
Network traffic characterisation, analysis, modelling

and simulation for networked virtual environments

Juan Luis Font Calvo

July 2019

Departmento de Arquitectura y Tecnología de Computadores
Escuela Técnica Superior de Ingeniería Informática

Doctoral dissertation

Network traffic characterisation, analysis,
modelling and simulation for networked virtual

environments

Juan Luis Font Calvo

Supervisor:
José Luis Sevillano Ramos

July 2019

Juan Luis Font Calvo

Network traffic characterisation, analysis, modelling and simulation for networked virtual

environments

Doctoral dissertation, July 2019

Supervisor: José Luis Sevillano Ramos

Universidad de Sevilla

Escuela Técnica Superior de Ingeniería Informática

Departmento de Arquitectura y Tecnología de Computadores

Avd. Reina Mercedes S/N

41700 Sevilla

Abstract

Networked virtual environment (NVE) refers to a distributed software system where
a simulation, also known as virtual world, is shared over a data network between
several users that can interact with each other and the simulation in real-time.
NVE systems are omnipresent in the present globally interconnected world, from
entertainment industry, where they are one of the foundations for many video
games, to pervasive games that focus on e-learning, e-training or social studies. From
this relevance derives the interest in better understanding the nature and internal
dynamics of the network traffic that vertebrates these systems, useful in fields such as
network infrastructure optimisation or the study of Quality of Service and Quality of
Experience related to NVE-based services. The goal of the present work is to deepen
into this understanding of NVE network traffic by helping to build network traffic
models that accurately describe it and can be used as foundations for tools to assist
in some of the research fields enumerated before.

First contribution of the present work is a formal characterisation for NVE systems,
which provides a tool to determine which systems can be considered as NVE. Based
on this characterisation it has been possible to identify numerous systems, such as
several video games, that qualify as NVE and have an important associated literature
focused on network traffic analysis. The next contribution has been the study of this
existing literature from a NVE perspective and the proposal of an analysis pipeline,
a structured collection of processes and techniques to define microscale network
models for NVE traffic. This analysis pipeline has been tested and validated against
a study case focused on Open Wonderland (OWL), a framework to build NVE systems
of different purpose. The analysis pipeline helped to defined network models from
experimental OWL traffic and assessed on their accuracy from a statistical perspective.
The last contribution has been the design and implementation of simulation tools
based on the above OWL models and the network simulation framework ns-3. The
purpose of these simulations was to confirm the validity of the OWL models and the
analysis pipeline, as well as providing potential tools to support studies related to
NVE network traffic. As a result of this final contribution, it has been proposed to
exploit the parallelisation potential of these simulations through High Throughput
Computing techniques and tools, aimed to coordinate massively parallel computing
workloads over distributed resources.

v

Resumen

Un entorno virtual en red (networked virtual environment, NVE) hace referencia a
un tipo de software distribuido donde una simulación, también denominada mundo
virtual, es compartida a través de una red de datos entre varios usuarios que pueden
interactuar entre ellos y la propia simulación en tiempo real. Los sistemas NVE
son omnipresentes en el mundo actual, global e interconectado, desde la industria
del entretenimiento, donde son uno de los fundamentos sobre los que se asientan
muchos video juegos, a los juegos ubicuos centrados en e-learning, e-training o
estudios sociales. Debido a esta relevancia se deriva el interés en comprender mejor
la naturaleza y dinámicas internas del tráfico de red que vertebra estos sistemas, de
utilidad en campos como la optimización de infraestructuras de red o el estudio de
Quality of Service y Quality of Experience asociados a servicios basados en sistemas
NVE. El presente trabajo pretende profundizar en esta comprensión del trafico de red
generado por sistemas NVE mediante la definición de modelos de tráfico de red que
lo describan de forma precisa y que puedan ser usados como base para herramientas
útiles para los campos de estudio mencionados anteriormente.

La primera contribución del presente trabajo es una caracterización formal para
sistemas NVE, la cual proporciona una herramienta para determinar que sistemas
pueden considerarse NVE. En base a esta caracterización ha sido posible identificar
numerosos sistemas, como por ejemplo varios videojuegos, que cualifican como NVE
y tienen una importante literatura asociada centrada en el análisis de tráfico de red.
La siguiente contribución ha sido el estudio de esta literatura desde la perspectiva
de los sistemas NVE y la propuesta de un proceso de análisis(analysis pipeline),
un conjunto estructurado de procesos y técnicas para definir modelos a nivel de
micro-escala para el tráfico de red de sistemas NVE. Este proceso de análisis ha sido
probado y validado contra un caso de estudio centrado en Open Wonderland (OWL),
una herramienta (framework) para construir sistemas NVE de diverso propósito.
El proceso de análisis ha ayudado a definir modelos de red partiendo de tráfico
experimental de OWL y a evaluar su precisión desde el punto de vista estadístico. La
última de las contribuciones ha sido el diseño e implementación de herramientas
de simulación basadas en los anteriores modelos para OWL y la herramienta de
simulación de redes ns-3. El objetivo de estas simulaciones ha sido confirmar la
validez de los modelos de OWL y el proceso de análisis, a la vez que proporcionar

vii

herramientas potencialmente útiles en las áreas de estudio relacionadas con el
tráfico de sistemas NVE. Como resultado de esta última contribución se ha propuesto
explotar el potencial de paralelización de estas simulaciones a través de técnicas
y herramientas de computación de alto rendimiento, (High-Throughput computing),
cuyo objetivo es coordinar tareas de cómputo masivamente paralelas sobre recursos
distribuidos.

viii

Agradecimientos

La realización de esta tesis doctoral ha sido un largo viaje que ha abarcado años,
todo tipo de eventos vitales y giros de guión. Me alegra poder agradecer por fin a
todos aquellos que son casi tan responsables como yo de que haya sido posible.

En primer lugar agradecer a mi director de tesis José Luis Sevillano por todos sus
esfuerzos, ayuda y confianza en que esta tesis podía materializarse, a Christian
Callegari del Dipartimento di Ingegneria dell’Informazione de la Università di Pisa
por hospitalidad y ayuda durante mi estancia en Italia, y a mis antiguos compañeros
del Departamento de Arquitectura y Tecnología de Computadores Daniel Cascado
por sus esfuerzos y tutela, y a Rosa Yañez por la ayuda, cordura y amistad aportadas
a la causa.

En segundo lugar, agradecer a mis padres Concepción y Juan Luis, por apoyarme
incondicionalmente, no sólo durante este proceso, sino durante toda mi vida. Mamá,
Papá, os quiero.

En tercer lugar, agradecer a todos esos amigos incondicionales repartidos por el
camino entre Los Palacios (y Villafranca) y Ámsterdam con escala en Pisa y otros
lugares igualmente interesantes. Sois geniales.

ix

Acknowledgement

The making of this PhD has been a journey involving many years, all kind of vital
events and plot twists. I am glad to finally being able to thank all those who are
almost as responsible as myself for all this to happen.

First, thanks to my supervisor José Luis Sevillano for all his efforts, help and confi-
dence in this project to actually happen, to Christian Callegari from the Dipartimento
di Ingegneria dell’Informazione of the Università di Pisa for his help and hospitality
during my stay in Italy, and to my former colleagues from Departamento de Arqui-
tectura y Tecnología de Computadores Daniel Cascado for his efforts and tutelage,
and Rosa Yañez for the help, sanity and friendship she contributed to the cause.

Second, thanks to my parents Concepción and Juan Luis, for their unconditional
support and love, not only during all this process, but also during my whole life.
Mom, Dad, I love you.

Third, thanks to those unconditional friends scattered all over the way between Los
Palacios (y Villafranca) and Amsterdam, with stopovers in Pisa and other equally
interesting places. You all are great.

Quack!

x

Contents

1 Introduction 1
1.1 Historical overview . 1

1.1.1 Military use . 2
1.1.2 Entertainment industry and video games 4
1.1.3 Academia and research . 9

1.2 Motivation and goals . 12
1.3 Summary . 16

2 Networked virtual environments: characterisation and case study 17
2.1 Networked virtual environment . 18

2.1.1 NVE software . 18
2.1.2 NVE hardware . 20

2.2 Open Wonderland . 21
2.2.1 Architecture and internal components 22
2.2.2 In-game elements and interactions 24
2.2.3 Networking . 25

2.3 Experimental testbeds based on Open Wonderland 26
2.3.1 Open Wonderland Testbed 1 26
2.3.2 Open Wonderland Testbed 2 29
2.3.3 Guidelines to conduct gaming session 32
2.3.4 Network traffic capture . 33

2.4 Summary . 34

3 Analysis and modelling pipeline for NVE network traffic 35
3.1 Background . 36
3.2 Analysis pipeline for microscale modelling 36
3.3 Data Filtering . 37
3.4 Data preview and preliminary analysis 39
3.5 Correlation and Autocorrelation . 40
3.6 Selection of a probability distribution 44

3.6.1 Exponential distribution . 45
3.6.2 Weibull distribution . 46

3.7 Probability distribution fitting . 46
3.8 Statistical Discrepancy . 47

xi

3.8.1 Q-Q plots . 48
3.8.2 λ2 and λ̂2 for discrepancy measurement 49

3.9 Summary . 52

4 Analysis and modelling of NVE network traffic: Open Wonderland 55
4.1 Object synchronisation in Open Wonderland 56
4.2 Microscale modelling and analysis pipeline 57
4.3 Data filtering criteria . 57
4.4 Object synchronisation inter-arrival time 58

4.4.1 Data preview . 58
4.4.2 Autocorrelation . 60
4.4.3 User activity . 62
4.4.4 Data modelling . 65
4.4.5 Statistical discrepancy . 73

4.5 Object synchronisation packet size 77
4.5.1 Data preview . 78
4.5.2 Autocorrelation . 78
4.5.3 Data Modelling . 81

4.6 Summary . 82

5 Simulation based on NVE models 85
5.1 Simulation framework: ns-3 . 85
5.2 Simulation implementation . 87

5.2.1 Implementation and code structure 87
5.2.2 Simulation executable . 92

5.3 Simulation results . 94
5.3.1 Simulation based on exponential-based OSIAT model 95
5.3.2 Simulation based on Weibull-based OSIAT model 95
5.3.3 Conclusions . 97

5.4 Summary . 97

6 Conclusions and future work 99
6.1 Conclusions . 99
6.2 Future work . 100

A NVE simulations and HTC environments 103
A.1 Running NVE simulations in HTC environments 103
A.2 Software distribution in HTC environments 104
A.3 Summary . 106

B Testbed Appendix 107
B.1 Traffic capture with Wireshark and tshark 107
B.2 AutoHotKey scripts . 108

xii

B.3 HotKeyNet scripts . 110

C R implementation of OWL network traffic models and discrepancy
metrics 113
C.1 Activity Correlation Parameter for OWL OSIAT models 113
C.2 Exponential-based OSIAT model for OWL 114
C.3 Weibull-based OSIAT model for OWL 115
C.4 Statistical discrepancy metrics . 117

D Derivatives from the analysis of Open Wonderland network traffic 119
D.1 ECDF and fitting CDFs for OSIAT . 119
D.2 Autocorrelation functions for OSIAT 126
D.3 Tail quantiles for OSIAT . 132
D.4 Activity Correction Parameter for OSIAT models 134
D.5 MLE parameters for OSIAT models 136
D.6 Q-Q plots for OSIAT values . 141
D.7 Pearson Correlation Coefficient for OSIAT models 147
D.8 Lambda Square values for OSIAT models 149
D.9 Autocorrelation functions for OSPS 152

Bibliography 159

xiii

1Introduction

With magic, you can turn a frog into a
prince. With science, you can turn a frog
into a PhD and you still have the frog you
started with.

Terry Pratchett, The Science of Discworld

Nowadays the concept of virtual world has become familiar to wider audiences
thanks to video games such as Second Life, World of Warcraft or Minecraft. Video
games are not the only systems based on this paradigm, which has been used since
the 1980s in other fields such a e-learning, e-training or social research. Although
their focuses range from entertainment to learning or just plain social interaction, all
these systems base their user experience on the concept of virtual world, a distributed
simulation shared by several users over a data network where users can interact
between them and the virtual world itself. In this context, a networked virtual
environment (NVE) can be broadly defined as “a software system in which multiple
users interact with each other in real-time, even though those users may be located
around the world” [SZ99], [Chu+01].

The ultimate goal of the present work is to deepen into the understanding of the
network traffic dynamics that articulate a NVE. For this purpose a characterisation
for NVE systems is proposed, providing a tool that will help to identify compliant
systems and approach the existing literature on their network traffic analysis from
a NVE perspective. From this new lecture of the existing bibliography, analysis
and modelling procedures focused on NVE network traffic will be proposed. This
work also include a study case based on a chosen NVE system and the results from
applying the proposed analysis and modelling procedures, and the deliverables in
the form of valid network traffic models and simulations based on them.

1.1 Historical overview

To better understand the significance of the research and study associated to NVE
systems it is necessary to make a brief overview of their genesis, evolution and use

1

in different contexts, ranging from military to academic and scientific purposes,
as well as been an important part of a multibillion global business as it is that of
video games. The following sections will provide a historical overview focused on
these different fields, referencing some of the most significant milestones and their
significance from the perspective of the NVEs.

1.1.1 Military use

NVE systems were initially sought as cost effective alternative training with real
combat vehicles and equipment while avoiding all the implicit risks associated to
such an activity. Thus, military organisation have sponsored and hosted research
projects to produce training technologies based on NVE systems [Rhe91], [Arm].

SIMNET “was the first successful implementation of large-scale, real-time, man-in-
the-loop simulator networking for team training and mission rehearsal in military
operations” [MT95]. The SIMNET research project was developed for the DARPA
between 1983 and 1990, it provided a real-time distributed simulator for combat
simulation. SIMNET had the features that characterize a NVE: it was designed to
support hundreds of concurrent users using network technology initially based on
56 Kbit/s dial-up lines and moving to faster T-1 links in later stages of the project.
Users were accommodated in the simulation stations, which provided an on-screen
graphical representation of the virtual world as well as the required peripherals
to interact with it. The simulation station was represented by a vehicle within the
virtual world capable of hosting several human crew members. Audio generated by
crew members was also transmitted within the virtual world.

The Distributed Interactive Simulation (DIS) is an IEEE standard [Dis12] for conduct-
ing real-time platform-level wargaming across multiple host computers. DIS started
as a follow-up project of SIMNET aimed to document its communication protocol,
describing a fully distributed architecture for heterogeneous clients scalable up to
500 users.

Another descendant of the SIMNET project was the Mounted Warfare TestBed
(MWTB), located at Fort Knox, Kentucky, started in 1986 as the initial site for the
SIMNET-D [Gar89] program, a spin-off of the original SIMNET project. The MWTB
was the premier site for distributed simulation experiments in the US Army for
over 20 years. It used simulation systems to perform experiments that examined
current and future weapon systems, concepts, and tactics. Some of the technologies
developed within the MWTB include the ACRT virtual simulator [CFM94] and the
Virtusphere, a device that allows the user to walk around the simulated battlefield.

2 Chapter 1 Introduction

SIMNET also founded the basis of several companies and professional careers that
transfer part of the knowledge and technology developed during the project to other
non-military fields. Examples of this process are MetaVR Inc. (W. Garth Smith) [Met]
and MaK Technologies [MAK] (Warren Katz and John Morrison), companies that still
provide simulation and training software and resources for civil and engineering
usage; Zipper Interactive founded by Brian Soderberg [Int12], a defunct video game
company part of Sony Computer Entertainment, responsible of the development of
the SOCOM (U.S. Special Operations Command) peer-to-peer (P2P) game series; or
Wiz!Bang, a video game development company founded by Drew Johnston [Mob],
who has developed a lengthy career in the video game industry working for the
Microsoft Windows Gaming Platform team, among others.

In recent years, this technology transfer has worked in the opposite direction, where
well established technologies from the gaming consumer computer industry have
found their way into military training programs and serious games, games not
focused on entertainment purposes, but training and education. One example is
the DARWARS [Vot04] research program started in 2003, intended to develop and
deploy military training systems based on low-cost, mobile, web-centric, simulation-
based, lightweight systems taking advantage of the ubiquitous presence of the PC,
multi-player games, virtual worlds, off-the-shelf PC simulations, intelligent agents,
and online communities. Another good example of technology transfer are the
Virtual Battlefield Systems 1 (VBS1) released in 2002, and its successors VBS2
released in 2007 and VBS3 released 2014 [Int], all of them military simulators that
heavily rely on modern gaming technology and generally considered as serious games.
VBS1 is based on the first-person shooter (FPS) video game Operation Flashpoint
developed by Bohemia Interactive Australia. The system allows training in military
tactics in an interactive multiplayer 3D world. This combination of military simulator
functionality and modern gaming technology proved to be a success and resulted in
a broad military customer base.

Besides training, NVE technologies and system have been also used as strategic
communication tools. The first usage of gaming technologies in support of U.S. Army
recruiting and strategic communication has been America’s Army [Arm], a platform
to develop first-person shooter games released in 2002 by the U.S. Army, based in
the Unreal game Engine and designed to allow young Americans to virtually explore
the Army and helping them to determine if soldering matches their expectations. An
evolution of America’s Army is the Virtual Army Experience (VAE) [Rel07], a mobile
U.S. Army simulator created in 2007 by the Army development team which brought
the army’s computer game, America’s Army: Special Forces (Overmatch) to a life-size,
networked environment to provide visitors with an experience of soldiering.

1.1 Historical overview 3

1.1.2 Entertainment industry and video games

A video game is defined as an electronic game that involves human interaction
with an user interface to generate visual feedback on a video device (TV, computer
monitor, etc.) [BRH72]. The main goal of video games is providing a rewarding
experience to the player. This reward does not only lie in the final goals of the game
but also the process itself to achieve them [MSB13].

Video games have evolved from a very focused market in mid 1970s to important
industry (sometimes referred as interactive entertainment industry) billing more
than $80 billions [BV14] worldwide in 2014 and jumping up to $138 billions in
2018 [BV18]. This growth has sustained the evolution and proliferation of numerous
genres [Wol02], game mechanics and topics that currently conform a rich gaming
ecosystem. In a classification attending technical features, video games relying
on networking capabilities define the online games category, those played over
a data network [Ada10]. These games have become ubiquitous thanks to the
universalization of the Internet.

Early NVE-compliant video games

As discussed in section 1.1.1, NVE systems appeared in the context of the military
context as a simulation and instruction tool. However, there are many video game
genres and game dynamics based on the NVE concept (see Section 2.1 for a formal
characterisation of NVE). Thus, there is a significant overlapping between the NVE
paradigm and the characteristics of online video games: both consist in electronic,
specifically digital , systems where several users engage in a virtual world simulation
shared over a data network and can interact between them in real-time. Thus,
online games which dynamics involve the recreation of a virtual world shared over a
data network where users can interact and undertake challenges, are de-facto NVE
systems designed to provide an entertaining experience.

Some of the milestones in the convergence of video games into true NVE systems are
linked to the technical advances making possible the incorporation of the defining
characteristics of the NVEs into the consumer video game world. In the canonical
accounts of the history of video games, Maze War (1974) is regarded as one of the
earliest examples of FPS, as well as inventing or disseminating several important
concepts that are used by many of the video games to follow [RP09] [Ars09].
Gameplay consisted in players roaming around a maze, other players are represented
by eyeballs, when the player encounters another players in the maze, the player

4 Chapter 1 Introduction

can gain or lose points by shoot or been shot during the match. There are several
pioneering features in Maze Wars that are closely linked to the NVE concept:

• Initially developed to run on the Imlac PDS-1, a popular graphical display
system which provided input and output peripherals.

• First-person 3D perspective, players are provided with a visual representation
of the maze (their shared virtual world) from their point of view.

• Avatars, players are represented by eyeballs. Previous games usually repre-
sented players as spaceships and other kind of vehicles. This is one of the
earliest examples where players are represented by organic beings.

• Network play, an early example of P2P computers, unlike previous games
played within the same minicomputer or mainframe using different terminals.

• Client-server networked play, this feature achieved in later improved versions
allowed to play the game over ARPANET in 1977, making it one of the earliest
examples of Internet gaming.

Moria [s15], [Add] (1975), an early role-playing game (RPG) game, borrowed
concepts from Maze War. It was developed to run on the Programmed Logic for
Automatic Teaching Operations (PLATO) system [SE79], the first generalized com-
puter assisted instruction system. Moria took advantage of the many multi-user
and networking features of PLATO to define a gameplay where parties of up to ten
players to travel as a group, while exploring dungeons and featuring a wireframe
first-person perspective display. An feature that makes Moria to further converge
towards the NVE definition is the ability of players to communicate among them
using text messages during the gameplay, adding a social factor.

MUD1 (1978), initiator of the so-called Multi-User Dungeon (MUD) genre, was
initially developed on a DEC PDP-10 at Essex University. MUD1 a multiplayer game
where users interact in real-time in a Dungeon & Dragons inspired virtual world.
MUD1 is text based, so the user interacts with the system typing combination of
commands and keywords and receives a description of the virtual world and its
events in text format. MUD1 can be considered a milestone in the convergence
of video games into NVEs because it became the first online Internet role-playing
game once the Essex University connected its internal network to ARPANet [MP03].
Moreover, it is considered one of the virtual world game still in existence, being
playable via telnet protocol [Tot].

1.1 Historical overview 5

Evolution and popularisation

After early games defined and most of the key elements found in NVE systems, later
titles pushed forward these features, improving the graphic representation of the
virtual world, pushing the boundaries of connectivity to the range of local area
networks (LANs) or popularizing among large audiences genres build around the
NVE concept.

Dogfight [SGI93] (1985) was developed by Silicon Graphics, Inc. (SGI) as a demo
program for their workstations. The game is a multiplayer flight simulator where the
player has a first person view of a cockpit, other users in the game are represented by
planes which play the role of avatars. The game is considered a technical landmark
because of its 3D render capabilities and especially networking features, being the
first game to use the TCP/IP protocol.

Games pioneering in technical features that would define the NVE experience
(graphic representation of the virtual world, avatar, networking) gave way dur-
ing mid and late 80s to games that contributed to the popularisation and expansion
of different NVE-related genres, especially the FPS and the massively multiplayer
online role-playing game (MMORPG) ones. Both genres will prove increasingly
popular during the whole decade of 1990s and booming in 2000s with the ubiquity
of Internet and improvements in network technologies.

Habitat (1985) developed by Lucasfilm Games Group, is another milestone in the
video game convergence towards the NVE paradigm. The game has been defined in
[MF91] as a ““multi-player online virtual environment”, a cyberspace. Each player
uses his or her home computer as a front end, communicating over a commercial
packet-switching data network to a centralized back end system. The front end
provides the user interface, generating a real-time animated display of what is going
on and translating input from the player into requests to the back end. The back end
maintains the world model, enforcing the rules and keeping each player’s front end
informed about the constantly changing state of the universe”. The back end enables
the players to interact not only with the world but with each other. The game was
available for the Commodore 64 platform, one the most widespread 8-bit home
computer of the 1980s, relying on the online service Quantum Link, the corporate
progenitor of America Online (AOL). These factors made Habitat the first attempt
at a large-scale commercial virtual community that was graphically based [Rob94].
Attending to the Habitat’s description provided in [MF08] and [MF91], it can be
determined that includes most of the defining NVE characteristics.

6 Chapter 1 Introduction

Neverwinter Nights (1991) was the first MMORPG to display graphics [Bai04]. The
gameplay is divided between a screen providing information about the game party
members, current status and geographical location within the virtual world and
the screen for combat mode where each character is represented by an avatar and
battles take place. During its lifespan running on AOL network from 1991 to 1997,
the capacity of the Neverwinter Nights servers grew from 50 to up to 500 concurrent
users per server. Near the end of its run in 1997, the game had 115 000 subscribed
players and an average of 2000 concurrent players during peak hours. Much of the
game’s popularity was based on the presence of active and creative player guilds,
who staged many special gaming events online for their members.

Doom [Sof93] (1993), a science fiction FPS video game by id Software, is considered
one of the most significant and influential titles in the video game industry, responsi-
ble of ushering the mainstream popularity of the FPS genre. While Maze War was
innovative by defining and shaping many video game concepts, Doom helped to
bring into wide audiences many video game concepts and features that are current
staples in the genre. Among others, it provided immersive 3D graphics, support for
customized additions and content via data files known as WADs (ludicrous acronym
for Where’s All the Data?) and networking capabilities allowing different online
multiplayer modalities on both LAN and the Internet [Kus04].

Internet and the global scale of NVE-based games

The Internet explosion during the later half of the 1990s greatly expanded the target
audience for all kind of online games during that period and the next decade of the
2000s. The shared virtual worlds expanded from LANs to the Internet, breaking
the barrier of locality and allowing interactions over a global and much more
heterogeneous data network. Some of the genres that gained great popularity was
MMORPG, a combination of classic RPG and multiplayer online games where players
interact between them in a virtual world. Titles such as Ultima Online or EverQuest
were among the first to popularize the genre, while the massive commercial success
arrived in 2004 with World of Warcraft (WoW) by Blizzard Entertainment, having 11
million subscribers at its peak in 2010 [Ent10]. MMORPGs games in general and
WoW in particular not only become a powerhouse in the video game industry, but
also sparked academic interest. With an audience of millions of players all around the
world a revenue in the range of billions of dollars, studying the relationship between
network quality of service (QoS) and quality of experience (QoE) inspired studies
such as [FRS05], [Che+06b] and [RSR08]. The technical challenges posed by such
a number of concurrent players all around the world was inspired studies such as
[PKK05], [Kim+05], [Che+05], [Che+06a] and [SKR07], also addressing network

1.1 Historical overview 7

traffic optimisation in [Sal+12]. Another interesting aspect of the relationship of
MMORPG games and academia has been their usefulness as tools for other disciplines
such as epidemiology, as shown in [Bal07] and [GG15].

The FPS genre based on online multiplayer mechanics also flourished during this
period, with sagas such as Counter-Strike (2000-present,Valve Corporation), Halo
(2001-present, published by Xbox Game Studios), Quake series (1996-present, id
Software), Call of Duty (2003-present, distributed by Activision), PlayerUnknown’s
Battlegrounds (2017, PUBG Corporation) or 2016, Overwatch (Blizzard Entertainment)
becoming extremely popular and contribution to the raise in popularity of the Esports,
a form of competition using video games [HS17]. But while MMORPGs involved
challenges about scaling up to millions of concurrent users and synchronisation of
the virtual worlds across many servers, online FPS games posed technical challenges
related to tight synchronisation constraints. Modelling their network traffic was
addressed in studies such as [Ami+13], [CB07] focused on the network traffic
modelling, or [Fen+02], which used network modelling to help with the provisioning
of network infrastructures to successfully accommodate large number of concurrent
and distributed users. QoE-related studies such as [Wat+06], dealt with player’s
perceived quality, others such as [ZA04] focused on the impact of network QoS on
the user’s QoE. The study performed in [LC17] goes further in problematics tightly
associated to the strict synchronisation requirements of FPS games, such as the
so-called “shot around the corner”, where synchronisation inconsistencies can lead
to the kill of a player even if it is properly covered.

During the decade of 2010s, the predominance of online multiplayer titles even
pushed popular open world game series, focused on offline single-player dynamics
where the player can freely explore a virtual world, to expand their features or
release titles supporting online multiplayer mode. Some of these examples are
Fallout 76 (2018, Bethesda Game Studios), Grand Theft Auto Online (2013, Rockstar
Games) or Red Dead series (2010 and 2018, Rockstar Games). This trend reflects
the popularity of the networked virtual world paradigm in the game industry and
the economical weight associated to it. Due to the involved game dynamics, the
above titles combine the technical challenges of huge open world scenarios and
multiple synchronised server of the MMORPG games with the tight timing constrains
and real-time synchronisation of FPS titles, posing more questions for the fields
of study around NVE network traffic and providing new tools for others ([MH12],
[FLK17]).

8 Chapter 1 Introduction

1.1.3 Academia and research

NVEs have been associated to research from their early inception, sometimes as
a canvas where to build and perform experiments, sometimes as subject of study
themselves. One of the earliest academic NVE was NPSNET [SZ99], developed in
1986 by the Department of Defense (DoD) of the U.S. as an evolution of the previ-
ously mentioned SIMNET, focused on implementing large-scale virtual environments
(LSVEs) at LAN network level. The decade of 1990s witnessed the emergence of
several more research NVE. Distributed Interactive Virtual Environment (DIVE), re-
leased in 1991 by the Swedish Institute of Computer Science, was an Internet-based
multi-user virtual reality (VR) system where participants navigate in 3D space where
they can interact with other users and applications [Hag96]. Another example of
academic NVE was MASSIVE-1 [GB95], developed by the Computer Research Group
at the University of Nottingham. It was a distributed multi-user VR system running
on high end Sun Microsystem and SGI platforms. It had textual, graphical and audio
client programs. Later MASSIVE-2 and MASSIVE-3 improved scalability and moved
to a TCP-based client-server model.

The initial trend in the development of NVE platforms was to design and build
specific-purpose systems with specific research questions in minds. For example
in [YK13] the authors provide a comprehensive list of NVEs systems which use
different P2P techniques for virtual world synchronisation, many of them just build
as a proof of concept or to study a very specific feature instead of trying to provide
a complete virtual world experience to end users. The increase in complexity of
the NVE systems together with the advances in computing power, 3D graphics and
networking experimented during the decade of 1990s, propitiated the emergence
of new generic NVE platforms. The openness of these systems, in both license and
technical terms, made them attractive frameworks for scientific and researchers that
started to use them as a canvas.

Specialised NVE frameworks

The initial trend in the development of NVE platforms was to design and build
specific-purpose systems with specific research questions in minds. For example
in [YK13] the authors provide a comprehensive list of NVEs systems which use
different P2P techniques for virtual world synchronisation, many of them just build
as a proof of concept or to study a very specific feature instead of trying to provide
a complete virtual world experience to end users. The increase in complexity of
the NVE systems together with the advances in computing power, 3D graphics and
networking experimented during the decade of 1990s, propitiated the emergence

1.1 Historical overview 9

of new generic NVE platforms. The openness of these systems, in both license and
technical terms, made them attractive frameworks for scientific and researchers that
started to use them as a canvas.

Open Cobalt is a free and open-source (MIT license) multi-platform software for
constructing, accessing, and sharing virtual worlds (virtual workspaces in the termi-
nology of the project) both on local area networks or across the Internet, with no
need for centralized servers. Developed at Duke University and initially released
in 2007, it is based on Squeak, a dialect of Smalltak, including features such as
integrated web-browsing, voice and text chat, and other embedded applications
accessible in-game. Open Cobalt aims to create different virtual worlds hyperlinked
between them thus constituting a metaverse. Most of the studies performed using
Open Cobalt as experimental platform are focused on e-learning and e-training
([FB14], [TL14]). As of 2019, the Open Cobalt project is currently dormant.

The OpenSimulator project [Fis09], sometimes referred as just OpenSim, was founded
in January 2007 by Darren Guard with the goal of providing an open-source 3D NVE
server that could become a standard framework to build NVEs. Initially based on
the open-source Second Life client and messaging protocols, it currently provides
a multi-platform, multi-user 3D application server. OpenSimulator allows a high
degree of flexibility to virtual world developers to customize their worlds thanks
to its extensibility. Its core is written in C# under a BSD License, a commercially
friendly license to embed OpenSimulator in products. Academic studies based on
or using OpenSimulator range from e-learning topics ([Vil+10]), to archaeology
([SM13]), robotics ([JEP10]) or network scalability of NVE systems ([LH13]).

Another noteworthy mention of general purpose NVE with strong rooting in academia
is Open Wonderland (OWL), a Java open-source toolkit for creating collaborative 3D
virtual worlds. OWL will be subject of study in the present work as a study case of
NVE system. Further details about OWL can be found in Section 2.2.

Commercial video games as academic NVE frameworks

The second half of the 2000s saw a new trend where popular video games that
qualified as NVE started to be extended and used for academic and research purposes.
Using commercial video games as platform to build research NVE systems is not a
new trend. Projects such as Colyseus ([BPS06] and [BAS13]), a NVE platform based
on P2P synchronisation techniques based on Quake II to study network scalability
and load balancing, or the use of BrowserQuest as platform for health-related projects
such as [GG15] are noteworthy examples.

10 Chapter 1 Introduction

Second Life is an online virtual world, developed and owned by the San Francisco-
based firm Linden Lab and launched on June 23, 2003. Reporting up to 1 million
of regular users in 2013 and around 800 000 active user accounts in 2017 [Lab13],
Second Life enjoyed great popularity by the end of the decade of 2000s and beginning
of the 2010s. While sharing many characteristics with the MMORPG genre, their
creators have always emphasised that Second Life is not a game, not having a set
objective.

This virtual world comprised the technology to articulate it, such as client, messaging
protocols and so, as well as the server infrastructure. Thus, Second Life only exists
as long as their creators keep the service alive. Despite being a service provided
by a third-party entity, the social nature and in-game degree of freedom offered
by Second Life, together with its popularity among wider audiences, made it a
popular research tool in several fields. Second Life proved to be a interesting study
case for technical NVE-related topics such as avatar traffic analysis and mobility
([KC08], [Lia+09]), dynamic balancing of virtual worlds ([LB10]) or traffic mod-
elling ([Fer+07]). Health-related applications were also noteworthy as shown by
studies on health-related activities ([Bea+09]) or the potential of virtual worlds in
medical education ([BHW07]). But where Second Life has been especially popular,
like happened with other NVE systems, is in the context of e-learning, with multiple
studies dealing with its potential applications in the field, such as [Hay06], [GHT08],
[WI09] or [Get+10].

It is noteworthy though the popularisation in recent years, both among the gaming
and research communities of the sandbox games. A sandbox game is a “style of
game in which minimal character limitations are placed on the gamer, allowing the
gamer to roam and change a virtual world at will. In contrast to a progression-style
game, a sandbox game emphasizes roaming and allows a gamer to select tasks.
Instead of featuring segmented areas or numbered levels, a sandbox game usually
occurs in a “world” to which the gamer has full access from start to finish” [Tec].
While the terms sandbox and open world are sometimes used interchangeably, they
refer to different concepts and they are not synonymous. It can be argued that the
first example of sandbox-like game was the text adventure Colossal Cave Adventure
[RB06] (1976) which allowed free-roaming exploration. In the 2000s several titles
such as Dwarf Fortress [Rab15] (2006, by Tarn Adams) or Infiniminer [NSR16]
(2009, by Zachtronics LLC) further popularized game dynamics built around the
sandbox concept and also influencing Minecraft (2009, by Mojang) a landmark in
the massive popularization of the genre.

Minecraft does not only offer a sandbox experience, but incorporates multiplayer
features which fully qualify it as a potential NVE system. Minecraft provided freedom
to explore and the ability for the player to modify at will vast procedurally generated

1.1 Historical overview 11

virtual world, but also the possibility to extend the game with all kind of community
mods and expansions, as well as running private servers that does not depend on
any third-party service to operate. Thus, Minecraft not only gained the favour of
the general public but also catch the attention of researchers that saw the title
as a suitable canvas for different research areas [ES14] [NSR16]. The game has
been used in the field of network traffic optimisation where [VDK13] addressed
the scalability of the game servers, while [Als+15a] and [CHK17] used bots for
performance evaluation. E-learning is a field where Minecraft has proven to be
especially popular with multiple papers dealing with artificial intelligence (AI)
learning courses [Bay12], developer collaboration platforms [BB13], computational
thinking [Rep+14] or Computer Science teaching [Ach+16].

This trend where commercial NVE systems are used as platform for further research
developments can be explained by the high cost of creating from scratch a research
NVE platform, both in terms of resources as the multidisciplinary profiles required
to provide a satisfactory user experience according to the available technology and
current standards in usability, immersion and visual language.

