screen and participants were asked to choose the correct one. The trial was completed when the 

chosen label was dragged-and-dropped into a target area with the computer mouse. The task was self-paced, 

i.e. the video was repeated in loops until the trial was completed. Distractor labels consisted of (1) two 

emotions of the same valence, one with similar valence and arousal levels and one that differed more in 

arousal level but had the same valence as the target item, and (2) one emotion of the opposite valence. 

Figure 1 shows an example trial. Participants were asked to perform as fast and as accurately as possible. 

Performance was measured as the percentage of correct answers from all trials (For a more detailed report 

on task development and psychometric properties see “Face Puzzle explicit” in Kliemann et al., 2013)).  

[Figure 1 and caption] 

Statistical analysis. Covariate distribution was investigated with t-tests, contingency tables and Pearson 

or Spearman correlation for normally and non-normally distributed variables respectively. All descriptives are 

given as mean ± standard deviation. All continuous values were mean-centred, and any interaction terms were 
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computed as the dot product of these. For display purposes, however, raw data values are used to aid 

interpretability. GPS main and interaction effects were tested with hierarchical multiple regression (HMR). For 

all regression analyses conducted, the number of predictor variables entered did not exceed the criterion of n=20 

+ 5k suggested by Khamis and Kepler (2010). We screened for multivariate outliers by calculating Mahalanobis 

distance prior to model estimation. Data points that exceeded a cut-off of p<.001 for the χ² value were excluded 

from analysis.  We further identified data points that exerted an excessive influence on the HMR model, using 

Cook’s distances following each model estimation. Data points with a Cook’s distance exceeding the sample-

specific cut-off of 4/sample size were removed from the analysis, and the HMR model was re-estimated. We 

report results from the final HMR models free of outliers and influential data points.   

The association between GPS and cortisol increase to MIST was tested in an HMR model that in a first step 

contained factors know to predict cortisol response, age, gender and ELS exposure  (Foley and Kirschbaum, 

2010; Kudielka et al., 2004),  and in the next step added genetic profile score as the predictor of interest.  

HMR was further employed to test whether the GPS and early life stress jointly predicted facial emotion 

recognition capacity. In the first step, three covariates that have previously associated with FER (Baker et 

al., 2014; Hall et al., 2010; Pardini and Nichelli, 2009; Sullivan and Ruffman, 2004) were entered: age, IQ, 

gender. In the second step, the genetic and environmental main predictors GPS and CTQ were entered 

together with interaction terms between covariates and main predictors (i.e. CTQ x gender, CTQ x age, 

CTQ x IQ, GPS x gender, GPS x age, GPS x IQ). This has been recommended in G x E interaction studies 

to better account for potential confounds (Keller, 2014). In the final step, the GPS x CTQ interaction term 

was entered. To examine the interaction effect, we tested whether successive regression steps significantly 

increased the variance explained by the model (ΔR²). We used the simple moderation model from the 

PROCESS tool for SPSS (Hayes, 2013) to probe significant interaction effects with the Johnson-Neyman 

technique (J-N technique), which determines significance transition points along the moderator. These 

values returned by the J-N technique represent the range of the moderator within which the simple slope of 

the DV on the IV is significantly different from zero. 
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All tests were two-tailed, and the significance threshold was set at p <.05. Statistical analyses were carried 

out using Predictive Analysis SoftWare, version 18.0. 

3. Results 

Hypothesis 1: Genetic profile score of HPA axis genes predicts cortisol response. 64 participants 

completed the MIST, 61 of which met the inclusion criteria. For 14 subjects, cortisol data was missing from 

T0 or T1 or both, and for another 6 genotyping was not successful for all 6 SNPs of interest (missing values 

were missing completely at random (MCAR), Little’s MCAR test χ²(6,N=64)=11.162 p=0.083). One 

subject was detected as a multivariate outlier, leaving a final sample of n=40 (18-62 years, M=30.8±9.93, 

75% male). For each subject, a genetic profile score was computed as described above. The resulting GPS 

ranged from 0-4 and was normally distributed. Early life stress experience in this sample (i.e. CTQ range 

25-68 M=35.68±10.92) was comparable to other community samples (Scher et al., 2001) and genetic profile 

score was not significantly associated with any of the covariates (i.e. age, gender, CTQ score; all p>.08). 

