
Playing with Derivation Modes and
Halting Conditions

Rudolf Freund

TU Wien, Institut für Logic and Computation
Favoritenstraße 9–11, 1040 Wien, Austria
E-mail: rudi@emcc.at

Summary. In the area of P systems, besides the standard maximally parallel derivation
mode, many other derivation modes have been investigated, too. In this paper, many
variants of hierarchical P systems and tissue P systems using different derivation modes
are considered and the effects of using different derivation modes, especially the maxi-
mally parallel derivation modes and the maximally parallel set derivation modes, on the
generative and accepting power are illustrated. Moreover, an overview on some control
mechanisms used for (tissue) P systems is given.

Furthermore, besides the standard total halting mode, we also consider different halt-
ing conditions such as unconditional halting and partial halting and explain how the use
of different halting modes may considerably change the computing power of P systems
and tissue P systems.

1 Introduction

The basic model of P systems as introduced in [19] can be considered as a dis-
tributed multiset rewriting system, where all objects – if possible – evolve in par-
allel in the membrane regions and may be communicated through the membranes.
But also P systems operating on more complex objects (e.g., strings, arrays) are
often considered, too, for instance, see [8].

Besides the maximally parallel derivation mode, many other derivation modes
have been investigated during the last two decades. Thus in this paper the defini-
tions of the standard derivation modes used for P systems and tissue P systems are
recalled. Various interpretations of derivation modes known from the P systems
area are illustrated and well-known results are presented in a different manner.

Moreover, we not only consider the standard total halting, but also other halt-
ing conditions such as unconditional halting, see [5], and partial halting, see [12].
We explain and give some examples how the use of different halting modes may
considerably change the computing power of P systems and tissue P systems.

Overviews on the field of P systems can be found in the monograph [20] and
the Handbook of Membrane Computing [21]; for actual news and results we refer

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/286565294?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

92 R. Freund

to the P systems webpage [23] as well as to the Bulletin of the International
Membrane Computing Society. The reader is assumed to be very familiar with the
basic definitions and notations of P systems and tissue P systems as well as of the
commonly used derivation modes and halting conditions.

2 Prerequisites

The set of integers is denoted by Z, and the set of non-negative integers by N.
Given an alphabet V , a finite non-empty set of abstract symbols, the free monoid
generated by V under the operation of concatenation is denoted by V ∗. The ele-
ments of V ∗ are called strings, the empty string is denoted by λ, and V ∗\{λ} is
denoted by V +. For an arbitrary alphabet V = {a1, . . . , an}, the number of occur-
rences of a symbol ai in a string x is denoted by |x|ai , while the length of a string x
is denoted by |x| =

∑
ai∈V |x|ai . The Parikh vector associated with x with respect

to a1, . . . , an is (|x|a1 , . . . , |x|an). The Parikh image of an arbitrary language L
over {a1, . . . , an} is the set of all Parikh vectors of strings in L, and is denoted by
Ps(L). For a family of languages FL, the family of Parikh images of languages
in FL is denoted by PsFL, while for families of languages over a one-letter (d-
letter) alphabet, the corresponding sets of non-negative integers (d-vectors with
non-negative components) are denoted by NFL (NdFL).

A (finite) multiset over a (finite) alphabet V = {a1, . . . , an}, is a mapping f :

V → N and can be represented by 〈af(a1)1 , . . . , a
f(an)
n 〉 or by any string x for which

(|x|a1 , . . . , |x|an) = (f(a1), . . . , f(an)). In the following we will not distinguish
between a vector (m1, . . . ,mn), a multiset 〈am1

1 , . . . , amn
n 〉 or a string x having

(|x|a1 , . . . , |x|an) = (m1, . . . ,mn). Fixing the sequence of symbols a1, . . . , an in an
alphabet V in advance, the representation of the multiset 〈am1

1 , . . . , amn
n 〉 by the

string am1
1 . . . amn

n is unique. The set of all finite multisets over an alphabet V is
denoted by V ◦.

The family of regular, context-free, and recursively enumerable string languages
is denoted by REG, CF , and RE, respectively. For example, PsREG = PsCF ,
which is the reason why in the area of multiset rewriting CF plays no role at
all, and in the area of membrane computing we usually get characterizations of
PsREG and PsRE.

An extended Lindenmayer system (an E0L system for short) is a construct
G = (V, T, P,w), where V is an alphabet, T ⊆ V is the terminal alphabet, w ∈ V ∗
is the axiom, and P is a finite set of non-cooperative rules over V of the form
a→ u. In a derivation step, each symbol present in the current sentential form is
rewritten using one rule arbitrarily chosen from P . The language generated by G,
denoted by L(G), consists of all the strings over T which can be generated in this
way by starting from the initial string w. An E0L system with T = V is called a
0L system.

For more details of formal language theory the reader is referred to the mono-
graphs and handbooks in this area as [7] and [22].

Playing with Derivation Modes and Halting Conditions 93

Register machines

A register machine is a tuple M = (m,B, l0, lh, P), where m is the number of
registers, B is a set of labels, l0 ∈ B is the initial label, lh ∈ B is the final label,
and P is the set of instructions labeled by elements of B. The instructions of M
can be of the following forms:

• l1 : (ADD(j), l2, l3), with l1 ∈ B\{lh}, l2, l3 ∈ B, 1 ≤ j ≤ m.
Increases the value of register j by one, followed by a non-deterministic jump
to instruction l2 or l3. This instruction is usually called increment.