1.2 Motivation and goals

The motivation of the present work is to characterise, analyse, model and simulate
NVE network traffic roots in the omnipresence and importance of these kind of
systems in today’s world, ranging from entertainment applications to pervasive games
/ serious games related to activities such as e-learning, e-training, health-related
activities. These modern scenarios already provide by themselves challenging techni-
cal questions related to the scalability of the technology itself and the interaction
with humans. But this is also a fast-moving scenario where new technologies are
already reshaping some of the paradigms, such as the irruption of cloud computing
[Cho+12], and others are getting close to make a breakthrough to the mass con-
sumer market, such as VR [Gun+17]. Thus, the networking aspects of NVE systems
keep on posing research questions in a world with a level of interconnectivity and
widespread of personal computing power without precedents.

The evaluation of network performance is the obvious field that directly benefits
from studies on NVE network traffic, with applications ranging from optimisation of
network equipment [Bor00] to properly sizing network infrastructures [Fen+02],
[Bei+04]. A deep understanding of the internal dynamics of the network traffic
has direct applications in the study of network QoS, defined as the description or
measurement of the overall performance of a service, particularly the performance
experienced by the users of the network. The study of the QoS involves the quantita-

12 Chapter 1 Introduction

tive measurement of network parameters such as packet loss, bit rate, throughput,
transmission delay or jitter. In this scenario accurate network models focused on NVE
are a valuable tool for the study of such network parameters and the overall QoS for
services that constitute a multi-billion business, as in the case of video games.

The QoS has also an impact on the perceived QoE, which can be defined as “the
degree of delight or annoyance of the user of an application or service. It results
from the fulfillment of his or her expectations with respect to the utility and / or
enjoyment of the application or service in the light of the user’s personality and
current state” [Bru+13]. The success and acceptance of applications based on NVE
systems depends largely on providing a satisfying user experience [MSB13] and
while meeting proper levels of network QoS is not sufficient condition to guarantee
a good QoE, it is a necessary one. Thus, NVE network models would have a direct
application in the study of QoE through QoS [Fin13].

The above motivation and goals are the result of the work performed during the
period in which the author was a member of the Department of Computer Technology
and Architecture of the University of Seville as a research fellow (2009–2013)
funded by the program Incentivos para la formación de personal docente e investigador
predoctoral en áreas de conocimiento deficitarias sponsored by Consejería de Educación
of Junta de Andalucía, Spain. Thus, thread of the present work can be traced back to
the papers published by the author on the subject. This work can be divided into the
efforts put into modelling and those into simulation. Moreover, the later professional
experience of the author has shaped some of the lines proposed as future work, such
as the distributed execution of simulations.

Regarding the modelling aspects presented in this work, they go back to [Fon+11a],
a paper where initially arose the need for a detailed study of the network traffic
generated by a NVE system used by projects related to e-Health and e-learning. The
preliminary network traffic study performed in this paper was limited to packet rate
and bandwidth and aimed to provide tools to size properly the network infrastructure,
keeping it from negatively impact the QoE of the users. The work in [Bor00] about
microscale traffic modelling inspired the idea of creating more detailed models for
NVE traffic as a more powerful tool to address the goals of the first paper. Thus, the
journal article [Fon+12b] addressed the microscale modelling for the NVE software
OWL, providing models for both the synchronisation of the shared virtual world and
the audio transmission, as well as an study on the statistical discrepancy between the
proposed models and the experimental network traffic that helped to define them.

Once the modelling process had reached a certain degree of maturity, the efforts
shifted to designing and implementing simulations around the NVE traffic models.
The initial challenge was choosing the proper simulation framework, which moti-

1.2 Motivation and goals 13

vated the publication of [Fon+10], a comparison between ns-2 and ns-3, two of the
more popular network simulation frameworks at the moment, based on software
metrics to assess the quality and potential technical benefits of each tool. This paper
sparked interest in the simulation and performance evaluation community, reflected
in the number of citations (33 by 2019) and in obtaining the Best Paper Award in the
“13th Communications & Networking Simulation Symposium”. The follow-up article,
[Fon+11b], went into more details in the technical comparison between ns-2 and
ns-3 by providing further code metrics for assessing code quality. From these two
studies derived the technical decision to use ns-3 framework as the foundation for
later network simulations.

Based on the proposed NVE models and the ns-3 framework, the study in [Fon+12a]
put them to work together implementing simulations and comparing the generated
traffic with the experimental one. This paper also started to inquire in the resource
profiling of NVE servers by collecting performance metrics under different workloads.
Finally, [FCS13] increased the amount of experimental data for modelling purposes
by defining a more sophisticated NVE tested that relied on automation for better
scalability, and improved the statistical methods for the modelling process. This
paper was the result of a research stay at the Department of Information Engineering
at the University of Pisa, Italy.

Last, the refinement of the statistical methods and automation of analysis proce-
dures presented in this work are derived from the author’s professional experience
developed during his period working with distributed infrastructures for super-
computing ([Sha+14]) at the e-Science Group of the Academisch Medisch Centrum
(2013–2016), and as system administrator and devops at SURFsara (2013–present),
providing supercomputing and grid computing support to experiments such as AT-
LAS [CERb], ALICE [CERa], TROPOMI [Age], or XENON [Proh] among others. This
recent experience has motivated an important part of the Future work proposed in
the present work and the Appendix A, where it is briefly discussed the suitability of
high-throughput computing (HTC) tools and techniques to exploit the parallelisation
of NVE simulations based on ns-3.

Based on the above motivation and work history, the specific goals pursued by the
present work are the following:

• Characterisation of NVE systems, providing an accurate definition of their
characteristics and elements, from both the technical perspective as well as
how the virtual world and users are modeled withing the virtual world.

14 Chapter 1 Introduction

• Choosing a software system that is compliant with the provided characterisa-
tion of NVE systems. This choice will be used as study case for the analysis
and modelling procedures that are proposed in the present work.

• Definition and implementation of experimental testbeds where the chosen
study case will be deployed and used to generate network traffic in a controlled
environment. Moreover, guidelines will be defined to determine how to
perform the data generation and collecting in the testbeds.

• Definition of an analysis and modelling pipeline for NVE network traffic. This
pipeline will be based on previous literature and studies on network traffic for
video games which are compliant with the characterisation for NVE systems
proposed earlier. Thus, it will be a refined of existing techniques compliant
with the specific characteristics of the NVE systems.

• Application of the analysis and modelling pipeline to the network traffic
generated in the testbeds by the chosen study case. The result of this goal will
be network traffic models that will accurately describe the behaviour of the
NVE network traffic.

• Implementation of simulations based on the models for the chosen case of study
generated by the analysis pipeline for NVE network traffic. The simulation
results will help to assess the validity of the network models.

The above goals are addressed through each one of its chapters as follows:

• Chapter 1 provides an overview of the relevance of the NVE systems and its
presence in the video game genre, as well as the motivation and goals of the
present work.

• Chapter 2 provides a forma characterisation for NVE, presents OWL as study
case for NVE systems to test and validate against it the processes and models
proposed in this work, and describes the testbeds based on OWL where experi-
mental network traffic is generated in a controlled environment. Appendix B
contains further details about the tools and automation techniques used to
build the testbeds.

• Chapter 3 reviews the literature about network traffic modelling of systems,
many of them video games, that qualify as NVE according to the characteri-
sation in Chapter 2. From this study is derived an analysis pipeline aimed to
define microscale models for NVE network traffic, as well as assessing their

1.2 Motivation and goals 15

accuracy by measuring statistical discrepancy. Appendix C contains the imple-
mentation in R of the proposed network models as well as other tools for the
statistical analysis, such as the statistical discrepancy metric λ̂2.

• Chapter 4 applies the analysis pipeline proposed in Chapter 3 to the experi-
mental network traffic generated by OWL in the testbeds defined in Chapter 2.
The results of this process are several models to describe the behaviour of
the network traffic in charge of synchronising the OWL virtual world across
all the players engaged in the sessions. Appendix D contains further analysis
details in the form of plots and data tables left out of the chapter due to space
constraints.

• Chapter 5 designs and implements simulations based on the models proposed
in Chapter 4 and the ns-3 network simulation framework. The results from
these simulations are used to validate the models.

• Chapter 6 enumerates the conclusions for the present work and the potential
lines of future work. Appendix A further expands the line of future work fo-
cused on parallelisation of the simulations from Chapter 5 by using distributed
infrastructure and technologies from the field of HTC.

1.3 Summary

The present chapter provides a brief description of the concept of NVE and an his-
torical overview focused on the technological landmarks that constitute its building
blocks and the fields where it has an special relevance. Thus, the popularisation
of the personal computers, the definition of new visual language paradigms for
computer software or the Internet explosion are addressed. Regarding the fields
where NVE are relevant, the chapter reviews its origins as a tool for military train-
ing, its popularisation as foundation to build video games in what has become a
multi-billion industry, or the academic interest for its potential as research tool.

The chapter describes de motivation for the present work based on the above
importance of NVE systems and specially the importance of understanding the
network traffic that articulates them. Moreover, it provides an outline of the timeline
of the work that supports the present doctoral dissertation, including references to
the papers and articles derived from it. Finally, the chapter enumerated the goals
for the present work, derived from the above motivation and shaped by the work
performed.

16 Chapter 1 Introduction

2Networked virtual environments:
characterisation and case study

David: Is this a game or is it real?
Joshua/WOPR: What’s the difference?

WarGames, 1983

The present chapter aims to provide a detailed definition of the concept of networked
virtual environment (NVE), this characterisation will prove helpful to identify soft-
ware systems that, sharing a simulation over a data network, can be considered
as NVE. Attending to this definition, there is a type of software where many of its
exponents fall into the category of NVE, and this is the video game one, where
many of the genres and titles are built around the concept of virtual world and the
representation of the player in the form of an avatar. Genres such as first-person
shooter (FPS), role-playing game (RPG) and their online version, the massively
multiplayer online role-playing game (MMORPG), action, sports or racing games
are all examples of this category. Real-time strategy (RTS) games would not mostly
qualify regarding the player takes control of whole battalion of units, but any of
the unit representations specifically represents the player within the virtual world.
Section 1.1.2 provides an historical review detailing the convergence of video games
towards the NVE paradigm. Adding part of the video game genre to the NVE cat-
egory is not only an important addition in terms of weight in popular culture and
entertainment industry, but also brings with it an extensive literature focused on
networked video games that can be reinterpreted and analysed from the perspective
of the NVE.

Having a clear characterisation to evaluate if a given software system can be con-
sidered or not as a NVE, the present chapter presents Open Wonderland (OWL),
a software that matches these NVE requirements and will be helpful to put into
practice the analysis strategies and techniques that will presented later in the current
work. The last part of the chapter describes the experimental OWL testbeds built
to capture network traffic to be used to generate statistical models describing its
behaviour. These models will allow the later implementation of simulation tools and
its use in the different fields that motivate the study of NVE network traffic, such

17

as performance evaluation, network infrastructure sizing or quality of experience
(QoE) derived from network quality of service (QoS).

2.1 Networked virtual environment

As stated in Chapter 1, a NVE can be broadly defined as a software system providing
a simulation shared over a network where users located in different geographical
places can interact among them in real-time. The existing literature dealing with
NVEs provides a sparse set of characteristics that are common to this kind of systems
[Tre03]. These characteristics can be broken down into three main categories. First,
the NVE software, which implements the logic of the NVE system, it defines, hosts,
updates and synchronises the simulation shared among the users. Second, the NVE
hardware, which constitutes the physical layer, runs the NVE software and provides
the input and output devices that allow users to interact in real-time with the shared
simulation and also the network hardware required to access the communication
channels. And third, the data network, which provides a communication channel that
interconnects the hardware devices where the NVE software is run. These categories
are described in further detail below.

2.1.1 NVE software

The NVE software orchestrates the whole simulation share among the NVE users. It
keeps a representation of this simulation, its entities, properties and states. It also
updates the virtual world with the input provided by users while trying to keep a
consistent and synchronised view of the virtual world for all the users participating
in it. Most modern NVE software are applications that run on top of a complete
software stack comprising an operating system, hardware drivers and network
protocol stacks.

The software architecture for NVE software can greatly vary, using different tech-
niques to host the virtual world, provide persistence and synchronize and propagate
state changes of its entities. Regarding the software structure, most of the software
for NVEs can be classified as client-server [SZ99] or peer-to-peer [BAS13], [YK13].
The first rely on a central machine running the server software which hosts the
virtual world, gather the updates and synchronises the views of all the NVE clients.
The peer-to-peer ones host the shared simulation in a collective and non-centralised
way, every peer acting as client and also server and using different synchronisation
approaches to guarantee coherence.

18 Chapter 2 Networked virtual environments: characterisation and case study

Below is an enumeration of the defining elements and characteristics that can be
found in NVE software.

Virtual World: is a computer simulation shared by users over a data network. This
simulation is the representation of a reality following a set of rules that define the
possible interactions of the entities contained within the simulation and how their
states can evolve regarding these interactions. The NVE software implements the
logic that defines the virtual world, from basic physics rules that govern the virtual
world to the mechanics that shape the interaction, goals and rewards that users can
experience within the virtual world.

Avatar: is a graphical representation used by a person to identify himself or herself
in the context of a communication network or virtual community, providing the
sense of presence [Çap99]. In the context of the NVEs, the avatar represents the
user inside the virtual world. This entity will be controlled by the user and it will be
its proxy between him/her and the rest of the entities within the virtual world. In
the avatar model, the user interacts with the game through a single representative
character and the player actions are defined in terms of commanding the character.
The avatar exists at a particular location in the virtual world and can influence only
the immediate locality. Software built around this avatar interaction model typically
have either a first person perspective, where the player looks through the eyes of
the avatar, or a third person perspective where the player follows an avatar in the
virtual world. FPS games, RPG, action games, sports games and racing games are all
examples of game genres that have an Avatar interaction model.

Real-time interaction between the users: but also between users and virtual world
entities. An action on the user side involves an immediate interaction and result
within the simulation that can be perceived by the user him/herself and the rest
of participants. We must differentiate the concept of "real-time" depending on the
context. From the user perspective, real-time refers to the reaction to events at the
same time as they unfold, thus a change in the virtual world as consequence of the
user input . From a computing perspective, real-time refers to performing actions
within the system matching certain operational deadlines. Events, i.e. user input,
have to be processed and the virtual world updated within defined time boundaries
by the NVE system to minimise latency between user actions and system reaction,
providing final users with the sensation of instant responsiveness [RG14], [Fin13],
[Bru+13].

Communication channels: the simulation is shared among users over a data net-
work where users not only can see each other’s representation (or avatar) within the
game, but they can also communicate beyond visual ways. The most common com-

2.1 Networked virtual environment 19

munication channels are written text in the form of chat rooms or instant messaging,
and audio in the form of public conversations or private voice calls.

2.1.2 NVE hardware

The NVE user will require a computing system to access the virtual world, a device
with a certain degree of computing capabilities to be able to run the required software
to join the NVE virtual word, interact with it and receive a representation of it. This
device acts as client of the NVE system and provides the link between the human user
and the rest of the NVE. The most common option is the usage of microprocessor-
based architectures equipped with RAM memory and storage memory for persistence.
Moreover, due to graphical requirements it may be necessary to include dedicated
hardware such as graphics processing units (GPUs).

Personal computers have been the traditional client devices for NVE systems. Both
desktop workstation and laptop actor provide all the hardware requirements to run
the NVE client software, being usually equipped with input devices such as keyboard
and mouse, as well as connectivity to different network technologies. Later years
have witnessed the emergence of handheld devices such as tablets and smartphones
that can be also suitable NVE clients due to their computing capabilities or as input
accessories, bringing new input methods into scene such as touch screens, a range
of built-in sensors such as accelerometers and gyroscopes [Geb+14].

Below is an enumeration of the defining elements that can be found in

Control and input devices: the computing system has to count with input devices
to allow the user to interact with the virtual world and control his/her avatar within
it. These devices will translate the user actions into virtual world events. The
most common user interactions involve avatar control and communication between
NVE users using text or voice. Avatar control can be performed using keyboards,
gamepads or pointing devices such as mouses or trackballs. Keyboards also allow to
perform text input while microphones together with audio hardware allow audio
input. Touchscreens are the norm in modern tablets and smartphones. Dedicated
keyboards and pointing devices are usually replaced in these devices with controls
directly displayed and operated from the tactile screen. Moreover, the new batch of
handheld devices open new input possibilities thanks to the incorporation of built-in
sensors. Moreover, later years have witnessed an irruption of the Internet of things
(IoT) [WCJ14] or virtual reality (VR) technology [Gun+17], [He+17] to broader
audiences, the later aimed to take immersive virtual world experiences to a new
level.

20 Chapter 2 Networked virtual environments: characterisation and case study

Below is an enumeration of the defining elements and characteristics that can be
found in the hardware supporting a NVE system.

Output devices: every user has a representation within the virtual world hosted
by the NVE system. This virtual world stores all the entities within the simulation
and all the details about location, properties and state [XS16], [Dai+09]. However,
users are usually provided with just a partial representation of the virtual one,
capturing the simulation area that can be encompassed from his/her location within
the virtual world and following a set of physical rules of the simulation, like the
field of vision. The most common trend is providing the user with a 3D render
image of the virtual world from his/her perspective, this may require the presence
of dedicated hardware such as GPUs. Other possible virtual world representations
such as 2D or even ASCII based can be found on niche NVE, responding a technical
limitations (underpowered graphic hardware by the time of their implementation) or
merely aesthetic considerations (like retro game revival trends). Audio is provided
as an extra to enrich the immersive experience within the virtual world, a computing
device will require specialized audio hardware to decode and play sounds part of the
virtual world environment, as well as peripherals such as speakers or headphones.

Data network: interconnects the hardware components of the NVE system, allowing
the NVE software to share the virtual world among users. There are numerous
physical channels that can be used to implement modern data networks, from
wired technology such as Ethernet, to wireless networks based on WiMAX, Wi-Fi or
G3/G4/G5 technology. The geographical extension of the network can also range
from Local Area Networks confined to a room to world-wide ones, being the Internet
the maximum exponent. On top of these technologies there is a network protocol
stack where TCP/IP is the current de-facto standard. The network communications
of a NVE system can be structured following a classic client-server architecture or
peer-to-peer (P2P) approach [HL04] [SJT06] [BAS13].

2.2 Open Wonderland

Open Wonderland is a Java open-source toolkit for creating collaborative 3D virtual
worlds, originally conceived as a tool for collaborative working by Sun employees
[Yan+04]. It has been chosen in the context of the present work as a representative
example of NVE and it will be used in later chapters as a case study to test the
proposed analysis and modelling procedures defined for NVE network traffic.

According to the characterisation of NVE proposed in Section 2.1, OWL meets all the
requirements to be considered as a representative of the NVE systems: it is based on

2.2 Open Wonderland 21

software components running on computer hardware and provides a virtual world
shared over a data network where users are represented by avatars that can engage
in real-time interaction between them and also with other elements of the virtual
world.

In addition of being an example of NVE software, OWL is also an interesting case
study due to its expandability and suitability as a tool in research fields related to the
motivations of the present work, enumerated in Section 1.2. For example, OWL has
been used as foundation to build persuasive systems, focused on motivating healthy
lifestyle habits [Fog02], such as Virtual Valley [Rom+10], [Cas+10]. OWL has been
also used for e-learning studies such as [Gar+11]. Other studies such as [FSC12],
[Fon+12a] or [FCS13] have used OWL as a case study for performance evaluation
of NVEs, focusing on network and server resources respectively.

Thus, choosing OWL as case study for the present work is twofold: on the one
hand due to its NVE condition it will help to prove the validity of the analysis and
modelling process that will be proposed in the present work. On the other hand, if
meaningful network traffic models are generated as result of this analysis process,
they can prove useful in any of the fields that motivate the study and where OWL is
a relevant tool, further confirming the interest in the study of NVE network traffic.

OWL has several other technical characteristics that make it especially suitable for
its study and the design of experiments based on it. These characteristics mostly
derive from its open source nature and design choices, making it an open platform
for new developments [KY11], allowing the publication and distribution of derived
works and giving organisations and individuals the possibility to deploy the system
on their own infrastructures without having to rely on third-party services, which is
especially crucial in applications that may involve highly confidential data, such as
medical records [Gar+09].

2.2.1 Architecture and internal components

The OWL version used in the present work is Project Wonderland 0.5, its architecture
is shown in Figure 2.1 [Proc]. OWL is subdivided in several components and third-
party projects that work together to deliver a NVE experience. These elements are
enumerated and detailed below.

Wonderland: comprises both the core of OWL client and server as well as a set of
modules that provide key functionalities such as security, shared applications, avatars
and so on. It also contains the web administration server. Specifically, the shared
application feature allows sharing applications among different users. Some of these

22 Chapter 2 Networked virtual environments: characterisation and case study

Audio
Client

Obj.Sync.
ClientAudio

Client
Obj.Sync.
ClientAudio

Client
Obj.Sync.
Client

IPv4 Stack

Audio
[OWLAudioClient]

Obj.Sync.
[OWLMovClient]

Node

S
o
c
k
e
t

CSMA Channel

Node

S
o
c
k
e
t

IPv4 Stack

CSMA Device

Audio
[OWLAudioServer]

Obj.Sync.
[OWLMovServer]

CSMA Device

Applications
[ns3::application]

C
l
i
e
n
t
s

[
n
s
3
:
:
n
o
d
e
] S

e
r
v
e
r

[
n
s
3
:
:
n
o
d
e
]

S
o
c
k
e
t

S
o
c
k
e
t

Fig. 2.1.: Open Wonderland client-server architecture

applications are already integrated in Wonderland, like the multi-user PDF viewer
and the SVG White board. Users can also share additional external applications
installed in the server (like Firefox or OpenOffice) using the Shared Applications
Server.

Wonderland Modules: a repository for OWL extension modules which expand its
functionalities. Some of these modules are shipped by default within the OWL binary
releases. There are also experimental modules provides by both project developers
and community members.

MTGame Graphics Engine: a high-performance graphics engine that extends jMon-
keyEngine. MTGame adds multi-threading capabilities for improved graphics perfor-
mance [Foud].

jVoiceBridge: a pure-java audio mixing platform providing real-time immersive
audio (via VoIP) with time distance attenuation and a selectable range of qualities
as well as a companion software phone, called softphone’ that allows phone calls
between users within the virtual world. It supports mixing high-fidelity, stereo audio
at up to CD quality [Fouc].

Moreover, OWL includes several open source projects as internal components, such
as graphic or audio engines, applications servers and so on. Some of these third-party
components are listed below.

Darkstar: a Java platform created by Sun Microsystems for scalable communica-
tions and persistence in games. OWL includes a Darkstar service that manages all

2.2 Open Wonderland 23

client and world state. Nowadays the project development is officially halted but a
community fork has been created, called RedDwark Server [Proe].

Glassfish: is highly scalable, open source pure-Java application server that provides
several functionalities for the Java EE platform such as RMI, XML and web server.
OWL is based on an embedded instance of the Glassfish server. Wonderland web
applications include web-based management of the server and worlds, a content
repository for hosting all world data, and an integrated single-sign on system used
to maintain identity across Wonderland services [Cor].

jMonkeyEngine: a 3D game engine written entirely in Java. It provides core graph-
ics APIs, including graphics primitive and shader support. The OWL graphics system
is based on these core APIs, with some extensions from MTGame to support multi-
threading [Teab].

2.2.2 In-game elements and interactions

Within the OWL virtual world, the user is graphically represented by a 3D object
known as avatar, the virtual projection of the user perceived by other players within
the same gaming session. Its movements and behaviour are determined by the user
behind it, using his/her keyboard, mouse or any other computer input peripherals.

The virtual world can contain all kind of objects, which can be 3D objects like pieces
of furniture, buildings, etc. or 2D objects like screens with embedded applications
(web browsers, word processors, and so on). The usual way to model the spatial
relationships between objects is using a scene graph. Each object is a node (or cell
in OWL terminology) in this graph. The cells, representing any volume of space of
the virtual world, are organized in a graph with a tree hierarchy [Prod]. Figure 2.2
shows an example of the cell tree.

The in-game interactions within OWL can be divided into three categories: avatar
movement, audio communication and interaction with embedded apps.

Avatar movement and object interaction: these interactions are related to the loca-
tion of the avatar within the game scenario and the other avatars and objects in it.
The result of these interactions are the update and synchronization of the shared
simulation between all the game users and their graphic representation.

24 Chapter 2 Networked virtual environments: characterisation and case study

Cell 1

House 1 Road House 2

Room 1

Lamp

Room 1

Sofa

Car 1 Car 2 Room 2

Chair Table

Fig. 2.2.: Structure of a Open Wonderland cell

Audio communication: involves the transmission of audio between users in the
form of private conversations or audio being broadcast to all the users within the
listening range.

Embedded applications: these are applications within the game, such as browsers,
digital boards or PDF readers. These kind of interactions are very heterogeneous
since they are strongly linked to the nature of the application. Their study and
modelling are out of the scope of the present work.

Each one of the above type of interactions generate a characteristic and distinctive
type of network traffic. Each type of interaction has optimized network flows
designed to better suit their requirements: reliability, data integrity, real-time and so
on. These network flows are further discussed in section 2.2.3.

2.2.3 Networking

OWL is based on a client-server architecture [Fouf]. The OWL server must have an IP
address known and reachable by the clients. Initially, a client is disconnected from
the server until it calls a WonderlandSession.login(). If this succeeds, the session
goes into the CONNECTED state. A client may connect multiple sessions to the same
server. Once a session is connected to a server, connections may be added to it. Each
connection in Wonderland has a unique type for sending different types of data. For
example, a client may use one connection for sending cell data, and another one for
sending voice communications data. Clients may use as many connections as they
need for their interaction with the server. The only limitation is that a client may

2.2 Open Wonderland 25

only have a single connection of a given type connected to a given session. Clients
may also use multiple sessions to get multiple copies of a single connection type.

Once in the CONNECTED state, messages can be passed from a client to the server,
from the server to one client (not necessarily in response to a client message or
request) and also the same message can be sent by the server to a number of
clients. From version 0.5 on, there is no more client-client communication, that is,
all messages from clients go directly to the server. The traffic between clients and
server/s can be broadly divided into object synchronisation, audio, and application
data [She+03]. The object synchronisation traffic uses TCP protocol to ensure the
virtual world updates are received by all the clients engaged in the same session, this
type of traffic will be subject of further analysis in Chapter 4. The audio traffic uses
UDP for the propagation of voice and audio content. While UDP does not guarantee
the delivery of the packets, it is acceptable a certain degree of packet loss without
compromising and spoiling the user experience. The studio of the audio traffic has
been left out of the scope of the present work. Finally, the application data traffic is
highly dependant of the nature of the embedded applications that generate it and it
has also been left out of the scope of the present work.

2.3 Experimental testbeds based on Open
Wonderland

Using OWL as case study for NVE network traffic modelling requires to have available
experimental network traces generated and captured under controlled circumstances.
To this end, two testbeds based on OWL have been defined, the first one, labeled
as Open Wonderland TestBed 1 (OWTB1), follows one of the classic approaches on
literature where human players volunteer to participate in gaming sessions which
network traffic is captured an later analysed.The second testbed, labeled as Open
Wonderland TestBed 2 (OWTB2), is an attempt to be more scalable by using basic
bots to control the avatar, replacing human operators and the constrains associated to
the availability of volunteers. Nonetheless, both testbeds are client-server installations
where clients connect to a standalone OWL server. Both testbeds are described in
further detail below in the next sections.

2.3.1 Open Wonderland Testbed 1

Open Wonderland Testbed 1 (hereafter OWTB1) was the first testbed to be deployed
in the laboratory of the Department of Computer Technology and Architecture of the
University of Seville. This testbed was composed by heterogeneous hardware and

26 Chapter 2 Networked virtual environments: characterisation and case study

operated by a group of volunteers. This testbed was aimed to capture initial OWL
network traffic to help in the first evaluations and the initial definition of the analysis
and modelling processes. Therefore, this is a heterogeneous platform in both hard
and soft terms. The structure and topology of OWTB1 is shown in Figure 2.3.

Open Wonderland Testbed 1

router

clientclient

server

client client client

User User User User User

Fig. 2.3.: Structure of Open Wonderlad Testbed 1

Hardware: OWTB1 was implemented using a set of PC machines from different
generations and specifications. The first testing session followed the bring your own
computer (BYOC) principle [RHS10], where all the volunteers brought their own
machines and connected to the Ethernet infrastructure and OWL server provided
for the experiment. This situation does not differ greatly from any other regular
OWL deployments observed in the wild which deal with different hardware settings.
Despite the differences in computing and graphic resources, all the machines met the
minimum requirements to run the OWL client software [FSC12]. As for the server
hardware, it had enough resources to not constraint the performance of the system
under the planned workloads. Table 2.1 shows a summary of the hardware settings
of the OWTB1 computers.

Network: the OWTB1 nodes were interconnected using Ethernet technology. The
network configuration consisted in a single Ethernet 10/100Mbps switch, provided
by a Linksys WRT54G v7.0 with stock firmware. The switch interconnected the
server and clients in a single collision domain. The usage of wired technology and
ISO Layer 2 device aimed to provide an isolated network scenario that minimised

2.3 Experimental testbeds based on Open Wonderland 27

Tab. 2.1.: Hardware setup for OWTB1

Role Processor RAM GPU

Server AMD Phenom x4 2.6 GHz 4GB DDR2 GForce 8200
Client 1 Intel Dual Core x2 3 GHz 2GB DDR2 Radeon X300
Client 2 Intel C2D x2 2.53 GHz 3GB DDR2 GMA 4500 MHD
Client 3 Intel C2D x2 2.5 GHz 4GB DDR2 GeForce 8600 GT
Client 4 Pentium IV HT 3.2 GHz 512MB DDR Radeon 9700
Client 5 Intel C2Q x4 2.4 GHz 6GB DDR3 GForce 9700

network delay. The latency induced by the Ethernet 100Mbps network was an order
of magnitude smaller than the times between consecutive packets generated by the
OWL clients [Yan12] [Aza05]. Moreover, the 100Mbps bandwidth was more than
enough to support all the traffic generated by the OWL instances. Studies such as
[NC04] and [Ami+13] follow a similar approach, were the different clients connects
to the same Ethernet segment.

Software: OWL is a project based on Java technologies, it runs over a Java Runtime
Environment (JRE) and therefore it is agnostic to some extend to the underlying
software stack (operating system, drivers, etc.). OWTB1 used two different software
configurations for server and clients respectively. GNU/Linux was chosen as operat-
ing system for the server machine, specifically Debian 6.0 (updated with software
packages of the Debian testing branch in June 30th 2011) optimised for amd64
architecture (x86_64, 64-bit extension of x86, 32-bit). GNU/Linux is widely used
in servers, where it runs all kind of applications, including Java-based ones, due
to its reliability, availability, configuration possibilities and relatively lean resource
requirements.

Although the JRE is enough to run the OWL client, all the client machines were
equipped with the Oracle Java Development Kit (JDK) for the corresponding 32 or
64-bit architecture. The JDK installed on the server was the one provided by the
now-defunct Sun Microsystem, the Sun JDK v1.6.0, compiled for 64-bit architecture.
OWL v0.5 nightly build (corresponding to June 30th 2011) was the server version
chosen for OWTB1.

Machines running the OWL clients were powered by Microsoft Windows XP and
Windows 7. Windows XP is a 32-bit only architecture, while Windows 7 was
present in OWTB1 with both 32 and 64-bit versions. The Windows-based systems
were representative of the Microsoft-dominated domestic PC market [Sta12] at the
moment of building the OWTB1. Despite the heterogeneous set of 32 and 64-bit
software in OWTB1 (x86 vs x86_64), the network traffic should be mostly agnostic
to this detail, being more influenced by other hardware and software details such as

28 Chapter 2 Networked virtual environments: characterisation and case study

optimization, software architecture and so on. The server machine ran an instance
of OWL v0.5 nightly build, corresponding to June 30th 2011. Players used the client
version shipped with the OWL server.

Gaming sessions: those performed on OWTB1 followed the guidelines defined in
section 2.3.3 regarding session duration and player behaviour. The gaming sessions
on OWTB1 were conducted by human players, following the trend of most authors
that have based their studies on real human-driven gaming sessions [BA06] due
to the complexity of using reliable models for simulating human player behaviour.
In general terms, automating gaming sessions and removing the human factor
would present a high degree of complexity. Using models to simulate human player
behaviour and mobility is even more complex than using real players since it requires
finding realistic models for player behaviour.

The gaming sessions on OWTB1 were performed by a total of 5 volunteers, students
and members of the School of Informatics Engineering of the University of Seville.
The volunteers received training on the usage of the OWL client and also basic
guidelines about the in-game behaviour and rate of expected interaction between
avatars. These guidelines are described in more detail in section 2.3.3.

All the testing sessions were performed in the same in-game scenario, a minimalistic
virtual world where each user was within view and hearing range of the rest of the
players. A total of 3 independent gaming sessions were performed. The number of
concurrent users in each session was of 2, 3 and 5 respectively. The 2 and 3-client
session showed the trend in the generated network traffic. Due to time and human
resource constraints, the 4-client session was omitted, directly performing a 5-client
session to confirm the trend observed in previous sessions.

2.3.2 Open Wonderland Testbed 2

Open Wonderland Testbed 2, hereafter OWTB2, was designed and deployed taking
into account the experience acquired from its predecessor OWTB1. OWTB2 was
deployed in one of the computer laboratories of the Department of Computer
Technology and Architecture of the University of Seville. This scenario removed the
BYOC factor present in the previous OWTB1, providing a hardware and software
platform easy to configure and administrate. This, together with no further requiring
volunteers, allowed to easily scale up the number of players in the experimental
sessions performed on this new testbed. Thus, it was finally possible to increase
the number of sessions in a homogeneous platform to better observe the impact
of higher workloads on the network performance. Besides the above differences,
OWTB2 is still based on the client-server architecture, following the same experiment

2.3 Experimental testbeds based on Open Wonderland 29

guidelines that OWTB1 in terms of session duration, scenario and type of interaction
between players. The structure and topology of OWTB2 is shown in Figure 2.4.

Open Wonderland Testbed 2

router

server

client client

script script

client client

script script

client client

script script

client client

script script

client client

script script

Fig. 2.4.: Structure of Open Wonderland Testbed 2

Hardware: the machines used in OWTB2 had identical hardware settings, details
are shown in Table 2.2. This hardware supposed an improvement over OWTB1 in
terms of computing resources and homogeneity of the testbed. One of the reasons
to use identical computers was to remove the variability induced by heterogeneous
hardware in OWTB1 to better observe the network behaviour of OWL. In OWTB2
both server and client nodes had identical hardware configuration for mere conve-
nience reasons, regarding all the machines in the computer lab were identical. This
settings exceeded the minimum software requirements to run OWL client. On the
other hand, these settings allowed the server to support up to 10 concurrent clients
engaged in a same gaming session.

Tab. 2.2.: Hardware setup for OWTB2

Role Processor RAM GPU

Node Intel i7-2600K 3.4GHz 8GB DDR3 GForce GTX 550Ti

Network: the nodes in OWTB2 were interconnected using the local area network
available at the computer laboratory where it was deployed, a Gigabit Ethernet

30 Chapter 2 Networked virtual environments: characterisation and case study

network providing a single collision domain. As in the previous testbed OWTB1, the
values of the packet lag induced by the testbed network are one magnitude below
those for network variables such as inter-arrival time (IAT) or inter-departure time
(IDT), which are key in later analysis and modelling steps.

Software: OWTB2 kept the distinction between server and client software stack
made in OWTB1. The server machine ran Ubuntu 12.04 compiled for i386 architec-
ture and including all its respective security updates and a Linux kernel 3.2 optimised
for i686 architecture.

The client machines shared a common software configuration running Microsoft
Windows 7 64-bit with Service Pack 1 (SP1) installed. OWTB2 clients used the
Oracle Java Runtime Environment (JRE) v.1.7, this JRE was already installed in the
lab computers. Regarding Java implementations, they are retro compatible with
previous specifications, there was no need to install a different JRE version. As in
the case of hardware, software heterogeneity was removed in favour of an uniform
testbed.