All correlations between variables and distribution between genders can be found in Supplementary Table 

4.  

A paired-samples t-test comparing raw salivary cortisol concentrations before MIST and after MIST in all 

individuals with cortisol measures from both time points (n=50) indicated a significant increase in cortisol 

concentration from time point t0 (M=3.37±3.35 nmol/l) to t1 (M=4.18±4.81 nmol/l; t(49)=-2.314 p=.025). 

The  percental increase in saliva cortisol ranged from -68% to +118% with M=11.2% ± 55.9%. 19 out of 

40 participants (47.5%) showed a positive increase in saliva cortisol, indicating they responded to the stress 

challenge (Pruessner et al., 2008). Within responders, the mean increase in cortisol levels was 53.2% and 

was significant between T0 and T1 (Z=-3.823 p<.001). Supplementary Table 7 shows variables of interest 

compared between responders and non-responders. Responders’ GPS (M=2.5 ± 0.83) was significantly 

higher than non-responders’ (M=1.93 ± 0.93; t(38)=-2.043  p=.048).   

ACCEPTED M
ANUSCRIP

T



Hartling et al: Interaction of HPA axis genetics and early life stress shapes emotion recognition in healthy 

adults 

12 
 

A hierarchical regression model revealed GPS to be a significant predictor (β=.42 p=.008 ΔR²=.17) of 

cortisol increase to psychosocial stress over and above the covariates age, gender and CTQ, all of which 

have previously been associated with cortisol response (Essex, 2011; Heim et al., 2004; Kudielka et al., 

2004). The variance uniquely explained by genetic profile scores amounted to 17% (ΔR²=.17, F(4,35)= 

7.928, p=.008). All predictors’ beta-weights and significance levels are presented in Table 2, aside to 

explained variance and F- and p-value for each step of the model individually and in change from the 

previous step. Figure 2 shows a scatter plot of cortisol increase in percent against genetic profile score with 

a simple regression line plotted.  

[Table 2 and Figure 2] 

Post-hoc, we excluded participants with a history of sexual abuse (n=6) from the cortisol sample and ran 

the same hierarchical regression in that smaller sample (n=34) as sexual abuse has been associated with 

distinct patterns of stress reactivity compared to other ELS subtypes (Essex, 2011). In this analysis too, 

genetic profile score significantly predicted cortisol increase (β=- .298, p=.028, ΔR²=.144) above the 

covariates. It should be noted that this sample is smaller than recommended for multiple regression with 

this number of predictors.   

Equally post-hoc, a two-step hierarchical multiple regression model (step 1: covariates age, gender and 

CTQ; step 2: GPS) was calculated to predict baseline cortisol. Results did not show a significant relationship 

between the GPS and baseline cortisol (β=0.042 p=.267), indicating that the genetic association is specific 

to the triggered cortisol response.   
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Hypothesis 2: Genetic profile score of HPA axis genes moderates the effect of early life stress 

on facial emotion recognition. 234 participants from the EEPT study were presented the FER task. As 

sexual abuse has been associated with distinct patterns of stress reactivity compared to other ELS subtypes 

(Essex, 2011), any reported sexual abuse experience led to exclusion from further analysis, which was the 

case for 34 subjects. We had to exclude 21 subjects for insufficient genetic data (missing values were 

missing completely at random, Little’s MCAR test χ²(8,N=234)=14.472 p=0.070)., one multivariate outlier, 

and eight influential data points that exceeded the cut-off for Cook’s distance. The remaining sample held 

n=170 subjects (aged 19-77, M=43.2±19.9 years, 56% male). CTQ total scores in this sample (i.e., 

M=34.4±8.7) were comparable to other community samples (Scher et al., 2001). Genetic profile scores 

ranged from 0 to 4.5 and were normally distributed (Supplementary Figure 2). GPS was not significantly 

associated with any of the covariates (all p>.19), all correlations between variables and distribution between 

genders can be found in Supplementary Table 5. 

