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Abstract- A very flexible programmable CMOS analog 
neural oscillator cell architecture is presented. The pro- 
posed neuron  circuit archi tecture  is a hysteret ic  neural- 
type pulse oscillator. Its implementation consists of 
a t ransconductance compara to r ,  a capaci tor  and two 
non-linear resistors. It has over nine decades of oscilla- 
t i on  frequency range,  i.e., 10-zHz 5 fo., 5 20MHz.  This 
range  has been experimentally versed. The oscillator 
cell in the test-chip was implemented in a standard 3pm 
(p-well), double-metal CMOS technology, and has a 
dimension of about 44,000pm' (without  the capacitor). 
Preliminary measurements and simulated results agree 
very well. 

I. INTRODUCTION 
The interest in neural networks is old, one main reason has 

been the potential to solve difficult complex engineering prob- 
lems [l] - [4] that could not be easily and practically solved 
with conventional approaches. Using synthetic neural networks, 
researchers try to  mimic human-like performance to solve engi- 
neering problems such as control systems, including optimiza- 
tion, learning and adaptive systems, also strong interest exists 
for speech and image recognition. A renovated interest in neu- 
ral networks has arisen in the engineering scientific community 
among others. One of the main driving forces behind this reno- 
vated interest lies in the fact that a very large number of highly 
interconnected arrays of basic cells (neurons) can be, in princi- 
ple, efficiently fabricated BS integrated circuits. Several recent 
results [4] - 151 of implemented neural networks in CMOS tech- 
nology show promising potential applications [2], [3], [lo] and 
[13]. Another attractive property of a neural network is its great 
fault tolerance and degree of robustness. 

A basic nerve cell is called a neuron. Biological neurons 
are permanently sending electrochemical signals back and forth 
to each other and modifying their communication lines with 
every new experience. Several researchers (see Refs. 7.1 and 
7.3 in [l]) considered the brain as being associated with an en- 
ergy surface whose valleys correspond to stable repeatable brain 
response. External stimulus determines the initial point of the 
energy surface. The brain, by means of firing sequency of pulses 
changing dynamically, reaches a stable pattern that corresponds 

to a valley floor on the surface. This energy surface question can 
be interpreted as the conventional minimization or optimization 
of a function often found in engineering problem (i.e., control 
system, circuit design, etc.), and where a stable pattern is the 
corresponding minimum of a function. 

A neuron has both o n  (excitatory) and of(inhibitory) con- 
nections, the output consists of positive' (or negative) packages 
of pulses for excitatory (or inhibitory) output signal. Neurons 
are interconnected through synapses. A synapse can be consid- 
ered as a weighted relation between the output of a neuron and 
the input received by another one. This relation can be mod- 
eled as inhibitory or excitatory. Interconnections form neural 
networks, however, researchers [13] have not agreed on precisely 
which part of the nervous system t o  model and the exact degree 
of fidelity. The complexity and variety of inherent algorithm 
associated with the human nervous system is astonishing. 

Several crude mathematical models of neural nets have been 
reported in the literature [I] - [SI, [9] where the basic model con- 
sists of a neuron producing an output determined by a weighted 
sum of inputs coming from other neuron outputs and external 
(stimuli) signals. The mathematical description [4], [7], [ll] of 
the dynamic behavior of a neural networkZ with N neurons can 
be characterized by: 

3 
z; is the neural activity in neuron i ,  and can be interpreted 
as a voltage signal. In the above equation, Term 1 represents 
the passive decay of neural activity in the absence of all other 
signals (Terms 2 and 3), in which case z;(t) comes from a lin- 
ear single time constant system and z ; ( t )  = z ; (o)e-Ai t .  Thus 
A; is the self term. 1/Ai has units of time and can be inversely 
related to a time constant. Term 2 corresponds to external stim- 
uli input signals I,; which can be interpreted as input current 
sources. Term 3 involves the synaptic weighting functions T,j 

' The positive (negative) packages of pulses are arbitrarily associated 
with the excitatory (inhibitory) output signal. 

Authors use different names for neural networks, such ar neuromor- 
phic systems, connectionist models, parallel distributed processing models, 
artificial neural nets or synthetic neural systems. 
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and ?;, and the neuron state Vj. Note that Ti, and ?,, model 
the excitatory and inhibitory functions, respectively. Vj is the 
neural state which is related to the neural activity z; by the non- 
linear activation function I,(.), which bounds the values of Vj 
between a maximum and a minimum value as shown in Fig. 1, 
i.e., V, = fj(zj) .  Some authors use activation functions having 
a sharp transition as shown in Fig. l(a); others use a func- 
tion with a defined transition region between V,,,, and Vjmin, 
(Fig. l(b)), and still others use functions with a soft transition 
as shown in Fig. l(c); these last two activation functions are 
also known as sigmoids. 