• l1 : (SUB(j), l2, l3), with l1 ∈ B\{lh}, l2, l3 ∈ B, 1 ≤ j ≤ m.
If the value of register j is zero then jump to instruction l3; otherwise, the
value of register j is decreased by one, followed by a jump to instruction l2.
The two cases of this instruction are usually called zero-test and decrement,
respectively.

• lh : HALT . Stops the execution of the register machine.

A configuration of a register machine is described by the contents of each register
and by the value of the current label, which indicates the next instruction to be
executed. Computations start by executing the instruction l0 of P , and terminate
with reaching the HALT-instruction lh.

M is called deterministic if in all ADD-instructions p : (ADD (r) , q, s), it holds
that q = s; in this case we write p : (ADD (r) , q).

For useful results on the computational power of register machines, we refer
to [18]; for example, deterministic register machines can accept all recursively
enumerable sets of vectors of natural numbers with k components using precisely
k + 2 registers.

3 A General Model for Tissue and Hierarchical P Systems

We now recall the main definitions of the general model for tissue P systems and
hierarchical P systems and the basic derivation modes as defined, for example, in
[16]. Moreover, we define the halting conditions discussed in this paper.

A (hierarchical) P system (with rules of type X) working in the derivation
mode δ is a construct

Π = (V, T, µ, w1, . . . , wm, R1, . . . , Rm, f,=⇒Π,δ) where

• V is the alphabet of objects;
• T ⊆ V is the alphabet of terminal objects;
• µ is the hierarchical membrane structure (a rooted tree of membranes) with

the membranes uniquely labeled by the numbers from 1 to m;
• wi ∈ V ∗, 1 ≤ i ≤ m, is the initial multiset in membrane i;
• Ri, 1 ≤ i ≤ m, is a finite set of rules of type X assigned to membrane i;

94 R. Freund

• f is the label of the membrane from which the result of a computation has to
be taken from (in the generative case) or into which the initial multiset has to
be given in addition to wf (in the accepting case),

• =⇒Π,δ is the derivation relation under the derivation mode δ.

The symbol X in “rules of type X” may stand for “evolution”, “communi-
cation”, “membrane evolution”, etc. In this paper, we will mainly consider non-
cooperative as well as catalytic and purely catalytic rules, see Subsection 3.2.

In hierarchical P systems, the membranes are arranged in a tree structure. If
we allow arbitrary graphs as communication structure, with the membranes now
also called cells, floating in the environment instead of being enclosed in the skin
membrane, we come to the model of tissue P systems, where in the static case we
simply number the cells from 1 to m:

A (static) tissue P system (with rules of type X) working in the derivation
mode δ is a construct

Π = (V, T,m,w1, . . . , wm, R1, . . . , Rm, f,=⇒Π,δ) where

• V is the alphabet of objects;
• T ⊆ V is the alphabet of terminal objects;
• m is the number of cells uniquely labeled by the numbers from 1 to m;
• wi ∈ V ∗, 1 ≤ i ≤ m, is the initial multiset in cell i;
• Ri, 1 ≤ i ≤ m, is a finite set of rules of type X assigned to cell i;
• f is the label of the cell from which the result of a computation has to be taken

from (in the generative case) or into which the initial multiset has to be given
in addition to wf (in the accepting case),

• =⇒Π,δ is the derivation relation under the derivation mode δ.

Each of the cells may have assigned its own set of rules Ri, but in the most
general case the rules (for multisets) are of the form

(1, u1) . . . (m,um)→ (1, v1) . . . (m, vm)

where u1, . . . , um and v1, . . . , vm are multisets over V , and then instead of
R1, . . . , Rm we specify only one set of rules R for the whole tissue P system Π.

A configuration is a list of the contents of each cell or membrane region, re-
spectively; a sequence of configurations C1, . . . , Ck is called a computation in the
derivation mode δ if Ci=⇒Π,δCi+1 for 1 ≤ i < k. The derivation relation =⇒Π,δ is
defined by the set of rules in Π and the given derivation mode which determines
the multiset of rules to be applied to the multisets contained in each membrane
or cell or even in the overall tissue P system.

The language generated by Π is the set of all terminal multisets which can be
obtained in the output membrane / cell f starting from the initial configuration
C1 = (w1, . . . , wm) using the derivation mode δ in a halting computation, i.e.,

Playing with Derivation Modes and Halting Conditions 95

Lgen,δ (Π) =
{
C(f) ∈ T ◦ | C1

∗
=⇒Π,δ C ∧ ¬∃C ′ : C=⇒Π,δC

′
}
,

where C(f) stands for the multiset contained in the output membrane or cell f of
the configuration C. The configuration C is halting, i.e., no further configuration
C ′ can be derived from it.

The family of languages of multisets generated by P systems and tissue P
systems of type X with at most n membranes / cells in the derivation mode δ is
denoted by Psgen,δOPn (X) and Psgen,δOtPn (X), respectively.

We may also consider (tissue) P systems as accepting mechanisms: in mem-
brane / cell f , we add the input multiset w0 to wf in the initial configuration
C1 = (w1, . . . , wm) thus obtaining C1[w0] = (w1, . . . , wfw0, . . . , wm); the input
multiset w0 is accepted if there exists a halting computation in the derivation
mode δ starting from C1[w0], i.e.,

Lacc,δ (Π) =
{
w0 ∈ T ◦ | ∃C :

(
C1[w0]

∗
=⇒Π,δ C ∧ ¬∃C ′ : C=⇒Π,δC

′
)}

.

