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Abstract 

This pa.per presents a straightforward method for im
plementing generalized predictive self-tuning controllers 
with low computational requirements. The method 
malees use of the fact tha.t a. generalized predictive con
troller results in a. control la.w tha.t can be described with 
few parameters. 
The controller has been developed for processes having 
a.n integral effect. A set of simple functions relating 
the controller parameters to the process pa.rameters has 
been obtained. With this set of functions either a fixed 
or a selftuning GPC can be implemented in a straight
forwa.rd ma.nner. An application to the control of a oc 
motor is given. 

1 Introduction 

One of the reasons for the success of the traditional PID 
controllers in industry is tha.t they are very ea.sy to im
plement and tune by using heuristic tuning rules such 
a.s the Ziegler-Nichols rules frequently used in practice. 
A Generalized Predictive Controller ( GPC) results in a 
linear control law which is very easy to implement once 
the controller parameters are known. The derivation of 
the G PC parameters requires, however, some mathemat
ical complexities such a.s solving recursively a Diophan
tine equation, forming the prediction equation matrices 
a.nd then solving a set of linear equations. Although 
this is not a problem for people in the research control 
community where mathema.tical packages are normally 
a.vailable, it may be discouraging for those practitioners 

*Work supported in part by CICYT Contract #TAP-95-0370

used to much simpler ways of implementing and tuning 
controllers. 

The previously mentioned computation has to be 
ca.rried out only once when dealing with processes with 
fixed parameters, but if the process parameters change, 
the GPC's parameters have to be derived again, perhaps 
in real time, at every sampling time if a selftuning con
trol is used. This again may be a difficulty beca.use 
on one hand, sorne distributed control equipment has 
only limited mathematical computation capabilities for 
the controllers, a.nd on the other hand, the computation 
time required for the derivation of the GPC pa.ra.meters 
m�y be excessive for the sa.mpling time required by the 
process and the number of loops implemented. 

Fast implementation methods for processes that can 
be modelled by the rea.ction curve method (most pla.nts 
in the process industry) have been proposed in [61, [4J, 
where sorne Ziegler-Nichols type of rules were given for 
implementing a.daptive GPC requiring only a few mul
tiplications. Sorne applica.tions can be found in [21, [31 
and [5J. 

This paper extends those results and presents a 
method for the easy implementation and tuning of GPC 
for a wide range of processes in industry, such as pro
cesses with integral effect. It will be shown that a GPC 
can be implemented with a limited set of instructions, 
available in most distributed control systems, and that 
the computation time required, even for tuning, is very 
short. The method to implement the GPC is ha.sed on 
the fact that a wide range of processes in industrv can be 

1 
" 

descrihed by a few para.meters and that a set of simple 
Ziegler-Nichols type of functions relating GPC para.me
ters to process para.meters can be obtained. By using 
these functions the implementation and tuning of a GPC 
resu�ts almost as simple as the implementation and tun
ing of a PID. 

The paper is organized as follows: first a short re
view of GPC is given in section 2. Section 3 presents the 
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plant model used to model the integral effect and the

control law obtained in section 4. The controller param

eters are calculated and some approximation formulas

are obtained in section 5 whilst the implementation al

gorithm is presented in section 6. The consideration of

ramp setpoints is dealt with in section 7 and an illustra

tive application to a DC motor is presented in section 8.

The paper ends with some concluding remarks.

2 Generalized Predictive Control

The GPC method was proposed by Clarke et al. [8] and

has become one of the most popular Model-Based Pre

dictive Control (MPC) methods both in industry and

academia. It has been successfully implemented in many

industrial applications [7], showing good performance

and a certain degree of robustness with respect to over

parametrization or poorly known delays. It can han

dle many different control problems for a wide range

of plants with a reasonable number of design variables,

which have to be specified by the user depending upon.

a prior knowledge of the plant and control objectives.