The OWL server in OWTB2 required the usage of a complete Java Development Kit
(JDK), the chosen one was the OpenJDK implementation of Java v1.6.0 specification,
compiled for i386 architecture. The usage of an Intel 64-bit hardware architecture
(amd64) running both 32 and 64-bit software has a negligible impact over the
network traffic results; the network communication in our study is not conditioned
by the underlying CPU architecture. The server ran OWL v0.5 nightly-build from
February 20th 2012. This version did not provide any significant architecture or
technical change from the one used in OWTB1 beyond minor bug fixes.

Gaming sessions: those performed on OWTB2 followed the guidelines defined in
section 2.3.3 regarding session duration and player behaviour. Like in the previous
OWTB1 testbed, all the testing sessions were performed in the same minimalistic
game scenario. A total of 10 gaming sessions were performed ranging from 1 to 10
concurrent players.

Automation of player input in OWTB2

Bots are weak AI expert system software that can control a player during a gaming
session, they are quite prominent in several genres such as FPS and MMORPGs
[Wav01]. There are some examples where they have been used to study video
game network traffic [Als+15b]. Following this approach, OWTB2 replaced human
players with a sort of rudimentary bots, scripts which automatically injected input

2.3 Experimental testbeds based on Open Wonderland 31

into the OWL clients to control the movement of the avatars. For this automation
process player behaviour has been simplified, aiming to maximise the interaction
rate and thus its associated network traffic. Although this simplification may seem
not representative of the traffic obtained during real gaming sessions, the results
from [Fon+12b] suggest that the impact of lower rates of activity in OWL sessions
translates into greater IAT/IDT values and therefore more heavy-tailed distributions
while keeping an analogous nature to those proposed in this study.

It could be argued that the more sophisticated bots, directly integrated within the
OWL client, should have been used. This would have meant to bypass the hardware
layer that, combined with the human intervention, determine the ratio of keystrokes
and the related update events. It must be highlighted that the goal of this approach
is not reproducing a human player behaviour, but providing an automated avatar
generating as many keystrokes as a human player in front of a keyboard. While OWL
provides several frameworks to create bots, there was no way to match the player’s
keyboard behaviour to get a similar rate of update events and associated network
traffic.

Two different scripting applications were used to interact with the Windows API in
charge of keyboard management. Each client machine had a AutoHotKey (AHK)
instance [Foua], an open-source macro-creation and automation software utility.
The AHK script generates cursor keystrokes, responsible of the avatar translation. To
avoid any kind of correlation in their behaviour, the script determines the direction
of the movement: forwards, backwards, turn right or turn left. This decision is made
using a pseudo-random number generator following an uniform distribution [Foub].
The amount of time during which the avatar performs the selected movement is also
determined using an uniform distribution. Independently of the erratic movement
performed by each “automated client”, they constantly generate updates about their
respective position which are propagated all over the OWL system as TCP packets.
More detailed information about AHK and its configuration can be found in the
Appendix B, Section B.2.

A second scripting application, HotKeyNet [Teaa] , was employed to remotely
control the functioning of the AHK scripts, allowing to launch and stop them from a
single machine acting as if it were an operator. Further technical details about the
automation scripts can be found in Appendix B, Section B.3.

2.3.3 Guidelines to conduct gaming session

The gaming sessions captured and studied on both OWTB1 and OWTB2 followed the
same guidelines in terms of game duration and in-game player behaviour. Regarding

32 Chapter 2 Networked virtual environments: characterisation and case study

the duration of the gaming session, each one was set at 11 min. The first minute
of each session was considered as warm up, giving time to all the players to join
the gaming session. This first minute has been discarded, leaving 10 min of useful
network traffic traces for later study.

Studies such as [She+03] have classified the types of in-game actions and patterns
to later focus on the network patters associated to them. One of the observed
approaches has been the distinction between between active and inactive players,
focusing on the first ones considered as more representative about the normalised
gaming experience to be studied and modelled [Fen+02]. In [Fon+12b], it was
determined that the inactivity periods of the so-called inactive clients translated
into absence of traffic from client to server. The guideline for both testbeds was
to maximise user interaction in order to reduce outliers and the tail effect in some
network parameters such as IAT. A similar experimental approach where predefined
behaviours have been chosen to maximize certain types of interactions can be found
in [Bei+04].

2.3.4 Network traffic capture

The capture of the network traces in OWTB1 and OWTB2 has been performed
following the same procedure. In both cases the chosen tool was the packet analyser
Wireshark v.1.6.5 [Tea19b] and specifically Tshark, its terminal-based counterpart
which provides the same functionality regardless the graphical user interface (GUI),
facilitating the scripting and automation of the process. The command line tool
capinfos was used to extract statistics from the pcap files generated by tshark,
Bash scripting to articulate the analysis workflow and the statistics language R for
calculations and plots. Captured network packets missed 4 bytes corresponding to
the frame check sequence (FCS) for Ethernet datagrams. While Wireshark supports
the capture of FCS [Prog], many network interface controller (NIC) drivers do not
handle the FCS field to the operating system and therefore these bytes do not reach
the analyser tools. This has been taken into account in the later study of the packet
size.

Following the example of other studies about gaming traffic, the capture of the
packets was made at the server-side ([Fen+02], [Fär02], [CLW03], [Fen+05],
[Cla05]). Each capture contained 10 min of network traffic. The traffic captures
were started after all the clients had logged into the gaming session and their views
of the virtual world had already been loaded, thus avoiding interference with initial
synchronisation process and their associated network patterns [CC10]. These packets
are mostly associated to the initialisation processes and are only present during
the initial stage of the gaming session where they transport a copy of the virtual

2.3 Experimental testbeds based on Open Wonderland 33

world environment to each client, not being significant for the stationary scenario
of the traffic. Due to the simplicity of the in-game interactions it was not required
a significant warm-up period to reach stationary state. A 10 min trace capture is
representative enough of the network traffic dynamics to be studied [Mac87].

2.4 Summary

The present chapter provides a characterisation of NVE systems, a tool to identify
software systems that can be categorised as NVE. The immediate application of
this characterisation is to identify NVE systems in areas such as video games, and
therefore being able to reuse and reinterpret the existing literature focused on them
from the perspective of NVE. These allows to identify a lot of material to synthesize
the analysis and modelling processes for NVE network traffic proposed in the present
work.

The characterisation of NVE systems describe them as software providing a simu-
lation, or virtual world, shared over a data network that is powered by computing
devices and peripherals. The representation of the users engaged in the virtual world
experience is done by the usage of an avatar. These avatars interact with each other
and with other elements within the virtual world in real-time basis.

OWL complies with the NVE characterisation proposed in this chapter. This, together
with its use as research platform in fields related to the motivation of the present
work, make OWL a good candidate to test and validate the analysis and modelling
procedures for NVE platforms later developed in this work. The open source nature
of OWL and its architecture and technical characteristics make it also a good alter-
native to design experiments and generate network traffic to be used for modelling
purposes.

Having chosen OWL as a case study for NVE network traffic analysis and modelling,
the chapter also describes the testbeds built around it, OWTB1 and OWTB2. While
they have some differences, such as hardware setup or the way avatars are controlled
in each one, they still share the same client-server topology over an Ethernet network,
network traffic capture procedure and the same guidelines to conduct experiments,
where certain types of user interactions are especially favoured due to its interest
from the modelling point of view.

34 Chapter 2 Networked virtual environments: characterisation and case study

3Analysis and modelling pipeline
for NVE network traffic

But magicians have calculated that
million-to-one chances crop up nine
times out of ten

Terry Pratchett, Mort

This chapter provides an overview on previous work analysing and modelling net-
work traffic generated by different types of video games, using them to extrapolate
and propose a statistical analysis pipeline specifically devised to analyse and model
network traffic generated by networked virtual environment (NVE)s. The reason to
rely on video game-related literature is its abundance and the fact that many video
games overlap with the NVE definition provided in Section 2.1. This chapter is an
effort to identify and filter the statistical devices that can help to shape the statistical
analysis of the network traffic generated by the NVE systems defined the present
work. For convenience reasons, when the term video game is referred it is implicit
that refers to those which share characteristics with the NVEs.

An analysis pipeline consists in a number of interconnected processing steps that
receive a certain data input and perform an analysis to generate some sort of output.
The pipeline proposed in this chapter is a collection of steps and statistical tools that
can be automated partially automated using a programming language (i.e. R [Fouh]
or Python [Foug]), and workflow technologies [Sha+14].

The modelling strategy implemented through this pipeline is the so called microscale
modelling [GS10], which models the network traffic based on two random variables,
inter-arrival time (IAT) and packet size (PS). The aim of the proposed statistical
analysis pipeline is to describe the steps researchers can follow to determine a
model for each one of the random variables (IAT and PS) that describe the traffic at
microscale level. Some of the steps will require the researcher to make decisions,
such as the most promising theoretical distribution to fit into the experimental
network traffic. The pipeline also include steps to determine how optimal those
decisions have been, i.e. evaluation of Goodness of Fit, allowing the researcher to
reconsider and iterate again over the process.

35

3.1 Background

Network traffic models have been traditionally developed under the assumption
that packets or flows arrive according to a memoryless Poisson process [Kle75].
This implies that observed network traffic exhibits only short-term autocorrelations
where the autocorrelation function of the observations becomes negligible after a
certain finite lag. Later, self-similar models of network traffic became widespread
in literature [Lel+93] [FM94], being successfully applied to different real-world
traffic traces, such as variable bitrate (VBR) video streams [Ber+95] and World-
Wide-Web traffic [CB97]. These models could capture the long-term autocorrelations
measured in local area network (LAN) and backbone traffic, however there is no
concise relation that describes how self-similar traffic affects queueing at switches
or end-user performance.[GB96]. There have been other approaches for the video
game network modelling, such as the study in the frequency domain [Fen+05], or
using time series such as Markov chains or autoregressive-moving-average (ARMA)
models [CB07] [CBA07].

The present work follows the microscale approach for network traffic modelling, con-
sisting in examining the inter-arrival dynamics between individual packets withing a
gaming session. Microscale models have been used previously to model the packet
inter-arrival periods of telnet [Pax94] [PF95] and FTP [Dan+01] traffic. Some of
the earliest applications of the microscale modelling to the video game network
traffic can be found in [BDA99] and [BD00], but it is the paper from Michael S.
Borella, “Source Models of Network Game Traffic” [Bor00], the work that defined the
basic guidelines for the microscale network modelling as well as the measurement
of discrepancy of these models against the empirical network traffic. This work laid
the groundwork for many later papers on this subject, are numerous the literature
applying these guidelines to video games from first-person shooter (FPS) genre,
such as Half-Life [HB01] [Lan+03], Quake3 [LHR02] [LBA04], Counter-Strike
[Fär02] [Fär04], Halo2 [ZA05], Unreal Tournment 2004 [Hüb08]. Network traffic
generated by massively multiplayer online role-playing game (MMORPG)s has been
also covered in works such as ShenZhou Online [Che+06a]. The real-time strategy
(RTS) genre has been also subject of study from the microscale network modelling
with representatives such as StarCraft [DPV05].

3.2 Analysis pipeline for microscale modelling

The microscale modelling for video game network traffic popularised in [Bor00]
considers traffic as a flow of packets of different sizes, each packet separated from
the previous and next by certain amount of time. Thus, the magnitudes that focus

36 Chapter 3 Analysis and modelling pipeline for NVE network traffic

attention for the microscale modelling are IAT / inter-departure time (IDT), period
of time separating consecutive incoming / outgoing network packets and PS, the
number of bits composing the network packet. These magnitudes can be considered
as random variables which behaviour can be described using stochastic models.

The basic steps for the analysis pipeline for microscale modelling of the random
variables IAT and PS, are enumerated below. Determining the model for each variable
requires to execute the pipeline for data input specifically filtered and adequated to
model such variable. Each one of these steps are described in further detail in the
following sections. Figure 3.1 describes a flow chart for the pipeline.

1. Data filtering: network packets useful to study IAT or PS will be identified and
isolated during these step.

2. Data preview: initial graphical representations and analysis of the raw data
will help to determine how later steps will be performed. Statistical elements
such as the plot of the Empirical Cumulative Distribution can help with this
step.

3. Autocorrelation: determining the presence of self-similarity (or lack of) allows
to determine the right modelling approach for the raw data. Proving the
randomness of the studied parameter allows to go on with the microscale
analysis pipeline, otherwise, other approaches such as time-series may be more
appropriated for traffic of this nature.

4. Data Modelling: one or more statistical models will be evaluated to determine
the most promising to describe the studied network parameter. This step will
be conditioned by the discrete or continuous nature of the values observed
during the preview step.

5. Goodness of Fit: the fitness of the models proposed in the previous step will
be determined against several goodness of fit (GoF) techniques such as Q-Q
plots or numeric discrepancy metrics.

3.3 Data Filtering

The Data Filtering step aims to extract the relevant network traffic from the captured
traces for later statistical modelling. In the case of IAT traffic, the filtering will select
the arrival times of the packet traces in the capture which will allow to calculate the
time between consecutive arrivals of similar packets. The filtering for the study of
PS only require to focus on the packet size of the payload exchanged through the
NVE network traffic.

3.3 Data Filtering 37

Data filtering
outliers

distribution
tail

Data preview
ECDF

plots

Autocorrelation ACF

random? time-series
modelling

Data modelling
(distribution fitting) MLE

binomial
exponential

normal
Weibull

...

distribution
type?

discrete splitcontinuous

Proposed model(s)

Statistical
discrepancy

Q-Q

λ²

Pearson's r

...

Network traffic

Fig. 3.1.: Workflow for the NVE analysis and modelling pipeline

38 Chapter 3 Analysis and modelling pipeline for NVE network traffic

There are both technical and statistical considerations to take into account during
this step. Technical considerations are related to the nature of the traffic itself,
allowing to determine which data flows are of interest for the later stages of the
statistical analysis. The following list of considerations have been used to determine
how to filter experimental in the context of the present world:

• network traffic source: client-generated traffic Vs server-generated one
• type of transport layer protocol: TCP vs UDP
• nature of the packet payload regarding the game stage: scenario load, user

login, regular gameplay, etc.
• nature of the packet payload regarding the event it codifies: avatar sync, audio,

app-related traffic, etc.
• evaluation of complete packet size Vs trace payload
• details related to the traffic captured tools used, i.e. lack of frame check

sequence (FCS) field in traces captured by traffic analyser Wireshark.

The statistical considerations are mostly related to the statistical concept of outlier,
that can be defined as an observation point that is distant from other observations.
Outliers may be due to variability in the measurement or they may indicate exper-
imental error. In case of the latter, the outlier can be removed from the data set
[DGK75]. Moreover, some of the statistical tests may be overly sensitive to outliers
(i.e. λ2 [Bor00]). Another statistical consideration is related to the distribution tail
and its impact on later steps of the analysis process [BD00] [Fär04] [BA06]. Later
statistical analysis of experimental network traffic will include the criteria followed
regarding outliers and their handling.

By the end of this step the raw experimental data will have been transformed in a
data set containing the values that will allow to model the desired micromodelling
parameters (IAT or PS) in the following steps of the pipeline.

3.4 Data preview and preliminary analysis

The Data preview and preliminary analysis step aims to provide a initial graphical
preview of the experimental data used to model the random variable. Other statistical
tools, such as applying basic distribution fitting can also be performed during this
step to better identify potential models. This preview will help researchers to decide
how to conduct later steps of the analysis pipeline.

The cumulative distribution function (CDF) [SW09] describes the probability that
a random variable X with a given probability distribution will be found at a value

3.4 Data preview and preliminary analysis 39

less than or equal to x. For continuous distributions, it provides the area under the
probability density function from −∞ to x.

The empirical cumulative distribution function (ECDF) [Vaa00] is the cumulative
distribution function associated with the empirical measure of the sample. This
CDF is a step function that jumps up by 1/n at each of the n data points. The
empirical distribution function estimates the true underlying CDF of the points in the
sample and converges with probability 1 according to the Glivenko–Cantelli theorem
[Tuc59].

While it is possible to base the measurement of discrepancy on the ECDF [Ste74],
in this step it will be only used to provide hints whether a given data set can be
described by a theoretical distribution based on the comparison between the data
ECDF and the distribution CDF. While simple, this approach may prove to not suffice
in situations where it is necessary to determine which distribution better describes
the given data set.

By the end of this step, a graphical preview of the data set will be available, acting
as input for later steps in the pipeline, specifically the Selection of a probability
distribution.

3.5 Correlation and Autocorrelation

The Correlation and Autocorrelation step aims to evaluate the randomness of the data
set thus determine if it is suitable for later microscale modelling based on probability
distributions.

The term correlation is used in statistics and probability theory to describe the
dependence between the values of two random variables [Haz95]. It is used to
include a standardising factor ranging between−1 and 1. The formula for correlation
is defined in Equation (3.1).

cor(X,Y) = cov(X,Y)
σXσY

(3.1)

cov(X,Y) =
N∑
i=1

(xi − x̄)(yi − ȳ)
N

(3.2)

40 Chapter 3 Analysis and modelling pipeline for NVE network traffic

The autocorrelation concept is present both in the fields of signal analysis and
statistics. For the fist one, it is the cross-correlation of a signal with itself, describing
the similarity between observations separated between them by a certain amount of
time. In statistics, the autocorrelation of a random process describes the correlation
between values of the process at different times, as a function of the two times or of
the time difference.

Let X be a repeatable process and i some point in time after the start of that
process. i may be an integer if X is a discrete-time process or a real number for a
continuous-time process. Xi is the value for a given run of the process at time i. It is
assumed that the process X has defined values for mean µi and variance σ2

i for all
the times i. For this scenario, the autocorrelation between times s and t is defined in
Equation (3.3), where E is the expected value operator.

R(s, t) = E[(Xt − µt)(Xs − µs)]
σtσs

(3.3)

If the function R is well-defined (there are no variance values equal to zero nor
infinite), the autocorrelation value is in the range [−1, 1]. A value of 1 indicates
a perfect correlation, the series matches perfectly with itself after being shifted a
determinate amount of time. On the other hand, an autocorrelation value of -1
means perfect anti-correlation or inverse correlation.

If Xt is a wide-sense stationary process then the mean µ and the variance σ2 are
time-independent, and further the autocovariance function depends only on the
lag between t1 t2: the autocovariance depends only on the time-distance between
the pair of values but not on their position in time. This further implies that the
autocovariance and auto-correlation can be expressed as a function of the time-lag,
and that this would be an even function of the lag τ = t2 − t1. This gives the more
familiar forms for the autocorrelation function (ACF) shown in Equation 3.4.

RXX(τ) = E[XtXt+τ] (3.4)

The presence of autocorrelation in the studied network traffic can help to direct
the modelling approach and the type of model to be used. While models based on
time-series [CBA07] [CB07] rely on the presence of autocorrelation to determine if
a Markov chain or ARMA model is suitable to describe the nature of the network
traffic, works following a microscale approach such as [Bra06] or [DPV05] start
measuring autocorrelation in the studied network parameters to determine the

3.5 Correlation and Autocorrelation 41

random nature of the traffic and the suitability of a statistical model derived from
maximum likelihood estimation (MLE).

According to [Bra06], “an indication of whether or not a traffic exhibits Markov
characteristics is the rate at which correlation between two samples decreases
as the distance between the samples increases [Pax93]. For a Markov process,
the correlation between two samples decreases exponentially as the distance (or
lag) time between the samples increases. For a Process showing longer range
dependence the correlation decreases more slowly.” Thus, if the autocorrelation
function decays more quickly than the exponential function then that is some
evidence of randomness. If the autocorrelation function is approximately exponential,
then that is evidence that the autocorrelation behaviour of the studied parameter
can be captured with a Markov model. If the autocorrelation function decays much
more slowly than the exponential function then that is evidence of a more complex,
long rang dependence.

A valuable tool in the study of autocorrelation is the autocorrelation plot, also known
as correlogram, a graphical representation of statistical correlation. In time series
analysis, this plot shows the sample correlation rh versus the time lag h. If cross-
correlation is used, the result is called a cross-correlogram. The correlogram is
a commonly used tool for checking randomness in a data set. This randomness
is ascertained by computing autocorrelations for data values at varying time lags.
If random, such autocorrelations should be near zero for any and all time-lag
separations. If non-random, then one or more of the autocorrelations will be
significantly non-zero.

In the context of the present work, autocorrelations should be near-zero for ran-
domness; if the analyst does not check for randomness, then the validity of many of
the statistical conclusions becomes suspect. The correlogram is an excellent way of
checking for such randomness. The example in Figure 3.2 shows the autocorrelo-
gram for a series resulting from adding a periodic series with an uniform random
sequence. Must be noted that the first vertical line in each autocorrelation plot
correspond to lag = 0, in other words, the autocorrelation of the time-series with
itself, which is always 1.

In the case of a data set that shows strong signs of autocorrelation, it would be
advisable to explore a different modelling approach other than the microscale one.
Some examples of such analysis based on time-series can be found in [CB07] and
[CBA07]. Time-series modelling is out of the scope of the present work and it is not
covered by the proposed analysis pipeline. On the other hand, if there is enough
evidence about the randomness of the data set it will be possible to move to the next
step of the pipeline.

42 Chapter 3 Analysis and modelling pipeline for NVE network traffic

●

●

●

●

●●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

0 20 40 60 80

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Index

x

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 20 40 60 80

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Index

no
is

e

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●
●

●

●

●

●

●
●●

●

●

●
●

●

●

●

0 20 40 60 80

−
2

−
1

0
1

2

Index

da
ta

0 5 10 15

−
0.

5
0.

0
0.

5
1.

0

Lag

A
C

F

Series data

Fig. 3.2.: ACF for uniform random sequence plus periodic series

3.5 Correlation and Autocorrelation 43

3.6 Selection of a probability distribution

The Selection of a probability distribution step aims to select a probability distribution
to model the data set based on the information provided by the preview step and
once the autocorrelation study determines it is suitable to further proceed with the
pipeline. Choosing a family of theoretical probability distribution will be performed
based on the shape displayed by the ECDF associated to the experimental data.
This step partly relies on the previous experience of the researcher to identify the
similarities between ECDF and theoretical CDF. This makes this step to require
human intervention, initially limiting the possibilities to fully automate this part
of the pipeline. The first screening in the distribution selection is determining the
discrete or continuous nature of the variable associated to the data. There are also
cases where a split distribution can be the most adequate choice.

A discrete probability distribution is associated to a discrete random variable, a
variable that can only assume a finite or countable infinite number of values. The
CDF for a discrete probability distribution increases only by jump discontinuities,
remaining constant between those jumps. The points where jumps occur are the
values which the random variable may take. An ECDF resembling a stair is a strong
indication that the empirical data may follow a discrete probability distribution.
Some well known and studied discrete distributions are:

• Poisson distribution
• Bernoulli distribution
• Binomial distribution
• Geometric distribution
• Negative binomial distribution

A continuous probability distribution is a distribution which CDF is continuous. Most
often they are generated by having a probability density function (PDF). Some well
known continuous probability distributions are:

• Normal distribution
• Exponential distribution
• Gamma distribution
• Weibull distribution
• Uniform distribution
• Chi-square distribution

Due to their extensive use in the modelling literature enumerated in Section 3.1, the
following subsections contain a brief description and relevant formulas about the

44 Chapter 3 Analysis and modelling pipeline for NVE network traffic

exponential and Weibull distributions, both continuous probability distributions part
of the exponential family of distributions.

When evaluating a given ECDF, the researcher may find that it can be divided into
different intervals where the shape of the function resembles to different theoretical
probability distributions. In this case it is possible to define a split probability
distribution. This kind of distribution comes handy when a part of the ECDF greatly
diverges from the fitting CDF. On the other hand, abusing the splitting and creating a
function composed by too many fragments can be a clumsy approach to distribution
fitting [Bor00]. Equation (3.5) shows an example of split probability distribution.

F (x;λ) =

1 , x > 0.5

1− e−λx , 0.5 ≥ x ≥ 0
0 , x < 0

(3.5)

By the end of this step, the researcher will have one or several theoretical probability
distributions that will serve as candidates for the next step in the pipeline.

3.6.1 Exponential distribution

The exponential distribution is the probability distribution of the time between events
in a Poisson point process, i.e. a process in which events occur continuously and
independently at a constant average rate. It is a particular case of the gamma
distribution. It is the continuous analogue of the geometric distribution, and it has
the key property of being memoryless. The PDF of a exponential random variable is
described in Equation 3.6, where λ > 0 is the rate parameter of the distribution. The
CDF for the exponential distribution is described in Equation 3.7. The mean E[X]
and variance V ar[X] are described in Equation 3.8.

f(x;λ) =
{
λe−λx x ≥ 0,

0 x < 0.
(3.6)

F (x;λ) =
{

1− e−λx x ≥ 0,
0 x < 0.

(3.7)

3.6 Selection of a probability distribution 45

E[X] = 1
λ

V ar[X] = 1
λ2

(3.8)

3.6.2 Weibull distribution

The Weibull distribution is a continuous probability distribution named after Swedish
mathematician Waloddi Weibull. The PDF of a Weibull random variable is described
in Equation 3.9, where κ > 0 is the shape parameter and λ > 0 is the scale parameter
of the distribution. The CDF for the Weibull distribution is described in Equation 3.10.
The mean E[X] and variance V ar[X] are described in Equation 3.11. The Weibull
distribution is related to a number of other probability distributions; in particular,
it interpolates between the exponential distribution (κ = 1) and the Rayleigh
distribution (κ = 2 and λ =

√
2σ).

f(x;κ;λ) =
{

κ
λ

(
x
λ

)k−1
e−(x/λ)κ x ≥ 0,

0 x < 0.
(3.9)

F (x;κ;λ) = 1− e−(x/λ)κ (3.10)

E[X] = λΓ
(

1 + 1
κ

)
V ar[X] = λ2

[
Γ
(

1 + 2
κ

)
−
(

Γ
(

1 + 1
κ

))2
] (3.11)

3.7 Probability distribution fitting

The Probability distribution fitting step aims to provide an analytical expression for
the model elaborated during the previous steps, as well as determining the values for
the model parameters, using as input the theoretical models chosen in the previous
step and trying to minimize the statistical discrepancy between the experimental
data and the proposed theoretical distributions.

46 Chapter 3 Analysis and modelling pipeline for NVE network traffic

Methods for probability distribution fitting can be classified between parametric and
regression methods. The parametric methods are those where the parameters of
the distribution are calculated from the data series. Some examples are the method
of moments [BS06], maximum spacing estimation [Ran84], method of L-moments
[Hos90] and maximum likelihood method [Ald97]. On the other hand there are
the regression methods [Oos94], which use a transformation of the cumulative
distribution function so that a linear relation is found between the cumulative
probability and the values of the data, which may also need to be transformed,
depending on the selected probability distribution.

The literature about microscale modelling of network traffic makes an extensive
usage of the MLE starting with Bangun et al. [BD00] and Borella [Bor00], and
following with the many publications following the guidelines established in these
works and enumerated in Section 3.1. Thus, MLE will be the preferred fitting method
in the present work.

The MLE [Le 79] [PH94] method allows to estimate the parameters of an statistical
model given a data set of observations. The method takes a data sample or population
and a statistical model, and calculates the parameter values for this model that
maximize the fitting in relation to the sample. The principle of MLE states that the
desired probability distribution is the one that makes the observed data most likely,
which translates into finding the parameter vector that maximizes the likelihood
function L(w|y). For example, MLE applied to the exponential distribution aims to
determine the value of exponential parameter rate (λ), which dictates the behaviour
of the distribution, by using as likelihood function L(w|y) the least squares function.
Thus, λ is calculated by minimising the summation of the square of the distances
between the empirical and theoretical values [Myu03].

By the end of this step, the fitting models will count with a well defined analytical
expression and a set of values for the corresponding model parameters, ready for
being evaluated for later statistical discrepancy.

3.8 Statistical Discrepancy

The Statistical Discrepancy step aims to evaluate the GoF of the models generated
in the previous step. This can help to determine which is the best fitting model
between several candidates. The need to measure statistical discrepancy derives
from the fact that a set of observations may be described by various analytical models
with different degrees of accuracy, so it is necessary to have an objective criteria to
evaluate how close and accurately the data is described by a proposed model. The

3.8 Statistical Discrepancy 47

GoF of a statistical model gives a measurement of how well a model describes a set
of observations by summarising the discrepancy between the observed data and the
expected values according to the proposed model.

There are multiple methods aimed to determine if a given distribution properly
describes the distribution of a data set. These methods have different characteristics
which made them more suited to certain cases than others: some of them are aimed
to determine the normality of a data set, others are more sensible to extreme values
or heavy tailed distributions, etc.

There are several methods to measure statistical discrepancy and GoF, some of them
just provide a visual representation that can be intuitively interpreted, others provide
numerical metrics that allow direct comparison of GoF between models for a given
data set. The methods used to measure GoF in the present work have been chosen
from the literature described in Section 3.1. The following subsections contain an
overview of each of them.

3.8.1 Q-Q plots

A Q-Q plot, where Q stands for quantile, is a probability plot which provides a
graphical method for comparing two probability distributions by plotting their
quantiles against each other. A Q-Q plot allows to compare the shapes of distributions
by providing a graphical view of the similarity of their properties. Thus, it is a tool
that can be used to compare collections of data or theoretical distributions [Cha+83],
providing a more complete tool for CDF comparison, allowing to determine other
differences like shape, skew, weight of the tails and so on. Q-Q plots are used
in the present study to compare data sets of experimental observations to the
proposed theoretical models. [Bor00] is one of the early examples of the video
game network modelling using Q-Q to assets statistical discrepancy, others such as
[PKK05], [DPV05] or [CB07] also followed this approach.

The first step to create a Q-Q plot is defining the number of intervals (quantiles) in
which the distributions will divided into. Every point (x, y) on the plot is composed
by one of the quantiles of the first distribution (x-coordinate) and the equivalent
quantile of the second distribution (y-coordinate). The result is a parametric curve,
being the parameter the number of intervals for the quantile. The points plotted in
a Q–Q plot are always non-decreasing when viewed from left to right. If the two
distributions being compared are identical, the Q–Q plot follows the 45º line y = x.
If the two distributions agree after linearly transforming the values in one of the
distributions, then the Q–Q plot follows some line, but not necessarily the line y = x.
If the general trend of the Q–Q plot is flatter than the line y = x, the distribution

48 Chapter 3 Analysis and modelling pipeline for NVE network traffic

plotted on the horizontal axis is more dispersed than the distribution plotted on
the vertical axis. Conversely, if the general trend of the Q–Q plot is steeper than
the line y = x, the distribution plotted on the vertical axis is more dispersed than
the distribution plotted on the horizontal axis. Q–Q plots are often S shaped which
indicates that one of the distributions is more skewed than the other, or that one of
the distributions has heavier tails than the other.

Table 3.1 shows the quantiles (10 intervals) for two data sets. The empirical quantiles
correspond to a data set of 100 observations generated by a random generation
function for the normal distribution N (µ = 0, σ = 1). The theoretical quantiles were
calculated using the quantile function for N (µ = 0, σ = 1). The Figure 3.3 shows
the corresponding Q-Q plot. The random numbers were generated using a generator
for normal distribution, so the resulting points on the plot are close to the y = x

line.

Tab. 3.1.: Quantiles for Q-Q example

Quantile Empirical Theoretical

10% -1.4219 -1.2816
20% -0.9321 -0.8416
30% -0.5548 -0.5244
40% -0.2060 -0.2533
50% -0.0973 0.0000
60% 0.1049 0.2533
70% 0.4110 0.5244
80% 0.6374 0.8416
90% 1.0499 1.2816

3.8.2 λ2 and λ̂2 for discrepancy measurement

The λ2 Discrepancy Measure quantifies the GoF between a data set and a given
analytical model. This metric was introduced in [PJ90] and it has been widely used
in multiple works dealing with traffic network analysis, such as [Bor00], [Pax93],
[LHR02], [DPV05] or [BA06].

The λ2 distribution is based on the chi-square (χ2) goodness of fit test in an attempt
to normalise its results and obtain a quantitative measurement of discrepancy. One
of its main advantages over χ2 is the possibility to compare two λ2 values from
different pairs of data sets and theoretical distributions and determine which pair
show the best GoF. χ2 formula is shown Equation (3.12), where N is the number
of bins in which the empirical observations has been divided, Ei is the number of

3.8 Statistical Discrepancy 49

●

●

●

●

●

●

●

●

●

−1.0 −0.5 0.0 0.5 1.0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0

Q−Q plot

Theoretical quantiles

E
m

pi
ric

al
 q

ua
nt

ile
s

Fig. 3.3.: Q-Q plot, normal sample vs. normal quantiles

observations in the i− th bin and Ti the number of observations expected for that
bin according to the given theoretical distribution.

χ2 =
N∑
i

(Ei − Ti)2

Ti
(3.12)

The original formula for λ2 proposed by Pederson and Johnson in [PJ90] is shown in
(3.13), where n is the number of observations in the data set and df is the number
of degrees of freedom of the test. The formula for parameter K is shown in Equation
(3.14), where N is the number of bins, Ei is the number of observations in the i− th
bin and Ti the expected number of observations for that same bin.

λ2 = χ2 −K − df
n− 1 (3.13)

K =
N∑
i

Ei − Ti
Ti

(3.14)

50 Chapter 3 Analysis and modelling pipeline for NVE network traffic

Previous works addressing λ2 state that the measurement is not reliable when the
number of bins is too big. Trying to fit very heavy-tailed distributions generate very
large λ2 values. In this case there are two possible approaches: [Pax93] proposes to
log-transform the data to reduce the tail and number of bins. On the other hand,
[Bor00] opts for truncating the upper tail when it prevents a good fit.

Negative or close to 0 λ2 values indicate a high degree of fitting between the data
sample and the fitting distribution. On the other hand, λ2 values of several orders
of magnitude are a sign of lack of fitting. Even so, λ2 cannot be considered an
absolute fitting metric, but a tool to compare the fitting of samples from a common
population. Thus, a λ2 value in the order of thousands indicates a worse fitting
that a value close to 0, but there is not necessarily a direct relationship between the
absolute value of λ2 and the goodness of the fit.

The λ2 calculation process may encounter divide-by-zero situations when the ex-
pected number of observations Ti is 0 for the given theoretical distribution. To
avoid such a situation, Borella [Bor00] proposed an alternative definition, λ̂2 which
inherits the advantages of λ2 while avoiding divide-by-zero situations. To solve the
opposite situation where the empirical observations Ei are zero for a given bin, this
bin is just ignored and no computed.

The formula for λ̂2 metric in Equation (3.15) relies on χ̂2 (Equation (3.16)) and K̂
(Equation (3.17)), reformulations of χ2 and K respectively.

λ̂2 = χ̂2 − K̂ − df
n− 1 (3.15)

χ̂2 =
N∑
i=1

(Ti − Ei)2

Ei
(3.16)

K̂ =
N∑
i=1

Ti − Ei
Ei

(3.17)

Both χ2 and λ2 as well as their variants χ̂2 and λ̂2 require a binning method for
continuous distributions. [PJ90] includes a discussion about some of the available
methods. This work uses the binning technique introduced in [Sco79] and also
employed [Pax93] and [Bor00], based on choosing an optimal number of fixed-size

3.8 Statistical Discrepancy 51

bins of width w given by Equation (3.18) where σ is the empirical standard deviation
and n is the number of observations in the data set.

w = 3.49σn−1/3 (3.18)

Fixed-width bins have been chosen due to the latter case, a long-tailed distribution
will often have its entire tail contained into a single bin, which would provide a too
optimistic estimation about the GoF between the two compared distributions. It is
important to understand the impact of bin size on the GoF discrepancy metrics. χ2

is very sensitive to bin choice while λ2 is relatively insensitive, only fluctuation in a
factor of 2 or 3 if the bin size is close to the optimal value w.

λ̂2 has been chosen as one of the quantitative GoF metrics in the present study
regarding its capacity to quantitatively compare the GoF of two different models for
a given data sample or population. Appendix Section C includes the implementation
for λ2 and λ̂2 in R language used in the data analysis performed for the present
study.