Then the family of languages of multisets accepted by P systems and tissue P
systems of type X with at most n membranes / cells in the derivation mode δ is
denoted by Psacc,δOPn (X) and Psacc,δOtPn (X), respectively.

We finally mention that (tissue) P systems can also be used to compute func-
tions and relations, with using f both as input and output membrane / cell or
even using two different membranes / cells for the input and the output. Yet in
this paper we will mainly focus on the generating case.

3.1 Derivation Modes

The set of all multisets of rules applicable in a (tissue) P system to a given con-
figuration C is denoted by Appl(Π,C) and can be restricted by imposing specific
conditions, thus yielding the following basic derivation modes (for example, see
[16] for formal definitions):

• asynchronous mode (abbreviated asyn): at least one rule is applied;
• sequential mode (sequ): only one rule is applied;
• maximally parallel mode (max): a non-extendable multiset of rules is applied;
• maximally parallel mode with maximal number of rules (maxrules): a non-

extendable multiset of rules of maximal possible cardinality is applied;
• maximally parallel mode with maximal number of objects (maxobjects): a non-

extendable multiset of rules affecting as many objects as possible is applied.

In [3], these derivation modes are restricted in such a way that each rule can
be applied at most once, thus yielding the set modes sasyn, smax, smaxrules, and
smaxobjects (the sequential mode is already a set mode by definition):

• asynchronous set mode (abbreviated sasyn): at least one rule is applied, but
each rule at most once;

96 R. Freund

• maximally parallel set mode (smax): a non-extendable set of rules is applied;
• maximally parallel set mode with maximal number of rules (smaxrules): a

non-extendable set of rules of maximal possible cardinality is applied;
• maximally parallel set mode with maximal number of objects (smaxobjects): a

non-extendable set of rules affecting as many objects as possible is applied.

Let us denote the set of all multisets (possibly only sets) of rules applicable
in a (tissue) P system Π to a given configuration C in the derivation mode δ by
Appl(Π,C, δ). We immediately observe that Appl(Π,C, asyn) = Appl(Π,C).
To collect the set and multiset derivation modes, we use the following notations:

DS = {sequ, sasyn, smax, smaxrules, smaxobjects} and
DM = {asyn,max,maxrules,maxobjects}.

3.2 Standard Rule Variants

Non-cooperative rules have the form a → w, where a is a symbol and w is a
multiset, catalytic rules have the form ca→ cw, where the symbol c is called the
catalyst, and cooperative rules have no restrictions on the form of the left-hand
side. These types of rules will be denoted by ncoo (non-cooperative), pcat (purely
catalytic), and coo (cooperative); if both non-cooperative and catalytic rules are
allowed, we write cat (catalytic).

If the P system has more than one membrane, each symbol on the right-hand
side may have assigned a target where the symbol has to be sent after the appli-
cation of the rule. In tissue P systems this target is simply the number of the cell,
whereas in hierarchical P systems the targets take into account the tree structure
of the membranes:

here the symbol stays in the membrane where the rule is applied;
out the symbol is sent to the outer membrane, i.e., the membrane enclosing the

membrane where the rule is applied;
in the symbol is sent to an inner membrane, i.e., a membrane enclosed by the

membrane where the rule is applied;
inj the symbol is sent to the inner membrane labeled by j.

3.3 Flattening

As many variants of P systems can be flattened to only one membrane, see [11], we
often may assume the simplest membrane structure of only one membrane which
in effect reduces the P system to a multiset processing mechanism, and, observing
that f = 1, in what follows we then will use the reduced notation

Π = (V, T,w,R,=⇒Π,δ) .

For a one-membrane system, the definitions for the language generated by Π
and the language accepted by Π can be written in an easier way, i.e.,

Playing with Derivation Modes and Halting Conditions 97

Lgen,δ (Π) =
{
v ∈ T ◦ | w ∗

=⇒Π,δ v ∧ ¬∃z : v=⇒Π,δz
}

and

Lacc,δ (Π) =
{
w0 ∈ T ◦ | ∃v :

(
ww0

∗
=⇒Π,δ v ∧ ¬∃z : v=⇒Π,δz

)}
.

The family of languages of multisets generated by one-membrane P systems of
type X in the derivation mode δ is denoted by Psgen,δOP (X).

The family of languages of multisets accepted by one-membrane P systems of
type X in the derivation mode δ is denoted by Psacc,δOP (X).

In the following, we will mainly focus on the generative case, and when writing
PsδOP (X) we by default will mean Psgen,δOP (X).

3.4 Halting Conditions

Besides the standard total halting with no (multi)set of rules being applicable any
more to the current configuration, some more variants of halting conditions have
been considered in the literature:

total halting (H) the common halting strategy where the computation stops
with no (multi)set of rules being applicable any more

unconditional halting (u) the result of a computation can be taken from ev-
ery configuration derived from the initial one (possibly only taking terminal
results)

partial halting (h) the set of rules R is partitioned into disjoint subsets R1 to
Rh, and a computation stops if there is no multiset of rules applicable to the
current configuration which contains a rule from every set Rj , 1 ≤ j ≤ h

halting with states (s) the configuration with which a derivation may stop
must fulfill a recursive condition (which corresponds with a final state)

The variant of unconditional halting was introduced in [5]. Partial halting, for
example, was investigated in [2, 4, 12], using the membranes for partitioning the
rules. Formal definitions for the halting conditions H,h, s can be found in [16].