The basic idea of GPC is to calculate a sequence of

future control signals in such a way that it minimizes a

multistage cost function defined over a prediction hori

zon. The index to be optimized is the expectation of a

quadratic function measuring the distance between the

predicted system output and some predicted reference

sequence over the horizon plus a quadratic function mea

suring the control effort.

Generalized Predictive Control provides an explicit

solution (in the absence of constraints), it can deal with

unstable and non-minimum phase plants and incorpo

rates the concept of control horizon as well as the con

sideration of weighting of control increments in the cost

function. The general set of choices available for GPC

leads to a greater variety of control objectives compared

to other approaches, some of which can be considered as

subsets or limiting cases of GPC

The Generalized Predictive Control (GPC) algorithm

consists of applying a control sequence that minimizes a

multistage cost function of the form

Java = E{ 2' 6(J')lz/(t +1" I t) - wtt +1)?

+ Z Amman +1 - 1r}

j=l l

where E is the expectation operator and 3}(t+j I

t) is an optimum j-step ahead prediction of the system

output on data up to time t, N1 and N2 are the minimum

and maximum costing horizons, Nu is the control hori

zon, 6(j) and /\(_j) are weighting sequences and w(t+j)

is the future reference trajectory.

The objective of predictive control is to compute

the future control sequence u(t), u(t + 1),... in such

a way that the future plant output g(t + j) is driven

close to 'U1(t + This is accomplished by minimizing

.](N1,iVQ,Nu). ' .

The standard algorithm is given in This algo

rithm involves the optimal prediction of g(t + for

N1 3 j 3 N2, which is obtained-by the recursion of

a Diophantine equation and the triangularization of an

(Nz — d) x (N2 — d) matrix.

The goal of this paper is to develop a fast algorithm

to implement self-tuning GPCs for processes that can be

modelled by a first order integrating system plus a pure

dead time.

3 Integrating Processes

In industrial practice it is easy to find some processes

including an integral effect. The output of one of these

processes grows infinitely when excited by a step input.

This is the case of a tank where the level increases pro

vided there is an input flow and a constant output. Also

the angle of an electrical motor shaft which grows while

being powered until the torque equals the load.

These processes can be modelled by a first order

plus delay transfer function, with the inclusion of an l/s

term in order to model the integrating effect. Hence, the

transfer function for this kind of processes will be:

_ K “1'48

G(S) - me

In the case of dead time being multiple of the sam

pling time the equivalent discrete transfer function when

a. zero-order hold is employed is given by:

~-1 --2
5(1) = “‘bo'i—Aibh—dfd (2)

(1 — z )(1 —- az )

In this section the GPC control law for processes de

scribed by (1) will be calculated. Notice that some for

mulations of MP0 such as Dynamic Matrix Control (DMC

[9]) or Model Algorithmic Control (MAC [11]) are unable

to deal with these processes since they use the truncated

impulse or step response, which is not valid for unstable

processes. As GPC makes use of the transfer function,

there is no problem about unstable processes.

4 Derivation of the Control Law

The procedure for obtaining the control law is described

below:

Using a CARIMA model with the noise polynomial

- equal to l, the system can be written as

80)

A

 (1 — z'l)(1—az“l)y(t)=(bo +b12_1)z'du(t — 1) +

which can be transformed into:

g(t + 1) = (2 l. a)y(t) - (1 + 2a)y(t - 1) + ay(t _ 2) +

+b0Au(t-d)+b1 Au(t—d— l)+e(t+l)
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If the values offl(t+d+i-1 | t), g](t+d+i-2 | t)

and 3}(t+d+i—3 I t) are known, then the best predicted

output at instant t+ d +2' will be:

g](t+d+'i|t)=(2+a)3)(t+d+i-1|:t)

—(1+2a)g}(t+d+i—2It)+agj(t+d+i—3|t)

+boAu(t+i-1)+b1Au(t+i—2) (3)

With these expressions of the predicted outputs, the

cost function to be minimized will be a function of 3)(t+

dlt), fl(t+d— 1 | t) and g}(t+d—2 | t), aswellas the

future control signals Au(t + Nu — 1), Au(t + Nu — 2)

Au(t), and past inputs Au(t — l) and, of course,

of the reference trajectory. If the horizons are: N1 =

d + 1, 1’2 = N + d and Nu = N, the minimization of

J(N1, N2, . ’11.) leads to the following matrix equation for

calculating u:

Mu=Py + Rw+ Q Au(t—1)

where M and R are matrices of dimension N x N, P of

dimension N x 3 and Q of N x 1. Vector 11 contains the

future input increments and y the predicted outputs.