3.9 Summary

The present chapter includes an overview of statistical methods used in the literature
for network traffic modelling of video games, choosing those compatibles with the
study of NVEs. The chapter deals with:

• Overview of the literature focused on modelling of network traffic for video
games that share characteristics with the definition of NVE, those sharing a
simulation over a network environment such as FPS, MMORPG or certain RTS
titles. The approach chosen for the modelling of NVE network traffic has been
the microscale one, popular in the literature dealing with the previous genres,
which is based on modelling the IAT and PS of the traffic generated by the
video game / NVE.

• Definition of the basic workflow for an analysis pipeline for statistical analysis
following the microscale modelling approach. Such a pipeline can be automate
up to certain degree, but some of the steps require the evaluation of the
researcher performing it, i.e. choosing the best candidate models to proceed
with the model fitting process.

• Guidelines for the initial data filtering plus considerations related to the man-
agement of outliers and distribution tail. The filtering will be performed
depending of the type of traffic to be studied.

52 Chapter 3 Analysis and modelling pipeline for NVE network traffic

• Data preview to provide information to the researcher applying the pipeline
to make technical decisions such as the nature and type of models to evalu-
ate to generate the final one. Data preview heavily relies on the graphical
representation of the ECDF for the input data.

• Study of autocorrelation as a necessary test to determine the randomness of
the data input and the suitability of using probabilistic models to describe it. A
strongly autocorrelated data traffic may require using different models such as
time-series or Markov ones, out of the scope of the proposed pipeline.

• Selection of the probabilistic models that will be shaped and optimised into
the final ones. The data previews generated during early steps will help
to determine the nature of the data model (discrete vs. continuous) or the
necessity of using a split model. The candidate models will get values for their
parameters using the MLE method. In both the literature and the present study
the exponential and Weibull model has been widely applied, thus including an
overview of their main characteristics.

• Study of statistical discrepancy to determine the degree of fitness or GoF of the
generated models. The two chosen methods are Q-Q plots, to provide a visual
and intuitive measurement of the GoF and the family of λ2, a refinement of χ2

with desirables properties for data collections with similar probabilistic nature
than NVE network traffic and similar video games.

3.9 Summary 53

4Analysis and modelling of NVE
network traffic: Open Wonderland

In other words, the given time of arrival
is the one moment of time at which it is
impossible that any member of the party
will arrive.

Douglas Adams, Life, the Universe and
Everything

This chapter aims to apply the pipeline described in Chapter 3 to the network traffic
generated by Open Wonderland (OWL), the networked virtual environment (NVE)
system chosen as case study as a representative example of NVE. This pipeline has
been designed based on previous works on video game network traffic modelling,
and taking into consideration the special characteristics of NVEs to determine the
most appropriate approach to the NVE network traffic modelling. The goal of
applying the analysis pipeline to the OWL network traffic is to prove its suitability
to generate accurate models that can be used in later activities such as simulation,
network traffic extrapolation or sizing network infrastructures for NVE systems.

This chapter relies on the analysis pipeline described in chapter 3 to analyse the
empirical network traffic generated by the NVE subject of study in the present work,
OWL. This traffic has been generated in the testbeds Open Wonderland TestBed 1
(OWTB1) and 2 Open Wonderland TestBed 2 (OWTB2), both described in chapter 2.
The guidelines used to perform the OWL testing gaming sessions and capture the
empirical network traffic data have been described in 2.3.3. Each section details the
results obtained for OWTB1 and OWTB2 described in 2.3.1 and 2.3.2 respectively.

The chapter narrows the scope to traffic associated to object synchronisation within
OWL sessions. Audio traffic has been analysed and modelled in previous papers
derived from the present work, showing a highly periodic packet rate and almost
constant bandwidth. Due this simplicity and the space constraints, it has been left
out of the scope of the present document. Details about the audio traffic study can
be found in the article [Fon+12b].

55

The chapter also provides a description of the variables that define it at microscale
model level, associated to inter-arrival time (IAT) and packet size (PS) respectively.
The modelling of each variable is performed by applying the analysis pipeline
previously defined, and the details about the modelling process are included. After
applying the pipeline for each of the microscale variables, the resulting statistical
models are presented, including a range of valid values of their parameters.

4.1 Object synchronisation in Open Wonderland

Objects within the OWL virtual world have a set of attributes that can have different
values: for instance, coordinates in the virtual world, velocity (for moving objects),
etc. The state of each object (or cell) is defined as the values of these attributes at a
given time. In Wonderland, the server keeps a copy of all the world data, with data
about the cells stored in XML files. When a client connects to Wonderland, it obtains
from the server the information about the visible objects (cells). These objects can
be classified as static, with fixed attributes that do not vary in time, as it is the case
of a mountain or a building; or dynamic, with attributes that can vary in time, like
an avatar moving from one region to another [Lui01].

Within the shared simulation provided by OWL, every client should have a con-
sistent view of the virtual world, and therefore a mechanism must exist to ensure
synchronisation between clients. When an object moves in this virtual world all
clients that want to view the dynamic object must provide the same sequence of
state changes. When something changes within OWL, such as the position of an
object, its associated data are updated on the server and then forwarded to all the
clients, which then update their own local views of the world. For instance, if a
client moves their avatar, the client notifies the server and sends the new state of
the cell to the server. Then, the server sends the new state of this object to all other
clients, which then update their copies of the cell [Fouf].

The object synchronisation within OWL is performed over TCP protocol. While other
game genres, such as first-person shooter (FPS), sacrifice the reliability of TCP over
the speed of UDP, OWL has chosen to use TCP, which ensures the object updates are
properly propagated and confirmed over the networked simulation. This TCP traffic
is exchanged by default through port 1139 [Com].

The inspection of OWL network traffic at packet level using Wireshark [Tea19b]
reveals that the typical OWL network packet exchange associated to Object Synchro-
nisation happens as follows:

56 Chapter 4 Analysis and modelling of NVE network traffic: Open Wonderland

1. The OWL client sends a MOVE_REQ message to the server when the position
of an object changes.

2. The server propagates the update above by sending a MOVED message to every
other client, one per client.

3. Every client responds to the update with an ACK message. The server does not
send any other MOVED message to a client until this responds with an ACK to
the previous update.

Although these MOVE_REQ messages are sent every time the object moves, in princi-
ple they are limited by the MoveableComponent. According to the Open Wonderland
Project Forum [Foue], this limit is 5 updates per second, although this statement
could not be confirmed in our experiments as we will discuss later on.

4.2 Microscale modelling and analysis pipeline

The analysis pipeline for NVE network traffic modelling defined in Chapter 3 follows
a microscale approach that aims to fully characterise the intra-session dynamics
of the NVE network traffic by means of two variables, the IAT (or inter-departure
time (IDT), depending on the observation point of view) and the PS. The empirical
network traffic for modelling has been captured on the server side, as described in
section 2.3.4. Moreover, this study focuses on the outgoing client traffic / outgoing
server traffic. Thus, the text addresses the time between consecutive incoming
packets that arrive to the OWL server from the different clients as Inter-Arrival Time
(IAT), in the same way, Packet Size (PS) refers to the packet size of the incoming
network traffic relative to the OWL server.

4.3 Data filtering criteria

The object synchronisation traffic generated by OWL is composed of TCP packets that
can be identified by certain tokens contained in their payload. Specifically, the update
request contains the plain text MOVE_REQUEST token, while their confirmation
packets contain the text token MOVED.

Network traffic captured during the first and last minute of each session for both
testbeds was discarded to avoid patterns generated by the login and logout process.
All the traffic was captured using Wireshark[Tea19b], an open-source packet analyzer,
as well as tshark[Tea19a], its CLI counterpart and better suited for scripting and
automation of the packet capture. Further details about the packet capture process
and parametrization can be found in Appendix B, Section B.1.

4.2 Microscale modelling and analysis pipeline 57

Once the OWL object synchronisation packets have been isolated from the raw
network capture, the data set is ready for calculating the IAT for consecutive packets
of the same type. This data set will be used by the analysis pipeline to provide a
model that describe its behaviour.

4.4 Object synchronisation inter-arrival time

The term object synchronisation inter-arrival time (OSIAT) defined in the present
work refers to the time between consecutive object synchronization packets arriving
to a given host, in this case, the server. The OSIAT is one of the two variables
used in the microscale modelling approach for modelling NVE network traffic. The
following sections describe how the OSIAT has been measured and analysed to
produce statistical models.

4.4.1 Data preview

The preliminary study of OSIAT values has consisted in a preview of the empirical cu-
mulative distribution function (ECDF) for the object synchronization traffic received
from each client within the session. This preview shows all the incoming client traffic
OSIAT follows a similar pattern. Figure 4.1 shows the ECDF plots belonging to Client
2 from the 2-client session and Client 3 from the 5-client session (see Table 2.1 and
Section 2.3.1 for further details on the client’s hardware and software).

Further ECDF plots for OSIAT traffic can be found in Appendix D, specifically the
Figures D.1, D.2 and D.3 which show the ECDF plots for OSIAT values for clients
engaged in the 2, 3 and 5-player sessions respectively.

ECDF plots for OWTB1 clients, as displayed in Figure 4.1, show a continuous nature
in the values for IAT, as well as two differentiated sections divided at 0.5 s. Values
below 0.5 s seem to follow an exponential or Weibull distribution. This exponential
nature is plausible if we assume the fact that outgoing client traffic can be considered
as a Poisson Process where the waiting time between consecutive packets follows an
exponential probability distribution [Ros95].

OSIAT values greater than 0.5 s represent a small fraction of the total and varies
between clients and sessions. Although the ECDF curves have very similar shapes,
they are not completely the same. Further tests within the testbeds showed that
IAT distribution depends on session parameters such as user activity, number of
players or client resources. Section 4.4.3 discusses the nature of these values and
their relationship with user activity during the gaming session.

58 Chapter 4 Analysis and modelling of NVE network traffic: Open Wonderland

Fitting for Client 2 from 2−client session

Packet IAT(s)

F
(x

)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 0.2 0.4 0.6 0.8 1

0.5s

Empirical
Exponential (rate= 4.52 packet/s)

Fitting for Client 3 from 5−client session

Packet IAT(s)

F
(x

)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 0.2 0.4 0.6 0.8 1

0.5s

Empirical
Exponential (rate= 2.68 packet/s)

Fig. 4.1.: ECDF for OSIAT and CDF for exponential distribution, OWTB1

There is a probability saturation around 0.5 s with an important percentage of OSIAT
values concentrated around a narrow range centered on this value. This percentage
varies between clients; in Figure D.2 the ECDF for OSIAT values generated by Client
1 has a lower step around 0.5 s than that of Client 3. In both cases, values greater
than 0.5 s are relatively unlike and their frequency also varies between clients.

According to the information published in the OWL documentation [Proc], clients
limit the synchronisation traffic to avoid rates greater than 5 packets per second. This
would imply a minimum OSIAT value of 0.2 s. However, it was found a big incidence
of values around 0.5 s. A possible explanation for this concentration of OSIAT values
around 0.5 s is object synchronisation packets follow an exponential-like distribution
in optimal conditions, but when there is a saturation of synchronisation packets, the
OSIAT values fall into the worst-case scenario for the system, this is 0.5 s.

Each ECDF curve in Figure 4.1 is represented by a solid line, accompanied by a
dashed one corresponding to the cumulative distribution function (CDF) F (x) for an
exponential distribution calculated by maximum likelihood estimation (MLE). The
visual inspection of the fitting suggests an exponential nature for the OSIAT values
below 0.5 s. The rate parameter λ determines the exponential behaviour and can be
interpreted in the IAT context as the number of packets per second generated by an
OWL client. Although this exponential functions are a rudimentary approximation,
they support the hypothesis of an exponential distribution of part of the OSIAT
values.

The OSIAT values for OWTB2 clients display similar ECDF plots to those from
OWTB1. Figures D.4, D.5, D.6 and D.7 show the ECDF plots for OSIAT from 2, 3, 5

4.4 Object synchronisation inter-arrival time 59

and 8-players sessions performed on OWTB2. OSIAT distribution is consistent over
the two testbeds.

Figure 4.1 suggests that pure exponential models can provide some degree of fitting
for the OSIAT empirical data but the ECDF tails and region around 0.5 s clearly
diverges from the exponential CDFs calculated using MLE. This behaviour can be
modelled using a split model [Bor00] or split distribution, an analytical expressions
that divides the data range in several regions, providing a different model to describe
each one. While assembling several models into one single split distribution may
produce a clumsy models, the OSIAT values only show three well defined regions,
which allows the definition of a relatively simple split distribution. Thus, an analytical
expression for OSIAT would be initially defined by the following parameters:

• a threshold tthres value delimiting the two areas following different probability
distributions.

• an exponential or Weibull distribution modelling the probability for OSIAT
values between 0 and tthres.

• a probability saturation located in the tthres value.

Thus, the data preview for OSIAT reveals a continuous variable with exponential-like
behaviour in the interval between 0 and 0.5 s, followed by a saturation of probability
around 0.5 s and a small distribution tail. The modelling strategy that will be further
developed in later sections will take into account the dual nature of the OSIAT values,
first modelling the exponential-like behaviour of values less than 0.5 s and then the
probability pulse around 0.5 s itself. A split model will be suitable to capture this
dual behaviour.

4.4.2 Autocorrelation

The study of autocorrelation in a data set may help to discover inherent dependencies
and determine the modelling strategy. In the case of OSIAT, Figure 4.2 shows the
autocorrelation function (ACF) for the 2-client gaming session from OWTB1. Further
ACF figures are included in Appendix D.

Attending to these ACF plots, OWTB1 OSIAT values show a very low degree of
autocorrelation. The 2-client session ACFs in Figure D.9 do not show significant
autocorrelation, while 3-client sessions in Figure D.10, Client 2 shows slightly higher
values than the rest of the clients. This divergence is probably due to a combination
of factors such as hardware, operating system configuration or specific software
versions running on the client. ACFs for 5-client session in Figure D.11 show similar
negligible autocorrelation for OSIAT values, however some clients show a slightly

60 Chapter 4 Analysis and modelling of NVE network traffic: Open Wonderland

higher values for specific lag values, but they cannot be considered statistically
significant, being all of them lower than 0.2.

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F
ACF for Object Sync. IAT, Client 01

0 5 10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

ACF for Object Sync. IAT, Client 02

Fig. 4.2.: ACF for OSIAT values, 2-player session, OWTB1

Regarding autocorrelation in the OWTB2 sessions, the Figure 4.3 shows the ACF
plots for the 2-client sessions on this testbed. Further ACF plots for 2, 3, 5, 8 and
10-client sessions performed on OWTB2 are included in Appendix D.

While all these figures do not provide strong evidences of autocorrelation, there is
some degree of inverse autocorrelation (values between −2 and −3) for lag = 5 in
all the sessions, with the exception of the single user one. There is also a small peak
of direct autocorrelation (values lower than 2) for lag = 10. These peaks of inverse
and direct autocorrelation repeat themselves in steps of 5 lag units until becoming
negligible. This is likely a side-effect of using scripts to automate and maximize avatar
activity in OWTB2 as described in Section 2.3.2, which has pushed the rate of events
to its limit, creating some ripples of autocorrelation and inverse autocorrelation, but
not strong enough to classify the traffic as strongly autocorrelated.

0 5 10 15 20 25 30 35

−
0.

2
0.

2
0.

6
1.

0

Lag

A
C

F

ACF for Object Sync. IAT, Client 01

0 5 10 15 20 25 30 35

−
0.

2
0.

2
0.

6
1.

0

Lag

A
C

F

ACF for Object Sync. IAT, Client 02

Fig. 4.3.: ACF for OSIAT values, 2-player session, OWTB2

For both testbeds, the hints of autocorrelation for lag values between 1 and 5
suggest small burst of object synchronisation packets or the fragmentation of bit

4.4 Object synchronisation inter-arrival time 61

update packets for later transmission on the communication channel. This lack of
autocorrelation is a good indicator of randomness and the suitability of the proposed
analytical pipeline to model the OSIAT values as a random variable.

4.4.3 User activity

The ECDF plots for OSIAT values in Section 4.4.1 showed rather lightweight dis-
tribution tails, with a low percentage of values above 0.5 s and also how these
percentages varied from one to another client within the same session. From the
OWL documentation it can be inferred that there is a relationship between the user
activity and the percentage of high OSIAT values [Fouf]. Thus, inactivity periods for
the avatar would imply the absence of object synchronisation traffic and therefore
greater time lapses between consecutive synchronisation packets, which translates
into greater IAT values.

Determining more accurately the impact of the client activity on the distribution
of OSIAT values requires a controlled gaming session. For this reason two extra
single-player sessions were performed in OWTB1 with the goal of isolating the effect
of avatar activity rate on the object synchronisation traffic and its associated IAT
values. In one of the sessions the avatar performed a high rate of interaction within
the gaming session (constant movement and audio transmission), while a second
gaming session was performed by an avatar staying inactive for long periods of
time.

Figure 4.4 shows the respective ECDF plots for the active and inactive clients. The
plots suggest that in presence of a hight rates of user activity and associated traffic,
the object synchronisation packets are delivered with a maximum IAT of 0.5 s. In this
scenario, the few tail values greater than 0.5 s are more likely due to the saturation
of the clients or server rather than the lack of synchronisation packets. On the other
hand, during the periods of player inactivity OSIAT values increased, likely due to
the lack of updates involving greater times between the synchronisation packets.

Table 4.1 gives a quantitative insight for the distribution tails in Figure 4.4 by
providing from 89th to 99th percentiles for Object Synchronisation traffic from
the active/inactive sessions. According to these figures, the inactive player has a
noticeable percentage of OSIAT values equal or greater than 0.5 s (11 %), while the
active player has fewer values greater than 0.5 s, less than 1 %.

Table 4.2 contains a similar summary about OSIAT tail values for the OWTB1 gaming
sessions (2,3 and 5-player sessions respectively). Figures in column Q0.96 show that
96 % of all the OSIAT values were below 0.56 s, while 98 % were smaller than 1 s.

62 Chapter 4 Analysis and modelling of NVE network traffic: Open Wonderland

Inactive client

Packet IAT(s)

F
(x

)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 0.2 0.4 0.6 0.8 1

0.5s

Empirical
Raw fitting (rate= 0.776 packet/s)
Filtered fitting (rate= 4.66 packet/s)

Highly active client

Packet IAT(s)

F
(x

)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 0.2 0.4 0.6 0.8 1

0.5s

Empirical
Raw fitting (rate= 4.08 packet/s)
Filtered fitting (rate= 4.12 packet/s)

Fig. 4.4.: ECDF and fitting CDF for user activity study sessions, OWTB1

Tab. 4.1.: Quantiles for OSIAT from active/inactive testing sessions

Quantile Inactive client (s) Active client (s)

Q0.89 0.5010 0.5003
Q0.90 0.6840 0.5003
Q0.91 0.7609 0.5004
Q0.92 0.9104 0.5005
Q0.93 0.9913 0.5006
Q0.94 1.1978 0.5007
Q0.95 2.2352 0.5008
Q0.96 5.7679 0.5009
Q0.97 11.4161 0.5010
Q0.98 17.8715 0.5011
Q0.99 32.0450 0.5016

4.4 Object synchronisation inter-arrival time 63

Although the distribution of OSIAT values varies between clients, the percentage of
tail values, those greater than 0.5 s, are consistent with the high user activity with
which the players were performing during the OWTB1 sessions.

Tab. 4.2.: Quantiles for OSIAT, OWTB1 sessions

Session Client Q0.95 Q0.96 Q0.97 Q0.98 Q0.99

2-client
01 0.5030 0.5040 0.5080 0.5141 0.6545
02 0.5038 0.5048 0.5061 0.5081 0.6208

3-client
01 0.5058 0.5072 0.5100 0.5224 0.7631
02 0.5046 0.5056 0.5073 0.5120 0.6931
03 0.5028 0.5176 0.6980 0.8027 0.8398

5-client

01 0.5068 0.5098 0.5127 0.6419 0.7600
02 0.5049 0.5064 0.5082 0.5119 0.6682
03 0.5211 0.5510 0.7350 0.8051 1.6982
04 0.5117 0.5139 0.5177 0.6530 0.7644
05 0.5014 0.5030 0.6203 0.7957 0.8039

Table D.1 in Appendix D contains percentiles from 95th to 99th for OSIAT values for
each client and session from OWTB2. Figures show all these OSIAT distributions
are even more lightweight tailed than those from OWTB1. This can be explained by
replacing human players with scripts controlling the avatars during the experimental
gaming sessions. The scripts were programmed to perform at maximum activity
ratio, minimising the tail of OSIAT values.

OSIAT tail values in Tables 4.1, 4.2 and D.1 reveal a relationship between the rate of
activity displayed by the avatar during the session and the weight of the distribution
tail for OSIAT values and the higher the activity rate, the lighter the distribution
tail. This relationship will help to make decisions concerning tail and extreme OSIAT
values during the modelling step, i.e. minimising the tail would be equivalent to
model a user engaged in high rate of activity within the game, where the maximum
values for OSIAT are not greater than 0.5 s than the high rate of synchronisation
packets.

A closer look to the user activity in OWL reveals an inverse relationship between
the level of user activity, in the sense of translation and interaction within the
gaming session, and the size of the distribution tail for OSIAT values. Based on this
relationship, it is possible to propose not to model this distribution tail for the sake
of simplicity while still obtaining a model that is representative of a gaming case in
which the player performs a degree rate of translation and interaction.

64 Chapter 4 Analysis and modelling of NVE network traffic: Open Wonderland

4.4.4 Data modelling

In Section 4.4.1 the preview plots pointed to split distributions as a viable model
approach for OSIAT. Such a split distribution-based model would have a first interval
of exponentially distributed for values between 0 and ≈0.5 s, a probability saturation
around 0.5 s that generates the step visible in the ECDFs, and finally a tail that
comprises a low percentage of OSIAT values, inversely proportional to the activity
rate of the user during the gaming session (Section 4.4.4).

The split distribution-based mode for OSIAT values will be defined by the following
parameters:

• Parameters that define the exponential-like behaviour of values between 0 and
≈0.5 s. They will depend on the theoretical distribution chosen to model this
part.

• Threshold, tthres, time value that divides exponential-like region from the
probability saturation.

• Weight of the values in the probability saturation region in relation to the
whole population, Cacp.

OSIAT tail values are left outside the scope of the model for the sake of simplicity
and avoiding to produce a too complex split distribution, based on the experimental
evidence described in Section 4.4.3 where gaming cases with high rate of activity
translate in a negligible tail for OSIAT values. Moreover, the model is aimed to
evaluate and size network requirements, and in this context tail values do not play
an important role.

Threshold parameter

The threshold parameter tthres parameter defines the boundary between the two
sections of the split distribution proposed in Section 4.4.1 for OSIAT values. The
ECDF plots in Figures D.1, D.2, D.3, D.4, D.5, D.6, D.7 and D.8 all show a probability
saturation around 0.5 s in the form of a sharp step in the ECDF.

Figure 4.5 shows a detail of the probability density function (PDF) for all the
OSIAT values obtained in OWTB1. The plot focuses on a narrow range around 0.5 s.
Figure 4.6 shows the same range for the OSIAT values from OWTB2. In this case the
values are concentrated in an even narrower interval of x. Both figures highlight the
median, x̃OWTB1 = 0.5010s and x̃OWTB2 = 0.5011s respectively. The median has

4.4 Object synchronisation inter-arrival time 65

been chosen as representative statistical parameter of the interval due to its lower
sensitivity to extreme values.

Taking into account that the OSIAT values from OWTB1 and OWTB2 are just a
representation of the all possible values that can be observed in the OWL traffic,
together with the errors inherent to the traffic capture and measurement process,
tthres = 0.5s will be used in the present work to determine the boundary between
the two parts the OSIAT distribution is divided. Using further decimals could just
fall into model overfitting for the given experimental data while not providing any
tangible benefit.

0.490 0.495 0.500 0.505 0.510

0
50

10
0

15
0

20
0

25
0

30
0

35
0

PDF Object Sync. IAT values OWTB1

t(s)

D
en

si
ty

median = 0.5011s

Fig. 4.5.: PDF for the aggregation of OSIAT values from OWTB1

Activity Correction Parameter

The Activity Correction Parameter, Cacp, aims to weight the exponentially distributed
OSIAT values regarding the overall OSIAT distribution. Section 4.4.3 discussed the
relationship between the rate of user activity within the gaming session (movement
and audio transmission) and the percentage of OSIAT values equal or greater than
0.5 s. The ECDF plots for the user activity experiment showed that high inactivity
periods imply heavy tailed OSIAT distributions. Thus, depending on the activity rate
displayed during the gaming session and the associated distribution tail, the fitting
curve obtained using MLE to model values in interval [0, tthres] will be required to
be adjusted.

66 Chapter 4 Analysis and modelling of NVE network traffic: Open Wonderland

0.490 0.495 0.500 0.505 0.510

0
10

00
20

00
30

00
40

00

PDF Object Sync. IAT values OWTB2

t(s)

D
en

si
ty

median = 0.5010s

Fig. 4.6.: PDF for the aggregation of OSIAT values from OWTB2

The client 1 from the 5-client session performed on OWTB1 is used as reference to
define the formula for Cacp. Figure 4.7 shows the ECDF for the OSIAT values for
this client (solid black line). The red dashed line corresponds to the exponential
distribution calculated using MLE. It can be appreciated that probability saturation
around 0.5 s diverts the fitting curve from the empirical results. The goal of the Cacp
is to correct this deviation by escalating the fitting curve.

The scaling factor Cacp is calculated by measuring the difference between the ECDF
and the fitting curve at PU = 0.49s. The choice of this value correspond to the initial
of the interval where the vast majority of OSIAT values around 0.5 s are concentrated
(Section 4.4.4), being a convenient point of union between the two parts of the
OSIAT model Figure 4.8 zooms over the area where the studied ECDF and fitting
curve meet, highlighting the curve points used to calculate the value of δ. The
definition of Cacp implies that its value for a given model depends on the fitting
curve for interval [0, tthres], at point PU = 0.49s.

The difference between these curves at PU = 0.49 is expressed in Equation (4.1) by δ
as the difference between the ECDF value for 0.49 s and the value PFIT (PU , {Prate_mle}),
the cumulative probability of the fitting curve PFIT with parameters {Prate_mle} at
point PU = 0.49s. Thus, the Cacp is a scale factor described in Equation (4.2). The
Figure 4.8 highlights the point pexp(0.49s, rate = 3.74), the value given by the fit-
ting exponential CDF with rate parameter λ = 3.74 (the PFIT (X, ratemle) function

4.4 Object synchronisation inter-arrival time 67

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ECDF Object Sync. IAT

Client 01, 5−client session, OWTB1
t(s)

E
C

D
F

(X
)

Fig. 4.7.: ECDF and fitting CDF, Client 1, 5-client session, OWTB1

0.40 0.45 0.50 0.55 0.60

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

ECDF Object Sync. IAT (Detail)

Client 01, 5−client session, OWTB1
t(s)

E
C

D
F

(X
)

P_u=0.49s

● ECDF(0.49s)

●pexp(0.49, rate=3.74)

δ

Fig. 4.8.: Detail of ECDF and fitting CDF, Client 1, 5-client session, OWTB1

68 Chapter 4 Analysis and modelling of NVE network traffic: Open Wonderland

represented by the dashed red curve) for the point 0.49 s, and point ECDF (0.49s),
part of the ECDF curve obtained for the sample values.

δ = PFIT (PU , {Prate_mle})− ECDF (PU) (4.1)

acf =
(

1− δ

PFIT (PU , {Prate_mle})

)
(4.2)

The Cacp values calculated for the OSIAT models based on exponential and Weibull
distributions for each client and session from OWTB1 and OWTB2 are shown in
Tables D.2 and D.3 respectively, included in the Appendix D. According to these
values, Cacp = 0.8 is a reasonable approximation that works well with most of the
observations from the testbeds.

Fitting curve for first interval of the split distribution

The data preview from Section 4.4.1 showed that ECDF plots for OSIAT values from
the activity evaluation sessions (Figure 4.4), OWTB1 multiplayer sessions (Figures
D.1, D.2 and D.3), and OWTB2 multiplayer sessions (Figures D.4, D.5, D.6 and
D.7), suggest that the OSIAT values follow an exponential-like distribution for values
between 0 and ≈0.5 s before transitioning into a tail which weight decreases with
the increase in player activity rate during the game session (Section 4.4.3). The
most promising continuous probability distributions to model these values in the
interval [0, 0.5] are the Exponential and Weibull distributions. The present section
will propose models based on each distribution.

Determining the analytical expression for the exponential section of OSIAT presents
the following problem: if all the empirical data is used to calculate the exponential
(or Weibull) parameters using MLE, the OSIAT values around 0.5 s may lead to a
poorly fitting distribution that tries to both accommodate exponentially distributed
values with others that do not follow this trend.

Figure 4.4 shows a preliminary fitting attempt for the IAT values from the ac-
tive/inactive sessions from OWTB1, using a pure exponential distribution as fitting
distribution. In this plot each ECDF is accompanied by two CDF plots for exponential
distributions. The ones labeled as Raw Fitting (dashed lines) result from applying
MLE to the whole set of OSIAT values from each one of the active/inactive sessions.
The Filtered Fitting CDF plots (dotted lines) result from applying MLE to the set of

4.4 Object synchronisation inter-arrival time 69

OSIAT values after removing the tail values, this is those values greater than 0.51 s,
as suggested in Section 4.4.3.

At these point it is useful to briefly introduce a quantitative way to determine
the goodness of fit (GoF) of a given model for an empirical data set, which will
numerically measure how well the proposed model describes the empirical data. The
evaluation of the GoF for the proposed models is further developed and discussed
in more detail in Section 4.4.5, this section will use λ2 to determine if tail values
would be included or not when using MLE to calculate the fitting curve for interval
[0, 0.5].

The exponential models for Raw and Filtered OSIAT values from the inactive client
perform differently in terms of GoF, λ2

RAW = 0.776 versus λ2
FILT. = 4.66. On the

other hand, the exponential models proposed for the values from the active client
session show very similar values, λ2

RAW = 4.12 and λ2
FILT. = 4.08 respectively, which

is consistent with the smaller percentage of outliers and lighter OSIAT distribution
tail associated to high activity rates (Section 4.4.3).

It is noteworthy that while λ2 provides a quantitative measure for GoF, its value
does not provide an absolute measurement of how good or bad the fitness is, it just
allows to compare and sort how different theoretical models approximate a given
data set. While λ2 helps to determine which model describes better than others the
empirical data set, it does not provide information about how much better it describes
it, so very different λ2 do not necessarily imply quantitative measurement of the
GoF. In the case of λ2

RAW = 0.776 versus λ2
FILT. = 4.66 for the proposed CDFs for

the inactive client session, it can be concluded that filtering tail and outlier OSIAT
values worsens for the modelling purposes the fit of the distribution calculated using
MLE.

Removing the distribution tail values for the different testing sessions (values greater
than 0.5 s) helps to get better fitting distributions. Based on the distribution of values
around 0.5 s shown in Figures 4.5 and 4.6, there is a low density of values greater
than 0.51 s, this can be used to delimit the distribution tail. Thus, the analytical
expressions for the range [0, tthres] for the split distribution for OSIAT values will be
obtained by applying MLE to those values from the testing sessions lower or equal
than 0.51 s.

In conclusion, the analysis suggests that OSIAT values in the interval between 0 s
and 0.5 s can be potentially modelled using an exponential or a Weibull distribution.
It will be required to resort to the evaluation of the statistical discrepancy between
these candidate models and the experimental data set to determine which is the
most suitable to describe the OSIAT for OWL.

70 Chapter 4 Analysis and modelling of NVE network traffic: Open Wonderland

Proposed models for Object Synchronisation Inter-Arrival Time

The result of putting together the model elements defined throughout Section 4.4.4
are Equation (4.3) and Equation (4.4), the two candidate models to describe the
OSIAT values where t is the threshold for the split expression (established in t =
0.5s using the median for OSIAT values concentrated around 0.5 s, as described in
Section 4.4.3), Cacp is the activity correction parameter which value is linked to
the activity rate associated to the player within the gaming session, formulated in
Section 4.4.4. λ parameter in Equation (4.3) represents the rate for the Exponential
distribution, while λ and κ parameters in Equation (4.4) represent the scale and
shape parameters respectively for Weibull distribution.

F (x;λ,Cacp, tthres) =

1 , x > tthres

Cacp ·
(
1− e−λx

)
, tthres ≥ x ≥ 0

0 , x < 0
(4.3)

F (x;λ, κ, Cacp, tthres) =

1 , x > tthres

Cacp ·
(
1− e−(x/λ)κ

)
, tthres ≥ x ≥ 0

0 , x < 0
(4.4)

The parameters for the exponential distribution in Equation (4.3) calculated for each
client and session from OWTB1 and OWTB2 are shown in Tables D.4 and D.6 in
Appendix D. Values from Table D.6 have been used to generate the Figure 4.9, a
surface plot where axis X (labeled as session) represents the experimental sessions
from OWTB2, axis Y (labeled as client) represents the nth client from a given session,
and axis Z (labeled as Exp. lambda) is the parameter value obtained by MLE.
Thus, a point (x, y, z) represents the λ exponential parameter of value z calculated
applying MLE to the OSIAT values from the yth client in the xth experimental session
performed in OWTB2. The surface shows the MLE values are around 0.47.

The parameters for the Weibull distribution in Equation (4.4) calculated using for
each client and session from OWTB1 and OWTB2 are shown in Tables D.5 and D.7
in Appendix D. Values from this last table have been used to generate the surface
plots in Figure 4.10. As in the case of Figure 4.9, each point (x, y, z) represents the
parameter calculated using MLE with value z for the yth client in the xth session
performed in OWTB2. These surfaces show that the shape and scale parameters for
Weibull distribution take values around 0.51 and 0.14 respectively.

4.4 Object synchronisation inter-arrival time 71

session
246810

client

2

4

6

8

10

Exp. lam
bda 3.0

3.5

4.0

4.5

5.0

Fig. 4.9.: Exponential λ rate values for OWTB2 clients and sessions

session
246810

client

2

4

6

8

10

W
eibull shape 0.0

0.2
0.4

0.6

0.8

1.0

session
246810

client

2

4

6

8

10

W
eibull scale 0.00

0.05

0.10

0.15

0.20

Fig. 4.10.: Weibull λ scale and κ shape values for OWTB2 clients and sessions

72 Chapter 4 Analysis and modelling of NVE network traffic: Open Wonderland

Table 4.3 contains a summary of the values from tables D.4, D.6, D.5 and D.5.

Tab. 4.3.: Summary of MLE parameters for OWTB1 and OWTB2

Distribution Parameters
OWTB1 OWTB2
µ σ2 µ σ2

Exponential λ rate 3.63 0.74 4.76 0.10

Weibull
λ scale 0.26 0.05 0.14 0.01
κ shape 0.87 0.11 0.51 0.03

The λ parameter values obtained by MLE for the exponential-based model are quite
similar between the OSIAT data flows generated by each one of the clients engaged in
the same gaming session. These same λ values seem to be correlated to the number
of players within a given session. The same trends are observed for parameters
λ and κ for Weibull-based model. This suggests that the number of simultaneous
players engaged in the same OWL gaming session has an impact on the ratio of
object synchronisation packets that are received from each client on the OWL server
side.

4.4.5 Statistical discrepancy

The statistical discrepancy or GoF for the OSIAT is evaluated using the following
methods suggested by the analysis pipeline (must be noted that Pearson correlation
coefficient (PCC) has been also included):

• Q-Q plots to provide an intuitive and qualitative preview of GoF.
• Pearson Correlation Coefficient to measure the similarity between values gen-

erated using the ECDF and the proposed OSIAT models.
• λ̂2 to quantitatively compare the GoF provided by the Exponential and Weibull-

based OSIAT models formulated in Section 4.4.4.