In the description for (tissue) P systems, the derivation relation under the
derivation mode δ, =⇒Π,δ, is extended by the halting condition, i.e., we then
write =⇒Π,δ,β for β ∈ {H,h, u, s}. Moreover, we add the halting condition in the
description of the generated or accepted language, i.e., we then write Lγ,δ,β (Π),
γ ∈ {gen, acc}. The same extension is made for the corresponding families of
languages of multisets, i.e., for n ≥ 1, we write Yγ,δ,βOPn (X) and Yγ,δ,βOtPn (X),
respectively. By default, β is understood to be the total halting H and then usually
omitted in all these notations.

4 Some Well-Known Results

In this section we recall some well-known results, which usually are not stated in
the compact form given here.

98 R. Freund

4.1 Non-Cooperative Rules

Using only non-cooperative rules leaves us on the level of semi-linear sets, as for the
derivation with context-free rules (and non-cooperative rules correspond to those),
the resulting derivation tree does not depend on an interpretation of a sequential
or a parallel derivation of any kind. Moreover, context-free (string or multiset)
languages are closed under projections, hence, taking (even only terminal) results
out from a specific output membrane / cell does not make any difference. Therefore,
we may state the following result:

Theorem 1. For any Y ∈ {N,Ps} and any n ≥ 1 as well as any derivation mode
δ ∈ DS ∪DM ,

Ygen,δOPn (ncoo) = Ygen,δOtPn (ncoo) = Y REG.

Although P systems working in the maximally parallel derivation mode are a
parallel mechanism, we cannot go beyond PsREG, see Theorem 1.

For example, the rule a → aa used in parallel very much reminds us of a 0L
system, i.e., a Lindenmayer system of the simplest form, which, when starting
from the axiom aa, yields the language L1 = {a2n | n ≥ 1}. In order to also get
this language with P systems working in one of the maximally parallel derivation
modes, we either need some control mechanism (see Section 5) or some other
special halting condition (see Section 7).

4.2 The Importance of Using Catalysts

If in a one-membrane system we only have one catalyst c and only catalytic rules
assigned to c, then this corresponds to a sequential use of non-cooperative rules,
which together with Theorem 1 yields the following result:

Theorem 2. For any Y ∈ {N,Ps} and any derivation mode δ ∈ DS ∪DM ,

Ygen,δOP (pcat1) = Ygen,sequOP (pcat1) = Ygen,sequOP (ncoo) = Y REG.

Without additional control mechanisms, at least three catalysts are needed
to obtain computational completeness for purely catalytic P systems using the
derivation mode max, see [10]. In a more general way, the following results were
already proved there:

Theorem 3. For any d ≥ 1 and any k ≥ d+ 2,

Psacc,maxOP (pcatk+1) = Psacc,maxOP (catk) = NdRE.

Although not yet stated in [10], we mention that these results are also valid
when replacing the derivation mode max by any other maximally parallel (set)
derivation mode, i.e., for any δ in

Playing with Derivation Modes and Halting Conditions 99

{max,maxrules,maxobjects, smax, smaxrules, smaxobjects}.

The complexity of the construction, for all these derivation modes, has been
considerably reduced since the original paper from 2005, for example, see [3].

These results are obtained by simulating register machines, which in fact means
that a sequential machine has to be simulated by a parallel mechanism. Exactly
this feature of breaking down the parallelism to sequentiality is the main im-
portance of using catalysts: when using a maximally parallel derivation mode
δ ∈ {max,maxrules,maxobjects}, for decrementing the number of a symbol ar
to carry out the decrement case of a SUB-instruction of a register machine, we
cannot do this by a non-cooperative rule ar → λ, instead we have to use a catalytic
rule car → c.

What happens in the case of two catalysts in purely catalytic P systems (and
one catalyst in the case of catalytic P systems), is one of the most intriguing open
problems in the area of P systems since long time, e.g., see [15], where it is shown
that catalytic P systems with one catalyst can simulate partially blind register
machines and partially blind counter automata.

With respect to the importance of using catalytic rules, the set derivation
modes offer new opportunities, i.e., using specific control mechanisms they are not
needed any more, as eliminating only one symbol ar to carry out the decrement case
of a SUB-instruction of a register machine now can be done by a non-cooperative
rule ar → λ, because due to the set restriction this rule is not applied more than
once.

5 Control Mechanisms

To reduce the number of catalysts needed for obtaining computational complete-
ness, specific control mechanisms can be used. Some of these control mechanisms
are considered in this section. For example, label selection or control languages
allow for using only one catalyst (two catalysts) in (purely) catalytic P systems
for getting computational completeness, for instance, see [9, 13, 14, 3]. With tar-
get agreement and maximally parallel set derivation modes, catalysts can even be
avoided completely, only non-cooperative rules are needed.

For all the control mechanisms described in this section, as a special example
we will show how the 0L language L1 = {a2n | n ≥ 1} can be generated using the
maximally parallel derivation mode.

5.1 P Systems with Label Selection

For all the variants of (tissue) P systems of type X, we may consider labeling all
the rules in the sets R1, . . . , Rm in a one-to-one manner by labels from a set H

100 R. Freund

and taking a set W containing subsets of H. In any derivation step of a (tissue)
P system with label selection Π we first select a set of labels U ∈ W and then, in
the given derivation mode, we apply a non-empty multiset R of rules such that all
the labels of these rules from R are in U .

Example 1. Consider the one-membrane P system

Π = (V = {A, a}, T = {a}, w = AA,R = {r1 : A→ AA, r2 : A→ a},
W = {{r1}, {r2}},=⇒Π,max).

with the labeled rules r1 : A → AA and r2 : A → a; only one of these can be
used according to the sets of labels in W . Using r1 in n − 1 derivation steps and
finally using r2 yields a2

n

, for any n ≥ 1, i.e., we get Ngen,max(Π) = L1, where
L1 = {a2n | n ≥ 1}.

