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Abstract: Any gene mutation during the mitotic cell cycle of a eukaryotic cell can be algebraically
represented by an isotopism of the evolution algebra describing the genetic pattern of the inheritance
process. We identify any such pattern with a total-colored graph so that any isotopism of the former
is uniquely related to an isomorphism of the latter. This enables us to develop some results on
graph theory in the context of the molecular processes that occur during the S-phase of a mitotic
cell cycle. In particular, each monochromatic subset of edges is identified with a mutation or
regulatory mechanism that relates any two statuses of the genotypes of a pair of chromatids.
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1. Introduction

At present, non-associative algebras are considered an adequate theoretical framework to
address important topics in genetics. In fact, there are so many non-associative algebras that
have attracted the interest of geneticists that it would be difficult to make an exhaustive list of
them. Let us mention, as an example, the following: Mendelian algebras, gametic algebras, zygotic
algebras, baric algebras, train algebras, copular algebras, Bernstein algebras, and evolution algebras.
These algebras, and generally all the algebras used to model inheritance in genetics, are referred to as
“genetic algebras”.

In particular, Jin Jung Paul Tian established in his PhD thesis in 2004, later published in 2008,
the foundations of the theory of evolution algebras [1]. On page 3 of that thesis, he wrote the following
words that in principle could seem like a premonition, but they have been actually confirmed by the
numerous publications cited throughout this paper.

General genetic algebras are the product of interaction between Biology and
Mathematics. Mendelian Genetics introduced a new subject to Mathematics: general genetic
algebras. The study of these algebras reveals algebraic structures of Mendelian Genetics,
which always simplifies and shortens the way to understand genetic and evolutionary
phenomena. Indeed, it is the interplay between the purely mathematical structure and
the corresponding genetic properties that makes this area so fascinating... Now, non-
Mendelian Genetics is a basic language of molecular geneticists. Logically, we can ask what
non-Mendelian Genetics offers to Mathematics. The answer is “evolution algebras”.

Indeed, evolution algebras were introduced [1–3] to model those probabilistic laws that regulate
how the genotypes of a eukaryotic cell undergoing mitosis have influence on the genotypes of the
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offspring. Specifically, an n-dimensional algebra over a field K is an evolution algebra if there exists
a natural basis {e1, . . . , en} such that eiej = 0, for all i 6= j. Each basis vector represents a genotype
of a given phenotype so that the role of self-replication of genotypes is played by the products
eiei = ∑n

j=1 cijej, for all 1 ≤ i ≤ n. In the case of dealing with K = R as the base field, if ∑n
j=1 cij = 1

and ci,j ≥ 0, for all i, j, then each structure constant cij represents the probability that the genotype
ei becomes ej in the offspring. In any case, even if there exist some advances in the algebraic study
of such a probabilistic meaning [4,5], evolution algebras are usually studied without probabilistic
restrictions on their structure constants [6–16].

The n-tuple (e1e1, . . . , enen) is called the genetic pattern of both the evolution algebra and the
mitotic cell cycle with respect to the phenotype under study. The distribution into isotopism classes
of two- and three-dimensional evolution algebras over any base field is already known [17,18].
This determines, in turn, the spectrum of genetic patterns of mitotic cell cycles with respect to a
phenotype that is respectively associated with two and three genotypes. Being introduced by Albert [19]
as a generalization of isomorphisms of algebras, the importance of dealing with isotopisms of algebras
in genetics was brought to light by Holgate and Campos [20,21]. They realized how isotopisms can be
used to formulate gene mutations in any inheritance process algebraically. See [22] for a recent survey
on the theory of isotopisms.

The simplicity of describing any evolution algebra by means of its genetic pattern enables one to
find interesting connections with graph theory, which was introduced into genetics by Benzer [23] to
show the linear internal structure of genes and how this structure is affected by mutations with
no detectable tendency to be reverted. More specifically, given a graph G with a finite set of
vertices {v1, . . . , vn}, Tian [1] defined the evolution algebra of natural basis {e1, . . . , en} such that
e2

i = ∑j∈Γ(vj)
ej, for all 1 ≤ i ≤ n. Here, Γ(vj) denotes the set of neighbors of the vertex vj in G.