Accuracy in the facial emotion recognition task ranged from 50-95.8% with M=78.3±9.5%. A three-step 

hierarchical regression analysis was conducted to predict FER from genetic profile score and CTQ scores 

controlling for covariates age, gender and IQ, and possible interactions between covariates and the gene- 

and environment variables. The model with all 12 predictors significantly explained 29.7% of the variance 

in facial emotion recognition (Model R²=.297, Model R²adj=.243, F(12,157)= 5.525, p<.001). A simple 

effect of early life stress exposure reached marginal significance only in the third step of the analysis when 

the GPS-x-CTQ interaction term was added (β=-.136, p=.056). Independently, genetic profile score did not 

significantly predict FER accuracy (β=-.003, p=.971). After accounting for all covariates, simple effects 

and gene-covariate- and environment-covariate-interactions, the interaction of CTQ and genetic profile 

score significantly predicted facial emotion recognition (β=- .190, p=.009). The interaction term of CTQ 

and GPS accounted for an additional 3.2% of explained variance (ΔR²=.032, F(1,157)=7.098, p<.001). All 

predictors’ beta-weights and significance levels are presented in Table 3, as well as explained variance and 

F- and p-value for each step of the model itself and in change from the previous step.  
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Post-hoc probation was done to understand the nature of the detected interaction. Johnson-Neyman testing 

revealed that CTQ scores were negatively associated with FER among those with a genetic profile score > 

2.55, i.e. the upper 54.2% of our sample. Figure 3 shows raw data (GPS plotted against task performance) 

overlain with model-derived simple slopes at different values for CTQ: mean – SD, mean, and mean +SD. 

The shadowed area marks the region of significance where there is a significant negative effect of CTQ on 

facial emotion recognition. Supplementary Figure 3 visualises the region of significance of the interaction 

as the values of GPS where the confidence band of the conditional effect (the effect of CTQ at a certain 

value of the moderator GPS) does not include 0. 

[Table 3 and Figure 3] 

4. Discussion 

The present study adopted a biologically-informed genetic profile score approach (Nikolova et al., 2011) 

to examine whether functionally relevant genetic variation within the HPA axis interacts with ELS to 

predict facial emotion recognition ability. Our results show that an additive genetic profile score of 

canonical HPA axis gene variants is predictive of the increase of cortisol towards a psychosocial stress 

challenges and moderates the negative effect that self-reported early life stress exerts on facial emotion 

recognition ability.  

Genetic profile score of HPA axis genes predicts cortisol response. Genetic profile score 

positively predicted the increase of cortisol towards a psychosocial stress challenge. Individuals carrying a 

greater GPS and thus more variants linked to HPA axis function showed greater relative cortisol excretion 

when stressed by a mental arithmetic task. This result indicates that the GPS maps genetic disposition to a 

greater cortisol response to psychosocial stress, thereby providing validation for our polygenic approach. 

The GPS explained 17% of variance in the cortisol response to stress. Even though the rationale behind 

pooling genetic variability into profiles is to augment explanatory power, this effect size is surprisingly 

large. Even GWAS-derived polygenic risk scores, that comprise any genetic variants associated with 
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phenotype regardless of pathway, do not usually explain variance in this magnitude (with the exception of 

schizophrenia; Franke et al., 2016). In Pagliaccio and colleagues’ study (2014) the HPA-axis polygenic 

score and stressful life events jointly explained 8% of variance. The present effect size should thus be 

considered an inflated estimate. Because of the moderate size of the cortisol sample we were unable to 

perform an analysis for an interaction effect between HPA axis genetic variation and early life stress shaping 

the cortisol response, although an already fairly rich literature suggests such effects for several of the 

variants included in our score (Mehta and Binder, 2012; Tyrka et al., 2009). Such an unaccounted-for 

interaction effect may make the simple effect seem larger than it truly is. 

Genetic profile score of HPA axis genes moderates the effect of early life stress on facial 

emotion recognition. As hypothesized, we found that the effect of ELS was moderated by the genetic profile 

score, such that the negative effect of ELS on facial emotion recognition was dependent on the number of stress-

responsive genetic variants individuals carried. While individuals with lower GPS were not significantly affected 

by early life stress, we observed such an impact in individuals with a moderate to high GPS, with its severity 

increasing with GPS. The impact that exposure to early life stress exerts on an individual’s affect recognition 

seems thus to be dependent on their disposition to HPA axis activity, where a less responsive make-up of the 

HPA axis is protective against ELS effects, while greater stress-responsivity is associated with greater 

malleability.  