A variation of (1) where hysteretic elements [I], [4] - [8] are 
used instead of an activation function (i.e., Term 3 is modified) 
can be described' as: 

hi 
(24 -=  dt -4%; + I,i - Ah, H;(zi, Vi) - 

S 

N-1 

vi = (Tij - T;j)fj(zj) (2b) 
j = O  

where T;,, ?,j, fj(-), A, and I,i are defined as before, A,,, is 
a weighting non-negative constant and €I,(z;, Vi) describes a 
hysteresis type [SI - [8] of neuron model for a constant vl., i.e., 

i f2  < -2- 

if z 7 -z+ 
if -2- < z; < z+ 
ifz;  = -2- or z; =z+ 

H(z;, const) = {H+, -H-) 
[-H-, H+] 

(3) 
{ H+ 

Fig. 2 illustrates the hysteresis loop characterized by (3). For 
the operation of a n e u r a l d l a t o r  a line crossing the origin (in 
Fig. 2) in the 1" and 3rd quadrant is needed; then the oscilla- 
tion or no'oscillation depends on the s l o p  of the (linear) load 
line. Other equivalent cecillation mechanisms are possible for 
symmetric hysteresis loop and non-linear load resbtors. One of 
these mechanisms is introduced later. Note that the asymmetry 
(for linear resistor loads) of this loop is required to guarantee 
the existence of one stable point [8] as will later be needed. 

In this paper, we describe a CMOS analog neural oscillator 
cell that has some of the properties of a biological neuron. These 
inhibitory and excitatory properties are functions of the input 
sum exceeding (or not) a firing threshold level. The propceed 
cell is voltage programmable over a large oscillation frequency 
range. 

II. MATHEMATICAL APPROACH 
Let us rewrite (2) in a convenient form for our CMOS circuit 

implementation, that is for a single neuron characterized by 
the first-order state equations (for simplicity the subindice i is 
deleted): 

d z  
dt U, 2) + I&) (4) C- = -A2 - C( 

where U = input, z = internal state variable, C is a non-negative 
constant, I , [ Z )  is - A h H ( z ,  V), and the input variable U con- 
trols the value of C(u, z) and since the U = I. term has been 
incorporated in G(u, z), it  is no longer explicitly shown. The 

equilibrium points, neglecting the -Az term, are reached when 
% = 0, resulting in 

I.+.) = C(U, 2.) (5) 
C(u, z) is a nonlinear current which is defined as 

for z < 0 
i ~ ( z )  = G(u, z) = ml(u)z  for 0 < z < z1(u) (6) 

The solutions of (5) for two different G(u, 2)'s are pictorially 
shown in Fig. 3. Observe that the value of IC modifies the slope 
ml(u), thus IC must be a function of U. The mode of operation 
illustrated in Fig. 3(a) shows two equilibrium points, A and B, 
where A represents a stable point and B represents an unstable 
point. Thus, eventually the equilibrium point A is reached and 
z becomes 2.. Note that z, < V+.  Thus I o ( z , )  = 4. The mode 
of operation illustrated in Fig. 3(b) has two unstable points A' 
and B', therefore, the circuit oscillates trying to reach a stable 
point. 

Next, we analyze (4) under this unstable mode of operation 
to determine the oscillating signal 2. Assume z(o) = 0 and 
I.(O+) = I&,, then (4) becomes' 

(" mz(u)z for z ~ ( u )  < z 

(7) 
dz C- dt = -m 1 Z - k  IS 

which solution yields 

This equation holds until z(t) becomes V+, (therefore, we as- 
sume & > V+) at  which time the output of the hysteretic 
element changes to - b  (we assume the ideal case where no 
time is taken in going from b to -16 on the hysteresis curve). 
Let t l  be this time, with z(t1) = V+. Solving for t l  we obtain: 

(9) 
- ,  

after t l the  characterizing differential equation yields 
d z  
dt 

which solution is given by 
c- = -I& - mlz,  with ~(0) = v+ (10) 

(11) 
This situation remains until t2, where z(t2) = 0. At this time 
iN (z )  switches to 0 89 per (6). Therefore, solving for t; we 
obtain 

Now the differential equation becomes 
d z  
dt (13) C- = -1s but with z(0) = 0 

the solution is time linearly dependent and given by 

z( t )  = -&t C (14) 
The time at which IO(%) changes from -4 to  I b  occurs when in 
(14) z(ts) = -V-, thus t s  results 

cv- 
t S  = - 

The cycle is completed when the differential equation becomes 
(15) 

(16) 

I b  

d z  c-=I dt b with Z(0) = -v- 
and the solution becomes 

' The physical meaning of the term -&z, in (Za) is different from (1). 
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z ( t )  = -v- + F t  Ib (17) 

(18) 

Thus Z(t4) = 0, thus resulting 
cv - 

t 4  = - 
The time diagram of the oscillation signals are illustrated in Fig. 
4 where TI = C/ml  and TZ = C / m l .  

111. CMOS NEURAL OSCILLATOR CIRCUIT 

I b  

The proposed neural oscillator cell architecture is shown in 
Fig. 5(a). This architecture consists of a hysteretic block, an in- 
tegrator, and a non-linear resistor load R N L  related to  C(u, 2). 