Such a definition induces a faithful functor among graphs and evolution algebras that maps any
isomorphism between two finite graphs to an isomorphism between their related evolution algebras.
Based on this fact, Tian contemplated as further work the translation of known results on graph theory
to the language of evolution algebras. In this regard, for instance, Cadavid, Rodiño, and Rodríguez [5]
recently dealt with the connection between the evolution algebra induced by a random walk on
a graph and the evolution algebra derived from the same graph. In a subsequent paper [24], they also
characterized the space of derivations of evolution algebras associated with finite graphs.

The reverse problem of describing a graph derived from a given evolution algebra has also been
dealt with in the literature. In this regard, Núñez et al. [25] and Elduque and Labra [26,27] associated
a weighted digraph to any given finite-dimensional evolution algebra and studied the relationship
among them. In particular, in the last two contributions, it was proven that the nonexistence of
oriented cycles in such a digraph involves the nilpotency of the corresponding algebra. Further,
Cabrera et al. [28] described another directed graph whatever the dimension of the evolution algebra
is, from which its annihilator and irreducibility may be determined. Unlike Tian’s graphs, however,
since all of these proposals depend on the basis of the algebra, isomorphic evolution algebras are not
related in general to isomorphic graphs.

This paper delves into this last topic in the case of dealing with evolution algebras over finite
fields. Specifically, we introduce a total-colored graph that can be associated with any given evolution
algebra over a finite field so that any isomorphism of the former is uniquely related to an isotopism
of the latter. The underlying idea behind the proposed graph derives from a previous work of the
authors [29] in which a pair of colored graphs was introduced in order to describe faithful functors
relating the category of finite-dimensional algebras over finite fields with the category of vertex-colored
graphs. They were based in turn on a proposal of McKay et al. [30], who identified the isotopisms of
Latin squares with isomorphisms of vertex-colored graphs. A first attempt to approach the graphs
introduced in [29] to the theory of evolution algebras was carried out in [31], where a step-by-step
construction of an edge-colored graph derived from the genetic pattern of an evolution algebra over
a finite field was established. The total-colored graph here introduced not only simplifies this last
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construction by reducing both the number of vertices and edges under consideration, but also facilitates
a relationship among different concepts on evolution algebras, graph theory, and genetics.

The paper is organized as follows. Section 2 shows some preliminary concepts and results
on the subjects that are used throughout the paper. Section 3 deals with the description of the
total-colored graph that we associate with any given evolution algebra over a finite field. Finally,
Section 4 establishes the existence of a faithful functor between both categories of evolution algebras
and their total-colored graphs.

2. Preliminaries

This section deals with some basic concepts on genetics, genetic algebras, evolution algebras,
graph theory, and isotopisms of algebras that we use throughout the paper. For more details about the
last four topics, we refer the reader to [3,19,32,33], respectively. We also refer the reader to [34,35] for
different applications of graph theory into genetics and molecular biology.

2.1. Genetics

It is well known that genes are the molecular units of hereditary information within every cell.
Disposed in sequential order, they give rise to chromosomes, which are formed by a pair of long
twisted strands of deoxyribonucleic acid (DNA) and contain the genetic code to synthesize the proteins
that determine each attribute or phenotype of the organism. Genes of a given phenotype always
appear in chromosomes at the same position and determine the genotype of the organism with respect
to such a phenotype.

In every eukaryotic cell, DNA is mostly contained within its nucleus. The mitotic cell cycle is
the series of phases dividing any such cell into two daughter cells with the same DNA. In particular,
during the S-phase, both strands of DNA within a nuclear chromosome are separated and serve as
templates to synthesize new complementary daughter strands. Up to rare gene mutation, this gives
rise to two molecules of identical DNA, called chromatids, which are separated as independent
chromosomes into two new nuclei. In turn, the extra-nuclear genetic material of the parent cell is
randomly distributed between both daughter cells. Both processes constitute the M-phase of the
mitotic cell cycle. During the transition from the S-phase to the M-phase, regulatory mechanisms
are produced to check any DNA damage motivated by gene mutations. This stage is known as the
G2-phase.