There is, to our knowledge, no previous behavioural study that has investigated a moderating role of HPA 

axis genes in the relationship between ELS and emotion recognition. However, several studies have 

investigated such a moderation in ELS-caused changes to the neural underpinnings of emotion processing. 

A recent report found an interaction between an HPA axis genetic profile score and CTQ scores predicting 

amygdala response to threat-related stimuli (Di Iorio et al., 2017). There, CTQ positively predicted 

amygdala reactivity only among individuals carrying more HPA axis variants, but no such association 

emerged for individuals with a lower or average number of genetic variants. Previously, two studies had 

shown one component of our genetic profile score, FKBP5 rs1360780, to be a moderator of the effect of 
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emotional neglect (a form of early life stress assessed with the CTQ) on amygdala responsivity towards 

emotional faces (Holz et al., 2015; White et al., 2012). To the contrary, Pagliaccio and colleagues (2015b) 

found a main effect of ELS on amygdala response to threat stimuli in children, but no significant moderation 

by a genetic profile of HPA axis activity. Notably, however, this study used a prospective instead of a 

retrospective measure of ELS. Several studies that employed both types of assessments have reported 

discrepant results where objective measures did not yield G x E-interaction effects while the retrospective 

CTQ did. This might be because retrospective measures capture emotionally loaded, memorable events that 

might be more predictive of ELS effects than acutely adverse family conditions. 

Overall, these studies provide evidence that HPA axis genes moderate ELS effects on the processing of 

emotions. While the studies discussed above have only employed negative or threat-related stimuli, there 

is mixed evidence on valence-specific effects of early life stress effects on amygdala reactivity to emotional 

faces. Amygdala hyperactivity has often been found across emotional valence (McCrory et al., 2011; van 

Harmelen et al., 2013), yet sometimes only selectively for negative stimuli (Dannlowski et al., 2012). The 

amygdala was initially believed to be implicated in the processing of threat-related emotions exclusively, 

probably because its activation pattern is more pronounced for fearful stimuli. It has, however, since been 

associated with processing of both reward- and threat-related emotions (Leppänen and Nelson, 2009) and 

a recent meta-analysis confirmed greater amygdala responsivity to emotional stimuli across valences as an 

ecophenotype of ELS (Hein and Monk, 2017).  

Similarly, a pattern of higher sensitivity and lower specificity of the amygdala has been found following 

acute stress in humans. Stress induction augments amygdala responses to equally high levels for threat-

related and positive stimuli, blurring the threat-selective activation pattern the amygdala showed in a control 

condition (van Marle et al., 2009). Reviewing ELS effects on amygdala and striatum, Fareri and Tottenham 

(2016) recently proposed that ELS impairs the amygdala’s ability to feed value-based information into 

neural circuits associated with affective valuation. Although speculative at this point, these data provide a 
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potential mechanistic framework to understand how early environments influence subsequent emotion 

processing and the role of HPA axis genetics in this relationship. Further research with concurrent 

assessment of neural substrates and behavioural data of emotion recognition is needed to investigate this 

putative pathway.  

There are a number of points that such a study could also help elucidate: For one, the relationship between 

FER and amygdala reactivity to threat that has been linked to genetic variants also outside the HPA axis  

(e.g. the serotonin transporter gene SLC6A4; Hariri et al., 2002) and is a manifestation, as well as, a risk 

factor of mood and anxiety disorders (Avinun et al., 2017). Further,  the role of structures apart from the 

amygdala, that are involved in facial emotion recognition (Fusar-Poli et al., 2009) and architecturally or 

functionally changed by chronic stress (Arnsten, 2015; Teicher et al., 2016) but have thus far received less 

attention (Hein and Monk, 2017). For conceptual clarity, FER deficits following ELS should be 

disentangled from alexithymia, a personality trait characterized by difficulties identifying and 

communicating subjective feelings, that has been equally linked to early life stress (Aust et al., 2013; Terock 

et al., 2018)). Subjects with high levels of alexithymia have been shown to have difficulties not only naming 

their own but also inferring emotions from other people’s facial expressions (Grynberg et al., 2012) and 

show reduced volume of brain regions that are involved in FER (Xu et al., 2018).    

From the data available, it cannot be ruled that the interaction of HPA axis genes with CTQ scores is not 

mediated by adult life functioning of the HPA axis. However, previous studies found no influence of acute 

cortisol levels on facial emotion recognition (Smeets et al., 2009). It is thus unlikely that acute cortisol 

levels during the task had an influence on facial emotion recognition.  