The first element of vector u can be obtained by:

Au(t)=qPy+qRw+qQAu(t—1)

being q the first row of matrix M“.

If the reference is considered to be constant over the

prediction horizon and equal to the current setpoint:

w =1]r(t)

the control law results as:

Au(t)=ly1g(t+dlt)+ly2!7(t+d_llt) (4)

+1,,;, g(t+ d- 2 | t) +1,1 1-(t)+l,,1 Au(t - 1)

{\r ;\9

Being q P =[ly1 lyg ly3], 1,1 = 2(qi 213,-) and [M =

i=1 j=1

q Q

Therefore the control law results in a linear expres

sion depending on five coefficients which depend on the

process parameters (except on the dead time) and on the

control weighting factor /\. Furthermore, one of these co

efficients is a linear combination of the others, since the

following relation must hold so as to get a closed loop

with unitary static gain:

lyl +ly2 +1313 +lr1:0

5 Controller Parameters

The control law is very easy to implement provided

the controller parameters lyl, lyg, lyg, lrl and lul are

known. The existence of available relationships of these

parameters with process parameters is of crucial impor

tance for a straightforward implementation of the con~

troller. In a similar way to for processes without in

tegrators, simple expressions for these relationships will

_be obtained.

As the process can be modelled by (2) three pa

rameters (a, b0 and b1) are needed to describe the plant.

Expressions relating the controller coefficients with these

parameters can be obtained, although the resulting func

tions are not as simple, due to the number of plant pa

rameters involved. In order to reduce the number of

parameters involved, the process can be considered to

have (b0 +b1)/(l -— a) = 1 so as to work with normalized

plants. Then the computed parameters must be divided

by this value that will not be equal to 1 in general.

The controller coefficients will be obtained as a func

tion of the system pole a and a parameter:

b0
n, =

50 + b1

This parameter has a short range of variability for any

process. As b0 and b1 are related to the continuous pa

rameters by (see [1]):

 

[)0 = K'(T+T(—l+6_;)) bl = [{(T—6—1':(T+T))

then

__ a — 1 — log a

n _ (a — 1) logo

that for the usual values of the system pole (in the range

from 0.5 to 0.99 when sampling at an appropriate rate

[10]) is going to vary between n = 0.5 and n = 0.56.

Therefore the controller parameters can be expressed as

functions of the system pole. and n for a fixed value of A.

Notice that the use of a predictor makes the parameters

independent of the dead time.

  

Figure 1: Controller coefficients lyl, lyg, lyg and [M

The shape of the parameters is displayed in figure

1 for a fixed value of /\ = 1. It can be seen that the

coefficients depend mainly on the pole a, being almost

independent of n' except in the case of lul. Functions of

the form

f(a,n.,\) = k1(n,/\) +1.~__,(n,,\ “
)k3(n, —- a
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where (for N = 15) k,- can be approximated by:

kw = _ exp(O.955 - 0.559,\ + 0.135%)

km = - exp(0.5703 - 0.513A + 0.188%)

km = 10343

km = exp(0.597 - 0.42m + 0.0953%)

km = exp(1.016 - 0.42511 + 0.109%)

km = 1.0289 (6)

km = - exp(-—1.761 - 0.4221 + 0.071%)

km = - exp(0.103 - 0.353,\ + 0.089%)

191,36 = 1.0258

km = 1.631n - 1.468 + 0.2151 - 0.056%

km = —0.124n + 0.158 - 0.026/\ + 0.006%

19111.3 = 1.173 - 0.019).

provide good approximations for lyl, lug, 1y; and lul in

the usual range of the plant parameter variations. No

tice that an approximate function for lrl is not supplied,

since it is linearly dependent on the other coefficients.