2.2. Genetic Algebras

General genetic algebras were introduced in the 1920s and 1930s. It was Serebrowski [36] who
was the first to interpret algebraically the sign ×, which indicated sexual reproduction, and to give a
mathematical formulation of Mendel’s laws, formulated by G.Mendel in his famous papers of 1865 and
1866 (see [37], for instance). Glivenkov [38] introduced the so-called Mendelian algebras for diploid
populations with one locus or two unlinked loci. Independently, Kostitzin [39] also introduced a
symbolic multiplication to express Mendel’s laws. However, the systematic study of genetic algebras
is attributed to Etherington.

Indeed, Mendel’s laws were formulated in terms of non-associative algebras by Etherington in
several papers in 1939–1941 (and others later), among them [40–42]. In these works, algebraic patterns
outlined by Mendel in his famous papers of 1865 and 1866 were developed. Some improvements
to the mathematical approach for formulating Mendel’s laws were given by Jennings [43] in 1917,
by Serebrovski[36] himself in 1934, and by Glivenkov [38] in 1936. Since then, many authors have made
relevant contributions to genetics in the context of non-associative algebras: Schafer [44], Gonshör [45],
Haldane [46], Holgate [21], Heuch [47], Reiersöl [48], Korol [49], Lyubich [50], Wörz-Busekros [51], and
Bertrand [52]. Further information on these algebras can be checked in [51] and the references therein.
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2.3. Evolution Algebras

Tian and Vojtechovsky [1,3] showed a complete study of the algebraic properties of an evolution
algebra. Let E1 and E2 be evolution algebras, and let B1 = {e1, . . . , en} be a natural basis on E1. A linear
map φ : E1 7→ E2 is said to be a homomorphism of evolution algebras if φ(a b) = φ(a) φ(b), for every
a, b ∈ E1. Moreover, if φ is bijective, then it is said to be an isomorphism of evolution algebras.

In [15], an evolution algebra was described by identifying the coefficients of inheritance of
a bisexual population as the structure constants of the algebra. In this respect, an evolution algebra
of a bisexual population is an evolution algebra with a set of females partitioned into finitely many
different types and the males having only one type. The idea of treating in a separate way male
and female components of the population is due to Etherington [40], and it was later formalized by
Holgate [53].

Finally, it is convenient to note that there exist some types of algebras that are not properly
evolution algebras in the sense of Tian, but are quite related to them. One of these types is that formed
by evolution algebras of a chicken population. Another one is that formed by evolution algebras of
a mosquito population (see [54,55], respectively, for further information).

2.4. Graph Theory

A graph is a pair G = (V, E) formed by a set V of vertices and a set E of edges containing
two vertices, which are said to be adjacent. Two edges sharing a common vertex are said to be incident.
A graph is complete if any pair of its vertices is adjacent. A path between two vertices v, w ∈ V is any
alternating sequence of vertices and edges, {v0, e0, v1, . . . , vn−1, en−1, vn}, for which:

(a) v0 = v and vn = w;
(b) each edge ei contains both vertices vi and vi+1, for all i ∈ {0, . . . , n− 1}; and
(c) all its vertices and all its edges are pairwise distinct.

The number of edges in any path constitutes its length. A graph is said to be connected if there
exists a path between any pair of its vertices. The minimum length of a path between two given vertices
v, w ∈ V constitutes their distance d(v, w). The eccentricity ε(v) of a vertex v ∈ V is the maximum
distance from v to any other vertex in V. The radius ρ(G) and the diameter δ(G) of a graph G are,
respectively, the minimum and maximum eccentricity of its vertices.