It should be noted that the simple effect of CTQ on facial emotion recognition did not reach significance. 

As a simple effect in HMR models with mean-centred variables and an interaction effect it can be 

interpreted as the sole effect of CTQ when the HPA profile is set to average as well as all covariates set to 

their mean, which would have been predicted from previous reports. This points to a generally rather 
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weak association between exposure to early life stress and FER ability in a population of healthy adults. 

This is plausible in the light of studies showing that deficits in FER after early life stress are remediable 

(Bick and Nelson, 2016; Nelson et al., 2013). 

The interaction of CTQ scores and genetic profile significantly explained an additional 3.2% of variance in 

facial emotion recognition after accounting for all covariates and potential confounds. This is a considerable 

effect size compared to single SNP studies (Manolio et al., 2009). Thus, this study provides novel evidence 

for the utility of biologically-informed genetic profile scores in mapping interindividual differences in 

susceptibility to ELS effects. 

Limitations. It is important to consider the present results in the context of the limitations of the polygenic 

profile approach, the cross-sectional study design, sample size and the large-scale study approach. While 

combining several sources of genetic variability reflecting one biological trait has several strengths like the 

increase in power and literature-derived composition, it is also a relatively novel approach that is faced with 

challenges. Biologically informed polygenic approaches rely essentially on prior functional association 

studies, which have sometimes been inconsistent and still need more replication. Notably, for the CRHR1 

variant rs110402, both the A- and G-allele have been linked to indices of greater HPA axis reactivity 

(Cicchetti et al., 2011; Mahon et al., 2013). Further, only two of the included variants, FKBP5 rs167830 

and NR3C1 rs6198, have been functionally characterised, while the remaining SNPs are intronic and there 

is, to date, no evidence of their mechanistic relevance. Henceforth, the functional relevance of our score 

still needs to be explored. These caveats notwithstanding, the association between the genetic profile score 

we propose and the cortisol response to psychosocial stress can be regarded as a proof of concept, indicating 

that the GPS reflects genetic disposition towards a stronger cortisol response.   

In addition, collapsing genetic variability relies on several assumptions. Firstly, supposing additivity, hence 

a linear relationship between SNPs and phenotype, it neglects potential epistatic (i.e. gene-gene-interaction) 

effects. This may be regarded a strong assumption, although there is some support for this view in complex 
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trait genetics (Polderman et al., 2015). Secondly, it neglects potential downstream homeostatic regulations 

(e.g. receptor downregulation). Thirdly, SNPs are unlikely to contribute equally to the phenotype across 

different genes, as using an unweighted score implies. However, ample, and ideally meta-analytic, data is 

needed to derive individual SNPs’ weights, which is not yet available from the literature. Refining the 

polygenic profile approach is an important purpose for future research that will be vastly helped by better 

priors, comprehensive understanding of biological pathways, and meta-analytically determined effect sizes. 

To aid this in the future, we have presented the effects of individual SNPs in the supplement (Supplementary 

Table 6).  

While we sought to follow methods of GPS construction by another group (Pagliaccio et al., 2014), we 

were unable to test the exact same genetic profile because of insufficient genetic data and thus created a 

new one applying their selection criteria on our dataset. Following a different selection rationale (including 

only functionally characterized variants into the score), DiIorio and colleagues (2017) tested yet another 

genetic profile of HPA axis genetic variability. This diversity of approaches (emerging from different 

selection criteria and coding rules) illustrates that, at this point, there are a plethora of reasonable polygenic 

scores that could be employed. This increases the risk of false positives and impedes meta-analysis on this 

kind of study. Moving forward, the field should strive to develop standard profiles for different pathways 

as research tools. 

There are also some limitations to the study design that need to be considered. First, while the task employed 

here is an especially naturalistic measure of facial emotion recognition, due to its employment of video 

material of complex emotions, it prohibits conclusions on the differential recognition of basic emotions and 

we can thus not relate our results to the body of literature that investigated such effects (Pollak et al., 2000). 