The functions fit the set of computed data with a maxi

- mum error ofless than 1.5 percent of the nominal values.

Notice that closer approximations can be obtained if de

veloped for a concrete case where the range of variability

of the process parameters is smaller. For other values of

N and Nu similar expressions can be obtained.

6 Implementation Algorithm

Once the /\ factor has been decided, the values kij can

very easily be computed by expressions (6) and the ap

proximate adaptation laws given by equation (5) can

easily be employed.

The algorithm in the adaptive case will consider the

plant parameters (a, b0, b1, (1 and the factor G = (b0 +

b1)/(l — a)) and the control law can be seen below.

 

1. Perform an identification step.

Compute k,j(n, /\) .

3. Calculate lyl, lyz, lyg and lul

Make lrl = —ly1 '— ly2 — lyg

4. Compute y(t + d | t), + d —1|t) and

fit + d —- 2 | t) using (3) recursively.

5. Compute u(t) with: Au(t) = (lyl g](t + d l t)+

+ly2 12(t+d-1|t)+1y3 1)(t+d—'2|t)+

+l,.1 r(t))/G + [U1 A u(t — l)

6. G0 to step 1.

(O

  

 

Notice that in a fixed-parameter case the algorithm is

simplified since the controller parameters need to be

computed only once (unless the control weighting fac

tor A is changed) and only steps 4 and 5 have to be

carried out at every sampling time.

7. Consideration of Ramp Setpoints

It is usual for a process reference signal to keep a certain

constant value for a time and to move to other constant

values by step changes during normal plant operation.

This is What has been consideredlup to now, that is,

w(t + d +1) = 'w(t + d + 2) . .. = r(t), r(t) being the

setpoint at instant t which is going to maintain a fixed

value.'

But the reference evolution will not behave like this

in all circumstances. On many occasions it can evolve

as a ramp, which changes smoothly to another constant

setpoint. In general it would be desirable for the process

output to follow a mixed trajectory composed of steps

and ramps.

This situation frequently appears in different indus

trial processes. In the food and pharmaceutical indus

tries some thermal processes require the temperature to

follow a profile given by ramps and steps. It is also of

interest that in the control of motors and in Robotics

applications the position or velocity follow evolutions of

this type.

GPC will be reformulated when the reference is a

ramp, defined by a parameter 01 indicating the incre

ment at each sampling time. The reference trajectory is

therefore:

'w(t+d+l) = r(t+d)+a

'll.=(t+d+2) = 'r(t+d)+201

w(t+d+N) _ = ~r(t+d) +Ncz

Employing the previously used procedure we get

Mu=Py + Rw+ Q Au(t—1)

If (1 is the first row of matrix M—1 then Au(t) can

be expressed as

Au(t)=qPy+qRw+qQ Au(t——1)

By making hT = q R the term of the above expres

sion including the reference(hTw) takes the form:

.'V N

hTw = Zh,1~(t+d+i)= Zhi(r(t+d) +811)

i=1 i=1

N7.-v i

: Zhfi<t+d>+02hii

i=1 i=1

therefore

hTw = 1,.1 r(t + d) + a- 1,2

The control law can now be written as

A1110 =ly117(t+dlt)+lyzzi(t+d—1lt)+

ly3g(t+ d - 2 | t) + lr1r(t+d) +

alrg +lu1
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Where (I P = [ya], lul = (1 Q, lrl :

NN N

2((1, 2 rij) and 1,.2 = a 2 hi- i.

i=1 j=1 i=1

The control law is therefore linear. The new coeffi

cient 1,2 is due to the ramp. It can be noticed that when

the ramp becomes a constant reference, the control law

coincides with the one developed for the constant refer

ence case. The only modification that needs to be made

because of the ramps is the term 1,-20. The predictor

is the same and the resolution algorithm does not differ

from the one used for the constant reference case. The

new parameter l,.g is a function of the process parame

ters (a, n.) and of the control weighting factor As in

the previous cases an approximating function can easily

be obtained. Notice that the other parameters are ex

actly the same as in the constant reference case, meaning

that the previously obtained expressions can be used.