A graph is total-colored if all its vertices and edges are colored from a given palette of colors.
This is proper-edge-colored if no two incident edges are colored with the same color. Two total-colored
graphs that are related to the same palette of colors are isomorphic if there exists a bijection between
their corresponding sets of vertices that preserves (a) their adjacency, (b) the color of edges, and (c)
the fact that two given vertices are colored with the same color. A path between two vertices of a
total-colored graph is said to be alternating if it contains at least three vertices and any two adjacent
edges have different colors.

2.5. Isotopisms of Algebras

Two n-dimensional algebras A1 and A2 are isotopic if there exist three non-singular linear
transformations f , g, and h from A1 to A2 such that f (x)g(y) = h(xy), for all x, y ∈ A1. The triple
( f , g, h) is called an isotopism from A1 to A2. From a strict point of view, the third component h need
not be defined for every vector of the algebra A1, but only for its derived algebra A2

1 = {xy : x, y ∈ A1}.
The notion of the isotopism of algebras was introduced by Albert [19] in 1942 as a generalization of
the classical concept of the isomorphism of algebras (which arises when f = g = h). In particular,
isotopisms make it possible to gather together non-isomorphic algebras that, at first sight, seemed to
be completely different. Since the original manuscript of Albert, isotopisms have been widely used
in the literature to study and classify distinct types of non-associative algebras like division algebras,
alternative algebras, Jordan algebras, Lie algebras, Malcev algebras, genetic algebras, or evolution
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algebras, with relevance not only in mathematics, but also in natural sciences and engineering. See [22]
for a recent survey in this regard.

In the context of evolution algebras, the transformations f and g represent the gene mutation of
each one of the two chromatids in which the nuclear genetic material duplicates during the S-phase of
a mitotic cell cycle. On the other hand, the transformation h represents the regulatory mechanisms
during the G2-phase that check any possible DNA damage that is produced during the S-phase.
More specifically, for each α ∈ { f , g, h}, one has α(ei) = ∑n

j=1 αijej, for all i ≤ n, where αij represents
the probability that the genotype ei mutates (if α ∈ { f , g}) or is regulated (if α = h) to ej.

Note that a mitotic cell cycle is accomplished only if the genotypes of both chromatids that have
been created after the mutations related to the transformations f and g coincide. Otherwise, there is no
offspring. To this end, the regulatory mechanism related to the transformation h is crucial.

3. Description of the Total-Colored Graph

In this section, we describe our proposal to associate a total-colored graph G(A) with any given
n-dimensional evolution algebra A over a finite field K. Let {e1, . . . , en} be the natural basis of
such an algebra, and suppose eiei = ∑n

j=1 cijej, with cij ∈ K, for all i, j. Since we are interested in
mutations among different genotypes, we may suppose n > 1. Thus, let G(A) := (V(A), E(A)) be the
total-colored graph having:

1. the set of vertices:
V(A) := {vx,y | x, y ∈ A, xy 6= 0}, (1)

where vx,y and vx′ ,y′ are equally colored in V(A) if and only if xy = x′y′;
2. and whose set of edges E(A) is formed by the disjoint union of both monochromatic subsets:

E1(A) := {vx,yvx,z | x, y, z ∈ A, y 6= z} (2)

E2(A) := {vx,yvz,y | x, y, z ∈ A, x 6= z} (3)

In order to illustrate this definition, Figure 1 shows, for instance, the total-colored graphs of the
three isotopism classes of non-trivial two-dimensional evolution algebra over the finite field F2 [17].
Colors of vertices are represented by the symbols •, N, and H, while colors of edges are represented by
solid and dashed lines.

Figure 1. Total-colored graphs of the three two-dimensional evolution algebras over F2 having
respective genetic patterns (e1, 0), (e1, e1), and (e1, e2).

The graph G(A) does not contain multiple edges, because every pair of adjacent vertices is
contained in exactly one edge of either E1(A) or E2(A). The adjacency within each one of these two
sets gives rise to a partition of V(A). More specifically, two vertices vx,y and vx′ ,y′ belong to the
same class according to the partition derived from E1(A) (respectively, E2(A)) if and only if x = x′

(respectively, y = y′). Then, the next result follows readily from the commutativity of the algebra A
and the fact that every two vertices within the same equivalence class are adjacent.

