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Abstract— A CMOS image sensor architecture that uses a 

cellular automaton for the pseudo-random compressive sampling 
matrix generation is presented. The image sensor employs in-
pixel pulse-frequency modulation and column wise pulse 
counters to produce compressed samples. A common problem of 
compressive sampling applied to image sensors is that the size of 
a full-frame compressive strategy is too large to be stored in an 
on-chip memory. Since this matrix has to be transmitted to or 
from the reconstruction system its size would also prevent 
practical applications. A full-frame compressive strategy 
generated using a 1-D cellular automaton showing a class III 
behavior neither needs a storage memory nor needs to be 
continuously transmitted. In-pixel pulse frequency modulation 
and up-down counters allow the generation of differential 
compressed samples directly in the digital domain where it is 
easier to improve the required dynamic range. These solutions 
combined together improve the accuracy of the compressed 
samples thus improving the performance of any generic 
reconstruction algorithm. 

Keywords—compressive sampling; cellular automaton; pulse-
frequency modulation; 

I. INTRODUCTION 

Compressive Sampling is a signal processing framework in 
which sparsity is exploited in order to reduce the number of 
necessary samples to reconstruct the original signal. This 
property can either exist in the sampling domain of the signal 
or with respect to other basis i.e. Fourier, wavelets or curvelets 
[1]. If the original signal can be sparsely represented in some 
domain, like natural images [2], then it is possible to recover it 
from a much smaller number of samples than that indicated by 
Nyquist-Shannon theorem. To recover a compressively 
sampled signal it is necessary to solve this inverse linear 
equation: 

   (1) 

Being  the set of compressed samples derived from the 
original signal,  the compressive strategy,  the sparsifying 
dictionary and  the coefficients of the original signal 
represented in an opportune basis. The compressive strategy  
represents the methodology through which compressed 
samples  are taken; each compressed sample is a linear 
combination of the elements that constitute the original signal 

The sparsifying dictionary  is a matrix that multiplied by a 
discrete signal returns a vector containing the coefficients  of 
the transformation of the original signal to a domain in which 
its representation is sparse. The amount of compressed samples 

 is typically lower than the amount of elements contained in 
. Although underdetermined problems are considered ill-

posed, compressive sensing can lead to a unique solution by 
the means of convex optimization. The condition for this to be 
achieved is that the product of  and  holds the restricted 
isometry property (RIP) [3]. 

There are two set of methods that are followed nowadays to 
build a compressive strategy within an image sensor, the first 
one is to pick each element of  from a random distribution 
and the second is to use an incoherent orthobasis matrix. Each 
one of these two methods yields different kinds of solutions for 
its physical implementation. Up until now, incoherent 
orthobasis have been implemented only into optic elements of 
image sensors 0 while on the other hand random distributions 
techniques are more popular and have been implemented both 
using optic elements [5] and dedicated circuitry [6]. Random 
distribution techniques applied to image sensing rely on the use 
of a sub-Gaussian distribution. In this distribution each element 
of the strategy is picked at random to be either one or zero. 
This choice simplifies the problem at hand because each 
compressed sample will simply be the sum of the readings of a 
subset of the pixels that form the sensor. Independently of the 
solution chosen to introduce the compressive strategy, there are 
two major limitations that arise. To be able to recover a signal 
from compressed samples, a reconstruction algorithm needs to 
know the compressive strategy i.e. the matrix with which each 
compressed sample has been generated. For that to happen it 
either means that the compressive strategy is being generated 
and transmitted between the sensor and the system in charge of 
reconstruction or that it must be stored in a memory in both 
places. The second problem is that of dynamic range: 
compressed samples are linear combinations of the outputs of 
the pixels forming the sensor; as such, when a sub-Gaussian 
distribution of ones and zeros is chosen, the number of bits 
needed to describe this combination is significantly higher than 
the amount of bits needed to describe the value of each 
individual pixel. This problem increases as  being  the 
number of pixels used to create a compressed sample. A 
common workaround to offset these limitations is the use of 
block-based compressive sampling [7]. This technique is used 
to separate the pixels of the image sensor into sub-sets. To each 
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sub-set is applied the same compressive strategy smaller in size 
than the full pixels grid. There are several examples of 
implementation present in literature [8][9][10] and, while all of 
these solutions allow for the generation compressed samples 
efficiently, the result of reconstruction using block-based 
compressive sampling is suboptimal. Reducing the size of the 
image to which compressive sampling is applied also reduces 
the sparsity of the image itself. This leads to an increment of 
the number of compressed samples needed for maintaining the 
reconstruction error under a certain tolerance. Moreover, these 
solutions, even though to a lesser extent, are still affected by 
errors that may occur due to inadequate resolution of the 
collected samples. 