The families of sets Yγ,δ (Π), Y ∈ {N,Ps}, γ ∈ {gen, acc}, and δ ∈ DM ∪DS

computed by (tissue) P systems with label selection with at most m membranes
and rules of type X are denoted by Yγ,δOPm (X, ls) (Yγ,δOtPm (X, ls)).

Theorem 4. Yγ,δOP (cat1, ls) = Yγ,δOP (pcat2, ls) = Y RE for any Y ∈ {N,Ps},
γ ∈ {gen, acc}, and any maximally parallel (set) derivation mode δ,

δ ∈ {max,maxrules,maxobjects, smax, smaxrules, smaxobjects} .

The proof given in [14] for the maximally parallel mode max can be taken over
for the other maximally parallel (set) derivation modes word by word; the only
difference again is that in set derivation modes, in non-successful computations
where more than one trap symbol # has been generated, the trap rule #→ # is
only applied once.

5.2 Controlled (Tissue) P Systems and Time-Varying (Tissue) P
Systems

Another method to control the application of the labeled rules is to use control
languages (see [17] and [1]).

In a controlled (tissue) P system Π, in addition we use a set H of labels for
the rules in Π, and a string language L over 2H (each subset of H represents an
element of the alphabet for L) from a family FL. Every successful computation
in Π has to follow a control word U1 . . . Un ∈ L: in derivation step i, only rules
with labels in Ui are allowed to be applied (in the underlying derivation mode, for
example, max or smax), and after the n-th derivation, the computation halts; we
may relax this end condition, i.e., we may stop after the i-th derivation for any
i ≤ n, and then we speak of weakly controlled P systems. If L = (U1 . . . Up)

∗
, Π is

called a (weakly) time-varying (tissue) P system: in the computation step pn+ i,
n ≥ 0, rules from the set Ui have to be applied; p is called the period.

Playing with Derivation Modes and Halting Conditions 101

Example 2. Consider the one-membrane P system

Π = (V = {A, a}, T = {a}, w = AA,R = {r1 : A→ AA, r2 : A→ a},
L = {r1}∗{r2},=⇒Π,max)

with the labeled rules r1 : A → AA and r2 : A → a. Using the control word
r1
n−1r2 means using r1 in n−1 derivation steps and finally using r2, thus yielding

a2
n

, for any n ≥ 1, i.e., as in Example 1, we get Ngen,max(Π) = L1.
As now we do not have to distinguish between non-terminal and terminal sym-

bols due to the use of control words, the same result can be obtained by the much
simpler system

Π ′ = (V = {a}, T = {a}, w = aa,R = {r1 : a→ aa},
L = {r1}∗,=⇒Π′,max)

again yielding Ngen,max(Π ′) = L1.

The family of sets Yγ,δ (Π), Y ∈ {N,Ps}, computed by (weakly) controlled
P systems and (weakly) time-varying P systems with period p, with at most
m membranes and rules of type X as well as control languages in FL is de-
noted by Yγ,δOPm (X,C (FL)) (Yγ,δOPm (X,wC (FL))) and Yγ,δOPm (X,TVp)
(Yγ,δOPm (X,wTVp)), respectively, for γ ∈ {gen, acc} and δ ∈ DM ∪DS . Similar
notations hold for tissue P systems.

Theorem 5. Yγ,δOP (cat1, αTV6) = Yγ,δOP (pcat2, αTV6) = Y RE, for any α ∈
{λ,w}, Y ∈ {N,Ps}, γ ∈ {gen, acc}, and

δ ∈ {max,maxrules,maxobjects, smax, smaxrules, smaxobjects} .

The proof given in [14] for the maximally parallel mode max again can be
taken over for the other maximally parallel (set) derivation modes word by word,
e.g., see [3].

5.3 Target Selection

In P systems with target selection, all objects on the right-hand side of a rule must
have the same target, and in each derivation step, for each region a (multi)set of
rules – non-empty if possible – having the same target is chosen. In [3] it was
shown that for P systems with target selection in the derivation mode smax no
catalyst is needed any more, and with smaxrules, we even obtain a deterministic
simulation of deterministic register machines:

Theorem 6. For any Y ∈ {N,Ps},

Ygen,smaxOP (ncoo, target selection) = Y RE.

102 R. Freund

Theorem 7. For any Y ∈ {N,Ps},

Ydetacc,smaxrules
OP (ncoo, target selection) = Y RE.

In contrast to all the other variants of P systems, P systems with target selec-
tion really take advantage of the membrane structure, no flattening is used or even
reasonable. In that sense, this variant of P systems reflects the spirit of membrane
systems with a non-trivial membrane structure in the best way.

Example 3. Consider the two-membrane P system

Π = (V = {a}, T = {a}, µ = [[]2]1, w1 = aa,w2 = λ,

R1 = {a→ aa, a→ (a, in)}, R2 = ∅,=⇒Π,max)

with the rule a → aa having target here and the rule a → (a, in) having target
in; only one of these two rules can be used in one derivation step according to the
condition of target agreement. Using a→ aa in n− 1 derivation steps in the skin
membrane and finally using a → (a, in) yields a2

n

in the elementary membrane
[]2, for any n ≥ 1, i.e., we again get Ngen,max(Π) = L1.