Lemma 1. Both subgraphs (V(A), E1(A)) and (V(A), E2(A)) are isomorphic and constitute a disjoint union
of complete graphs within G(A).
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From a genetic point of view, every vertex in G(A) represents a probable status of the genotype
located in two given chromatids C1 and C2 during the S-phase of a mitotic cell cycle, together with the
probable status of the genotype of the offspring. More specifically, if x = ∑n

i=1 aiei and y = ∑n
i=1 biei

are two vectors in A such that xy 6= 0, then the vertex vx,y ∈ V(A) is related to the following facts.

1. Let j ∈ {1, . . . , n}. If aj = 0 (respectively, bj = 0), then the chromatid C1 (respectively, C2) does not
contain the genotype ej. The same occurs for the offspring if ∑n

i=1 aibicij = 0, which corresponds
to the coefficient of the basis vector ej in the product xy.

2. Let j, k ∈ {1, . . . , n} be such that j 6= k. If aj > ak (respectively, bj > bk), then it is more probable
for the chromatid C1 (respectively, C2) to contain the genotype ej than the genotype ek. If aj = ak
(respectively, bj = bk), then both possibilities are equally probable. The same occurs for the
offspring if ∑n

i=1 aibicij ≥ ∑n
i=1 aibicik.

Furthermore, two different vertices in G(A) are equally colored if and only if they are associated
with the same probable status of the offspring’s genotype.

Concerning the edges in G(A), they represent the regulatory mechanisms produced during
the G2-phase of the mitotic cell cycle. Specifically, every edge vx,yvx,z ∈ E1(A) (respectively,
vx,yvz,y ∈ E2(A)) represents a mutation between two probable statuses y and z (respectively, x and z)
of the genotype in the chromatid C2 (respectively, C1), without changing to this end the probable status
of the genotype in C1 (respectively, C2). Thus, for instance, the vertex ve1,e1+e2 in any of the three graphs
in Figure 1 involves the chromatid C1 containing the genotype e1, while the chromatid C2 contains,
with the same probability, either the genotype e1 or e2. The first case would give rise to an offspring of
genotype e1, because e1e1 = e1, whereas the second one would not give rise to any offspring, because
e1e2 = 0. In order to avoid the latter, the regulatory mechanism produced during the G2-phase of the
mitotic cell could mutate the possible genotype e2 in C2 into the genotype e1. This is represented in the
graph G(A) by the edge ve1,e1+e2 ve1,e1 ∈ E1(A).

Every path within the graph G(A) is therefore interpreted as a series of mutations from a pair
of probable statuses of the genotype of both chromatids C1 and C2 into another. The following result
shows that these mutations are possible, whatever the probable statuses under consideration are.

Lemma 2. The graph G(A) is connected. Moreover, δ(G(A)) ≤ 7.

Proof. Let {vx,y, vz,t} ⊆ V(A), where, for each α ∈ {x, y, z, t}, it is α = ∑n
i=1 cα

i ei. Since xy 6= 0 6= zt,
there exist two positive integers j, j′ ≤ n such that ∑n

i=1 cx
i cy

i cij 6= 0 6= ∑n
i=1 cz

i ct
i cij′ . Let i, i′ ∈ {1, . . . , n}

be such that cx
i cy

i cij 6= 0 6= cz
i′c

t
i′ci′ j′ . Then, the ordered set of vertices:

{vx,y, vx,ei , vei ,ei , vei ,ei+ei′ , vei′ ,ei+ei′ , vei′ ,ei′ , vx′ ,ei′
, vx′ ,y′} ⊆ V(A),

determines a path in G(A) of seven alternating edges in E1(A) and E2(A).

In order to deal with the tightness of the upper bound in Lemma 2, we introduce some new
concepts. To this end, let {vx,y, vz,t} ⊆ V(A), where, for each α ∈ {x, y, z, t}, it is α = ∑n

i=1 cα
i ei.