[ls/1 ly2

8 Applications

8.1 Step Setpoint

The control law (4) will be implemented in an exten

sively used system as a direct current motor. \Vhen the

input of the process is the voltage applied to the mo

tor (U) and the output the shaft angle ((9) it is obvious

that the process has an integral effect, given that the

position grows indefinitely whilst it is fed by a certain

voltage. In order to obtain a model that describes the

behaviour of the motor the inertia load (proportional to

the angular acceleration) and the dynamic friction load

(proportional to angular speed) are taken into account.

Their sum is equal to the torque developed by the mo

tor, that depends on the voltage applied to it. It is a

first order system with regards to speed but a second

order one if the angle is considered as the output of the

process:

(120 d0

— - = .y(1:2 +f dt I’"

and the transfer function will be:

0(3) __ K

U(s) _ s(1 + rs)

where K and r are constructive parameters of the motor.

The controller is going to be implemented on a real

motor with a feed voltage of 24 V and nominal current of

1.3 A, subjected to a constant load. The reaction curve

method is used to obtain experimentally the parameters

of the motor, provoking a step in the feed voltage and

measuring the evolution of the angular speed (which is

a first order system). The parameters obtained are:

J

K = 2.5 r = 0.9 seconds

and zero dead time. Taking a sampling time of T =4 0.06

seconds one gets the discrete transfer function:

_ 0.0048912"l + 0.004783z'2

C(z) — (l _ 3-1)(1 _ 0.9355072“)
 

If a high value of the control weighting factor is taken in

order to avoid overshooting (/\ = 2) the control param

eters in (4) can be calculated using expressions (6) with

a = 0.935507 and n = 0.50558:

lyl I

l
y2

1,,3

lul

lrl :

-11.537

19.242

—8.207

—0.118

0.502

The evolution of the shaft angle when some steps

are introduced in the reference can be seen in figure 2.

It can be observed that there is no overshooting due to

the high value of A chosen. The system has a dead zone

such that it is not sensitive to control signals less than

0.7 V; in order to avoid this a non-linearity is added.
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Figure 2: l\/Iotor evolution for setpoint changes

It is important to remember that the sampling time

is very small (0.06 seconds) which could make the im

plementation of the standard GPC algorithm impossible.

However, due to the simple formulation used here, the

implementation is reduced to the calculation of expres

sion (4) and hardly takes any time in any computer.

3577



 

8.2 Ramp Setpoint

As an application example, a GPC with ramp following

capability is going to be designed for the motor described

above. The reference trajectory is composed of a series

of steps and ramps defined by the value of a (01 = 0 for

the case of constant reference).

The same controller parameters as in the previous

example are used, with the addition of the new parame—

ter 1,.; = 2.674. Considering that (b0+b1)/(1—a) = 0.15,

the control law is given by:

Au(t) = —76.921 y(t) + 128.29 y(t - 1)

-54.72 y(t - 2) + 3.351r(t) + 17.82 a - 0.118 a u(t - 1)

As the dead time is zero, the predicted outputs are

known at instant t.

The results obtained are shown in figure 3 where it

can be seen that the motor is able to follow the ramp

reference quite well.
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Figure 3: Combined steps and ramps setpoint

9 Concluding Remarks

A method for approximating GPC parameters for pro

cesses that can be modelled by a time lag plus one inte

grator has been presented.

Very simple formulas have been obtained to approx

imate the GPC parameters. \lVlth the help of this formu

las, the GPC can be implemented and tuned very easily

allowing and adaptive policy even in fast systems with

small sampling times. '

This straightforward formulation not only reduces

calculations. but poses GPC implementation and tuning

in an intuitive form similar to that usually employed by

practitioners used to PID controllers and Ziegler-Nichols

tuning rules. '
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