6 The Strangeness of Minimal Parallelism

There is another derivation mode known from literature, which has two possi-
ble basic definitions, but these two variants unfortunately do not yield the same
results.

Following the definition given in [16], for the minimally parallel derivation mode
(min), we need an additional feature for the set of rules R used in the overall
(tissue) P system, i.e., we consider a partitioning θ of R into disjoint subsets R1

to Rh. Usually, this partitioning of R may coincide with a specific assignment of
the rules to the membranes or cells. We observe that this partitioning θ may, but
need not be the same as the partitioning η used for partial halting.

There are now several possible interpretations of this minimally parallel deriva-
tion mode which in an informal way can be described as applying multisets such
that from every set Rj , 1 ≤ j ≤ h, at least one rule – if possible – has to be used
(e.g., see [6]). Yet this if possible allows for two possible interpretations:

Minimal parallelism as a restriction of asyn

As defined in [16], we start with a multiset R′ of rules from Appl(Π,C, asyn) and
only take it if it cannot be extended to a multiset R′ of rules from Appl(Π,C, asyn)
by some rule from a set Rj from which so far no rule is in R′.

Playing with Derivation Modes and Halting Conditions 103

Minimal parallelism as an extension of smax

We start with a set R′ of rules from Appl(Π,C, smaxθ), where the notion smaxθ
indicates that we are using smax with respect to the partitioning of R into the
subsets R1 to Rh, and then possibly extend it to a multiset R′′ of rules from
Appl(Π,C, asyn) which contains R′. This definition finally was used in [21] without
using the notion smax, because at the moment when this handbook was written
the notion of maximally parallel set derivation modes had not been invented yet.
Moreover, the use of the notion smax so far was restricted to the discrete topology,
where every rule formed its own set Rj , whereas for smaxθ the condition is fulfilled
if one of the rules in the Rj is used if possible.

Example 4. Consider the one-membrane P system working in the min-mode

Π = (V = {a, b}, T = {b}, w = aa,R = R1 ∪R2,=⇒Π,min)

with R1 = {a→ bb} and R2 = {a→ bbb} being the partitions of R = R1 ∪R2.
Starting from smax, we get only one set of rules, i.e., R′ = {a→ bb, a→ bbb},

whose application yields the result b5.
In the case of starting with asyn, we may use one of the two rules twice, thus

also getting the results b4 and b6.
Hence, when two rules are competing for the same objects, the results obtained

with the two different definitions may be different, where the set of results obtained
when using the first definition will always include the results obtained by the
second definition.

The condition that the sets Rj , 1 ≤ j ≤ h, have to be disjoint may be alleviated,
for example, see [4].

A special variant of the minimally parallel derivation mode, with the sets Rj ,
1 ≤ j ≤ h, not being required to be disjoint, is the mode min1, which in fact
means that we stay with smaxθ. Now let smaxθ,k denote a partioning θ with k
sets of rules. As an interesting result we then get the interpretation of a purely
catalytic P system using max as a P system using min1 with the partitioning Rj ,
1 ≤ j ≤ k, where Rj is the set of non-cooperative rules a → u representing the
corresponding catalytic rules cja→ cju. Denoting a partitioning in k sets of rules
by θk, we obtain the following result:

Theorem 8. For any d ≥ 1 and any k ≥ d+ 3,

Psacc,min1
OP (ncoo, θk) = Psgen,min1

OP (ncoo, θ3) = NdRE.

104 R. Freund

Minimal parallelism with all applicable sets

There is an even stranger variant for minimal parallelism already defined in [16]:
To a configuration C we can only apply a multiset of rules which contains at

least one rule from each Rj , 1 ≤ j ≤ h, that contains a rule applicable to C,
i.e., we take all possible multisets R′ from Appl(Π,C, asyn) which also fulfill the
condition that R′ ∩Rj 6= ∅ provided Appl(Π,C, asyn)∩Rj 6= ∅, for all 1 ≤ j ≤ h.

This derivation mode is abbreviated allasetmin in [16] and used under the
notion amin in [4].

Example 5. Consider the one-membrane P system from Example 4, now working
in the amin-mode,

Π = (V = {a, b}, T = {b}, w = aa,R = R1 ∪R2,=⇒Π,amin)

with R1 = {a→ bb} and R2 = {a→ bbb}.
As both the rule from R1 and the rule from R2 are applicable, the only

(multi)set of rules applicable to the configuration aa is the same as that one when
starting from smax, i.e., R′ = {a → bb, a → bbb}, whose application yields the
result b5.

Yet if we take w = a instead, then still both the rule from R1 and the rule from
R2 are applicable, but there are not enough resources of symbols a for applying
both rules, hence, no derivation step is possible in this case with the derivation
mode amin. On the other hand, with the first two variants of the minimally parallel
derivation mode, in both cases we may either apply a→ bb or a→ bbb, thus getting
bb and bbb, respectively.

Again we observe that the results with different definitions of the minimally
parallel derivation mode may be different when two rules are competing for the
same object(s).

7 Halting Conditions

As already mentioned, P systems working in the maximally parallel derivation
mode at first sight look like (E)0L systems. Only the total halting condition com-
pletely destroys this similarity which looks so obvious at first sight. Yet this con-
nection between P systems working in the maximally parallel derivation mode and
(E)0L systems can be shown when using unconditional halting, see [5].

Besides unconditional halting, in this section we will also discuss some results
for partial halting and halting with states. In each case, as in Section 5, we will
show how to obtain the special multiset language L1 = {a2n | n ≥ 1}.