Secondly, as we did not directly assess amygdala reactivity, we can only speculate about the neural 

mechanisms that mediate the interaction effect we observed. Further, the cross-sectional design of this study 

prohibits the analysis of the genetic disposition, environmental stressors, and FER within a developmental 
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framework. Future research in a longitudinal sample that also integrates biomarker assessments could 

elucidate the developmental trajectories and endophenotypes that lead toward adult affective processing. 

Thirdly, the CTQ is a global measure of stressful situations collapsed over the first 17 years of life that does 

not assess factors like timing and chronicity of the stressor, which likely shape ELS effects (Lupien et al., 

2009). Future studies would ideally employ a more fine-grained analysis of the environmental variable. 

Studying early life stress effects in healthy adults also comes with the risk of disproportionally sampling 

resilient individuals. Further, our study used a design regressing over the continuum of stressful experiences 

in childhood, from exposure in the normal range to cases of harsh maltreatment, with only 16% of our 

sample falling into the ‘severe’ category of ELS. While this approach is helpful in detecting gradual 

alterations in neurocognitive functioning as a function of the extent of ELS exposure, it does not allow for 

the same strong inferences about consequences of severe maltreatment that an exposed-control group design 

would.  

Moreover, given that genetic effects are known to be small and oftentimes hard to replicate (Avinun et al., 

2017) the sample size is a major limitation of this study. This is especially true for the smaller sample of 

the cortisol study, as cortisol is in itself a noisy measure (Kudielka et al., 2009). Further, a substantial 

number of participants values (20 out of 64 in sample 1, 21 out of 234 in sample 2, i.e. >5%) could not be 

included in analyses due to missing values from laboratory analyses. The present report should thus be 

treated with caution until replicated in an independent sample.    

More broadly, it should also be noted that this study was part of a large-scale investigation into the 

interactive effects of early environment and genetics in shaping emotional phenotypes. This type of research 

allows for the compilation of a well-powered dataset that can be used to address multiple research questions, 

an asset especially for studies with expectedly small effect sizes like genetic effects. However, such studies 

often lack some data that would be useful for specific research questions (in the case of this study, for 

example, NR3C2 variants, that have been used in previous genetic profiles of the HPA axis (Di Iorio et al., 
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2017; Pagliaccio et al., 2014), were not available from the dataset) or rely on easily assessable measures 

(such as the CTQ instead of more fine-grained and objective ELS assessments and cortisol rather than 

ACTH assessment), which are obvious limitations. Finally, with the possibility to test multiple hypotheses 

comes higher risk for false positives. Ultimately, this can only be alleviated by transparency regarding (and 

possibly also formal pre-registration of) hypotheses and planned analyses and, crucially, replication.   

5. Conclusion and future directions 

Limitations notwithstanding, this study provides evidence suggesting that a profile of genetic variance 

associated with variability in HPA axis activity moderates the impact of early life stress on facial emotion 

recognition. If replicated in an independent sample, the effect described here may indicate a biological 

mechanism of vulnerability towards the detrimental effects that ELS has on social and emotional 

functioning. The present study contributes to a growing body of literature emphasising the importance of 

this pathway in understanding ELS effects.   

Several interesting directions for future research emerge from this study. First, further investigation into the 

interplay of molecular, endocrine and brain functional and behavioural levels of early life stress effects will 

shed further light on the developmental trajectories that shape normal and vulnerable patterns of responding 

to social cues of emotions. An emerging line of research suggests that gene methylation of HPA axis related 

genes may mediate early life stress effects (Bogdan et al., 2016; Romens et al., 2015). Concurrent 

assessment of genotype and methylation rate in studies on ELS effects will shed further light on this putative 

pathway. Second, to understand better the normative and impaired functioning of the amygdala, an 

important goal for future studies is to investigate amygdala responsiveness towards, and its role in, the 

recognition of both threat- and reward-related emotional stimuli. Third, investigating how ELS-caused 

deficits in facial emotion recognition are related to broader difficulties with emotion processing and 

regulation or confer vulnerability to affective and social disorders will inform preventive and therapeutic 
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interventions. There is promising evidence that early intervention can support recovery from damage done 

to emotion-related brain circuits caused by early life stress (Bick and Nelson, 2016). 