Q-Q plots

Q-Q plots (Section 3.8.1) make possible to qualitatively compare quantiles from
two distributions, in the current case, the quantiles derived from the ECDF for
the OSIAT versus the quantiles for the models Equation (4.3) and Equation (4.4)
proposed in Section 4.4.4. These models only describe the exponential-like interval
of OSIAT values in interval [0, tthres] and the probability saturation point at tthres,
leaving out the tail of OSIAT values. Thus, it is expected that the Q-Q plots will
show a poor correspondence between empirical and model quantiles (points largely

4.4 Object synchronisation inter-arrival time 73

deviating from the plot diagonal). In the present study Q-Q plots are used to provide
a qualitative measure of GoF for the OSIAT quantiles in the interval [0, tthres].

Due to space limitations, the present section only includes the Q-Q plots for the
3-client sessions from OWTB1 and OWTB2. A greater selection of OSIAT can be
found in Appendix D, Section D.6. Figure 4.11 suggests a good fit between the
empirical quantiles and those calculated for Equations (4.3) and (4.4) for OWTB1.
The plot includes the values used for the model parameters.

0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

Q−Q plot for Object Sync. IAT, Client 01

Empirical quantiles

M
od

el
 q

ua
nt

ile
s

●●●
●●●●

●●●
●●●

●●●●●
●●●
●●●●●

●●●●
●●●●● ●●●

●●●
●●●●●●

●●●●●●●
●●

●●●
●●●

●●
●●●●●

●●●●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

Model Exp. rate=4.57, acp=0.9
Model Wei. k=1.05, scale=0.22, acp=0.9

0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

Q−Q plot for Object Sync. IAT, Client 02

Empirical quantiles

M
od

el
 q

ua
nt

ile
s

●●●●
●●●●

●●●●
●●●●●●●●

●●●●●●
●●●●

●●●
●●●●

●●●
●●●

●●●
●●

●●
●●

●●●●●●
●●

●● ●●
●●

●●●●●
●●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

Model Exp. rate=4.76, acp=1.0
Model Wei. k=0.98, scale=0.21, acp=1.0

0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

Q−Q plot for Object Sync. IAT, Client 03

Empirical quantiles

M
od

el
 q

ua
nt

ile
s

●●
●●●

●●●●
●●●

●●●
●●●●●

●●●●
●●●

●●●
●●●

●●●
●●●

●●●●●
●●●

●●
●●●●●●●

● ●●●●●●
●●

● ●●●●
●●●●●

●
●

●
●
●

●
●

●
●

●
●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

Model Exp. rate=3.77, acp=0.8
Model Wei. k=1.19, scale=0.28, acp=0.8

Fig. 4.11.: Q-Q for OSIAT models, t3-player session, OWTB1

Figure 4.11 shows a slightly worse fit for the OWTB2 sessions. It can be observed
that both the Weibull and Exponential-based models make the points in the Q-Q plot
fall above the diagonal, which means they overestimate the weight of the interval
[0, tthres] in the overall model. This deviation from the diagonal stays constant
for many of the quantiles, which suggests the possibility to improve the fitting by
correcting such an offset in the proposed OSIAT models.

On the other hand, Figure 4.12 shows the Q-Q plots for the 3-client session from
OWTB2. These plots show points run parallel to the bisector of the first quadrant.
The offset making the model quantiles (axis Y) being above the bisector suggests the

74 Chapter 4 Analysis and modelling of NVE network traffic: Open Wonderland

model slightly overestimates the values for the cumulative probability for empirical
results from OWTB2.

0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

Q−Q plot for Object Sync. IAT, Client 01

Empirical quantiles

M
od

el
 q

ua
nt

ile
s

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●
●●●●
●●●
●●●
●●●
●●●
●●

●●●●●
●●
●● ●●●

●
●

●
●

●
●
●

●
●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

Model Exp. rate=4.58, acp=0.8
Model Wei. k=0.55, scale=0.16, acp=0.8

0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

Q−Q plot for Object Sync. IAT, Client 02

Empirical quantiles

M
od

el
 q

ua
nt

ile
s

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●
●●●●
●●●●
●●●
●●●
●●
●●
●● ● ●●

●●
●●● ●●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

Model Exp. rate=4.64, acp=0.8
Model Wei. k=0.54, scale=0.15, acp=0.8

0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

Q−Q plot for Object Sync. IAT, Client 03

Empirical quantiles

M
od

el
 q

ua
nt

ile
s

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●
●●●●
●●●●
●●●
●●●
●●●
●●● ●●●●

●●
● ● ●●●

●
●

●
●
●

●
●
●

●
●

●
●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Model Exp. rate=4.50, acp=0.8
Model Wei. k=0.57, scale=0.17, acp=0.8

Fig. 4.12.: Q-Q for OSIAT models, 3-player session, OWTB2

While providing an intuitive estimation of the GoF, the Q-Q plots do not allow to
easily determine which of the proposed OSIAT models (exponential vs. Weibull)
provides a better fit for the empirical data, being advisable to resort to quantitative
methods to be able to compare the level of GoF provide by each candidate model.

Pearson Correlation Coefficient

The PCC or Pearson’s r measures the linear correlation between two variables x and
y, where r measures the trend relative magnitude of the fit [Fis15], [DGK75]. A r

value equal to 1 indicates that the equation describes the relationship between x and
y perfectly, while a r equal to 0 implies the lack of correlation between empirical
data and the model. The Pearson’s r is accompanied by r2, which indicates the
proportion of the total variance that is explained by the prediction. While PCC is not
a robust statistic due to its sensibility to outliers, it is used in the present study to
provide a quick and simple estimation of GoF by measuring the correlation between
empirical values and those derived from the proposed theoretical distributions.

4.4 Object synchronisation inter-arrival time 75

r =

n∑
i=1

(Xi − X̄)(Yi − Ȳ)√
n∑
i=1

(Xi − X̄)2

√
n∑
i=1

(Yi − Ȳ)2
(4.5)

Two PCC are calculated for each experimental session, derived from evaluating
the ECDF with the exponential and Weibull-based models. The procedure involves
calculating the probabilities for the sequence (si)50

i=0 = i
100 using ECDF (si), and

the CDF for the Exponential and Weibull-based OSIAT models (Fexp(si|λ,Cacp,exp)
and Fwei(si|κ, λ, Cacp,wei) respectively).

The choice of the sequence si aims to provide a rough evaluation of GoF of the
OSIAT models ignoring tail values, which are out of the scope of the models and
would also penalize the results for PCC.

Tables D.8 and D.9 in Appendix D show the resulting PCC values, where rexp results
from applying Pearson’s r to ECDF (si) and Fexp(si|κ, λ, Cacp,exp), while rwei results
from applying PCC to ECDF (si) and Fwei(si|κ, λ, Cacp,wei). Tables of r results show
both Exponential and Weibull-based models provide very similar probability values
to those from ECDF for values in [0s, 0.5 s] (r values close to 1) but probabilities
derived from the Weibull-based model Fwei(si|κ, λ, Cacp,wei) have a higher degree of
correlation with the empirical data sets.

Lambda square λ2 and Hat lambda square λ̂2

The GoF metric λ̂2 described in Section 3.8.2 is a refinement of λ2 aimed to provide
a higher degree of robustness by reducing the sensitivity to tails, extreme values and
division-by-zero situations.

Due to space limitations, the present section only includes the λ̂2 values obtained
for the empirical OSIAT values versus the Exponential (Equation (4.3)) and Weibull-
based (Equation (4.4)) OSIAT values for each client involved in the 2, 3 and 5-client
sessions for both OWTB1 (Table 4.4) and OWTB2 (Table 4.5) respectively. The
complete λ̂2 results can be found in Tables D.10 and D.11, Appendix D.8.

λ̂2 values for OWTB1 calculated for Exponential and Weibull-based OSIAT models
in Table 4.4 are very similar for each client and session, most of the time showing
differences in the range of tenths. The two models alternate providing the best fit
for the different samples.

76 Chapter 4 Analysis and modelling of NVE network traffic: Open Wonderland

Tab. 4.4.: λ̂2 for exponential and Weibull-based models, OWTB1

Session Client λ̂2
exp λ̂2

wei σ(λ̂2
exp) σ(λ̂2

wei)

2-client
1 14.33 14.26 837.45 824.49
2 18.30 18.33 1347.37 1353.20

3-client
1 12.26 12.21 608.85 601.73
2 4.37 4.38 86.77 88.16
3 6.40 6.22 181.17 159.32

5-client

1 9.26 9.08 372.39 345.91
2 7.74 7.78 265.54 271.29
3 4.46 4.14 94.35 70.77
4 23.14 24.70 2147.04 2778.04
5 7.69 7.23 298.48 215.11

λ̂2 values for OWTB2 calculated for Exponential and Weibull-based OSIAT models in
Table 4.5 show a similar trend to those from Table 4.4 but in this case, and others
from OWTB2, the Weibull-based model provides a better fitting that the Exponential
model.

Tab. 4.5.: λ̂2 for exponential and Weibull-based models, OWTB2

Session Client λ̂2
exp λ̂2

wei σ(λ̂2
exp) σ(λ̂2

wei)

2-client
1 4.60 4.12 277.98 210.49
2 3.26 2.60 324.23 200.11

3-client
1 2.81 2.09 148.40 75.77
2 1.97 1.52 62.60 55.19
3 1.60 1.17 23.56 12.98

5-client

1 3.03 2.63 52.06 44.78
2 1.85 1.20 265.23 130.62
3 2.32 1.82 65.93 42.04
4 5.83 5.56 149.43 138.94
5 2.66 2.09 128.92 83.14

Looking at the values of λ̂2 obtained for OSIAT values from OWTB2, it would be
possible to favour the Weibull-based OSIAT model formulated in Equation (4.4) over
its exponential counterpart in Equation (4.3). Nevertheless, the suitability of one of
other candidate will be conditioned by the context in which the candidate models
should be used and its specific goals.

4.5 Object synchronisation packet size

The term object synchronisation packet size (OSPS) defined in the present work
refers to the size, in bytes, of the object synchronization packets arriving to a given
host, in this case, the server. The OSPS is one of the two variables used in the

4.5 Object synchronisation packet size 77

microscale modelling approach for modelling NVE network traffic. The following
sections describe how the OSPS has been measured and analysed to produce an
statistical model. Regarding packet size measurement, only the TCP packet payload
has been considered, the overhead due to the different transport protocols that
encapsulate the payload, such as TCP, IP or Ethernet, has been omitted.

4.5.1 Data preview

The OSPS values studied in the present section include the size of the TCP/IP headers,
this is around 54 B that encapsulate the payload of the Object Synchronisation traffic
itself.

The barplot for the combined OSPS values generated during the different gaming
sessions on OWTB1, Figure 4.13, shows that the most frequent OSPS value by far is
293 B, comprising up to 96.6 % of all the packet sizes registered in OWTB1.

On the other hand, barplot in Figure 4.14 for all the OSPS values from OWTB2
shows only two values for all the sessions (293 B and 304 B). This reduction in
the amount of possible values for OSPS and distribution can be explained by the
technical characteristics of OWTB2, where the avatars were controlled by scripts,
programmed to keep high rates of avatar activity within the gaming sessions. This
high rate of events can explain a smaller and fixed-size Object Synchronization
packets containing the minimum payloads to keep the shared simulation properly
synchronised among all the players.

The data preview for the OSPS shows a discrete distribution of the values, suggesting
a discrete model can capture the nature of the random variable.

4.5.2 Autocorrelation

The ACF plot in Figure 4.15 does not suggest autocorrelation in the distribution of
OSPS values from 2-client session in OWTB1.

The ACF plot in Figure 4.16, OSPS values for 2-client session in OWTB2, on the
other hand shows some signs of autocorrelation and inverse autocorrelation after
certain number of lags. This is a side effect of the automation of the avatar control
and how it has pushed to the maximum the rate of the Object Synchronisation traffic,
which translated into burst of update packets of very similar packet size.

78 Chapter 4 Analysis and modelling of NVE network traffic: Open Wonderland

17
7

23
5

24
1

26
7

29
3

41
6

47
4

47
8

50
6

51
4

53
2

59
0

75
3

77
1

10
10

11
19

12
49

12
80

13
32

14
70

14
88

15
06

15
14

OSPS for OWTB1

Packet Size (B)

N
. P

ac
ke

ts

0

5000

10000

15000

20000

Fig. 4.13.: OSPS values for OWTB1

4.5 Object synchronisation packet size 79

293 304

OSPS for OWTB2

Packet Size (B)

N
. P

ac
ke

ts

0
20

00
0

40
00

0
60

00
0

80
00

0

Fig. 4.14.: OSPS values for OWTB2

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

ACF for OSPS, Client 01

0 5 10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

ACF for OSPS, Client 02

Fig. 4.15.: ACF for OSPS values, 2-player session, OWTB1

0 5 10 15 20 25 30 35

−
0.

2
0.

2
0.

6
1.

0

Lag

A
C

F

ACF for OSPS, Client 01

0 5 10 15 20 25 30 35

−
0.

2
0.

2
0.

6
1.

0

Lag

A
C

F

ACF for OSPS, Client 02

Fig. 4.16.: ACF for OSPS values, 2-player session, OWTB2

80 Chapter 4 Analysis and modelling of NVE network traffic: Open Wonderland

Section 4.5.1 suggests a simple distribution of OSPS values, so even if there are
some signs of autocorrelation in the empirical data, this aspect will be left out the
scope of the modelling process in this work.

4.5.3 Data Modelling

Data preview for OSPS in Section 4.5.1 suggests that it can be modeled with a
simple discrete probability distribution tailored for the empirical results obtained
from OWTB1 and OWTB2.

The relative frequencies for OSPS obtained from OWTB1 are shown in Table 4.6.
Columns show the four most frequent packet size values for each session plus a last
row with the frequencies for the aggregation of all the packets generated on the
testbed.

Tab. 4.6.: Relative frequency for OSPS, OWTB1

Session N. Packets 293 B 532 B 590 B 771 B Other

2-client 5099 0.968 0.021 0.000 0.008 0.003
3-client 7768 0.965 0.021 0.005 0.005 0.004
5-client 12286 0.966 0.019 0.008 0.002 0.005
Total 25153 0.966 0.019 0.006 0.004 0.004

Values from Table 4.6 allow to define the simple ad hoc model for OSPS in Equa-
tion (4.6).

P (x) =

0.97 , x = 293 bytes

0.02 , x = 532 bytes

0.01 , x = 590 bytes

(4.6)

The relative frequencies for OSPS measured from OWTB2 are shown in Table 4.7.
Columns show the four most frequent packet size values for each session plus a last
row with the frequencies for the aggregation of all the packets generated on the
testbed.

Values from Table 4.7 allow to define the simple ad-hoc model for OSPS in Equa-
tion (4.7).

4.5 Object synchronisation packet size 81

Tab. 4.7.: Relative frequency for OSPS, OWTB2

Session N. Packets 293 B 304 B

01-client 2809 0.41 0.59
02-client 6358 0.42 0.58
03-client 9074 0.44 0.56
04-client 12087 0.43 0.57
05-client 14524 0.43 0.57
06-client 17776 0.43 0.57
07-client 19977 0.43 0.57
08-client 22636 0.43 0.57
09-client 26101 0.42 0.58
10-client 27736 0.43 0.57
Total 159078 0.43 0.57

P (x) =
{

0.43 , x = 293 bytes

0.57 , x = 304 bytes
(4.7)

Choosing one model over the other will depend on the specific setup that is going
to be modelled. OWTB1 is a more heterogeneous testbed, where avatars where
operated by human players, while OWTB2 is an homogeneous testbed where avatars
performed a high rate of activity and interaction within the sessions due to the
automatic control performed with scripts, providing a relatively synthetic setup
which on the other hand allows to evaluate the features and performance of the
system.

Due to the simplicity of the OSPS models in Equations (4.6) and (4.7), the study of
GoF has not been included.

4.6 Summary

The present chapter details the analysis details and results from applying the pipeline
proposed in Chapter 3 to the experimental network data generated for the NVE
software OWL in the testbeds from Chapter 2 (OWTB1 and OWTB2). The goal of
this exercise is to determine the suitability of the pipeline to model the network
traffic generated by a system, OWL, fitting into the definition of NVE provided in
Section 2.1. Thus, the analysis pipeline has been used to model the random variables
OSIAT and OSPS which describe the OWL network traffic at microscale level.

82 Chapter 4 Analysis and modelling of NVE network traffic: Open Wonderland

This chapter provided a technical description of the object synchronisation traffic gen-
erated by OWL, where the packets belonging to these data flows will be filtered and
object of study using the analysis pipeline. It was also provided a naming convention
and definition for the random variables associated to the object synchronisation traffic,
OSIAT and OSPS, which describe the behaviour of the network traffic at microscale
level.

It is also included the detailed study and modelling of the OSIAT variable for the
OWL object synchronisation traffic from the testing testbeds, performed using the
analysis pipeline proposed in the previous chapter. This study included:

• The data preview of the OSIAT revealed an exponential-like distribution of
values and a probability saturation around value 0.5 s.

• Autocorrelation study showed OSIAT values are not autocorrelated and match
the requirements to be modelled as a random variable.

• The study of the user activity within the gaming sessions revealed that there is
a correlation between the activity and the size of the tail of the distribution of
OSIAT, the higher the activity, the smaller the distribution tail.

• The data modelling step proposed a split distribution to model the OSIAT,
defining all the parameters that determine the behaviour of the model and
providing its analytical expression. Because of the exponential-like look of the
data preview, two variations of the OSIAT model were proposed: one based on
the exponential distribution for values between 0 and 0.5 s (Equation4.3) and
another based on the Weibull distribution for the values in this same range
(Equation 4.4). The models were accompanied by the parameters for the
exponential and Weibull components, calculated by applying the MLE method
to the experimental data obtained from the testbeds (Table 4.3).

• The measurement of the statistical discrepancy was performed using several
methods: Q-Q plot to have an intuitive estimation of the GoF, PCC as a simple
numeric metric for fitness, and λ2 / λ̂2 a more robust metric for statistical
discrepancy which allows comparing the degree of fitting between the exper-
imental data and the proposed models. The Q-Q plots did not show a clear
advantage to any of the two proposed models. According to the λ̂2 results, the
GoF for the Weibull-based OSIAT was better than that for the exponential-based
model (Tables 4.4 and 4.5).

The study and modelling of the microscale variable OSPS, performed using the
analysis pipeline included the following elements:

• The data preview showed that OSPS values are a small set of discrete values,
which made evident the convenience of modelling the variable with a discrete
probability model.

4.6 Summary 83

• The autocorrelation study showed little evidence of self-similarity, so OSPS
can be considered as a random variable and modelled as such. It was also
observed that the number of number of discrete values for OSPS varied from
one testbed to another, a side effect of the different rates of user activity and
network traffic present in each one.

• The data modelling step provided a simplified discrete model for OSPS de-
scribed in Equation 4.7.

84 Chapter 4 Analysis and modelling of NVE network traffic: Open Wonderland

5Simulation based on NVE models

Maybe the only significant difference
between a really smart simulation and a
human being was the noise they made
when you punched them.

Terry Pratchett, The Long Earth

This chapter describes the design, implementation and execution of simulations
based on the object synchronisation inter-arrival time (OSIAT) models proposed
in Chapter 4, Section 4.4.4 for Open Wonderland (OWL) network traffic. These
models were generated using the analysis pipeline for networked virtual environment
(NVE) network traffic defined in Chapter 3. Results from these simulations will help
to validate the models implemented by the simulation and also the pipeline that
generated those models. Moreover, these validated models will be ready for further
use in research of performance evaluation of NVE systems in the lane of OWL.

Simulation is a key tool in networking research due to its inherent advantages over
testing with real hardware [RPW09]. Matters such as budget and cost of time
make simulation attractive for research, while flexibility, scalability and virtually
no cost expansion are also valuable advantages over other testing methods [OB10].
Network simulators allow us to implement and study different network entities in a
simulated environment, providing a high degree of flexibility to test new protocols,
technologies, conceptual models and topologies.

5.1 Simulation framework: ns-3

The implementation of the models for OSIAT and object synchronisation packet size
(OSPS) proposed in Chapter 4 (Sections 4.4.4 and 4.5.3 respectively) is based on the
simulation tool and framework ns-3 [Pro19]. The version used in the present work is
ns-3.29, last stable release at the time of writing. The choice of ns-3 is derived from
the author’s previous work in [Fon+10] and [Fon+11a]. These works approach the
comparison of ns-2 and ns-3, two of the most popular network simulation frameworks

85

at the time of writing them, from the perspective of software engineering by using
complexity and code quality metrics.

The chosen network simulation framework, ns-3, provides a modular and well
tested simulation framework, it is an open source community-driven project and
provides a well defined building process, comprehensive documentation and the
possibility of coding in C++ or Python [Fon+10], [Fon+11a]. Ns-3 is devised
to be executed in GNU/Linux and Unix-like environments, being also possible to
build and run it in Windows systems using Cygwin. Ns-3 was conceived as ns-2’s
[Proa] [LA03] successor: its developers have tried to solve or mitigate many of
ns-2’s well-known drawbacks as well as apply new concepts, such as validation
and software engineering techniques, to produce a more reliable simulation tool to
support academic and industrial research [Hen14].

Ns-3 is conceived to be distributed in source code form though some GNU/Linux
distributions such as Debian or Arch provide pre-compiled packages. Due to users
have access to source code, they can modify and extend their features and optimize
their binaries as needed. Source code can be fetched from the Git [Prob] repository
maintained by the ns-3 project. This repository contains all the official releases, and
publicly available development branches.

The programming language used for the ns-3 core and model components is C++,
while simulations that put to work these components can be written in C++ or
Python, an interpreted language which presents some advantages about development
speed and code readability.

Regarding the architecture of the framework, ns-3 emphasizes source code hierar-
chical structuring by defining several basic network entities present in every single
simulation. Specific models are a refinement of these generic entities [Pro19].

• Node, represents the basic computing device. It acts as container of the
elements of the network stack and interacts with other nodes by the commu-
nication channel. Nodes require net devices in order to be able to use the
physical channel.

• Application, sets up on top of the network stack within the node, playing the
role of packet consumer or packet generator.

• Channel, provides the media to interconnect nodes and to allow data traffic
exchange.

• Net Device, abstracts the network hardware that makes communication possible
through a channel.

86 Chapter 5 Simulation based on NVE models

• Topology Helper, auxiliary class that makes the generation of complex topologies
easier by automating the creation of network elements, their configuration
and interconnection.

• simulation, a program that defines, configures and launches the simulation
experiment based on the models and helpers.

Ns-3 gathers all source code files of both simulator core and models in the ns-3/src
folder, separating them from the rest of auxiliary tools, building scripts, docu-
mentation and examples. The ns-3/src folder is also subdivided, each subfolder
containing the files that implement the different models shipped with ns-3 by default,
plus the simulator core components. On the other hand, simulation are placed in
the ns-3/scratch folder.

5.2 Simulation implementation

Ns-3 code is divided into models, helpers and simulations. The models are classes
that contain the functionality of the modelled system, such as network nodes, data
packets, protocol stacks or network devices. On the other hand helpers are auxiliary
classes that allow to create and configure several objects of the same class in an easy
and concise way, such as defining several interconnected nodes, initialising a large
amounts of network devices with consecutive IP addresses, and so on. Finally, a
simulation is a piece of code that defines, configures and launches the simulation
experiment based on the models and helpers provided by ns-3.

While ns-3 simulations can be written in C++ or Python, the former is the language
for model and core components. The ns-3 models, helpers and simulation coded
and used in the context of the present work have been written in C++. Many of the
classes mentioned below contain the prefix ns3::, which is the C++ namespace for
all ns-3 classes.

5.2.1 Implementation and code structure

Figure 5.1 contains a simplified diagram of the different entities that are part of the
OSIAT simulation. The simulation rely on OWL client and server, ns-3 nodes each
one sporting a different collection of models to simulate the object synchronisation
exchange of traffic. These nodes relies on the ns-3 TCP/IP stack and carrier sense
multiple access (CSMA) models to exchange information between them. The dashed
rectangles within the figure represent the helpers that assist in the creation and
configuration of the different kind of nodes in the simulation.

5.2 Simulation implementation 87

c
o
n
f
i
g
u
r
e

OWL Server
Helper

OWL Server
Helper

OWL Client Node

OWL Client App

OSIAT model

OSPS model

IPv4 stack

CSMA channel

OWL Server Node

OWL Server App

IPv4 stack

c
o
n
f
i
g
u
r
e

Fig. 5.1.: Structure of the ns-3 simulation for OSIAT

Below there is an enumeration of the main object oriented (OO) classes that con-
stitute the building blocks for the ns-3 simulation based on the OSIAT and OSPS
models from Chapter 4. Each class includes a brief description and relationships
with other classes.

ns3::Node acts as a container entity that represents a network node. It contains
objects that simulate network devices, protocol stacks or applications that generate
or consume network packets. Auxiliary classes such as ns3::NodeContainer help to
manage a large number of ns3::Node objects.

ns3::Application represents elements that generate and consume network traffic
following the logic coded by the programmer, e.g. a Telnet server.

WonderMovClient extends ns3::Application class, it uses the models for OSIAT and
OSPS proposed in Sections 4.4.4 and 4.5.3 to generate traffic the way OWL clients
do. It relies on ns-3 models for the TCP/IP stack, such as ns3::Socket and Ipv4Address.
This application requires to be connected to an object of class WonderMovServer
which plays the role of OWL server. Figure 5.2 shows the relationship of this class
with the rest of classes in the simulation.

The operation of the application is shown in the sequence diagram in Figure 5.3.
Once the client is associated to the server object, it starts a loop that determines the
size of the packet to be sent using the OSPS model, then proceeds to send the packet.
The server receives this packet, processes it and proceeds to send an ACK message to
the client. The client uses a OSIAT model to determine when the next packet will be
sent to the server, starting a new iteration of the loop.

88 Chapter 5 Simulation based on NVE models

WonderMovClient

 uint32_t *m_data
 uint32_t m_dataSize
 uint32_t m_size
 bool m_connected
 uint32_t m_readpackets
 uint32_t m_sentpackets
 Ptr<Socket> m_socket
 Ipv4Address m_peerAddress
 uint16_t m_peerPort
 Ptr<Socket> m_socket_tcp
 Ipv4Address m_ipaddr
 Ptr<OsPs> ops_model
 Ptr<OsIat> osiat_model

+ OWonderMovclient() <<constructor>>
+ ~OWonderMovclient() <<destructor>>
 StartApplication()
 StopApplication()
 Send()
 HandleRead()
+ GetTypeId() : Typeid
+ GetInstanceTypeId() : TypeId
+ SetRemote(Ipv4Address, uint16_t)
+ SetDataSize(uint32_t)
+ GetDataSize() : uint32_t
+ GetNReadPackets() : uint32_t
+ GetNSentPackets() : uint32_t
+ SetConnected()
+ SetNode(Ptr<Node>)

Ipv4Address

Socket

Application

Extends

OsIat

OsPs

Use

Use

Use

Use

WonderMovServer

 uint32_t m_readpackets
 uint32_t m_sentpackets
 Ptr<Socket> m_socket
 Ipv4Address m_ipaddr
 uint16_t m_port
 std::map<uint32_t, Address> m_clientlist
 std::list<Ptr<SocketList>> m_socketlist

+ WonderMovServer() <<constructor>>
+ ~WonderMovServer() <<destructor>>
 StartApplication()
 StopApplication()
 HandleRead(Ptr<Socket>)
 HandleAccept(Ptr<Socket>), Address)
+ GetTypeId() : Typeid
+ GetInstanceTypeId() : TypeId
+ GetNReadPackets() : uint32_t
+ GetNSentPackets() : uint32_t

Extends

Use

Use

Fig. 5.2.: Class diagram for WonderMovClient and WonderMovServer

:WonderMovServer

loop

:WonderMovClient

object sync update

ACK

Fig. 5.3.: Sequence diagram for OWL traffic models

5.2 Simulation implementation 89

WonderMovServer extends ns3::Application class. Objects of this class are associ-
ated to WonderMovClient objects which send them object synchronisation packets.
The class models the very basic functionality of the OWL server, only reading packets
and proceeding to acknowledge them. The class is also capable of propagating the
object synchronization updates to the rest of the client objects associated to the
server. Figures 5.2 and 5.3 show its class and sequence diagram respectively. It must
be noted that the object synchronisation traffic sent by the OWL server is mostly
reactive, without signs of periodicity nor bursty behaviour. This detail has been
taking into account when implementing the WonderMovServer class.

WonderMovClientHelper and WonderMovServerHelper helper classes that provide
auxiliary methods to help with the configuration of several nodes running the
WonderMovClient and WonderMovServer applications described above. The helpers
take care of installing the corresponding application in each one of the provided
nodes. Figure 5.4 shows the class relationships and a summary of the methods and
attributes for these classes.

WonderMovServerHelper

 ObjectFactory m_factory()

+ WonderMovServerHelper(uint16_t) <<constructor>>
+ ~WonderMovServerHelper() <<destructor>>
+ SetAttribute(std::string, AttributeValue value)
+ Install(Ptr<Node>) : ApplicationContainer
+ Install(std::string) : ApplicationContainer
+ Install(NodeContainer) : ApplicationContainer
 InstallPriv(Ptr<Node>) : Ptr<Application>

ObjectFactory

Use

WonderMovClientHelper

 ObjectFactory m_factory()

+ WonderMovClientHelper(Ipv4Address, uint16_t) <<constructor>>
+ ~WonderMovClientHelper() <<destructor>>
+ SetAttribute(std::string, AttributeValue value)
+ Install(Ptr<Node>) : ApplicationContainer
+ Install(std::string) : ApplicationContainer
+ Install(NodeContainer) : ApplicationContainer
 InstallPriv(Ptr<Node>) : Ptr<Application>

Use

Fig. 5.4.: Class diagram for WonderMovClientHelper and WonderMovServerHelper

OsIat, OsIatExp and OsIatWei OsIat is an generic class to describe the common
functions to all the OSIAT models. Specific ones such as OsIatExp (based on the
Exponential distribution) or OsIatWei (based on the Weibull distribution) extend
this class. The WonderMovClient application is implemented to work with any class
that implements the methods defined in this class, making it easy to incorporate
further OSIAT models to the simulation. OsIatExp and OsIatWei classes rely on
several ns3::RandomVariableStream derived classes such as ns3::ExponentialVariable,
ns3::UniformVariable or ns3::WeibullVariable to implement the models described in
Section 4.4.4. Methods, attributes and relationships between classes are shown in
the class diagrams in Figures 5.5 and 5.6.

90 Chapter 5 Simulation based on NVE models

OsIatExp

 lambda : double
 rexp : Ptr<ExponentialRandomVariable>
 runi : Ptr<UniformRandomVariable>

+ OsIatExp() <<constructor>>
+ ~OsIatExp() <<destructor>>
+ SetLambda(double)
+ GetLambda() : double

OsIat

 c_acp : double
 t_thres : double

+ OsIat() <<constructor>>
+ ~OsIat() <<destructor>>
+ GetTypeId() : Typeid
+ GetInstanceTypeId() : TypeId
+ GetValue() : double
+ SetAcp(double)
+ GetAcp() : double

RandomVariableStream

UniformRandomVariable

ExponentialRandomVariableExtends

Extends

Extends

Extends

Use

Use

Fig. 5.5.: Class diagram for exponential-based OSIAT model

OsIatWei

 lambda : double
 kappa : double
 rwei : Ptr<ExponentialRandomVariable>
 runi : Ptr<UniformRandomVariable>

+ OsIatWei() <<constructor>>
+ ~OsIatWei() <<destructor>>
+ SetLambda(double)
+ GetLambda() : double
+ SetKappa(double)
+ GetLambda() : double

WeibullRandomVariable

Extends

Use

Use

RandomVariableStream

UniformRandomVariable

OsIat

 c_acp : double
 t_thres : double

+ OsIat() <<constructor>>
+ ~OsIat() <<destructor>>
+ GetTypeId() : Typeid
+ GetInstanceTypeId() : TypeId
+ GetValue() : double
+ SetAcp(double)
+ GetAcp() : double

Extends

Extends

Extends

Fig. 5.6.: Class diagram for Weibull-based OSIAT model

5.2 Simulation implementation 91

OsPs implements the OSPS model proposed in Section 4.5.3. It relies on the class
ns3::UniformVariable provided by ns-3. Methods, attributes and relationships with
other classes are show in the class diagram in Figure 5.7

OsPs

 runi : Ptr<UniformRandomVariable>

+ OsPs() <<constructor>>
+ ~OsPs() <<destructor>>
+ GetTypeId() : Typeid
+ GetInstanceTypeId() : TypeId
+ GetValue() : double

Use

RandomVariableStream

UniformRandomVariable

Extends

Extends

Fig. 5.7.: Class diagram for OSPS model

5.2.2 Simulation executable

The simulation executable uses all the models and auxiliary classes described in
previous sections to define a simulation scenario governed by a set of parameters
such as number of nodes, speed of the channel, or packet model parameters. This
element is the entry point for the simulation parameters, allowing the user execute
the simulation via command-line interface (CLI) following their specifications.

This simulation comprises a CSMA bus topology operating at 100 Mbps which in-
terconnects an arbitrary number of OWL clients to a single server. This topology is
equivalent to the original 100 Mbps Ethernet network used in the testing sessions.
All the simulation nodes share the same CSMA channel and are equipped with
CSMA network devices. Each node has also an IPv4 stack and associated IP address.
All these models are part of the ns-3 core and are well tested and documented
[Pro19].

The Application child classes are installed in all the nodes in the simulation. Each
client node has a WonderMovClient object associated while the server node has
a OWLMovServer associated. The simulation also makes use of several helpers
part of the ns-3 core, such as ns3::InternetStackHelper, ns3::Ipv4AddressHelper,
ns3::CsmaHelper or ns3::Ipv4GlobalRoutingHelper to automate the network con-
figuration of an arbitrary number of nodes in an easy way.

The simulation accepts several arguments to shape and configure the simulation
scenarios:

92 Chapter 5 Simulation based on NVE models

–verbose=[true|false] boolean value, enables/disables verbose log output. De-
fault value is true.

–log-pcap=[true|false] boolean value, saves the network traffic generated by the
simulator in pcap format. Default value is true.

–log-ascii=[true|false] boolean value, saves a summary of the network traffic
generated by the simulator in ASCII format. Default value is false.

–log-path=’log-folder’ string value, specifies the path where logs, both pcap
and/or ASCII format, will be stored. The path log-folder has to exist at the time of
running the simulation. Default path is the $HOME folder for the user running the
simulation.

–log-name=’trace-name’ string value, specifies the root name for the log files, both
pcap and ASCII format. The names derived from this root will use trace-folder as
prefix and information about the node as suffix. Default value is ’owl-trace’.

–n-clients=n integer value, specifies the number of OWL clients that will take part
in the simulation. Default value is 1.

–t-simulation=t integer value, specifies the amount of time that will be simulated,
in seconds. Default value is 10 s.

–net-speed=’net-speed’ string value, specifies the network speed of the CSMA bus.
Possible values are ’100Mbps’ and ’1000Mbps’. Default value is ’100Mbps’.

–seed=seed-value integer value, specifies the random seed to be used in the simu-
lation. Two runs of the simulation using the same random key will generate identical
results. If the argument –run is used, the value given for –seed is ignored. Default
value is 16 807.

–run=n-runs integer value, specifies a run number for the simulation. Different run
numbers internally use different random seeds. Two simulation runs using the same
run number will generate the same results. The argument –run provides a more
user friendly and simplified way to manage random seeds in the simulation runs.
Default value is 1.

5.2 Simulation implementation 93

–osiat-model=’model-name’ string value, specifies the type of OSIAT model to be
used in the simulation. Supported models are exponential and weibull. More detail
information about these models can be found in Section 4.4.4. Default value is
exponential.

–lambda=l-value double value, together with –osiat-model=’exponential’ it
specifies the rate value, λ, for the exponential-based OSIAT model. Together with
–osiat-model=’weibull’ it specifies the scale parameter, λ, for the Weibull-based
OSIAT model. Default value in both situations is 1.0.