Playing with Derivation Modes and Halting Conditions 105

7.1 Unconditional Halting

Example 6. Consider the one-membrane (or one-cell tissue) P system

Π = (V = {a}, T = {a}, w = aa,R = {a→ aa},=⇒Π,max,u)

with the single rule a → aa; with every application of this rule the number of
symbols a is doubled, i.e., after n− 1 derivation steps, n ≥ 1, we get a2

n

, i.e., we
obtain Ngen,max,u(Π) = L1.

According to the results shown in [5], the following results holds true, if we use
extended systems (indicated by the additional symbol E) and only take results
from the output membrane / cell which are terminal:

Theorem 9. For any Y ∈ {N,Ps} and any m ≥ 1,

Ygen,δ,uEOPm (ncoo) = Ygen,δ,uEOtPm (ncoo) = Y E0L,

for any maximally parallel derivation mode δ,

δ ∈ {max,maxrules,maxobjects} .

If we do not use extended systems, i.e., V = T , we immediately obtain the
following:

Corollary 1. For any Y ∈ {N,Ps},

Ygen,δ,uOP1 (ncoo) = Ygen,δ,uOtP1 (ncoo) = Y 0L,

for any maximally parallel derivation mode δ,

δ ∈ {max,maxrules,maxobjects} .

These results now show the – somehow expected – correspondence between the
two parallel mechanisms (tissue) P systems and Lindenmayer systems.

We finally mention that with unconditional halting, considering acceptance
would not make any sense, because according to the standard definition of accept-
ing (tissue) P systems, in any case they would accept every input.

106 R. Freund

7.2 Partial Halting

Partial halting allows us to stop a derivation as soon as some specific symbols are
not present any more:

Example 7. Consider the one-membrane P system

Π = (V = {a, s}, T = {a}, w = as,R1 ∪R2,=⇒Π,max,h)

where R1 = {a→ aa} and R2 = {s→ s, s→ λ} are the two partitions of the rule
set R = {a→ aa, s→ s, s→ λ}.

As long as one of the rules from R2 can be applied to the symbol s, the symbols
a are doubled as usual by the rule a→ aa from R1. Using s→ s in n−1 derivation
steps, n ≥ 1, and finally applying s→ λ, we get a2

n

; hence, Ngen,max,h(Π) = L1.

Some interesting results for the partial halting may be looked up in [2, 4, 12].

7.3 Halting with States

In general, speaking of states reminds us of mechanisms like register machines;
there a computation halts when the halt instruction lh : HALT is applied. In
simulations of register machines by (tissue) P systems the computation often is
made halting by applying the final rule lh → λ, provided no trap rules are still
applicable. When lh disappears this means that no instruction label appears any
more in the configuration of the simulating (tissue) P system; such a condition
checking for the absence (or presence) of specific symbols in a given configuration
is computable and therefore a condition we can use for halting with states (which
ironically in this case means the absence of state symbols).

Example 8. Consider the one-membrane P system

Π = (V = {a, s}, T = {a}, w = as,R = {a→ aa, s→ s, s→ λ},=⇒Π,max,s),

which uses the same ingredients as the one considered in Example 7, but instead
of partial halting now uses the condition that a computation halts if no symbol
s is present any more, which gives the same computations as for the P system
in Example 7, with the only difference that the computations halt because of s
having been deleted. Thus, we obtain Ngen,max,s(Π) = L1.

8 Conclusion

In this paper the effects of using different derivation modes on the generative
and accepting power of many variants of hierarchical P systems and tissue P
systems have been illustrated. Especially some differences between the maximally
parallel derivation modes and the maximally parallel set derivation modes have

Playing with Derivation Modes and Halting Conditions 107

been exhibited. We have also given an overview on some control mechanisms used
for (tissue) P systems. Moreover, we have discussed the effect of using different
halting conditions such as unconditional and partial halting.

Many more relations between derivation modes and halting conditions as well
could have been discussed, but this would have gone much beyond such a normal
article.

Acknowledgements

Many of the ideas for this paper came up in the inspiring atmosphere of the
Brainstorming Week on Membrane Computing in Sevilla this year and even in
some previous years, and they are based on many discussions with Artiom Alhazov,
Sergiu Ivanov, and Sergey Verlan, but also other colleagues from the P community,
especially with Gheorghe Păun.

References

1. Alhazov, A., Freund, R., Heikenwälder, H., Oswald, M., Rogozhin, Yu., Verlan, S.: Se-
quential P systems with regular control. In: Csuhaj-Varjú, E., Gheorghe, M., Rozen-
berg, G., Salomaa, A., Vaszil, Gy. (eds.) Membrane Computing – 13th International
Conference, CMC 2012, Budapest, Hungary, August 28–31, 2012, Revised Selected
Papers, Lecture Notes in Computer Science, vol. 7762, pp. 112–127. Springer (2013).
https://doi.org/10.1007/978-3-642-36751-9 9

2. Alhazov, A., Freund, R., Oswald, M., Verlan, S.: Partial halting in P systems us-
ing membrane rules with permitting contexts. In: Durand-Lose, J., Margenstern,
M. (eds.) Machines, Computations, and Universality. pp. 110–121. Springer, Berlin,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74593-8 10

3. Alhazov, A., Freund, R., Verlan, S.: P systems working in maximal variants of the set
derivation mode. In: Leporati, A., Rozenberg, G., Salomaa, A., Zandron, C. (eds.)
Membrane Computing – 17th International Conference, CMC 2016, Milan, Italy,
July 25-29, 2016, Revised Selected Papers. Lecture Notes in Computer Science, vol.
10105, pp. 83–102. Springer (2017). https://doi.org/10.1007/978-3-319-54072-6 6