More broadly, our study adds to the emerging evidence that genetic profiles curated to capture the system-

level genetic variation of biological traits may become powerful research tools that will advance the study 

of individual differences in risk and resilience.
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Figr-1 

Figure 1 Screenshot of a sample video stimulus of the facial emotion recogntion task and 4 response options. The target response 

‘carefree’ [‘heiter’] is presented among 3 distractors, one with the same valence and arousal level (‘proud’[‘stolz’]), one with the same 

valence but different arousal level (‘in love’[‘verliebt’]) and one emotion of the opposite valence (‘scared’[‘ängstlich’]]). 
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Figr-2 

 

Figure 2 Percentual cortisol increase to psychosocial stress challenge (Montreal Imaging Stress Test) plotted against genetic profile score. 
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Figr-3 

 
Figure 3 Facial emotion recognition plotted against genetic profile scores (raw data, grouped according to CTQ scores: CTQ <27 (M-

SD), <43 and >43 (M+SD)). Simple slopes from post-hoc analyses at M-SD, M, and M+SD. J-N-analyses revealed a significance transition 

point at 2.55, i.e., for subjects with a GPS >2.55 there is a significant negative effect of CTQ on facial emotion recognition. 
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Gene SNP Alleles MAF HWE p 

Coded 

variant 

Genetic 

model  Coding rule  

CRHR1 rs110402* G>A .468 .56 A recessive AA=1 GA=0 GG=0 

CRHR1 rs4792887 C>T .087 .48 T additive TT =1 CT=0.5 CC=0 

FKBP5 rs1360780* C>T .312 .84 T dominant TT=1 CT=1  CC=0 

FKBP5 rs4713902 T>C .282 .18 C dominant CC=1 CT=1  TT=0 

NR3C1 rs41423247* G>C .345 .19 G recessive GG=1 CG=1  CC=0 

NR3C1 rs6198 T>C .152 .57 G additive GG=1 AG=0.5 AA=0 

Table 1 SNPs included in the genetic profile score, minor allele frequencies (MAF) and Hardy-Weinberg-equilibrium (HWE) and coding 

rules for contribution to the GPS.  SNPs also included in Pagliaccio et al. 2014 are marked with asterisks.  
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  Step 1 Step 2 

Step β p β p 

1 Age .180 .312 .118 .472 

1 Gender .243 .165 .258 .109 

1 CTQ .063 .712 .026 .870 

2 GPS   .420 .008 

 Model R²  0.082  0.251 

 Model Adjusted R²  0.005  0.166 

 Model F  1.069  2.938 

 Model p  .374  .034 

 Δ R²    .169 

  Change F    7.928 

 Change p    0.008 

Table 2 Regression analysis of cortisol increase on genetic profile score (GPS). Standardised beta- and p-values are presented for each 

predictor. For each step of the model, the R², adjusted R², F-, and p-value are presented, as well as the p-value for change in R² at each 

step. Any predictor, model or change in R² significant at p<0.05 is boldened. 
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Table 3 Regression analysis of facial emotion recognition on Childhood Trauma Questionnaire (CTQ), genetic profile score (GPS), and 

their interaction. Standardised beta- and p-values are presented for each predictor. For each step of the model, the R², adjusted R², F- 

and p-value are presented, as well as the p-value for change in R² at each step. Any predictor, model or change in R² significant at p<0.05 

is boldened.  

  Step 1 Step 2 Step 3 

Step β p β p β p 

1 Age -.464 <.001 -.446 <.001 -.438 .000 

1 Gender -.204 .003 -.218 .002 -.238 .001 

1 IQ .114 .129 .120 .122 .120 .115 

2 CTQ   -.095 .181 -.136 .056 

2 GPS   -.013 .856 -.003 .971 

2 Age x GPS   -.008 .915 .018 .808 

2 Gender x GPS   .002 .979 .005 .938 

2 IQ x GPS   .064 .387 .074 .305 

2 Age x CTQ   

.044 .647 .093 .334 

2 Gender x CTQ   -.098 .230 -.109 .175 

2 IQ x CTQ   
-.016 .863 -.021 .814 

3 CTQ x GPS     -.190 .009 

 Model R2  .247  .265  .297 

 Model Adjusted R2  .234  .214  .243 

 Model F  18.162  5.183  5.525 

 Model p  <.001  <.001  <.001 

 Δ R²  .247  .018  .032 

 Δ F  18.162  .485  7.093 

  Δ p  <.001  .866  .009 
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