A more detailed block diagram of the oscillator cell is illustrated 
in Fig. 5(b) where the hysteretic element is shown to consist of 
a comparator connected with positive feedback and a non-linear 
load R N H .  The input (2) - output ( I o )  characteristics of the 
hysteretic element (consisting oTbhe comparator and non-linear 
resistor load) are given by 

I b  I 2 < v+ 
Io = { -IS , 2 > -v- (19) 

[ - z b , z b ]  , 2=v+ , -v- 
The corresponding characteristics of i~ for the non-linear resis- 
tor R N L  are given by (6). Observe that the output impedance 
of the comparator can be associated with the term 42, of (2a). 
The CMOS circuit implementation is shown in Fig. 5(c). Note 
that vb controls the value of Is through transistors M24, M21 
and M9. M21 with M9 form a current mirror where the z b  

current is injected. Transistors Ml-M9 form the transconduc- 
tance comparator, M10-Ml1 implements the non-linear resistor 
RNH. Observe that RNH consists of a diode connection of hw 
transistors. Current IOl, from Fig. 5(b), is obtained through 
MlZP-MlZN in Fig. 5(c). Transistors M22 and M23 allow us 
to have output currents of both polarities to be injected into 
other cells. 

V, determines the IC (of Fig. 3) injected through M20 
and current mirror (M13 and M18). Vc consists of an inherent 
value Vc. (fixed) plus an input U. Furthermore, Vc determines 
the slope ml (see eqs (6) and (7)). The non-hear resistor 
load, R N L  is implemented by transistors M13 to  M19. When 
VN(= z) < 0, transistors M15 is off and the bias current, IC 
(also refer to  Fig. 3), of the differential pair goes through M14. 
Thus the current, i ~ ,  through M17 and M19 is zero. When 
VN > 0, M14 is non-conducting and M15 is on, and the current 
through M17 and M19 becomes IC .  That is i~ = IC.  Since 
transistors M14 and M15 do not have large ( W / L )  ratios, there 
is a smooth transition between the on and off states of this non- 
linear resistor. That is the reaSOn the resistor, R N L  has been 
modeled by three piecewise linear segments. 

IV. EXPERIMENTAL RESULTS 
The circuit shown in Fig. 5(c) was implemented in a 3pm 

CMOS technology (through and thanks to MOSIS). A microphe 
tograph of the CMOS analog neural oscillator-cell is shown in 
Fig. 6. The cell occupies an area of about 44,000pm’ without 
including the capacitor. In our case, we used either a 1pF ca- 
pacitor or the parasitic capacitance at that node. All the (W/L) 

ratios of the transistors of Fig 5(c) are 7pm/5pm. 

The experimental results for an oscillating frequency of 
19.96 x loe Hz is shown in Fig. 7. The integrating capaci- 
tor for this result is the parasitic capacitance present at that 
output node. Fig. 8 shows simultaneously the voltages Vc and 
z = (VN),with vb = 3.98V for an oscillating frequency of about 
92 KHz where vb is the voltage producing (see Fig. 5(b)). 
The oscillator-cell was capable of producing output pulses be- 
tween 0.01 Hz and nearly 20 MHz. The experimental results 
for the dependance between the controlling voltage vb and the 
oscillating frequencies are shown in Fig. 9. 

V. CONCLUSIONS 
We have extended our preliminary work on a programmable 

neural oscillator cell [SI using discrete components. The p r e  
posed monolithic cell is tunable over a range of 9 decades. It 
was built using ordinary doublemetal 3pm CMOS technology 
and has potential for fast speed applications. 

This neuron architecture has excellent voltage (or current) 
programmability properties. Extension of this neuron-oscillator 
cell to include the synaptic weighting functions as well as the 
nonlinear activition function is being considered. We are also 
currently investigating sound neural network architectures where 
the proposed cell can be fully exploited. 
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Fig. 1 Activation hnction. (a) Step Type, (b) Hard Type and 
(c) Soft Limiting (Sigmoid) Type. 
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H, (xl, C o n s t a n t )  

%e- 
Fig. 2 Hysteresis Loop Characteristics of a Neuron Model. 
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(a) (b) 
Fig. 3 Egnilibrium Point Characteriaticr. (a) Stable Mode, 

(b) Oscillating Mode. 

x ( t >  
I 

Fig. 4 Time Diagram of the Output z(t)  and Io1(t). 
I 

x < t >  

(b) 

Fig. 5 Neural-Oscillator Cell Architecture. (a) Block Diagram, 
(b) More Detailed Block Diagram, and 
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fcl MOS Circuit Imdementation VP = VP + U. 
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I 
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Fig. 7 Neural Oscillator Output. Oscillating hqnency 19.6 MHz. 

I --._-._......- I 
Fig. 8 Vc shown in the Upper Ttace, and VN in the Lower Ttace. 

For an Oscillating Fkeqnency of 92.0028 KHs. 

VOltag* 
Fig. 9 Oscillating hquency vs. Controlling Voltage Vb for C = C, 

(parasitic capacitance) . 
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