4. Alhazov, A., Oswald, M., Freund, R., Verlan, S.: Partial halting and minimal par-
allelism based on arbitrary rule partitions. Fundam. Inform. 91(1), 17–34 (2009).
https://doi.org/10.3233/FI-2009-0031

5. Beyreder, M., Freund, R.: Membrane systems using noncooperative rules with un-
conditional halting. In: Corne, D.W., Frisco, P., Păun, Gh., Rozenberg, G., Salomaa,
A. (eds.) Membrane Computing. pp. 129–136. Springer, Berlin, Heidelberg (2009).
https://doi.org/10.1007/978-3-540-95885-7 10

6. Ciobanu, G., Pan, L., Păun, Gh., Pérez-Jiménez, M.: P systems with
minimal parallelism. Theoretical Computer Science 378(1), 117–130 (2007).
https://doi.org/10.1016/j.tcs.2007.03.044

7. Dassow, J., Păun, Gh.: Regulated Rewriting in Formal Language Theory. Springer
(1989), https://www.springer.com/de/book/9783642749346

8. Freund, R.: P systems working in the sequential mode on arrays
and strings. Int. J. Found. Comput. Sci. 16(4), 663–682 (2005).
https://doi.org/10.1142/S0129054105003224

108 R. Freund

9. Freund, R.: Purely catalytic P systems: Two catalysts can be sufficient for
computational completeness. In: Alhazov, A., Cojocaru, S., Gheorghe, M., Ro-
gozhin, Yu. (eds.) CMC14 Proceedings – The 14th International Conference on
Membrane Computing, Chişinău, August 20–23, 2013. pp. 153–166. Institute of
Mathematics and Computer Science, Academy of Sciences of Moldova (2013),
http://www.math.md/cmc14/CMC14 Proceedings.pdf

10. Freund, R., Kari, L., Oswald, M., Sośık, P.: Computationally universal P systems
without priorities: two catalysts are sufficient. Theoretical Computer Science 330(2),
251–266 (2005). https://doi.org/10.1016/j.tcs.2004.06.029

11. Freund, R., Leporati, A., Mauri, G., Porreca, A.E., Verlan, S., Zandron, C.: Flatten-
ing in (tissue) P systems. In: Alhazov, A., Cojocaru, S., Gheorghe, M., Rogozhin, Yu.,
Rozenberg, G., Salomaa, A. (eds.) Membrane Computing, Lecture Notes in Computer
Science, vol. 8340, pp. 173–188. Springer (2014). https://doi.org/10.1007/978-3-642-
54239-8 13

12. Freund, R., Oswald, M.: Partial halting in P systems. Int. J. Found. Comput. Sci.
18(6), 1215–1225 (2007). https://doi.org/10.1142/S0129054107005261

13. Freund, R., Oswald, M.: Catalytic and purely catalytic P automata: control mecha-
nisms for obtaining computational completeness. In: Bensch, S., Drewes, F., Freund,
R., Otto, F. (eds.) Fifth Workshop on Non-Classical Models for Automata and Ap-
plications – NCMA 2013, Ume̊a, Sweden, August 13 – August 14, 2013, Proceedings.
books@ocg.at, vol. 294, pp. 133–150. Österreichische Computer Gesellschaft (2013)

14. Freund, R., Păun, Gh.: How to obtain computational completeness in P systems with
one catalyst. In: Neary, T., Cook, M. (eds.) Proceedings Machines, Computations and
Universality 2013, MCU 2013, Zürich, Switzerland, September 9–11, 2013. EPTCS,
vol. 128, pp. 47–61 (2013). https://doi.org/10.4204/EPTCS.128.13

15. Freund, R., Sośık, P.: On the power of catalytic P systems with one catalyst. In:
Rozenberg, G., Salomaa, A., Sempere, J.M., Zandron, C. (eds.) Membrane Com-
puting – 16th International Conference, CMC 2015, Valencia, Spain, August 17–21,
2015, Revised Selected Papers. Lecture Notes in Computer Science, vol. 9504, pp.
137–152. Springer (2015). https://doi.org/10.1007/978-3-319-28475-0 10

16. Freund, R., Verlan, S.: A formal framework for static (tissue) P systems. In: Eleft-
herakis, G., Kefalas, P., Păun, Gh., Rozenberg, G., Salomaa, A. (eds.) Membrane
Computing, Lecture Notes in Computer Science, vol. 4860, pp. 271–284. Springer
(2007). https://doi.org/10.1007/978-3-540-77312-2 17

17. Krithivasan, K., Păun, Gh., Ramanujan, A.: On controlled P systems. Fundam. In-
form. 131(3–4), 451–464 (2014). https://doi.org/10.3233/FI-2014-1025

18. Minsky, M.L.: Computation. Finite and Infinite Machines. Prentice Hall, Englewood
Cliffs, NJ (1967)

19. Păun, Gh.: Computing with membranes. Journal of Computer and System Sciences
61(1), 108–143 (2000). https://doi.org/10.1006/jcss.1999.1693

20. Păun, Gh.: Membrane Computing: An Introduction. Springer (2002).
https://doi.org/10.1007/978-3-642-56196-2

21. Păun, Gh., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane
Computing. Oxford University Press (2010)

22. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer (1997).
https://doi.org/10.1007/978-3-642-59136-5

23. The P Systems Website. http://ppage.psystems.eu/