We say that the vertices vx,y and vz,t are compatible if there exists a positive integer i ≤ n such that
cα

i 6= 0, for all vectors α ∈ {x, y, z, t}, and eiei 6= 0. Further, a vertex in V(A) is called pure if it has
the form vaei ,bei

∈ V(A) for some a, b ∈ K \ {0} and for some i with eiei 6= 0. Otherwise, the vertex is
called hybrid.

Proposition 1. The eccentricity of every pure vertex in G(A) is, at most, three.

Proof. Let vx,y ∈ V(A) be a vertex that is not adjacent to a pure vertex vaei ,bei
∈ V(A), where,

for each α ∈ {x, y}, we have α = ∑n
i=1 cα

i ei. If cx
i 6= 0 (respectively, cy

i 6= 0), then the ordered
set of vertices {vx,y, vx,bei

, vaei ,bei
} ⊆ V(A) (respectively, {vx,y, vaei ,y, vaei ,bei

} ⊆ V(A)) determines a
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two-length alternating path in G(A). Otherwise, if cx
i = 0 = cy

i , then the ordered set of vertices
{vx,y, vx,bei+y, vaei ,bei+y, vaei ,bei

} ⊆ V(A) determines a three-length alternating path.

Proposition 2. The eccentricity of every hybrid vertex in G(A) is, at most, three.

Proof. Let vx,y and vz,t be two non-adjacent vertices in G(A), where, for each α ∈ {x, y, z, t}, we have
α = ∑n

i=1 cα
i ei. In addition, suppose that the vertex vx,y is hybrid. From Proposition 1, if vz,t were

a pure vertex, then d(vx,y, vz,t) ≤ 3. Thus, from now on, we focus on the case that vz,t is also hybrid.
If the vertices vx,y and vz,t are compatible, then there exists a positive integer i ≤ n such that

cx
i , cy

i , cz
i , ct

i ∈ K \ {0} and eiei 6= 0. Thus, the ordered set of vertices {vx,y, vx,ei , vz,ei , vz,t} determines
a three-length alternating path.

Otherwise, if the vertices vx,y and vz,t are not compatible, then there exist two different positive
integers i, j ≤ n such that cx

i , cy
i , cz

j , ct
j ∈ K \ {0} and eiei 6= 0 6= ejej. If cx

j 6= 0, then the ordered set
of vertices {vx,y, vx,ej , vz,ej , vz,t} determines a three-length alternating path. Similar paths of the same
length can be found if cy

j 6= 0, cz
i 6= 0, or ct

i 6= 0. On the other hand, if cx
j = cy

j = cz
i = ct

i = 0, then the
ordered set of vertices {vx,y, vx,ei+ej , vz,ei+ej , vz,t} determines a three-length alternating path.

Theorem 1. If the genetic pattern of the evolution algebra A has more than one non-zero component, then:

2 ≤ ρ(G(A)) ≤ 3 = δ(G(A)).

Otherwise, ρ(G(A)) = δ(G(A)) = 2.

Proof. The non-triviality of the algebra involves the existence of a positive integer i ≤ n such that
eiei 6= 0. In addition, let j ≤ n be a positive integer such that i 6= j. This exists because n > 1.
Then, since the graph G(A) is connected and contains, for instance, the edge vei ,ei vei+ej ,ei , we have that
ρ(G(A)) > 0.

Now, suppose that ρ(G(A)) = 1. Then, there exists a vertex vx,y ∈ V(A) that is adjacent to any
other vertex in the graph. Since every evolution algebra is commutative, we have that yx = xy 6= 0,
and hence, vy,x ∈ V(A). This is adjacent to vx,y, and hence, from (2) and (3), we have that x = y.
Moreover, since the vertex vei ,ei ∈ V(A) is adjacent to vx,x, we have that x = ei. This implies that
ejej = 0. Otherwise, the vertices vei ,ei and vej ,ej should be adjacent, which is a contradiction with the
fact that ei 6= ej. As a consequence, (ei + ej)(ei + ej) = eiei 6= 0. Thus, the vertices vei ,ei and vei+ej ,ei+ej

should be adjacent, and hence, ei = ei + ej, which is also a contradiction. Therefore, ρ(G(A)) ≥ 2.
This fact, together with Propositions 1 and 2, holds the first assertion of the theorem.