–kappa=k-value double value, when –osiat-model=’weibull’ is used, it defines
the shape parameter, κ for the Weibull-based OSIAT model. Default value in this
situation is 1.0.

–thres=thres-value double value, specifies the tthres parameter, in seconds, for all
the OSIAT models. Default value is 0.501 s.

–c-apt=c-value double value, specifies the value for capt parameter for all the
OSIAT models, in the range (0, 1). Default value is 0.8.

5.3 Simulation results

Both exponential and Weibull-based OSIAT models have been tested and compared
against empirical data from Open Wonderland TestBed 2 (OWTB2) by setting up
and using two different simulation scenarios. The simulator described in Section
5.2.2; based on the models OsIatExp, OsIatWei, Osps and the ns-3 framework; has
been used to generate the network traffic for this evaluation. The choice of the
parameters from testbed OWTB2 is due to its hardware and software homogeneity,
which led to more consistent parameter results across clients. All the simulations
have used the same OSPS model, based on the formula described in Section 4.5.3,
independently of the OSIAT model they were using.

The evaluation of each OSIAT model involved 10 OWL clients and only 1 server
interconnected by a 100 Mbps CSMA bus / Ethernet network. The simulation was
executed 20 times, each one using a different random seed via de –run parameter.

94 Chapter 5 Simulation based on NVE models

Tab. 5.1.: BW and packet rate for testbed and simulated OWL traffic

Session Packets/s Bandwidth (B/s)

10-client 3.85 1152.94
Sim-exp 3.73 1067.88
Sim-wei 4.82 1379.20

5.3.1 Simulation based on exponential-based OSIAT model

The first simulation scenario was based on the exponential-based OSIAT model
(Section 4.4.4) with parameter rate λ̄ = 4.76. This λ has been calculated as the
mean of the λ values in Table D.6, with σλ = 0.1. The rest of OSIAT parameters used
were capt = 0.78 and tthres = 0.5.

The bandwidth and packet rate are used for simplicity as metrics to compare the
experimental and simulated traffic [CLW03]. The total bandwidth generated by
this simulation per each one of the 10 clients was 1067.88B/s per client and the
packet rate equal to 3.73. These figures are slightly below the bandwidth and packet
rate per client observed in the 10-client OWTB2 session, with 1152.94B/s and 3.85
packet/s respectively. These figures are shown in Table 5.1.

The Figure 5.8 helps to determine the similarity between the empirical cumulative
distribution function (ECDF)s for the empirical and simulated data in this simulation.
The plot has been generated calculating the ECDF for the aggregation of all the
OSIAT values from the empirical and simulated traffic. The smooth blue ECDF
corresponding to the probability distribution of the simulated traffic falls below the
red and more jagged one corresponding to the experimental network traffic.

5.3.2 Simulation based on Weibull-based OSIAT model

The second simulation scenario was based on the Weibull-based OSIAT model
(Section 4.4.4) with parameter scale λ̂ = 0.142, and shape κ̂ = 0.51 , each of them
calculated as the mean of the λ (σλ=0.01) and κ values (σκ = 0.03) in Table D.7.
The rest of OSIAT parameters used were capt = 0.78 and tthres = 0.5.

The total bandwidth generated by this simulation per each one of the 10 clients was
1379.20B/s per client and the packet rate equal to 4.82. These figures are slightly
above the bandwidth and packet rate per client observed in the 10-client OWTB2
session, with 1152.94B/s and 3.85 packet/s respectively. These figures are shown in
Table 5.1.

5.3 Simulation results 95

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ECDF for simulated and empirical OSIAT

10−client session
t

ec
df

(X
)

simulated
empirical

Fig. 5.8.: Exponential-based OSIAT model vs. empirical OSIAT

The Figure 5.9 helps to determine the similarity between the ECDFs for the empirical
and simulated data in this simulation. The plot has been generated calculating the
ECDF for the aggregation of all the OSIAT values from the empirical and simulated
traffic. The smooth blue ECDF corresponding to the probability distribution of the
simulation traffic mostly overlaps the red and more jagged one corresponding to
the experimental network traffic, with regions where the model line is above the
experimental one, hence the higher bandwidth and packet rate observed.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Weibull−based model OSIAT Vs Empirical OSIAT

10−client session
t

ec
df

(X
)

simulated
empirical

Fig. 5.9.: Weibull-based OSIAT model vs. empirical OSIAT

96 Chapter 5 Simulation based on NVE models

5.3.3 Conclusions

Observing the preliminary simulation results in Table 5.1 and the comparison of
ECDFs in Figures 5.8 and 5.9, it is possible to conclude that both the exponential
and Weibull-based OSIAT models together with the OSPS model provide a good
approximation to the behaviour of OSIAT values on the experimental testbed.

5.4 Summary

The simulation tools presented in this chapter put into use and validate the OSIAT
models for OWL generated using the analysis and modelling pipeline for NVE traffic
proposed in previous chapters. The chosen tool for implementing the simulations
has been ns-3, an open-source discrete-event network simulator written in C++
following OO paradigm and easily extendable.

The implementation of the simulation comprises the definition of several OO classes
representing entities such as statistical models, applications that consume or generate
network traffic or auxiliary classes to automate and simplify the configuration of
the entities within the simulated scenario. All these software components allow to
run simulations based on the exponential and Weibull-based OSIAT models for OWL
described in Section 4.4.4 and the OSPS model described in Section 4.5.3.

The main simulation executable articulates and configures all the elements that take
part in the simulation scenarios, providing a CLI interface for final users which allow
them to provide all kind of arguments to configure and control the execution of the
simulation, such as the type of OSIAT model and its associated parameters, number
of iterations, pseudo random seeds, output format and so on.

Based on the simulation results, both the exponential and Weibull OSIAT models for
OWL traffic, in conjunction with the OSPS model, manage to generate simulated
traffic that resembles the observed in experimental sessions on the testbeds, in terms
of both bandwidth and packet rate. These results can be used to argue that the
analysis and modelling pipeline proposed for NVE systems such as OWL generate
valid models to describe the inter-arrival time (IAT) and packet size (PS) variables
that describe their network flows at microscale level.

5.4 Summary 97

6Conclusions and future work

I may not have gone where I intended to
go, but I think I have ended up where I
needed to be.

Douglas Adams, The Long Dark Tea-Time
of the Soul

The present chapter contain the conclusions derived from the study of NVE network
traffic as well as the lines of work that can be addresses as future work.

6.1 Conclusions

The main conclusions derived from the work on NVE network traffic performed in
the present work are the following.

• NVE systems have a relevant role in many fields in a global and highly intercon-
nected world. The historical overview of NVE systems in Section 1.1 provided a
sense of the importance the paradigm in fields such as entertainment, training
or e-learning. Moreover, it has been observed that current trends are shifting
from NVE frameworks such as OpenSimulator or OWL towards adapting main-
stream video games such as Minecraft as canvas to develop NVE systems for
research and scientific purposes.

• The NVE characterisation defined in Section 2.1 captures all the elements and
characteristics that define a NVE and has proven to be key for the literature
review allowing to define the analysis pipeline proposed in Chapter 3.

• OWL matched the NVE characterisation and proved to be technically viable
study case on which to build experimental testbeds Open Wonderland TestBed
1 (OWTB1) and OWTB2 from Section 2.3 to get the necessary network traffic
captures to validate the analysis pipeline.

99

• The study of the literature on network traffic of video games that qualify as
NVE helped to define the analysis pipeline from Chapter 3, which follows a
microscale modelling approach focused on IAT and PS to describe the network
traffic, also providing methods metrics to assess statistical discrepancy, such as
Q-Q plots or λ̂2 discrepancy metric.

• The analysis pipeline defined in Chapter 3 applied to the data from testbeds
described in Section 2.3 generated the results discussed in Chapter 4. The
pipeline helped to define two candidate models for OSIAT described in Sec-
tion 4.4.4, both split distributions based respectively on the exponential and
Weibull distributions. The OSPS values followed a simple discrete distribution
described in Section 4.5.3.

• The models proposed in Chapter 4 for OSIAT and OSPS were implemented in
simulations based on ns-3, an open-source discrete-event network simulation
framework. Simulation results confirmed the similarity between experimental
network traffic from the testbeds and the traffic generated by he simulators,
in both terms of bandwidth and packet rate, being the Weibull-based OSIAT
model slightly closer to the original OWL network traffic.

6.2 Future work

There are several lines of work that can be further developed as continuation of
the present work. On the one hand, it is possible to further extend the analysis
pipeline for modelling NVE network traffic proposed in Chapter 3. This pipeline only
addresses network traffic which packets present randomly distributed IAT and PS
values, leaving cases with strong autocorrelation out of the scope. Exploring the
feasibility of applying time-series models to describe NVE traffic can be an valuable
addition to the pipeline, and may help to identify traffic dynamics that are not fully
explored in the current literature about NVE or video games network traffic.

A second potential line of work is further work in metrics for statistical discrepancy.
The present work partly relies on qualitative methods to assess this discrepancy, such
as Q-Q plots, techniques that require the human expertise to be of any use. The
metric λ̂2 has proven to be a promising quantitative metric but with some limitations
about the information that can reveal and some weakness regarding its performance
on situations like heavy tailed distributions. Thus, refining the measurement of
statistical discrepancy of microscale network models can yield useful results for the
modelling of network traffic.

100 Chapter 6 Conclusions and future work

Finally, due to the nature of the ns-3 simulations proposed in Chapter 5 and some of
their technical features, like the control of the pseudo-random seeds that control the
execution of the simulation, it is worth to explore the possibility of adapting these
processes to run on high-throughput computing (HTC) environments to exploit their
potential parallelization. These concepts are further discussed in Appendix A.

6.2 Future work 101

ANVE simulations and HTC
environments

The present appendix deals with the particularities of the ns-3 simulations for
networked virtual environment (NVE) network traffic presented in Chapter 5 and
specifically the problems associated to software distribution and provisioning time
and how they can be minimising by running these simulations in a high-throughput
computing (HTC) environment assisted by modern software distribution services.

The content in this appendix is based on the author’s experience as system admin-
istrator in the Distributed Data Processing Unit at SURFsara, the Dutch national
high-performance computing and e-Science support center in Amsterdam, Nether-
lands.

A.1 Running NVE simulations in HTC
environments

The NVE traffic simulations implemented and executed in Chapter 5 using the ns-3
framework were mono-core processes, meaning that the simulation was running in
a single core, the default behaviour for ns-3 simulations unless developers decide
to include parallelisation techniques. Moreover, the inclusion of arguments that
allow to specify pseudo-random seeds to control the execution of the simulation
(Section 5.2.2) allows to exactly reproduce runs of the simulation by providing the
same seed or, more interesting from the point of view of distributing and parallelising
the simulation runs, by executing multiple times the simulation making sure each
run is different from the rest by providing a unique seed to each one.

Single-core processes and the possibility to differentiate each run of the simulation
make these simulations based on ns-3 a suitable candidate to be executed in HTC en-
vironments [LH13], computing environments were available resources work together
to achieve the execution of long-running tasks taking advantage of parallelisation
to achieve high degree of throughput in the results generated. It must be noted
that while loosely related fields, HTC and high-performance computing (HPC) are
different in many ways, while HPC tasks are characterized as needing large amounts

103

of computing power for short periods of time, the HTC is more interested in how
many jobs can be completed over a period of time than in how fast those jobs are
individually.

Depending on the scale of available computing resources, the HTC environment
can be a traditional cluster where all the machines are in the same geographical
location, orchestrated by a job scheduler such as HTCondor [Faj+15] or SLURM
([YJG03]). In case where the amount of resources is far the reach of individual
institutions, it is possible to scale out HTC infrastructure by using grid computing,
which can be viewed as a federation of individual HTC cluster distributed around
remote geographical locations, sharing resources to achieve common goals. This
federation is accomplished by using a grid middleware software that orchestrates
and distributes the workload all over the grid infrastructure. An example of grid
middleware is gLite, used by the CERN LHC experiments and other scientific domains.
It was implemented by collaborative efforts of more than 12 different academic and
industrial research centers in Europe and it has been deployed in more than 250
institutions [And+08].

A.2 Software distribution in HTC environments

One of the technical challenges to solve when computing in distributed environments
is the distribution of data and the software to process them. A classical approach
has been provisioning the worker nodes (nodes that perform the actual computation
in the HTC infrastructure) with local copies of the software required to process
the data. While straightforward, this approach has the disadvantage of increasing
the complexity of maintaining the worker nodes. More software means more
maintenance work for the operators of the infrastructure, who have to be up to
date with security alerts, apply security patches and bug fixes, make sure updates
do not break the system or cause regressions. Moreover, this means each worker
node has to be prepared beforehand to run jobs that require some specific software,
reducing the flexibility of the infrastructure to host new workloads. In the specific
case of simulations based on ns-3, system administrations have two options when
provisioning worker nodes, on the one hand they can install the software from source
code, making sure the binaries they generate are compatible with the target system
and all the dynamic libraries required by these binaries are present on each node.
On the other hand, some GNU/Linux distributions (the most extended operating
system in the HPC/HPC environments) provided packages for ns-3 in their official
repositories.

104 Chapter A NVE simulations and HTC environments

A more flexible approach for software distribution is making the job locally install
the required software, using scripts that automate the download, configuration and
compilation (if necessary) of the software. In the case of ns-3, in addition to the
transfer time required to fetch the source code from the repositories of the ns-3
project or a local proxy (being the second option highly advised to avoid generating
an accidental distributed denial-of-service (DDoS) attack by having hundreds of
machines with high speed connections requesting copies of the repository), each job
will have to spend a considerable amount of time compiling its instance of ns-3. The
experimental measurements performed in this study show that compiling ns-3.29 in
an machine equipped with an Intel i5-4690 CPU at 3.5GHz takes up to 20 min and up
to 1GB RAM when using a single dedicated core at 100 % load. The reason to limit
the compilation tests to one single core is because ns-3 simulations are single-core
processes by default and they will likely be encapsulated into single-core HTC jobs
to ensure an adequate resource assignment. In this approach, the ns-3 binaries
generated cannot be directly reused between jobs, even if they run on the same
worker node.

A previous approach can be improved by distributing pre-compiled ns-3 binaries
compatible with the software base of the worker nodes. Thus, jobs can fetch these
binaries from a local repository within the cluster, or they can be shared through a
network file system. Traditional network file systems such as NFS are an alternative
to implement this approach, but there are other solutions specifically designed and
optimised for the distribution of software in HPC and HTC environments, such as
CernVM File System (CVMFS), a read-only POSIX network file system based on
the HTTP protocol that can benefit from using HTTP caching proxies such as Squid
[Prof] for better performance and provides authentication and authorisation based
on X.509 standard for public key certificates [Agu+08] [Wei+17].

Distributing pre-compiled software from a repository or a shared network file system
still has to deal with the problem of library dependencies in the target worker node
where the job is going to run. Different versions of the same software may depend
in different versions of the same dynamic library, which may not be trivial in many
Linux/Unix systems. One traditional solution to this problem has been using tools
that manage the shell environment to make this possible, such as Environment
Modules [FO96]. While a widespread solution, it is not specially robust and require
a good understanding of the library dependencies of the software and the shell
environment where software will run.

Recent years have witnessed the popularisation of container technologies as an effi-
cient and platform-agnostic way to distribute and deploy software on heterogeneous
systems. Containers encapsulate and isolate one or various processes from the rest of
the host where they are running. This level of isolation is not as strong as in virtual

A.2 Software distribution in HTC environments 105

machines, but enough to make the software within the container totally independent
from the user space software of the host while being much more lightweight in
resource terms than virtual machines. Thus, containers provide a true homogeneous
runtime environment isolated from the particularities of the host, such as package
manager, hardware devices or library versions, and a convenient way to distribute
software in the form of images than can run on any GNU/Linux host with the
required container runtime.

While Docker is becoming a de-facto standard for containers [Ber14], it does not
fully match the security requirements to run on grid computing environments. This
has motivated the creation of Singularity, a container technology developed with
federated, research and grid infrastructures in mind [KSB17] [ADS17]. Some of the
features that make Singularity ideal for HTC and grid computing are running as non-
privileged user to minimise security risks, capability of directly using Docker images
or converting them to Singularity Image Format (SIF), support for image registries
and the possibility to distribute images as single files, making straightforward their
execution on hosts supporting Singularity containers.

A.3 Summary

This chapter discussed the suitability of running the NVE simulations implemented in
Chapter 5 on distributed HTC environments. These simulations can be encapsulated
in HTC jobs and distributed across this kind of infrastructures.

It is also discussed the technical challenge posed by software distribution in dis-
tributed environments. Making the software available on the worker nodes is key
to make possible running the simulations anywhere on a distributed infrastructure.
In the case of ns-3, the compilation time is specially time consuming, so different
alternatives to achieve the goal “compile once, run many times” are described.

The chapter also illustrates how the distribution of binaries using optimized network
file systems such as CVMFS together with tools such as Environment Modules are
giving way to more modern distribution channels like the container technologies.
In this context, Singularity is becoming a standard in the academic and research
context.

106 Chapter A NVE simulations and HTC environments

BTestbed Appendix

This appendix details the software tools and configuration used in Open Wonderland
TestBed 1 (OWTB1) and Open Wonderland TestBed 2 (OWTB2), the experimental
testbeds defined in Section 2.3.

B.1 Traffic capture with Wireshark and tshark

The packet capture, filtering and export to comma-separated value (CSV) has
been performed using Wireshark [Tea19b], an open-source packet analyzer, and
its command-line interface (CLI) counterpart tshark [Tea19a], more suitable for
scripting and automation. Wireshark has been used to capture all the incoming
and outgoing traffic. These raw packets has been stored in format pcap and later
filtered and processed with both Wireshark and tshark. The object synchronisation
inter-arrival time (OSIAT) traffic coming from a specific IP address can be filtered
using Wireshark with a filter expression as follows:

tcp conta ins "MOVE" && ip . s r c ==192.168.1.2

These kind of filters can be also used with tshark:

t shark −r raw_traces . pcap \
−R " tcp conta ins "MOVE" && \

ip . s r c ==192.168.1.2 && \
frame . t i m e _ r e l a t i v e >= 20 && \
frame . t im e_ r e l a t i v e <=220" \
−w f i l t e r e d _ t r a c e s . pcap

The above tshark command filters all the OSIAT packets from the given .pcap file that
have been originated in the client with IP 192.168.1.2, selecting only those captured
after 20 s and no later than 220 s.

The conversion from the pcap format, which contains most of the raw packet
information, to plan-text CSV can be performed using Wireshark, by opening the
pcap file, filtering the desired packets and proceeding to save the results with the
menu option Export packet dissections, selecting CSV as output format.

107

B.2 AutoHotKey scripts

AutoHotKey (AHK) [Foua] is a free, open-source utility for Windows aimed to task
automation. AHK can define and record macros which group keystrokes and mouse
clicks in order to automate tasks in the form of scripts. These scripts can also be
compiled into a Windows executable file which can be launched even if the host
system does not have AHK installed.

AHK has been used in the clients of OWTB2 to generate patterns of keyboard
keystrokes as input for the Open Wonderland (OWL) clients, thus replacing human
players during the test gaming sessions. The script code for AHK (v1.1.09.00 -
November 7, 2012) can be found below. It defines a funcKey function which receives
up to two keystroke codes to be injected as real keystrokes and the amount of time
that the keys must be pressed, simulating this way the keydown events to generate
constant translation of the avatar. The script also includes several keybindings to
help with the control of the automation process, triggering events and perform
keystroke injection. It must be noted that the scripts counts with the presence of the
OWL client launcher, and audio output configured to be redirected to the microphone
input.

; Rece ives up to two keycodes and s imula te s the keydown event during a s p e c i f i c i
; amount of time
; time : time the key i s pressed
; key1 : f i r s t keycode
; key2 : second keycode (op t iona l)

funcKey (time , key1 , key2=0){
; a c t i v a t i o n of S h i f t modi f ie r by d e f a u l t
Send , { S h i f t Down}
Send , {\%key1\% Down}

; checking the e x i s t e nc e of a
; second v a l i d parameter
i f key2<> 0

Send , {\%key2\% Down}

; amount of time the keys have
; to be pressed
Sleep time

; a c t i v a t i n g the r e l e a s e event
; f o r the pressed keys
Send , {\%key1\% Up}

i f key2<> 0
Send , {\%key2\% Up}

108 Chapter B Testbed Appendix

Send , { S h i f t Up}
}

; Main body of the s c r i p t , executed by d e f a u l t . The code de f ine s s e v e r a l
; keybindings to automate s e v e r a l a c t i o n s : launching OWL, broadcas t audio , . . .

; F1 launches the OWL c l i e n t sof tware . I t r e q u i r e s the launcher being in a
; known path f o r the s c r i p t
F1 : : Run , " Wonderland . j n l p "

; F2 s t a r t s music play . The OS i s in charge of r e d i r e c t i n g the audio output
; to the mic input . For t h i s s c r i p t , VLC p layer has been used as audio source ,
; us ing a preconf igured p l a y l i s t
F2 : : Run , " v l c . exe " −Z −L " music . x sp f "

; F3 s t a r s ava tar movement
F3 : :

; OWL window get s focus
WinWait , Wonderland ,
I fWinNotAct ive , Wonderland , , WinActivate , Wonderland ,
WinWaitActive , Wonderland ,

; loop to send keys t rokes to the OWL window
Loop{

; each movement i s performed a random amount of time Random
; func t ion canbe seed using the command Random , , NewSeed

Random , time , 0 ,3000
Random , meanTime , 0 ,400

; s e l e c t i n g movement opt ion to perform in add i t i on to up , down , l e f t
; and r igh t , two diagonal movements have been included , they r e s u l t from
; the combination of two keys pressed at the same time

Random , act ion , 0 , 5

i f GetKeyState (" F4 " , " p ")
break

i f a c t i on = 0
funcKey (time , "Up ")

e l s e i f a c t i on = 1
funcKey (time , " L e f t ")

e l s e i f a c t i on = 2
funcKey (time , " Right ")

e l s e i f a c t i on = 3
funcKey (time , "Down")

e l s e i f a c t i on = 4
funcKey (time , "Up " , " L e f t ")

e l s e i f a c t i on = 5
funcKey (time , "Up " , " Right ")

Sleep , %meanTime%
}
re turn

; F5 s tops the s c r i p t
F5 : : exi tApp

re turn

B.2 AutoHotKey scripts 109

B.3 HotKeyNet scripts

HotKeyNet (HKN) [Teaa] is a free multi-boxing software aimed for gamers wanting to
control several in-game characters/avatars at the same time over different computers.
HKN allows to control several programs through the network using a client-server
architecture.

The HKN instance deployed on OWTB2 consisted in a HKN in server mode running
in one of the OWL clients for Windows (operator) and instances of HKN in client
mode in the rest of OWL clients. The operator machine itself also played the role of
OWL client.

The script code for HKN (build 210) can be found below. It remotely controls
and launches/stops the individual AHK scripts of the OWL client machines. Thus,
a centralised owl computer can be used to trigger the AHK scripts through the
network. The next script define an identification label for each OWL client IP
address, broadcasting the F1-F5 keystrokes to all the OWL clients involved in the
testing session.

// The operator machine a l so p a r t i c i p a t e s as
// OWL c l i e n t machine , so the keys t rokes
// must a l so be propagated l o c a l l y

// Each l a b e l corresponds with the IP address
// of a OWL c l i e n t from the te s tbed

<Label c241 l o c a l SendFocusWin >
<Label c199 10.1.15.199 SendFocusWin >
<Label c219 10.1.15.219 SendFocusWin >
<Label c238 10.1.15.238 SendFocusWin >
<Label c243 10.1.15.243 SendFocusWin >
<Label c245 10.1.15.245 SendFocusWin >
<Label c248 10.1.15.248 SendFocusWin >
<Label c249 10.1.15.249 SendFocusWin >
<Label c252 10.1.15.252 SendFocusWin >
<Label c253 10.1.15.253 SendFocusWin >

// F12 t r i g g e r s the s c r i p t

<Hotkey F12>
// l i s t of c l i e n t s tha t r e c e i v e
// commands through the network

<SendLabel c199 , . . . , c253>
// Each c l i e n t has an in s tance
// of the compiled form of the
// AHK s c r i p t , r e s p on s i b l e of the
// avatar movement

110 Chapter B Testbed Appendix

<Run " au toho tkey_s c r i p t . exe">

// Capturing and propagat ing the F1−F5
// keys t rokes between the c l i e n t s invo lved
// in the gamins s e s s i o n
<KeyL i s t Comandos F1−F5>
<Hotkey Comandos>
// l i s t of c l i e n t s tha t r e c e i v e
// keys t rokes through the network
<SendLabel c241 , . . . , c243>
<Key \%Tr igger\%>

B.3 HotKeyNet scripts 111

CR implementation of OWL
network traffic models and
discrepancy metrics

This appendix contains the implementation in R language of the statistical models
and discrepancy metrics for Open Wonderland (OWL) network traffic defined in
Chapters 3 and 4.

C.1 Activity Correlation Parameter for OWL OSIAT
models

R implementation of the Cacp parameter defined for the OWL object synchronisation
inter-arrival time (OSIAT) models in Section 4.4.4.

’ C a l c u l a t e s A c t i v i t y C o r r e c t i o n Parameter (ACP) .
’
’ The a c t i v i t y r a t e o f the p l a y e r has an impact on the shape
’ o f the IAT d i s t i b u t i o n . The ACP models t h i s impact . A c t i v e
’ u s e r s p r e s e n t an ACP o f 1 , whi l e i n a c t i v e u s e r s have ACP ~0 . 9 .
’ The ACP i s c a l c u l a t e d count ing the p ropo r t i on o f p a c k e t s
’ beyond the t h r e s h o l d (~0.5 s) to de te rmine the p e r c en tag e o f
’ v a l u e s co r r e spond ing to the p r o b a b i l i t y s a t u r a t i o n around
’ 0.5 an t a i l v a l u e s .
’ @param ia t , v e c t o r with IAT v a l u e s
’ @param i n t e r s e c t i o n (i . e . pexp / pweibul (0 .49) va lue)
’ @return ACP va lue f o r the g i v en IAT and a s s o c i a t e d s e s s i o n
’ @export
c a l c u l a t e . acp <− function (i a t , i n t e r s e c t i o n){

e <− ecdf (i a t)
acp <− 1 − ((i n t e r s e c t i o n − e (0 .49)) / i n t e r s e c t i o n)
return (acp)

}

113

C.2 Exponential-based OSIAT model for OWL

R implementation of the exponential-based OSIAT model for OWL defined in Sec-
tion 4.4.4, Equation (4.3).

’ Cumulat ive P r o b a b i l i t y f u n c t i o n f o r Truncated Exponen t i a l
’
’ C a l c u l a t e s p r o b a b i l i t y f o r g i v en v e c t o r x us ing the
’ t run ca t ed e xponen c i a l d i s t r i b u t i o n a d j u s t e d f o r
’ OSIAT mode l l ing .
’ @param x v e c t o r o f v a l u e s which p r o b a b i l i t y w i l l be c a l c u l a t e d
’ @param r a t e parameter f o r the e x p o n e n t i a l s e c t i o n
’ @param t h r e s h o l d d e l i m i t i n g the t runca t ed d i s t r i b u t i o n s e c t i o n s
’ @param acp , c o r r e c t s a c i t i v i t y −induced d e v i a t i o n s
’ @return v e c t o r with the p r o b a b i l i t y v a l u e s
’ @export
pexp . t run <− function (x , rate , t h r e s =0.5 , acp=1){

r <− sapply (x , pexp . t run . aux , r a t e=rate , t h r e s=thres , acp=acp)
return (r)

}

’ A u x i l i a r y f u n c t i o n f o r pexp . trun
’
’ Th i s f u n c t i o n implements the pexp . trun l o g i c , a l l ow ing to
’ use sapp l y f o r b e t t e r per formance .
pexp . t run . aux <− function (x , rate , t h r e s =0.5 , acp=1){

i f (x < th re s){
r <− pexp(x , r a t e) * acp

} else {
r <− 1

}
return (r)

}

’ Quant i l e f u n c t i o n f o r Truncated Exponen t i a l d i s t r i b u t i o n
’
’ @param q v e c t o r o f q u a n t i l e s to be c a l c u l a t e d
’ @param e x p o n e n t i a l r a t e parameter f o r the e x p o n e n t i a l s e c t i o n
’ @param t h r e s h o l d d e l i m i t i n g the t runca t ed d i s t r i b u t i o n s e c t i o n s
’ @param acp , c o r r e c t s a c i t i v i t y −induced d e v i a t i o n s
’ @return v e c t o r with q u a n t i l e v a l u e s
’ @export
qexp . t run <− function (q , ra te , thres , acp){

r <− sapply (q , qexp . t run . aux , r a t e=rate , t h r e s=thres , acp=acp)
return (r)

}

’ A u x i l i a r y f u n c t i o n f o r qexp . trun
’
’ Th i s f u n c t i o n implements the qexp . trun l o g i c , a l l ow ing to
’ use sapp l y f o r b e t t e r per formance .
qexp . t run . aux <− function (q , ra te , thres , acp){

114 Chapter C R implementation of OWL network traffic models and discrepancy metrics

i f (q < thre s){
y <− qexp (q/acp , r a t e)

} else {
y <− t h r e s

}
return (y)

}

’ Random number g ene ra to r f o r Truncated Exponen t i a l d i s t r i b u t i o n
’
’ Func t ion u s e s i n v e r s e t rans fo rming sampl ing f o r the g ene ra t i on
’ o f random numbers us ing the Truncated Exponen t i a l d i s t r i b u t i o n
’ adapted f o r OSIAT .
’ @param n o f random numbers to ge gene ra t ed
’ @param e x p o n e n t i a l r a t e parameter f o r the e x p o n e n t i a l s e c t i o n
’ @param t h r e s h o l d d e l i m i t i n g the t runca t ed d i s t r i b u t i o n s e c t i o n s
’ @param acp , c o r r e c t s a c i t i v i t y −induced d e v i a t i o n s
’ @return v e c t o r with random v a l u e s
’ @export
rexp . t run <− function (x , rate , thres , acp){

p <− runi f (x)
r <− qexp . t run (p , rate , thres , acp)
return (r)

}

C.3 Weibull-based OSIAT model for OWL

R implementation of the Weibull-based OSIAT model for OWL defined in Sec-
tion 4.4.4, Equation (4.4).

’ Cumulat ive P r o b a b i l i t y Func t ion f o r Truncated Weibu l l
’
’ C a l c u l a t e s p r o b a b i l i t y f o r g i v en v e c t o r x us ing the
’ t run ca t ed w e i b u l l d i s t r i b u t i o n a d j u s t e d f o r
’ OSIAT mode l l ing .
’ @param x v e c t o r o f v a l u e s which p r o b a b i l i t y w i l l be c a l c u l a t e d
’ @param shape parameter f o r Weibu l l d i s t r i b u t i o n s e c t i o n
’ @param s c a l e parameter f o r Weibu l l d i s t r i b u t i o n s e c t i o n
’ @param t h r e s h o l d d e l i m i t i n g the t runca t ed d i s t r i b u t i o n s e c t i o n s
’ @param acp , c o r r e c t s a c i t i v i t y −induced d e v i a t i o n s
’ @return v e c t o r with the p r o b a b i l i t y v a l u e s
’ @export
pweibull . t run <− function (x , shape , scale , t h r e s =0.5 , acp=1){

r <− sapply (x ,
pweibull . t run . aux ,
shape=shape ,
scale=scale ,
t h r e s=thres ,
acp=acp)

return (r)
}

C.3 Weibull-based OSIAT model for OWL 115

’ A u x i l i a r y f u n c t i o n f o r pwe i bu l l . t run
’
’ Th i s f u n c t i o n implements the pwe i bu l l . t run l o g i c , a l l ow ing to
’ use sapp l y f o r b e t t e r per formance .
pweibull . t run . aux <− function (x , shape , scale , t h r e s =0.5 , acp=1){

i f (x<th re s){
r <− pweibull (x , shape , scale) * acp

} else {
r <− 1

}
return (r)

}

’ Quant i l e f u n c t i o n f o r Truncated Weibu l l d i s t r i b u t i o n
’
’ @param q v e c t o r o f q u a n t i l e s to be c a l c u l a t e d
’ @param shape Weibu l l shape parameter f o r the Weibu l l s e c t i o n
’ @param s c a l e Weibu l l s c a l e parameter f o r the Weibu l l s e c t i o n
’ @param t h r e s h o l d d e l i m i t i n g the t runca t ed d i s t r i b u t i o n s e c t i o n s
’ @param acp , c o r r e c t s a c i t i v i t y −induced d e v i a t i o n s
’ @return v e c t o r with q u a n t i l e v a l u e s
’ @export
qweibull . t run <− function (q , shape , scale , thres , acp){

r <− sapply (q ,
qweibull . t run . aux ,
shape=shape ,
scale=scale ,
t h r e s=thres ,
acp=acp)

return (r)
}

’ A u x i l i a r y f u n c t i o n f o r qw e i b u l l . t run
’
’ Th i s f u n c t i o n implements the qw e i b u l l . t run l o g i c , a l l ow ing to
’ use sapp l y f o r b e t t e r per formance .
qweibull . t run . aux <− function (q , shape , scale , thres , acp){

i f (q < thre s){
y <− qweibull (q/acp , shape , scale)

} else {
y <− t h r e s

}
return (y)

}

’ Random number g ene ra to r f o r Truncated Weibu l l d i s t r i b u t i o n
’
’ Func t ion u s e s i n v e r s e t rans fo rming sampl ing f o r the g ene ra t i on
’ o f random numbers us ing the Truncated Weibu l l d i s t r i b u t i o n
’ adapted f o r OSIAT .
’ @param n o f random numbers to ge gene ra t ed
’ @param shape Weibu l l shape parameter f o r the Weibu l l s e c t i o n
’ @param s c a l e Weibu l l s c a l e parameter f o r the Weibu l l s e c t i o n
’ @param t h r e s h o l d d e l i m i t i n g the t runca t ed d i s t r i b u t i o n s e c t i o n s

116 Chapter C R implementation of OWL network traffic models and discrepancy metrics

’ @param acp , c o r r e c t s a c i t i v i t y −induced d e v i a t i o n s
’ @return v e c t o r with random v a l u e s
’ @export
rweibull . t run <− function (x , shape , scale , thres , acp){

p <− runi f (x)
r <− qweibull . t run (p , shape , scale , thres , acp)
return (r)

}

C.4 Statistical discrepancy metrics

R implementation of the statistical discrepancy metrics λ2 and λ̂2 described in
Section 3.8.2. This implementation is distribution agnostic, receiving as parameter
a couple of data sets, functions representing the cumulative distribution function
(CDF) of a function or any combination of the former two. The functions will proceed
to calculate the statistical discrepancy between the data sets or distributions.