We propose a new architecture for the generation of a full-
frame compressive strategy that does not need transmission or 
storage as well as a way to digitize the compressed samples 
that vastly improves their dynamic range. To achieve this result 
we implement a cellular automaton (CA) following rule 30 
[11] around the pixel grid for the pseudo-random selection of 
pixels. This solution allows us to generate the compressive 
strategy on-chip without transmitting or saving it on an 
external memory, because the pseudo-random sequence can be 
reproduced at both ends of the system from the initial seed. 
Inside the array we perform a pulse-frequency modulation of 
the pixels values and we aggregate these outputs using up-
down counters for each column of the pixel grid. 

II. ON-CHIP COMPRESSIVE STRATEGY GENERATION 

The creation of a full-frame mask using pseudo-random 
patterns only needs an initial seed to retrieve the full pseudo-
random sequence forming the compressive strategy without the 
need of storing it in any memory. Pseudo-random patterns can 
be generated using different methods. Notable examples in 
compressive sampling are Hadamard vectors [12] or linear 
feedback shift registers [13]. We propose to implements a 
cellular automaton (CA) for this purpose. A 1-D CA is made of 
a row of cells [11] presents two key advantages over the 
previous methods. First its architecture is easily implementable 
in CMOS technology and second, since the evolution of each 
cell depends on its own current state and those of its closest 
neighbors (Fig. 1 C L R inputs), it is readily scalable to fit any 
size of pixel array. A binary CA with radius-1 neighborhood, 
has 256 possible truth tables, each one usually termed as a rule. 
Rule 30 makes the CA display an aperiodic (class III) behavior, 
which will be our pseudo-random sequence. For the 
implementation of the compressive strategy we place cells 
implementing rule 30 Fig. 1 around the pixels grid, one for 
each column and row. The output of each cell is used as a 
selection signal for the rows and columns of the pixel grid. 

III. PIXEL ARCHITECTURE LOGIC 

To form a compressed sample, the pixel value is pulse-
frequency modulated and sent to one of two column buses that 
gather the pulses coming from all the pixels belonging to the 
same column Fig. 2. The selection signals generated by the 
cells of the CA along with the in-pixel logic (XOR) will 
determine to which bus the pixels output will go and activate

 

Fig. 1. Implementation of a Rule 30 cell of a cellular automaton 

the corresponding switch Fig. 3. Since a XOR between two 
logical inputs has four possible outcomes which are equal in 
pairs, the pixel output has the same a priori probability to be 
sent to each of the two lines. These buses are then used as 
inputs of an up-down counter that accumulates the 
contributions of the column. Then a cascade of adders 
generates the already digitized compressed samples. 

During integration time a pulse train is created so that the 
frequency, , of the pulses varies in accordance with the 
instantaneous of the photocurrent at given sampling intervals. 
The amplitude and width of said pulses on the other hand is 
kept constant. In this case the modulating signal is the 
photocurrent intensity flowing through the illuminated 
photodiode, : 

   (2) 

Being  the reset voltage of the pixel,  the capacitance of 
the photodiode and  the reference voltage of the 
operational amplifier used to generate the pulse train. The use 
of a varying voltage reference allows us to adapt the frequency 
of the pulse train for a particular light intensity and avoid 
saturation of the counters used to collect the compressed 
samples. 

By using PFM at pixel level and then counting the pulses at 
column level we are conveying the problem of the dynamic 
range of the aggregated signal to the digital domain where it 
can be increased just incorporating additional resources. 
Additionally, by taking into account the saturation of the 
counters bad samples can be discriminated, avoiding 
reconstruction artefacts. 