Now, in order to prove the second assertion, suppose the existence of a positive integer i ≤ n
such that eiei 6= 0 and ejej = 0, for all j 6= i. Then, every pair of vertices vx,y, vz,t ∈ V(A) is compatible
so that the coefficient of the basis vector ei in each one of the four vectors x, y, z, t ∈ A is not zero.
In particular, xt 6= 0, and hence, the ordered set of vertices {vx,y, vx,t, vz,t} determines a two-length
alternating path. Therefore, δ(G(A)) ≤ 2, and the result holds readily.

Note that all the bounds in the first assertion of Theorem 1 are tight. Thus, for instance, the radius
of the second graph in Figure 1 is three, whereas the radii of the first and third graphs in the same
figure are two. Furthermore, from a genetic point of view, Theorem 1 can be interpreted as the fact that
any pair of probable statuses of the genotype of two chromatids can be transformed into another pair
by means of at most two or three mutations.

4. A Faithful Functor among Evolution Algebras and Graphs

Apart from the simplicity of describing the role of genes in mutation problems, the total-colored
graph that we have just introduced in the previous section becomes also relevant from a categorical
point of view. In this regard, we make use in this section of the mentioned graph in order to introduce
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a faithful functor among the category of evolution algebras on a finite field and the category of
total-colored graphs. Unlike the graphs associated with evolution algebras that already exist in the
literature (see the introductory section), our description enables one to ensure that isomorphic evolution
algebras always give rise to isomorphic total-colored graphs. Moreover, we prove in Proposition 3 that
the previous assertion holds indeed for isotopic evolution algebras and not only for isomorphic ones.

From here on, the following notations are used:

• Let E andM respectively denote the set of finite-dimensional evolution algebras over a finite
field and the set formed by their associated total-colored graphs. For each algebra A ∈ E , the set
of vertices of the graph G(A) is V(A) := {vA

x,y | x, y ∈ A, xy 6= 0}.
• Let Isot(E) and Isom(M) respectively denote the set of isotopisms of algebras in E and the set of

isomorphisms of graphs inM.
• Let Isot(A1, A2) and Isom(G1, G2) respectively denote the set of isotopisms between two given

evolution algebras A1, A2 ∈ E and the set of isomorphisms between two given graphs G1, G2 ∈
M.

• Let E denote the category formed by the sets E and Isot(E).
• Let M denote the category formed by the setsM and Isom(M).

Let us finish this paper with the establishment of a faithful functor between the categories E and
M. In this regard, let F : E→M be such that:

(a) F(A) := G(A), for all A ∈ E .
(b) For each isotopism Θ = ( f , g, h) ∈ Isot(E) between two isotopic evolution algebras A1, A2 ∈ E ,

let FΘ : G(A1)→ G(A2) be such that:

FΘ(v
A1
x,y) := vA2

f (x),g(y), for all vA1
x,y ∈ V(A1).

The non-singularity of the three linear transformations f , g, and h involves FΘ being a
well-defined bijection from V(A1) to V(A2). Observe to this end that, for each x, y ∈ A, one has
that f (x)g(y) = h(xy) 6= 0 if and only if xy 6= 0.

Proposition 3. The map F : E→M is a faithful functor.

Proof. Let A1, A2 ∈ E and Θ ∈ Isot(A1, A2). Then, we define the map:

Isot(A1, A2) → Isom(G(A1),G(A2))

Θ → FΘ
(4)

Let us prove that this is well defined and injective. Suppose to this end that Θ = ( f , g, h) ∈
Isot(A1, A2). The non-singularity of both linear transformations f and g implies that FΘ : V(A1) →
V(A2) maps E1(A1) and E2(A1) to E1(A2) and E2(A2), respectively. Furthermore, the non-singularity
of the linear transformation h implies that FΘ(V(A1)) = V(A2). Hence, FΘ ∈ Isom(G(A1),G(A2)).