’ C a l c u l a t e s [hat] lambda square GoF me t r i c f o r a g i v en e m p i r i c a l
’ data s e t and Cumulat ive D i s t r i b u t i o n Func t ion (CDF) .
’
’ The f u n c t i o n measures the Goodness o f F i t between the e m p i r i c a l
’ data and the proposed CDF . The parameters de te rmine how the
’ lambda c a l c u l a t i o n i s performed , as w e l l as i n c l u d i n g the
’ parameters tha t de te rmine the behav iour o f the g i v en CDF .
’ @param emp . data v e c t o r with e m p i r i c a l measurements
’ @param the . d i s t R f u n c t i o n mode l l ing the CDF f o r the
’ t h e o r e t i c a l d i s t r i b u t i o n which GoF f o r the emp . data
’ w i l l be e va lua t ed
’ @param breaks de t e rmine s the number o f " breaks " or b in s to be
’ used wi th in the hat lambda square a lgor i thm . −1
’ i n d i c a t e s the f u n c t i o n w i l l c a l c u l a t e the opt imal
’ number o f b in s f o r the g i v en parameters
’ @param mode s w i t c h s between s tandard lambda square and hat
’ lambda square m e t r i c s
’ @param . . . a r b i t r a r y l i s t o f parameters r e q u i r e d by the
’ the . d i s t f unc t i on , i . e . e x p o n e n t i a l ra te , Weibul l ’ s
’ shape and shape
’ @return t u p l e o f v a l u e s ([hat] lambda square , var)
’ @examples
’ > x <− rexp (1000 , r a t e =5)
’ > lambda . square (x , pexp , −1, " hat " , r a t e =5)
’ [1] 0.9155332 3.5994222
’ @export
lambda . square <− function (emp . data , the . d i s t , breaks , mode , . . .) {

c a l c u l a t e b in width [Pax94]
min . aux <− min(emp . data)
max . aux <− max(emp . data)

i f (breaks == −1){
opt imal width ac co rd ing to [Bor00] and [Pax94]
w <− 3.49 * sd (emp . data)* (length (emp . data))^(−1/3)

C.4 Statistical discrepancy metrics 117

number o f b in s
n . b ins <− ce i l i ng ((max . aux − min . aux) / w)
f i x the bin width
w.new <− (max . aux − min . aux) / n . b ins
b ins <− seq (min . aux , max . aux , by=w.new)

} else {
w <− (max . aux − min . aux) / breaks
b ins <− seq (min . aux , max . aux , by=w)

}

c a l c u l a t e s t a r t and end f o r bin
bin . a <− b ins[−length (b ins)]
bin . b <− b ins [−1]
c a l c u l a t e d e x p e c t e d (t h e o r e t i c a l) v a l u e s
z <− the . d i s t (bin . b , . . .) − the . d i s t (bin . a , . . .)
obse r v ed / e m p i r i c a l v a l u e s

y <− (h i s t (emp . data , breaks=bins , plot=FALSE))$counts ;

i f (mode == " d e f a u l t ") {
i f (min(z) == 0) {

y <− y [z !=0]
z <− z [z !=0]

}
} else {

i f (min(y) == 0){
y <− y [y !=0]
z <− z [y !=0]

}
}

number o f o b s e r v a t i o n s and b in s
n . obs <− sum(y)

n . b ins <− length (z)
number o f o b s e r v a t i o n s by t h e o r e t i c a l f r e q u e n c i e s
e x p e c t e d v a l u e s a c co rd ing t h e o r e t i c a l d i s t r i b u t i o n
npi <− n . obs * z ;

i f (mode == " d e f a u l t ") {
x2 <− sum((y − npi)^2 / npi)
K <− sum((y − npi) / npi)
D <− y − npi
E <− npi

} else {
t h i s i s hat lambda square

x2 <− sum((npi − y)^2 /y)
K <− sum((npi − y) / y)
D <− npi −y
E <− y

}

n . param <− nargs () − 4
df <− n . b ins − 1 − n . param
lambda2 <− (x2 −K −df) / (n . obs−1)
lambda−square va r i an c e
T <− sum((D̂ 3 −2*D*E + (5/2)* (D^2) + (3/2)*y) / (E^2))

aux <− (2*df + 4*n . obs* lambda2 + 4*n . obs* lambda2 2̂ + 4*T)
var . lambda2 <− aux / n . obs
return (c (lambda2 , var . lambda2))

}

118 Chapter C R implementation of OWL network traffic models and discrepancy metrics

DDerivatives from the analysis of
Open Wonderland network traffic

D.1 ECDF and fitting CDFs for OSIAT

The present section contains the empirical cumulative distribution function (ECDF)
plots for the object synchronisation inter-arrival time (OSIAT) values measured in
the testing sessions from testbeds Open Wonderland TestBed 1 (OWTB1) and Open
Wonderland TestBed 2 (OWTB2). Each ECDF plot is accompanied by the cumulative
distribution function (CDF) curves for the proposed exponential and Weibull-based
OSIAT models (Equations (4.3) and (4.4) respectively).

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ECDF for Object Sync. IAT, Client 01

Object Sync. IAT(s)

F
(x

)

0.5002s

ECDF
Exp.T. rate=4.81
Wei.T. k=1.05 scale=0.21

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ECDF for Object Sync. IAT, Client 02

Object Sync. IAT(s)

F
(x

)

0.5021s

ECDF
Exp.T. rate=4.86
Wei.T. k=0.97 scale=0.20

Fig. D.1.: ECDFs OSIAT values, 2-player session, OWTB1

119

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ECDF for Object Sync. IAT, Client 01

Object Sync. IAT(s)

F
(x

)

0.5018s

ECDF
Exp.T. rate=4.57
Wei.T. k=1.05 scale=0.22

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ECDF for Object Sync. IAT, Client 02

Object Sync. IAT(s)

F
(x

)

0.5026s

ECDF
Exp.T. rate=4.76
Wei.T. k=0.98 scale=0.21

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ECDF for Object Sync. IAT, Client 03

Object Sync. IAT(s)

F
(x

)

0.5011s

ECDF
Exp.T. rate=3.77
Wei.T. k=1.19 scale=0.28

Fig. D.2.: ECDFs OSIAT values, 3-player session, OWTB1

120 Chapter D Derivatives from the analysis of Open Wonderland network traffic

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ECDF for Object Sync. IAT, Client 01

Object Sync. IAT(s)

F
(x

)

0.5013s

ECDF
Exp.T. rate=4.34
Wei.T. k=1.14 scale=0.24

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ECDF for Object Sync. IAT, Client 02

Object Sync. IAT(s)

F
(x

)

0.5020s

ECDF
Exp.T. rate=4.35
Wei.T. k=0.97 scale=0.23

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ECDF for Object Sync. IAT, Client 03

Object Sync. IAT(s)

F
(x

)

0.5013s

ECDF
Exp.T. rate=3.71
Wei.T. k=1.32 scale=0.29

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ECDF for Object Sync. IAT, Client 04

Object Sync. IAT(s)

F
(x

)

0.5015s

ECDF
Exp.T. rate=4.40
Wei.T. k=0.62 scale=0.19

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ECDF for Object Sync. IAT, Client 05

Object Sync. IAT(s)

F
(x

)

0.5010s

ECDF
Exp.T. rate=3.35
Wei.T. k=1.23 scale=0.31

Fig. D.3.: ECDFs OSIAT values, 5-player session, OWTB1

D.1 ECDF and fitting CDFs for OSIAT 121

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ECDF for Object Sync. IAT, Client 01

Object Sync. IAT(s)

F
(x

)

0.5010s

ECDF
Exp.T. rate=4.80
Wei.T. k=0.55 scale=0.15

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ECDF for Object Sync. IAT, Client 02

Object Sync. IAT(s)

F
(x

)

0.5010s

ECDF
Exp.T. rate=4.59
Wei.T. k=0.57 scale=0.16

Fig. D.4.: ECDF plots for OSIAT, 2-player session, OWTB2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ECDF for Object Sync. IAT, Client 01

Object Sync. IAT(s)

F
(x

)

0.5010s

ECDF
Exp.T. rate=4.58
Wei.T. k=0.55 scale=0.16

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ECDF for Object Sync. IAT, Client 02

Object Sync. IAT(s)

F
(x

)

0.5010s

ECDF
Exp.T. rate=4.64
Wei.T. k=0.54 scale=0.15

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ECDF for Object Sync. IAT, Client 03

Object Sync. IAT(s)

F
(x

)

0.5010s

ECDF
Exp.T. rate=4.50
Wei.T. k=0.57 scale=0.17

Fig. D.5.: ECDF plots for OSIAT, 3-player session, OWTB2

122 Chapter D Derivatives from the analysis of Open Wonderland network traffic

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ECDF for Object Sync. IAT, Client 01

Object Sync. IAT(s)

F
(x

)

0.5010s

ECDF
Exp.T. rate=4.84
Wei.T. k=0.51 scale=0.14

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ECDF for Object Sync. IAT, Client 02

Object Sync. IAT(s)

F
(x

)

0.5010s

ECDF
Exp.T. rate=4.63
Wei.T. k=0.53 scale=0.15

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ECDF for Object Sync. IAT, Client 03

Object Sync. IAT(s)

F
(x

)

0.5010s

ECDF
Exp.T. rate=4.65
Wei.T. k=0.52 scale=0.15

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ECDF for Object Sync. IAT, Client 04

Object Sync. IAT(s)

F
(x

)

0.5010s

ECDF
Exp.T. rate=4.78
Wei.T. k=0.55 scale=0.15

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ECDF for Object Sync. IAT, Client 05

Object Sync. IAT(s)

F
(x

)

0.5010s

ECDF
Exp.T. rate=4.72
Wei.T. k=0.54 scale=0.15

Fig. D.6.: ECDF plots for OSIAT, 5-player session, OWTB2

D.1 ECDF and fitting CDFs for OSIAT 123

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ECDF for Object Sync. IAT, Client 01

Object Sync. IAT(s)

F
(x

)

0.5010s

ECDF
Exp.T. rate=4.77
Wei.T. k=0.50 scale=0.14

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ECDF for Object Sync. IAT, Client 02

Object Sync. IAT(s)

F
(x

)

0.5010s

ECDF
Exp.T. rate=4.79
Wei.T. k=0.50 scale=0.14

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ECDF for Object Sync. IAT, Client 03

Object Sync. IAT(s)

F
(x

)

0.5010s

ECDF
Exp.T. rate=4.77
Wei.T. k=0.49 scale=0.14

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ECDF for Object Sync. IAT, Client 04

Object Sync. IAT(s)

F
(x

)

0.5010s

ECDF
Exp.T. rate=4.80
Wei.T. k=0.52 scale=0.14

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ECDF for Object Sync. IAT, Client 05

Object Sync. IAT(s)

F
(x

)

0.5010s

ECDF
Exp.T. rate=4.79
Wei.T. k=0.49 scale=0.14

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ECDF for Object Sync. IAT, Client 06

Object Sync. IAT(s)

F
(x

)

0.5010s

ECDF
Exp.T. rate=4.69
Wei.T. k=0.50 scale=0.14

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ECDF for Object Sync. IAT, Client 07

Object Sync. IAT(s)

F
(x

)

0.5010s

ECDF
Exp.T. rate=4.93
Wei.T. k=0.49 scale=0.13

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ECDF for Object Sync. IAT, Client 08

Object Sync. IAT(s)

F
(x

)

0.5010s

ECDF
Exp.T. rate=4.70
Wei.T. k=0.52 scale=0.15

Fig. D.7.: ECDF plots for OSIAT, 8-player session, OWTB2

124 Chapter D Derivatives from the analysis of Open Wonderland network traffic

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ECDF for Object Sync. IAT, Client 01

Object Sync. IAT(s)

F
(x

)
0.5010s

ECDF
Exp.T. rate=4.80
Wei.T. k=0.46 scale=0.13

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ECDF for Object Sync. IAT, Client 02

Object Sync. IAT(s)

F
(x

)

0.5010s

ECDF
Exp.T. rate=5.10
Wei.T. k=0.47 scale=0.12

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ECDF for Object Sync. IAT, Client 03

Object Sync. IAT(s)

F
(x

)

0.5010s

ECDF
Exp.T. rate=4.72
Wei.T. k=0.48 scale=0.14

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ECDF for Object Sync. IAT, Client 04

Object Sync. IAT(s)
F

(x
)

0.5010s

ECDF
Exp.T. rate=4.77
Wei.T. k=0.51 scale=0.14

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ECDF for Object Sync. IAT, Client 05

Object Sync. IAT(s)

F
(x

)

0.5010s

ECDF
Exp.T. rate=4.63
Wei.T. k=0.45 scale=0.13

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ECDF for Object Sync. IAT, Client 06

Object Sync. IAT(s)

F
(x

)

0.5010s

ECDF
Exp.T. rate=4.73
Wei.T. k=0.44 scale=0.13

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ECDF for Object Sync. IAT, Client 07

Object Sync. IAT(s)

F
(x

)

0.5010s

ECDF
Exp.T. rate=4.86
Wei.T. k=0.45 scale=0.13

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ECDF for Object Sync. IAT, Client 08

Object Sync. IAT(s)

F
(x

)

0.5010s

ECDF
Exp.T. rate=4.86
Wei.T. k=0.47 scale=0.13

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ECDF for Object Sync. IAT, Client 09

Object Sync. IAT(s)

F
(x

)

0.5010s

ECDF
Exp.T. rate=4.83
Wei.T. k=0.47 scale=0.13

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ECDF for Object Sync. IAT, Client 10

Object Sync. IAT(s)

F
(x

)

0.5010s

ECDF
Exp.T. rate=4.72
Wei.T. k=0.49 scale=0.14

Fig. D.8.: ECDF plots for OSIAT, 10-player session, OWTB2

D.1 ECDF and fitting CDFs for OSIAT 125

D.2 Autocorrelation functions for OSIAT

The present section contains the autocorrelation function (ACF) plots for the OSIAT
values measured in the experimental sessions performed in the testbeds OWTB1 and
OWTB2.

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

ACF for Object Sync. IAT, Client 01

0 5 10 15 20 25 30 35
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
Lag

A
C

F

ACF for Object Sync. IAT, Client 02

Fig. D.9.: ACF for OSIAT, 2-player session, OWTB1

0 5 10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

ACF for Object Sync. IAT, Client 01

0 5 10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

ACF for Object Sync. IAT, Client 02

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

ACF for Object Sync. IAT, Client 03

Fig. D.10.: ACF for OSIAT, 3-player session, OWTB1

126 Chapter D Derivatives from the analysis of Open Wonderland network traffic

0 5 10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

ACF for Object Sync. IAT, Client 01

0 5 10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

ACF for Object Sync. IAT, Client 02

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

ACF for Object Sync. IAT, Client 03

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

ACF for Object Sync. IAT, Client 04

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

ACF for Object Sync. IAT, Client 05

Fig. D.11.: ACF for OSIAT, 5-player session, OWTB1

D.2 Autocorrelation functions for OSIAT 127

0 5 10 15 20 25 30 35

−
0.

2
0.

2
0.

6
1.

0

Lag

A
C

F
ACF for Object Sync. IAT, Client 01

0 5 10 15 20 25 30 35

−
0.

2
0.

2
0.

6
1.

0

Lag

A
C

F

ACF for Object Sync. IAT, Client 02

Fig. D.12.: ACF for OSIAT, 2-player session, OWTB2

0 5 10 15 20 25 30 35

−
0.

2
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

ACF for Object Sync. IAT, Client 01

0 5 10 15 20 25 30 35

−
0.

2
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F
ACF for Object Sync. IAT, Client 02

0 5 10 15 20 25 30 35

−
0.

2
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

ACF for Object Sync. IAT, Client 03

Fig. D.13.: ACF for OSIAT, 3-player session, OWTB2

128 Chapter D Derivatives from the analysis of Open Wonderland network traffic

0 5 10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

ACF for Object Sync. IAT, Client 01

0 5 10 15 20 25 30 35

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

ACF for Object Sync. IAT, Client 02

0 5 10 15 20 25 30 35

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

ACF for Object Sync. IAT, Client 03

0 5 10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

ACF for Object Sync. IAT, Client 04

0 5 10 15 20 25 30 35

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

ACF for Object Sync. IAT, Client 05

Fig. D.14.: ACF for OSIAT, 5-player session, OWTB2

D.2 Autocorrelation functions for OSIAT 129

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

ACF for Object Sync. IAT, Client 01

0 5 10 15 20 25 30 35

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

ACF for Object Sync. IAT, Client 02

0 5 10 15 20 25 30 35

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

ACF for Object Sync. IAT, Client 03

0 5 10 15 20 25 30 35

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

ACF for Object Sync. IAT, Client 04

0 5 10 15 20 25 30 35

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

ACF for Object Sync. IAT, Client 05

0 5 10 15 20 25 30 35

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

ACF for Object Sync. IAT, Client 06

0 5 10 15 20 25 30 35

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

ACF for Object Sync. IAT, Client 07

0 5 10 15 20 25 30 35

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

ACF for Object Sync. IAT, Client 08

Fig. D.15.: ACF for OSIAT, 8-player session, OWTB2

130 Chapter D Derivatives from the analysis of Open Wonderland network traffic

0 5 10 15 20 25 30 35

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

ACF for Object Sync. IAT, Client 01

0 5 10 15 20 25 30 35

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

ACF for Object Sync. IAT, Client 02

0 5 10 15 20 25 30 35

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

ACF for Object Sync. IAT, Client 03

0 5 10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag
A

C
F

ACF for Object Sync. IAT, Client 04

0 5 10 15 20 25 30 35

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

ACF for Object Sync. IAT, Client 05

0 5 10 15 20 25 30 35

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

ACF for Object Sync. IAT, Client 06

0 5 10 15 20 25 30 35

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

ACF for Object Sync. IAT, Client 07

0 5 10 15 20 25 30 35

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

ACF for Object Sync. IAT, Client 08

0 5 10 15 20 25 30 35

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

ACF for Object Sync. IAT, Client 09

0 5 10 15 20 25 30 35

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

ACF for Object Sync. IAT, Client 10

Fig. D.16.: ACF for OSIAT, 10-player session, OWTB2

D.2 Autocorrelation functions for OSIAT 131

D.3 Tail quantiles for OSIAT

The present section contains the Table D.1 showing the percentiles from Q95 to Q99

for the OSIAT values from OWTB2.

Tab. D.1.: Quantiles for OSIAT, OWTB2 sessions

Session Client Q0.95 Q0.96 Q0.97 Q0.98 Q0.99

1-client 1 0.5011 0.5011 0.5011 0.5011 0.5012

2-client
1 0.5011 0.5011 0.5011 0.5014 0.8761
2 0.5011 0.5011 0.5012 0.5015 0.8874

3-client
1 0.5011 0.5012 0.5014 0.8467 1.0020
2 0.5011 0.5012 0.5021 0.8570 1.0021
3 0.5012 0.5012 0.5039 0.7525 1.0020

4-client

1 0.5012 0.5012 0.6374 0.9036 1.0021
2 0.5012 0.5014 0.7634 1.0012 1.0021
3 0.5012 0.5012 0.6161 0.9030 1.0020
4 0.5012 0.5016 0.7210 1.0015 1.0021

5-client

1 0.5016 0.6682 0.8812 1.0020 1.0022
2 0.5012 0.6077 0.8323 1.0019 1.0021
3 0.5013 0.6620 0.8820 1.0020 1.0021
4 0.5013 0.6602 0.9151 1.0020 1.0021
5 0.5013 0.7945 0.9563 1.0020 1.0026

6-client

1 0.5012 0.5914 0.8489 1.0020 1.0021
2 0.5012 0.5828 0.8298 1.0018 1.0021
3 0.5012 0.6014 0.9441 1.0020 1.0022
4 0.5012 0.7122 0.9197 1.0019 1.0021
5 0.5012 0.5991 0.9102 1.0019 1.0022
6 0.5012 0.5044 0.8209 1.0015 1.0021

7-client

1 0.5013 0.6584 1.0014 1.0021 1.1838
2 0.5013 0.7243 0.9919 1.0021 1.2692
3 0.5029 0.7989 1.0020 1.0022 1.5029
4 0.5013 0.7990 1.0020 1.0022 1.5030
5 0.5013 0.6951 1.0019 1.0021 1.3579
6 0.5012 0.6285 0.9846 1.0020 1.3066
7 0.5017 0.7928 1.0010 1.0021 1.3921

132 Chapter D Derivatives from the analysis of Open Wonderland network traffic

Tab. D.1.: Quantiles for OSIAT, OWTB2 sessions

Session Client Q0.95 Q0.96 Q0.97 Q0.98 Q0.99

8-client

1 0.5013 0.6898 0.9661 1.0021 1.4502
2 0.5013 0.5842 0.9394 1.0020 1.2642
3 0.5016 0.7414 1.0017 1.0021 1.2715
4 0.5012 0.6075 0.9892 1.0020 1.2969
5 0.5013 0.6614 1.0018 1.0021 1.4325
6 0.5013 0.6814 0.9305 1.0020 1.4570
7 0.5014 0.8151 1.0017 1.0022 1.4040
8 0.5014 0.8001 1.0020 1.0022 1.3933

9-client

1 0.5013 0.7713 1.0009 1.0021 1.3308
2 0.5055 0.8814 1.0020 1.0085 1.4663
3 0.5013 0.7494 1.0020 1.0021 1.3609
4 0.5013 0.7735 1.0019 1.0023 1.3463
5 0.5074 0.8006 1.0019 1.0157 1.4069
6 0.5013 0.6734 1.0007 1.0021 1.3046
7 0.5013 0.6439 1.0019 1.0022 1.2888
8 0.5088 0.7630 1.0011 1.0020 1.1466
9 0.5013 0.6391 0.9940 1.0022 1.2887

10-client

1 0.7465 0.9848 1.0021 1.1544 1.5031
2 0.6953 1.0018 1.0021 1.2069 1.5029
3 0.5665 0.9171 1.0020 1.0625 1.5030
4 0.6937 0.9626 1.0021 1.0417 1.4494
5 0.5458 0.9747 1.0020 1.2116 1.5031
6 0.5480 0.9319 1.0020 1.0022 1.5030
7 0.6248 0.9014 1.0020 1.0584 1.4882
8 0.6353 0.9501 1.0021 1.1182 1.5030
9 0.6784 1.0009 1.0021 1.1058 1.5028

10 0.6236 0.9826 1.0020 1.0817 1.5030

D.3 Tail quantiles for OSIAT 133

D.4 Activity Correction Parameter for OSIAT
models

The present section contains the Tables D.2 and D.3 of Activity Correction Factor
values (Cacp, Section 4.4.4) calculated for each one of the experimental sessions
from OWTB1 and OWTB2 respectively.

Tab. D.2.: Cacp values for exponential and Weibull-based models, OWTB1

Session Client acpexp acpwei

2-client
1 0.95 0.94
2 0.96 0.97

3-client
1 0.94 0.93
2 0.95 0.95
3 0.83 0.81

5-client

1 0.91 0.90
2 0.92 0.92
3 0.84 0.81
4 0.87 0.91
5 0.79 0.78

Tab. D.3.: Cacp values for exponential and Weibull-base models, OWTB2

Session Client acpexp acpwei

1-client 1 0.82 0.87

2-client
1 0.82 0.87
2 0.80 0.85

3-client
1 0.79 0.84
2 0.79 0.84
3 0.78 0.83

4-client

1 0.79 0.84
2 0.79 0.84
3 0.79 0.84
4 0.79 0.84

5-client

1 0.79 0.84
2 0.77 0.82
3 0.78 0.83
4 0.79 0.84
5 0.79 0.83

134 Chapter D Derivatives from the analysis of Open Wonderland network traffic

Tab. D.3.: Cacp values for exponential and Weibull-base models, OWTB2

Session Client acpexp acpwei

6-client

1 0.77 0.82
2 0.79 0.84
3 0.78 0.84
4 0.78 0.83
5 0.79 0.85
6 0.79 0.84

7-client

1 0.78 0.84
2 0.79 0.84
3 0.77 0.82
4 0.78 0.83
5 0.78 0.83
6 0.79 0.85
7 0.78 0.83

8-client

1 0.78 0.84
2 0.79 0.85
3 0.78 0.83
4 0.79 0.84
5 0.78 0.84
6 0.78 0.83
7 0.80 0.85
8 0.78 0.84

9-client

1 0.79 0.85
2 0.78 0.84
3 0.79 0.84
4 0.79 0.84
5 0.78 0.84
6 0.80 0.86
7 0.78 0.83
8 0.79 0.85
9 0.80 0.85

D.4 Activity Correction Parameter for OSIAT models 135

Tab. D.3.: Cacp values for exponential and Weibull-base models, OWTB2

Session Client acpexp acpwei

10-client

1 0.78 0.83
2 0.79 0.85
3 0.78 0.83
4 0.78 0.84
5 0.77 0.83
6 0.77 0.83
7 0.78 0.84
8 0.78 0.84
9 0.78 0.84

10 0.77 0.83

D.5 MLE parameters for OSIAT models

The present section contains the Tables D.4 and D.6, which contain the values
for λ rate for the exponential-based distributions calculated for OSIAT using maxi-
mum likelihood estimation (MLE) on the traffic captured in OWTB1 and OWTB2
respectively. Tables D.5 and D.7 contain the values for λ scale and κ shape for the
Weibull-based distributions calculated using MLE on the traffic captured in OWTB1
and OWTB2 respectively.

Tab. D.4.: MLE exponential, λ rate for OWTB1 sessions

Session Client λ σ loglik

2-client
1 4.36 0.09 1165.42
2 4.52 0.09 1336.87

3-client
1 3.83 0.08 881.08
2 4.50 0.08 1582.61
3 2.99 0.07 198.52

5-client

1 3.74 0.07 898.33
2 3.93 0.07 1092.78
3 2.68 0.06 -28.49
4 3.15 0.06 360.67
5 2.57 0.06 -111.05

136 Chapter D Derivatives from the analysis of Open Wonderland network traffic

Tab. D.5.: MLE Weibull, κ shape and λ scale for OWTB1 sessions

Session Client κ σκ λ σλ loglik

2-client
1 0.94 0.01 0.22 0.00 1174.80
2 0.89 0.01 0.21 0.00 1367.35

3-client
1 0.86 0.01 0.24 0.01 950.09
2 0.96 0.01 0.22 0.00 1587.37
3 0.89 0.01 0.31 0.01 236.05

5-client

1 0.95 0.01 0.26 0.01 907.20
2 0.88 0.01 0.24 0.01 1135.38
3 0.87 0.01 0.34 0.01 27.47
4 0.59 0.01 0.21 0.01 1194.90
5 0.85 0.01 0.35 0.01 -30.30

Tab. D.6.: MLE exponential λ rate for OWTB2 sessions

Session C λ σ loglik

1-client 1 3.90 0.07 1015.6

2-client
1 4.49 0.08 1624.5
2 4.33 0.08 1456.2

3-client
1 4.19 0.08 1305.9
2 4.26 0.08 1379.5
3 4.15 0.08 1265.6

4-client

1 4.20 0.08 1315.3
2 4.13 0.08 1240.8
3 4.26 0.08 1379.5
4 4.21 0.08 1324.7

5-client

1 4.06 0.08 1174.4
2 4.05 0.08 1164.2
3 4.04 0.07 1148.5
4 4.03 0.07 1145.0
5 4.01 0.07 1116.9

6-client

1 4.03 0.07 1140.3
2 4.18 0.08 1288.0
3 4.13 0.08 1245.4
4 4.06 0.08 1174.0
5 4.14 0.08 1252.1
6 4.17 0.08 1287.7

D.5 MLE parameters for OSIAT models 137

Tab. D.6.: MLE exponential λ rate for OWTB2 sessions

Session C λ σ loglik

7-client

1 4.05 0.08 1158.6
2 4.09 0.08 1196.5
3 3.83 0.07 947.4
4 3.84 0.07 949.3
5 3.91 0.07 1022.3
6 4.08 0.08 1186.4
7 3.99 0.07 1103.5

8-client

1 3.35 0.07 501.34
2 4.08 0.08 1190.84
3 3.99 0.07 1101.46
4 4.02 0.07 1131.93
5 4.02 0.07 1134.74
6 3.97 0.07 1084.86
7 4.10 0.08 1211.33
8 3.93 0.07 1038.27

9-client

1 4.09 0.08 1202.88
2 3.94 0.07 1053.50
3 4.04 0.07 1148.73
4 3.99 0.07 1097.91
5 3.95 0.07 1063.74
6 4.13 0.08 1246.69
7 3.96 0.07 1067.68
8 4.04 0.07 1153.53
9 4.12 0.08 1232.84

10-client

1 3.78 0.07 895.47
2 4.02 0.07 1134.87
3 3.85 0.07 959.81
4 3.73 0.07 852.60
5 3.76 0.07 876.66
6 3.86 0.07 977.42
7 3.92 0.07 1037.01
8 3.90 0.07 1016.04
9 3.87 0.07 983.40

10 3.83 0.07 940.43

138 Chapter D Derivatives from the analysis of Open Wonderland network traffic

Tab. D.7.: MLE Weibull, κ shape and λ scale for OWTB2 sessions

Session Client κ σκ λ σλ loglik

1-client 1 0.55 0.01 0.16 0.01 2230.3

2-client
1 0.54 0.01 0.16 0.01 2635.9
2 0.57 0.01 0.17 0.01 2282.2

3-client
1 0.55 0.01 0.17 0.01 2219.7
2 0.54 0.01 0.17 0.01 2358.7
3 0.57 0.01 0.18 0.01 2042.2

4-client

1 0.53 0.01 0.16 0.01 2377.6
2 0.55 0.01 0.17 0.01 2131.0
3 0.55 0.01 0.17 0.01 2308.2
4 0.54 0.01 0.17 0.01 2304.7

5-client

1 0.51 0.01 0.16 0.01 2330.0
2 0.53 0.01 0.17 0.01 2172.5
3 0.52 0.01 0.17 0.01 2198.2
4 0.54 0.01 0.17 0.01 2111.8
5 0.54 0.01 0.18 0.01 2046.2

6-client

1 0.53 0.01 0.17 0.01 2090.9
2 0.52 0.01 0.16 0.01 2398.9
3 0.50 0.01 0.16 0.01 2437.4
4 0.54 0.01 0.17 0.01 2149.0
5 0.51 0.01 0.16 0.01 2408.7
6 0.53 0.01 0.17 0.01 2293.5

7-client

1 0.50 0.01 0.16 0.01 2333.1
2 0.50 0.01 0.16 0.01 2434.3
3 0.50 0.01 0.17 0.01 2045.8
4 0.51 0.01 0.17 0.01 2064.8
5 0.50 0.01 0.17 0.01 2171.2
6 0.48 0.01 0.16 0.01 2543.8
7 0.50 0.01 0.16 0.01 2275.6

8-client

1 0.48 0.01 0.16 0.01 1953.6
2 0.49 0.01 0.16 0.01 2446.1
3 0.49 0.01 0.16 0.01 2362.2
4 0.52 0.01 0.17 0.01 2239.8
5 0.49 0.01 0.16 0.01 2393.7
6 0.49 0.01 0.16 0.01 2301.6
7 0.49 0.01 0.16 0.01 2535.7
8 0.51 0.01 0.17 0.01 2137.5

D.5 MLE parameters for OSIAT models 139

Tab. D.7.: MLE Weibull, κ shape and λ scale for OWTB2 sessions

Session Client κ σκ λ σλ loglik

9-client

1 0.48 0.01 0.15 0.01 2583.5
2 0.49 0.01 0.16 0.01 2339.9
3 0.48 0.01 0.16 0.01 2484.7
4 0.50 0.01 0.16 0.01 2323.6
5 0.44 0.01 0.15 0.01 2729.1
6 0.44 0.01 0.14 0.01 2965.8
7 0.49 0.01 0.17 0.01 2296.5
8 0.48 0.01 0.16 0.01 2517.1
9 0.49 0.01 0.15 0.01 2584.1

10-client

1 0.46 0.01 0.16 0.01 2391.4
2 0.47 0.01 0.15 0.01 2670.6
3 0.48 0.01 0.17 0.01 2238.8
4 0.50 0.01 0.17 0.01 2004.4
5 0.46 0.01 0.16 0.01 2339.2
6 0.44 0.01 0.15 0.01 2633.3
7 0.45 0.01 0.15 0.01 2615.5
8 0.46 0.01 0.16 0.01 2492.2
9 0.47 0.01 0.16 0.01 2375.1

10 0.49 0.01 0.17 0.01 2181.8

140 Chapter D Derivatives from the analysis of Open Wonderland network traffic

D.6 Q-Q plots for OSIAT values

The present section contains a selection of Q-Q plots comparing the quantiles for the
OSIAT values from OWTB1 and OWTB2 sessions against the fitting OSIAT models
proposed in the present work.