IV. COMPRESSED SAMPLES EXTRACTION 

Another problem that arises using a compressive sensing 
strategy based on full-frame pseudo-random distributions 
which elements can be either one or zero is that each 
compressed sample has the potential to have a much larger 
value than that of a single pixel. If we were to describe each 
compressed sample using the same grain employed for the 
pixels, the digital values of the compressed samples would 
require several bits more than the 8b or 12b normally used to 
digitize the content of a single pixel. To resolve this problem 
we devised a solution divided into two steps. First we have 
introduced A/D conversion by means of in-pixel PFM and per 
column pulse counting, thus moving the problem of dynamic 
range to the digital domain where it is more easily treated. 
Second, the common lines of each column of the pixel grid will 
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Fig. 2 Pixel Schematic 

be both used as inputs for up-down counters, Fig. 3.Every 
counter will aggregate the contributions coming from some 
pixels as positives and the rest as negatives depending on the 
combination of the row and column selection signals. In this 
way we will collect differential measurement greatly 
decreasing the average size of the compressed samples. During 
reconstruction it will be equivalent to using a compressive 
strategy which coefficients can be either ones or minus ones. 
Each column counter will generate part of the compressed 
sample. Summing all of them together will deliver a single 
compressed sample. This is an important aspect of the 
architecture that we propose since the solutions presented in 
the literature until now are not able to generate compressed 
samples with the same resolution of the original pixels, thus 
worsening the reconstruction process. 

V. FUNCTIONAL VERIFICATION 

To prove the functionality of our architecture and the 
performance of reconstruction algorithms using the extracted 
compressed samples we have simulated a model of the 
proposed architecture using MATLAB. The blue bars in Fig. 4. 
represent a study of the average root mean square error 
(RMSE) of reconstruction for 10 64 64 pixels images1 over a 
varying number of compressed samples reconstructed using 
NESTA convex optimization algorithm [14]. We compare the 
results achieved with the RMSE of reconstruction of those 
same images compressed performing a block based 
compressive sampling strategy (red bars). We devised the 
block based strategy by dividing each image in 64 sub-images 
of 8 8 pixels to be treated separately. As we can see applying 
a full frame compressive strategy delivers better reconstruction 

                                                           
1 These images can be found at: 
http://www2.imse-cnm.csic.es/icaveats/64x64px_images/ 

 

Fig. 3 Sensor Architecture 

errors. Moreover, the higher is the compression ration the 
better is the result of the full frame strategy compared to the 
block based one. This fact strengthens our statement that trying 
to use block-based compressive sampling to separate portions 
of a big image in order to sample them independently 
deteriorates the quality of the process. It also proves that trying 
to obtain a full-frame compressive strategy improves 
reconstruction and diminishes the amount of samples that the 
sensor needs to generate in order to maintain a certain level of 
tolerance during reconstruction. Another test that we have 
performed aim to study the resources needed to recover the 
images in terms of time invested into the reconstruction 
process. The blue bars in Fig. 5.represent the average time of 
reconstruction over the number of samples used for the full 
frame compressive strategy. Once again we compared it with 
the amount of time consumed for the recovery of those images 
from a block based sampling strategy (red bars). We can see 
that the resources needed to retrieve the images on lower 
compression ratios favour the block based sampling strategy. 
However, as we diminish the amount of samples, the time of 
reconstruction reverses its tendency allowing the full frame 
compressive strategy to outperform its block based counterpart 
both in RMSE and time. 

VI. CONCLUSIONS 

We have introduced a new architecture able to collect 
compressed samples using pseudo-random distributions 
generated on-chip. The pattern generated by the cellular 
automaton does not need to be transmitted and can be easily 
recovered by simply knowing the initial seed. We also avoid 
splitting the sensor array in smaller portions worsening the 
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Fig. 4: average RMSE of reconstruction obtained using a full frame compression strategy and a block based compression strategy 

 

Fig. 5: (a) average time of reconstruction obtained using a full frame compression strategy and a block based compression strategy. 

quality of the samples or introducing asymmetries in the design 
of the sensor array. The solution applied to digitize the 
compressed samples improves their dynamic range and gives 
the possibility of discarding saturated samples thus optimizing 
reconstruction. These features, at best of our knowledge are 
introduced in this article for the first time 
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