Now, suppose the existence of a pair of isotopisms Θ1 = ( f1, g1, h1) and Θ2 = ( f2, g2, h2) in the
set Isot(A1, A2) such that FΘ1 = FΘ2 . Then, vA2

f1(x),g1(y)
= FΘ1(v

A1
x,y) = FΘ2(v

A1
x,y) = vA2

f2(x),g2(y)
, for all

x, y ∈ A1 such that xy 6= 0. As a consequence, f1 = f2 and g1 = g2, and hence, h1(xy) = f1(x)g1(y) =
f2(x)g2(y) = h2(xy). Therefore, both isotopisms, Θ1 and Θ2, coincide.

5. Conclusions and Further Work

This paper dealt with the description of a total-colored graph associated with the genetic pattern
of any finite-dimensional evolution algebra over a finite field. We proved that both categories formed
by such algebraic and combinatorial structures are related by a faithful functor. The faithfulness of
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the functor implies that any isotopism of evolution algebras is uniquely related to an isomorphism of
total-colored graphs. As a consequence, isotopisms of evolution algebras can be thought from now on
as isomorphisms of total-colored graphs satisfying some extra properties. An explicit determination
and characterization of the latter were established as further work in order to identify under which
circumstances the functor under consideration is indeed fully faithful. In any case, these extra
properties derive straightforwardly from the linearity of any isotopism of algebras.

Further, throughout the paper, we interpreted some basic properties and results of the described
total-colored graph in the context of the genetic processes that occur during a mitotic cell cycle. Keeping
in mind that the spectrum of possible patterns is currently known only for those evolution algebras
that are involved with two or three genotypes, we established as further work the study of graph
invariants of the proposed total-colored graph in order to deal with a higher number of genotypes.

It is also required to delve into the translation of algebraic concepts and results on evolution
algebras to the language of total-colored graphs. A particular focus of interest in this regard is
the associator A(x, y, z) := (xy)z − x(yz), which constitutes, according to Goze and Remms [56],
an interesting way of classifying nonassociative algebras over the group algebra K[Σ3] of the symmetric
group Σ3 over a field K and also for studying their algebraic properties. In order to illustrate such
a classification in the case of dealing with evolution algebras, let A be an n-dimensional evolution
algebra over the field K, with natural basis {e1, . . . , en} and such that eiei = ∑n

j=1 cijej, with cij ∈ K, for
all i, j. Then,

A(ei, ei, ej) +A(ej, ei, ei) = cijejej − cijejej = 0, for all i 6= j,

and hence,
A(ei, ek, ej) +A(ek, ei, ej) +A(ej, ei, ek) +A(ej, ek, ei) = 0, for all i, j, k.

According to the notation that is used in [56], the previous identity becomes:

A ◦Φv = 0.

Here, Φv denotes the right action on the group algebra K[Σ3] by means of the vector:

v := Id + τ12 + c2 + τ13,

where, from here on, τij denotes the transposition (i, j) ∈ Σ3 and c2 is the cycle of order three
(1, 3, 2) ∈ Σ3. The orbit of this vector v for the natural action of Σ3 on the group algebra K[Σ3] is:

O(v) := {v, Id + τ13 + τ23 + c1, τ23 + c1 + c2 + τ12},

where c1 denotes the cycle of order three (1, 2, 3) ∈ Σ3. Then, K(O(v)) is an invariant irreducible space
of the group algebra K[Σ3]. In particular,

2Id + 2τ12 + 2τ13 + 2τ23 + 2c1 + 2c2 ∈ K(O(v)).

According to the terminology in [56], this means that evolution algebras are K[Σ3]-associative.
This implies that a development of algebraic properties (like operad, homology, cohomology, amongst
others) could be done as further work.
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