0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

Q−Q plot for Object Sync. IAT, Client 01

Empirical quantiles

M
od

el
 q

ua
nt

ile
s

●●●●●
●●●●●

●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●

●●●
●●●●●●●

●●●●●●●
●●

●●
●●●

●●
●● ●●

●●●●●●
●

●
●
●

●
●

●
●

●
●

●

●

●

●

Model Exp. rate=4.81, acp=0.9
Model Wei. k=1.05, scale=0.21, acp=0.9

0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

Q−Q plot for Object Sync. IAT, Client 02

Empirical quantiles

M
od

el
 q

ua
nt

ile
s

●●●●●●
●●●●●

●●●●●
●●●●●

●●●●●●
●●●●
●●●●●●●●●●

●●●●●●●
●●●

●●●●●●
● ●●●●●

●●
●●

●●●
●●

●●●●●
●●

●
●

●
●
●

●
●

●
●

●
●
●

●
●

●

●

●

Model Exp. rate=4.86, acp=1.0
Model Wei. k=0.97, scale=0.20, acp=1.0

Fig. D.17.: Q-Q for OSIAT models, 2-player session, OWTB1

0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

Q−Q plot for Object Sync. IAT, Client 01

Empirical quantiles

M
od

el
 q

ua
nt

ile
s

●●●
●●●●

●●●
●●●

●●●●●
●●●
●●●●●

●●●●
●●●●● ●●●

●●●
●●●●●●

●●●●●●●
●●

●●●
●●●

●●
●●●●●

●●●●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

Model Exp. rate=4.57, acp=0.9
Model Wei. k=1.05, scale=0.22, acp=0.9

0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

Q−Q plot for Object Sync. IAT, Client 02

Empirical quantiles

M
od

el
 q

ua
nt

ile
s

●●●●
●●●●

●●●●
●●●●●●●●

●●●●●●
●●●●

●●●
●●●●

●●●
●●●

●●●
●●

●●
●●

●●●●●●
●●

●● ●●
●●

●●●●●
●●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

Model Exp. rate=4.76, acp=1.0
Model Wei. k=0.98, scale=0.21, acp=1.0

0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

Q−Q plot for Object Sync. IAT, Client 03

Empirical quantiles

M
od

el
 q

ua
nt

ile
s

●●
●●●

●●●●
●●●

●●●
●●●●●

●●●●
●●●

●●●
●●●

●●●
●●●

●●●●●
●●●

●●
●●●●●●●

● ●●●●●●
●●

● ●●●●
●●●●●

●
●

●
●
●

●
●

●
●

●
●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

Model Exp. rate=3.77, acp=0.8
Model Wei. k=1.19, scale=0.28, acp=0.8

Fig. D.18.: Q-Q for OSIAT models, 3-player session, OWTB1

D.6 Q-Q plots for OSIAT values 141

0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

Q−Q plot for Object Sync. IAT, Client 01

Empirical quantiles

M
od

el
 q

ua
nt

ile
s

●●
●●
●●

●●
●●●

●●●●●
●●
●●●●●●●

●●
●● ●●●●●●

●●
●●●●●●●

●●
●●●●

●●●●
●●●●● ●●●

●●
●
●

●
●

●
●
●

●
●

●
●
●
●

●
●

●
●
●

●
●

●
●

●
●

●

●

●

●

●

●

Model Exp. rate=4.34, acp=0.9
Model Wei. k=1.14, scale=0.24, acp=0.9

0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

Q−Q plot for Object Sync. IAT, Client 02

Empirical quantiles

M
od

el
 q

ua
nt

ile
s

●●●
●●●
●●●
●●●

●●●
●●●●●

●●
●●●●●●●

●●
●●●●●●●●

●●●
●●●●●

●●
● ●●●●●

● ●●●
●

●
●
●

●
●

●
●

●
●
●

●
●

●
●
●
●

●
●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

Model Exp. rate=4.35, acp=0.9
Model Wei. k=0.97, scale=0.23, acp=0.9

0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

Q−Q plot for Object Sync. IAT, Client 03

Empirical quantiles

M
od

el
 q

ua
nt

ile
s

●
●●

●●●●●●●
●●
●●●

●●
●●●●●

●●●
●●●●●

●●
●●

●●●●●●
●●

●●●●●●●
●●●● ●●●

●●
●●

●●●● ●●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

Model Exp. rate=3.71, acp=0.8
Model Wei. k=1.32, scale=0.29, acp=0.8

0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

Q−Q plot for Object Sync. IAT, Client 04

Empirical quantiles

M
od

el
 q

ua
nt

ile
s

●●●●●●●●●●●
●●●●●●
●●●●
●●●●●●● ●●●●●● ●●●●●●●●●●●●● ●●●●● ● ●●

●
●

●
●

●
●

●
●
●

●
●
●

●
●
●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Model Exp. rate=4.40, acp=0.9
Model Wei. k=0.62, scale=0.19, acp=0.9

0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

Q−Q plot for Object Sync. IAT, Client 05

Empirical quantiles

M
od

el
 q

ua
nt

ile
s

●
●●
●●
●●
●●●●●●●

●●
●●● ●●●●

●●●●●●●●
●●●●

●● ●●
●●●●●

● ●●
● ● ●●●●

●●
●●

●●● ●●
●

●
●

●
●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Model Exp. rate=3.35, acp=0.8
Model Wei. k=1.23, scale=0.31, acp=0.8

Fig. D.19.: Q-Q for OSIAT models, 5-player session, OWTB1

142 Chapter D Derivatives from the analysis of Open Wonderland network traffic

0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

Q−Q plot for Object Sync. IAT, Client 01

Empirical quantiles

M
od

el
 q

ua
nt

ile
s

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●
●●●●
●●●●
●●●●●●●●

●●
●●●●

●●●●●
● ●

●
●

●
●

●
●

●
●
●

●
●

●
●

●

●

●

●

●

●

Model Exp. rate=4.80, acp=0.8
Model Wei. k=0.55, scale=0.15, acp=0.9

0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

Q−Q plot for Object Sync. IAT, Client 02

Empirical quantiles

M
od

el
 q

ua
nt

ile
s

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●
●●●●●
●●●●
●●●●
●●●
● ●●●●●

●●
●●●

●● ●●●
●●●

●
●

●
●

●
●

●
●
●

●
●

●
●

●

●

●

●

●

●

Model Exp. rate=4.59, acp=0.8
Model Wei. k=0.57, scale=0.16, acp=0.8

Fig. D.20.: Q-Q for OSIAT models, 2-player session, OWTB2

0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

Q−Q plot for Object Sync. IAT, Client 01

Empirical quantiles

M
od

el
 q

ua
nt

ile
s

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●
●●●●
●●●
●●●
●●●
●●●
●●

●●●●●
●●
●● ●●●

●
●

●
●

●
●
●

●
●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

Model Exp. rate=4.58, acp=0.8
Model Wei. k=0.55, scale=0.16, acp=0.8

0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

Q−Q plot for Object Sync. IAT, Client 02

Empirical quantiles

M
od

el
 q

ua
nt

ile
s

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●
●●●●
●●●●
●●●
●●●
●●
●●
●● ● ●●

●●
●●● ●●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

Model Exp. rate=4.64, acp=0.8
Model Wei. k=0.54, scale=0.15, acp=0.8

0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

Q−Q plot for Object Sync. IAT, Client 03

Empirical quantiles

M
od

el
 q

ua
nt

ile
s

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●
●●●●
●●●●
●●●
●●●
●●●
●●● ●●●●

●●
● ● ●●●

●
●

●
●
●

●
●
●

●
●

●
●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Model Exp. rate=4.50, acp=0.8
Model Wei. k=0.57, scale=0.17, acp=0.8

Fig. D.21.: Q-Q for OSIAT models, 3-player session, OWTB2

D.6 Q-Q plots for OSIAT values 143

0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

Q−Q plot for Object Sync. IAT, Client 01

Empirical quantiles

M
od

el
 q

ua
nt

ile
s

●●●●●●●●●●●●●●●●●●●
●●●●●●●● ●●●●●

●●●●
●●●
●●●
●●●
●●
●●
●●
●●
● ●● ●●

●●
●

●
●

●
●
●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Model Exp. rate=4.84, acp=0.8
Model Wei. k=0.51, scale=0.14, acp=0.8

0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

Q−Q plot for Object Sync. IAT, Client 02

Empirical quantiles

M
od

el
 q

ua
nt

ile
s

●●●●●●●●●●●●●●●●●●
●●●●●● ● ●●●●●●●

●●●●
●●●
●●●
●●●
●●
●●
●●
●●
●● ● ● ●●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

Model Exp. rate=4.63, acp=0.8
Model Wei. k=0.53, scale=0.15, acp=0.8

0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

Q−Q plot for Object Sync. IAT, Client 03

Empirical quantiles

M
od

el
 q

ua
nt

ile
s

●●●●●●●●●●●●●●●●●●
●●●●●● ●●●●●●●●

●●●●
●●●
●●●
●●●
●●
●●
●●
●●
● ● ● ●●●

●
●

●
●

●
●
●

●
●

●
●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Model Exp. rate=4.65, acp=0.8
Model Wei. k=0.52, scale=0.15, acp=0.8

0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

Q−Q plot for Object Sync. IAT, Client 04

Empirical quantiles

M
od

el
 q

ua
nt

ile
s

●●●●●●●●●●●●●●●●●
●●●● ●●●●●●●●●

●●●●
●●●
●●●
●●●
●●
●●
●●
●●
●●

●● ● ●●
●●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Model Exp. rate=4.78, acp=0.8
Model Wei. k=0.55, scale=0.15, acp=0.8

0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

Q−Q plot for Object Sync. IAT, Client 05

Empirical quantiles

M
od

el
 q

ua
nt

ile
s

●●●●●●●●●●●●●●●●●
●●●●●● ●●●●●●●

●●●●
●●●
●●●
●●●
●●
●●
●●
●●
●●
● ● ● ●●●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Model Exp. rate=4.72, acp=0.8
Model Wei. k=0.54, scale=0.15, acp=0.8

Fig. D.22.: Q-Q for OSIAT models, 5-player session, OWTB2

144 Chapter D Derivatives from the analysis of Open Wonderland network traffic

0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

Q−Q plot for Object Sync. IAT, Client 01

Empirical quantiles

M
od

el
 q

ua
nt

ile
s

●●●●●●●●●●●●●●●●●●●●
●●●●●● ●● ●●●●●●

●●●●
●●●
●●●
●●●
●●
●●
●●
●●● ● ●●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

Model Exp. rate=4.77, acp=0.8
Model Wei. k=0.50, scale=0.14, acp=0.8

0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

Q−Q plot for Object Sync. IAT, Client 02

Empirical quantiles

M
od

el
 q

ua
nt

ile
s

●●●●●●●●●●●●●●●●●●●●
●●●●●●● ●●●●●●●

●●●●
●●●
●●●
●●
●●
●●
●●

● ● ●●●
●●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Model Exp. rate=4.79, acp=0.8
Model Wei. k=0.50, scale=0.14, acp=0.9

0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

Q−Q plot for Object Sync. IAT, Client 03

Empirical quantiles

M
od

el
 q

ua
nt

ile
s

●●●●●●●●●●●●●●●●●●●●
●●●●●● ● ● ●●●●●

●●●●
●●●
●●●
●●●
●●
●●
●●
● ●● ● ●●

●●
●

●
●

●
●

●
●

●
●
●
●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Model Exp. rate=4.77, acp=0.8
Model Wei. k=0.49, scale=0.14, acp=0.8

0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

Q−Q plot for Object Sync. IAT, Client 04

Empirical quantiles

M
od

el
 q

ua
nt

ile
s

●●●●●●●●●●●●●●●●●●
●●●●●●●● ●●●●●

●●●●
●●●
●●●
●●●
●●
●●
●●
●●
●●

● ● ● ●●
●
●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Model Exp. rate=4.80, acp=0.8
Model Wei. k=0.52, scale=0.14, acp=0.8

0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

Q−Q plot for Object Sync. IAT, Client 05

Empirical quantiles

M
od

el
 q

ua
nt

ile
s

●●●●●●●●●●●●●●●●●●●●
●●●●●● ● ●●●●●●●

●●●●
●●●
●●●
●●●
●●
●●
● ● ● ●●

●●
● ●

●
●
●
●

●
●

●
●
●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Model Exp. rate=4.79, acp=0.8
Model Wei. k=0.49, scale=0.14, acp=0.8

0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

Q−Q plot for Object Sync. IAT, Client 06

Empirical quantiles

M
od

el
 q

ua
nt

ile
s

●●●●●●●●●●●●●●●●●●●
●●●●●● ● ●●●●●●●

●●●●
●●●
●●●
●●●
●●
●●
●●
● ● ●● ●●

● ●
●

●
●
●
●

●
●

●
●
●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Model Exp. rate=4.69, acp=0.8
Model Wei. k=0.50, scale=0.14, acp=0.8

0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

Q−Q plot for Object Sync. IAT, Client 07

Empirical quantiles

M
od

el
 q

ua
nt

ile
s

●●●●●●●●●●●●●●●●●●●●
●●●●● ● ●● ●●●●●

●●●●
●●●
●●●
●●●
●●
●●
●●
●● ● ●●

●●
●

●
●

●
●
●

●
●

●
●
●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Model Exp. rate=4.93, acp=0.8
Model Wei. k=0.49, scale=0.13, acp=0.9

0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

Q−Q plot for Object Sync. IAT, Client 08

Empirical quantiles

M
od

el
 q

ua
nt

ile
s

●●●●●●●●●●●●●●●●●●
●●●●●● ● ● ●●●●●●

●●●●
●●●
●●●
●●●
●●
●●
●●
● ● ● ●●●

●●
●

●
●

●
●
●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Model Exp. rate=4.70, acp=0.8
Model Wei. k=0.52, scale=0.15, acp=0.8

Fig. D.23.: Q-Q for OSIAT models, 8-player session, OWTB2

D.6 Q-Q plots for OSIAT values 145

0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

Q−Q plot for Object Sync. IAT, Client 01

Empirical quantiles

M
od

el
 q

ua
nt

ile
s

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●● ● ● ●●●●●●

●●●●
●●●
●●●
●●
●●
●● ● ●●●

●●●
●

●
●
●
●

●
●

●
●
●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

Model Exp. rate=4.80, acp=0.8
Model Wei. k=0.46, scale=0.13, acp=0.8

0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

Q−Q plot for Object Sync. IAT, Client 02

Empirical quantiles

M
od

el
 q

ua
nt

ile
s

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●
●●●
●●●
●●●
●●
●●
● ● ●●●

●●
●

●
●

●
●
●
●

●
●

●
●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

Model Exp. rate=5.10, acp=0.8
Model Wei. k=0.47, scale=0.12, acp=0.9

0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

Q−Q plot for Object Sync. IAT, Client 03

Empirical quantiles

M
od

el
 q

ua
nt

ile
s

●●●●●●●●●●●●●●●●●●●●
●●●●●●● ● ● ●●●●●

●●●●
●●●
●●●
●●●
●●
●●
● ● ● ●●

●●
●●

●
●

●
●
●

●
●

●
●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Model Exp. rate=4.72, acp=0.8
Model Wei. k=0.48, scale=0.14, acp=0.8

0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

Q−Q plot for Object Sync. IAT, Client 04

Empirical quantiles

M
od

el
 q

ua
nt

ile
s

●●●●●●●●●●●●●●●●●●
●●●●●● ●●●●●●●●●

●●●●
●●●
●●●
●●●
●●
●●
●●
●●
● ●● ● ●●

●
●

●
●
●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Model Exp. rate=4.77, acp=0.8
Model Wei. k=0.51, scale=0.14, acp=0.8

0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

Q−Q plot for Object Sync. IAT, Client 05

Empirical quantiles

M
od

el
 q

ua
nt

ile
s

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●

●● ● ●●●●
●●●●
●●●
●●●
●●
●●
●● ● ●●●

●●
● ●

●
●
●

●
●

●
●
●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Model Exp. rate=4.63, acp=0.8
Model Wei. k=0.45, scale=0.13, acp=0.8

0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

Q−Q plot for Object Sync. IAT, Client 06

Empirical quantiles

M
od

el
 q

ua
nt

ile
s

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●● ● ●●●●●

●●●●
●●●
●●●
●●
●●

● ● ● ●●
●● ●

●
●

●
●

●
●

●
●
●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Model Exp. rate=4.73, acp=0.8
Model Wei. k=0.44, scale=0.13, acp=0.8

0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

Q−Q plot for Object Sync. IAT, Client 07

Empirical quantiles

M
od

el
 q

ua
nt

ile
s

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●● ● ● ●●●●●●

●●●●
●●●
●●●
●●
●●
●● ● ● ●●

●●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Model Exp. rate=4.86, acp=0.8
Model Wei. k=0.45, scale=0.13, acp=0.8

0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

Q−Q plot for Object Sync. IAT, Client 08

Empirical quantiles

M
od

el
 q

ua
nt

ile
s

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●● ●●●●●●●

●●●●
●●●
●●●
●●
●●
●●
●●

● ● ●●●
●●

●
●

●
●
●
●

●
●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Model Exp. rate=4.86, acp=0.8
Model Wei. k=0.47, scale=0.13, acp=0.8

0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

Q−Q plot for Object Sync. IAT, Client 09

Empirical quantiles

M
od

el
 q

ua
nt

ile
s

●●●●●●●●●●●●●●●●●●●●●
●●●●●● ●● ●●●●●●

●●●●
●●●
●●●
●●●
●●
●●

● ● ● ●●
●●
●

●
●

●
●
●
●

●
●

●
●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Model Exp. rate=4.83, acp=0.8
Model Wei. k=0.47, scale=0.13, acp=0.8

0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

Q−Q plot for Object Sync. IAT, Client 10

Empirical quantiles

M
od

el
 q

ua
nt

ile
s

●●●●●●●●●●●●●●●●●●●●
●●●●●● ● ● ●●●●●●

●●●●
●●●
●●●
●●●
●●
●●

● ● ● ●●
●●
●●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Model Exp. rate=4.72, acp=0.8
Model Wei. k=0.49, scale=0.14, acp=0.8

Fig. D.24.: Q-Q for OSIAT models, 10-player session, OWTB2

146 Chapter D Derivatives from the analysis of Open Wonderland network traffic

D.7 Pearson Correlation Coefficient for OSIAT
models

The present section contains Tables D.8 and D.9 which show the Pearson correlation
coefficient (PCC) values obtained for the OSIAT values from OWTB1 and OWTB2
respectively against the fitting distributions based on exponential and Weibull distri-
butions proposed in the present work.

Tab. D.8.: Pearson’s r for OSIAT exponential and Weibull-based models, OWTB1

Session Client rexp rwei

2-client
1 0.997 0.997
2 0.996 0.995

3-client
1 0.996 0.997
2 0.998 0.998
3 0.999 0.998

5-client

1 0.996 0.998
2 0.996 0.996
3 0.997 0.998
4 0.985 0.966
5 0.996 0.999

Tab. D.9.: Pearson’s r for OSIAT exponential and Weibull-based models, OWTB2

Session Client rexp rwei

1-client 1 0.96 0.99

2-client
1 0.97 0.99
2 0.96 0.99

3-client
1 0.96 0.99
2 0.96 0.99
3 0.97 0.99

4-client

1 0.97 0.99
2 0.97 0.99
3 0.97 0.99
4 0.96 0.99

5-client

1 0.97 0.99
2 0.97 0.99
3 0.97 0.99
4 0.97 0.99
5 0.96 0.99

D.7 Pearson Correlation Coefficient for OSIAT models 147

Tab. D.9.: Pearson’s r for OSIAT exponential and Weibull-based models, OWTB2

Session Client rexp rwei

6-client

1 0.97 0.99
2 0.97 0.99
3 0.96 0.99
4 0.96 0.99
5 0.97 0.99
6 0.97 0.99

7-client

1 0.97 0.99
2 0.97 0.99
3 0.97 0.99
4 0.96 0.99
5 0.97 0.99
6 0.97 0.99
7 0.96 0.99

8-client

1 0.97 0.99
2 0.97 0.99
3 0.97 0.99
4 0.97 0.99
5 0.98 0.99
6 0.97 0.99
7 0.97 0.99
8 0.97 0.99

9-client

1 0.97 0.99
2 0.97 0.99
3 0.97 0.99
4 0.97 0.99
5 0.98 0.99
6 0.98 0.99
7 0.97 0.99
8 0.97 0.99
9 0.97 0.99

148 Chapter D Derivatives from the analysis of Open Wonderland network traffic

Tab. D.9.: Pearson’s r for OSIAT exponential and Weibull-based models, OWTB2

Session Client rexp rwei

10-client

1 0.97 0.99
2 0.97 0.99
3 0.97 0.99
4 0.96 0.99
5 0.98 0.99
6 0.98 0.99
7 0.97 0.99
8 0.97 0.99
9 0.97 0.99

10 0.97 0.99

D.8 Lambda Square values for OSIAT models

The present section contains Tables D.10 and D.11, which show the λ̂2 values
obtained for OSIAT values measured in OWTB1 and OWTB2 against their respective
fitting OSIAT models proposed in the present study.

Tab. D.10.: λ̂2 metric for exponential and Weibull-based models, OWTB1

Session Client λ̂2
exp λ̂2

wei σ(λ̂2
exp) σ(λ̂2

wei)

2-client
1 14.33 14.26 837.45 824.49
2 18.30 18.33 1347.37 1353.20

3-client
1 12.26 12.21 608.85 601.73
2 4.37 4.38 86.77 88.16
3 6.40 6.22 181.17 159.32

5-client

1 9.26 9.08 372.39 345.91
2 7.74 7.78 265.54 271.29
3 4.46 4.14 94.35 70.77
4 23.14 24.70 2147.04 2778.04
5 7.69 7.23 298.48 215.11

D.8 Lambda Square values for OSIAT models 149

Tab. D.11.: λ̂2 metric for exponential and Weibull-based models, OWTB2

Session Client λ̂2
exp λ̂2

wei σ(λ̂2
exp) σ(λ̂2

wei)

1-client 1 58.18 63.32 15347.74 20300.14

2-client
1 4.60 4.11 277.98 210.49
2 3.26 2.60 324.23 200.11

3-client
1 2.81 2.09 148.40 75.77
2 1.97 1.52 62.60 55.19
3 1.60 1.17 23.56 12.98

4-client

1 6.45 5.85 255.86 184.93
2 2.50 2.08 115.07 77.57
3 1.87 1.35 64.23 37.05
4 6.57 6.43 189.12 196.76

5-client

1 3.03 2.63 52.06 44.78
2 1.85 1.20 265.23 130.62
3 2.32 1.82 65.93 42.04
4 5.83 5.56 149.43 138.94
5 2.66 2.09 128.92 83.14

6-client

1 1.75 1.29 56.35 34.87
2 1.94 1.58 34.78 26.49
3 2.03 1.65 37.60 31.72
4 8.39 7.82 606.05 462.42
5 1.90 1.62 40.44 35.27
6 2.67 2.32 44.80 39.64

7-client

1 2.48 1.83 115.82 56.51
2 2.81 2.30 181.43 123.11
3 1.70 1.33 41.34 33.29
4 5.19 4.83 151.74 119.60
5 2.03 1.63 34.19 23.35
6 2.13 1.49 135.02 58.76
7 2.16 1.59 107.65 61.14

8-client

1 31.02 31.25 3849.98 3920.16
2 1.77 1.39 41.58 30.19
3 2.10 1.64 52.43 30.66
4 8.08 7.34 481.08 321.59
5 1.87 1.62 27.95 27.10
6 1.76 1.27 37.46 19.53
7 2.91 2.17 312.36 156.68
8 2.18 1.74 56.57 40.25

150 Chapter D Derivatives from the analysis of Open Wonderland network traffic

Tab. D.11.: λ̂2 metric for exponential and Weibull-based models, OWTB2

Session Client λ̂2
exp λ̂2

wei σ(λ̂2
exp) σ(λ̂2

wei)

9-client

1 2.24 1.76 65.01 42.46
2 2.13 1.69 74.74 44.85
3 2.04 1.57 83.20 69.28
4 7.61 6.59 848.72 469.75
5 1.57 1.20 26.55 17.29
6 2.03 1.50 91.29 45.57
7 2.24 1.58 121.07 57.23
8 1.98 1.55 29.57 19.96
9 2.08 1.63 41.93 30.16

10-client

1 1.95 1.65 44.68 35.18
2 2.65 2.12 184.13 131.39
3 2.40 1.79 75.70 39.94
4 5.01 4.68 132.71 108.29
5 2.01 1.56 73.03 43.77
6 2.07 1.63 53.49 30.45
7 2.29 1.69 72.73 34.34
8 1.83 1.31 41.29 21.18
9 2.23 1.55 129.33 53.71

10 2.85 2.15 184.36 91.41

D.8 Lambda Square values for OSIAT models 151

D.9 Autocorrelation functions for OSPS

The present section contains a selection of ACF calculated for the object synchronisa-
tion packet size (OSPS) values from both OWTB1 and OWTB2.

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

ACF for OSPS, Client 01

0 5 10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

ACF for OSPS, Client 02

Fig. D.25.: ACF for OSPS, 2-player session, OWTB1

0 5 10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

ACF for OSPS, Client 01

0 5 10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

ACF for OSPS, Client 02

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

ACF for OSPS, Client 03

Fig. D.26.: ACF for OSPS, 3-player session, OWTB1

152 Chapter D Derivatives from the analysis of Open Wonderland network traffic

0 5 10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

ACF for OSPS, Client 01

0 5 10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

ACF for OSPS, Client 02

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

ACF for OSPS, Client 03

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

ACF for OSPS, Client 04

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

ACF for OSPS, Client 05

Fig. D.27.: ACF for OSPS, 5-player session, OWTB1

D.9 Autocorrelation functions for OSPS 153

0 5 10 15 20 25 30 35

−
0.

2
0.

2
0.

6
1.

0

Lag

A
C

F
ACF for OSPS, Client 01

0 5 10 15 20 25 30 35

−
0.

2
0.

2
0.

6
1.

0

Lag

A
C

F

ACF for OSPS, Client 02

Fig. D.28.: ACF for OSPS, 2-player session, OWTB2

0 5 10 15 20 25 30 35

−
0.

2
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

ACF for OSPS, Client 01

0 5 10 15 20 25 30 35

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F
ACF for OSPS, Client 02

0 5 10 15 20 25 30 35

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

ACF for OSPS, Client 03

Fig. D.29.: ACF for OSPS, 3-player session, OWTB2

154 Chapter D Derivatives from the analysis of Open Wonderland network traffic

0 5 10 15 20 25 30 35

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

ACF for OSPS, Client 01

0 5 10 15 20 25 30 35

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

ACF for OSPS, Client 02

0 5 10 15 20 25 30 35

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

ACF for OSPS, Client 03

0 5 10 15 20 25 30 35

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

ACF for OSPS, Client 04

0 5 10 15 20 25 30 35

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

ACF for OSPS, Client 05

Fig. D.30.: ACF for OSPS, 5-player session, OWTB2

D.9 Autocorrelation functions for OSPS 155

0 5 10 15 20 25 30

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

ACF for OSPS, Client 01

0 5 10 15 20 25 30 35

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

ACF for OSPS, Client 02

0 5 10 15 20 25 30 35

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

ACF for OSPS, Client 03

0 5 10 15 20 25 30 35

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

ACF for OSPS, Client 04

0 5 10 15 20 25 30 35

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

ACF for OSPS, Client 05

0 5 10 15 20 25 30 35

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

ACF for OSPS, Client 06

0 5 10 15 20 25 30 35

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

ACF for OSPS, Client 07

0 5 10 15 20 25 30 35

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

ACF for OSPS, Client 08

Fig. D.31.: ACF for OSPS, 8-player session, OWTB2

156 Chapter D Derivatives from the analysis of Open Wonderland network traffic

0 5 10 15 20 25 30 35

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

ACF for OSPS, Client 01

0 5 10 15 20 25 30 35

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

ACF for OSPS, Client 02

0 5 10 15 20 25 30 35

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

ACF for OSPS, Client 03

0 5 10 15 20 25 30 35

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag
A

C
F

ACF for OSPS, Client 04

0 5 10 15 20 25 30 35

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

ACF for OSPS, Client 05

0 5 10 15 20 25 30 35

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

ACF for OSPS, Client 06

0 5 10 15 20 25 30 35

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

ACF for OSPS, Client 07

0 5 10 15 20 25 30 35

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

ACF for OSPS, Client 08

0 5 10 15 20 25 30 35

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

ACF for OSPS, Client 09

0 5 10 15 20 25 30 35

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

ACF for OSPS, Client 10

Fig. D.32.: ACF for OSPS, 10-player session, OWTB2

D.9 Autocorrelation functions for OSPS 157

Bibliography

[Ach+16] Ugochi Acholonu, Jessa Dickinson, Leslie Smith, Dominic Amato, and Nichole
Pinkard. „Understanding blended mentorship in Minecraft: Scaling computer
science expertise across distances“. In: 2016 Research on Equity and Sustained
Participation in Engineering, Computing, and Technology (RESPECT). Atlanta,
GA, USA: IEEE, Aug. 2016, pp. 1–1 (cit. on p. 12).

[Ada10] Ernest Adams. Fundamentals of Game Design. New Riders, Apr. 2010 (cit. on
p. 4).

[Add] The CRPG Addict. Moria (1975). http://crpgaddict.blogspot.nl/2013/11/
game-121-moria-1975.html. (visited on 2015-10-24) (cit. on p. 5).

[ADS17] Carlos Arango, Rémy Dernat, and John Sanabria. „Performance Evaluation of
Container-based Virtualization for High Performance Computing Environments“.
In: arXiv:1709.10140 [cs] (Sept. 2017). arXiv: 1709.10140 (cit. on p. 106).

[Age] European Space Agency. Home | Tropomi. http://www.tropomi.eu/. (visited
on 2019-07-14) (cit. on p. 14).

[Agu+08] C. Aguado Sanchez, J. Bloomer, P. Buncic, et al. „CVMFS - a file system for
the CernVM virtual appliance“. In: Proceedings of XII Advanced Computing and
Analysis Techniques in Physics Research. Ed. by Monique Werlen Thomas Speer
Federico Carminati. Nov. 2008, p. 52 (cit. on p. 105).

[Ald97] John Aldrich. „R.A. Fisher and the making of maximum likelihood 1912-1922“.
In: Statistical Science 12.3 (Sept. 1997), pp. 162–176 (cit. on p. 47).

[Als+15a] T. Alstad, J.R. Duncan, S. Detlor, et al. „Minecraft computer game performance
analysis and network traffic emulation by a custom bot“. In: Science and Infor-
mation Conference (SAI), 2015. July 2015, pp. 227–236 (cit. on p. 12).

[Als+15b] T. Alstad, J. Riley Dunkin, S. Detlor, et al. „Game network traffic simulation
by a custom bot“. In: Systems Conference (SysCon), 2015 9th Annual IEEE
International. Apr. 2015, pp. 675–680 (cit. on p. 31).

[Ami+13] Rahul Amin, France Jackson, Juan E. Gilbert, Jim Martin, and Terry Shaw.
„Assessing the Impact of Latency and Jitter on the Perceived Quality of Call of
Duty Modern Warfare 2“. In: Human-Computer Interaction. Users and Contexts of
Use. Ed. by Masaaki Kurosu. Lecture Notes in Computer Science 8006. Springer
Berlin Heidelberg, 2013, pp. 97–106 (cit. on pp. 8, 28).

159

http://crpgaddict.blogspot.nl/2013/11/game-121-moria-1975.html
http://crpgaddict.blogspot.nl/2013/11/game-121-moria-1975.html
http://www.tropomi.eu/

[And+08] P. Andreetto, S. Andreozzi, G. Avellino, et al. „The gLite workload management
system“. In: Journal of Physics: Conference Series 119.6 (July 2008), p. 062007
(cit. on p. 104).

[Arm] US Army. America’s Army. http://www.goarmy.com/downloads/americas-
army-game.html. (visited on 2015-09-26) (cit. on pp. 2, 3).

[Ars09] Dominic Arsenault. „Video Game Genre, Evolution and Innovation“. en-US. In:
Eludamos. Journal for Computer Game Culture 3.2 (Oct. 2009), pp. 149–176
(cit. on p. 4).

[Aza05] Max Azarov. Worst-case Ethernet Network Latency. Tech. rep. 802.3 ResE study
group, 2005, p. 4 (cit. on p. 28).

[BA06] P. Branch and G. Armitage. „Extrapolating server to client IP traffic from empiri-
cal measurements of first person shooter games“. In: NetGames’ 06: Proceedings
of 5th ACM SIGCOMM workshop on Network and system support for games.
Vol. 24. 2006 (cit. on pp. 29, 39, 49).

[Bai04] William Sims Bainbridge. „Berkshire Encyclopedia of Human-Computer In-
teraction“. In: Berkshire Encyclopedia of Human-Computer Interaction. Great
Barrington, Mass: Berkshire Publishing Group, Oct. 2004, p. 474 (cit. on p. 7).

[Bal07] Ran Balicer. „Modeling Infectious Diseases Dissemination Through Online Role-
Playing Games“. In: Epidemiology 18.2 (Mar. 2007), pp. 260–261 (cit. on p. 8).

[BAS13] Eliya Buyukkaya, Maha Abdallah, and Gwendal Simon. „A survey of peer-to-
peer overlay approaches for networked virtual environments“. In: Peer-to-Peer
Networking and Applications 8.2 (Sept. 2013), pp. 276–300 (cit. on pp. 10, 18,
21).

[Bay12] Jessica D. Bayliss. „Teaching game AI through Minecraft mods“. In: 2012 IEEE
International Games Innovation Conference. Rochester, NY, USA: IEEE, Sept.
2012, pp. 1–4 (cit. on p. 12).

[BB13] Gergo Balogh and Arpad Beszedes. „CodeMetrpolis — A minecraft based
collaboration tool for developers“. In: 2013 First IEEE Working Conference on
Software Visualization (VISSOFT). Eindhoven, Netherlands: IEEE, Sept. 2013,
pp. 1–4 (cit. on p. 12).

[BD00] R.A. Bangun and E. Dutkiewicz. „Modelling multi-player games traffic“. In:
International Conference on Information Technology: Coding and Computing,
2000. Proceedings. 2000, pp. 228–233 (cit. on pp. 36, 39, 47).

[BDA99] R.A. Bangun, E. Dutkiewicz, and G.J. Anido. „An analysis of multi-player net-
work games traffic“. In: 1999 IEEE 3rd Workshop on Multimedia Signal Processing.
1999, pp. 3–8 (cit. on p. 36).

[Bea+09] Leslie Beard, Kumanan Wilson, Dante Morra, and Jennifer Keelan. „A Survey
of Health-Related Activities on Second Life“. In: Journal of Medical Internet
Research 11.2 (May 2009) (cit. on p. 11).

[Bei+04] Tom Beigbeder, Rory Coughlan, Corey Lusher, et al. „The Effects of Loss and
Latency on User Performance in Unreal Tournament 2003®“. In: Proceedings
of 3rd ACM SIGCOMM Workshop on Network and System Support for Games.
NetGames ’04. New York, NY, USA: ACM, 2004, pp. 144–151 (cit. on pp. 12,
33).

160 Bibliography

http://www.goarmy.com/downloads/americas-army-game.html
http://www.goarmy.com/downloads/americas-army-game.html

[Ber+95] Jan Beran, Robert Sherman, M.S. Taqqu, and Walter Willinger. „Long-Range
Dependence in Variable Bit Rate Video Traffic“. In: Communications, IEEE Trans-
actions on 43 (Mar. 1995), pp. 1566–1579 (cit. on p. 36).

[Ber14] D. Bernstein. „Containers and Cloud: From LXC to Docker to Kubernetes“. In:
IEEE Cloud Computing 1.3 (Sept. 2014), pp. 81–84 (cit. on p. 106).

[BHW07] Maged N. Kamel Boulos, Lee Hetherington, and Steve Wheeler. „Second Life: an
overview of the potential of 3-D virtual worlds in medical and health education“.
In: Health Information & Libraries Journal 24.4 (2007), pp. 233–245 (cit. on
p. 11).

[Bor00] Michael S. Borella. „Source Models of Network Game Traffic“. In: Computer
Communications 23.4 (Feb. 2000), pp. 403–410 (cit. on pp. 12, 13, 36, 39, 45,
47–49, 51, 60).

[BPS06] Ashwin R. Bharambe, Jeffrey Pang, and Srinivasan Seshan. „Colyseus: A Dis-
tributed Architecture for Online Multiplayer Games.“ In: NSDI. Vol. 6. 2006,
pp. 12–12 (cit. on p. 10).

[Bra06] Philip Branch. „Measuring the autocorrelation of server to client traffic in first
person shooter games“. In: in Australian Telecommunications, Network and
Applications Conference ATNAC. 2006 (cit. on pp. 41, 42).

[BRH72] Ralph H. Baer, William T. Rusch, and William L. Harrison. „TELEVISION GAM-
ING APPARATUS AND METHOD“. 3659285. Apr. 1972 (cit. on p. 4).

[Bru+13] Kjell Brunnström, Sergio Ariel Beker, Katrien De Moor, et al. Qualinet white
paper on definitions of quality of experience. Tech. rep. Output from the 5th

Qualinet meeting, ref: hal-00977812f. Qualinet, Mar. 2013 (cit. on pp. 13, 19).

[BS06] K. O. Bowman and L. R. Shenton. „Estimation: Method of Moments“. In: Ency-
clopedia of Statistical Sciences. American Cancer Society, 2006 (cit. on p. 47).

[BV14] Newzoo BV. PC Gaming Market to Total $24.4Bn in 2014. https://newzoo.
com/insights/infographics/infographic-pcmmo-gaming-revenues-to-
total-24-4bn-in-2014/. (visited on 2019-06-22). 2014 (cit. on p. 4).

[BV18] Newzoo BV. Newzoo Global Games Market Report 2018. https://newzoo.com/
insights/trend-reports/newzoo-global-games-market-report-2018-
light-version/. (visited on 2019-06-22). 2018 (cit. on p. 4).

[Çap99] Tolga K. Çapin, ed. Avatars in networked virtual environments. Chichester ; New
York: Wiley, 1999 (cit. on p. 19).

[Cas+10] D. Cascado, S.J. Romero, S. Hors, et al. „Virtual worlds to enhance Ambient-
Assisted Living“. In: 2010 Annual International Conference of the IEEE Engineering
in Medicine and Biology Society (EMBC). Sept. 2010, pp. 212–215 (cit. on p. 22).

[CB07] Anthony Cricenti and Philip Branch. „ARMA(1,1) modeling of Quake4 Server
to client game traffic“. In: Proceedings of the 6th ACM SIGCOMM workshop on
Network and system support for games. NetGames ’07. New York, NY, USA: ACM,
2007, pp. 70–74 (cit. on pp. 8, 36, 41, 42, 48).

[CB97] Mark E. Crovella and Azer Bestavros. „Self-similarity in World Wide Web traffic:
evidence and possible causes“. In: IEEE/ACM Trans. Netw. 5.6 (Dec. 1997),
pp. 835–846 (cit. on p. 36).

Bibliography 161

https://newzoo.com/insights/infographics/infographic-pcmmo-gaming-revenues-to-total-24-4bn-in-2014/
https://newzoo.com/insights/infographics/infographic-pcmmo-gaming-revenues-to-total-24-4bn-in-2014/
https://newzoo.com/insights/infographics/infographic-pcmmo-gaming-revenues-to-total-24-4bn-in-2014/
https://newzoo.com/insights/trend-reports/newzoo-global-games-market-report-2018-light-version/
https://newzoo.com/insights/trend-reports/newzoo-global-games-market-report-2018-light-version/
https://newzoo.com/insights/trend-reports/newzoo-global-games-market-report-2018-light-version/

[CBA07] Antonio L. Cricenti, Philip A. Branch, and Grenville J. Armitage. „Time-series
modelling of server to client IP packet length in first person shooter games“. In:
Networks, 2007. ICON 2007. 15th IEEE International Conference on. IEEE, 2007,
pp. 507–512 (cit. on pp. 36, 41, 42).

[CC10] Mark Claypool and Kajal Claypool. „Latency can kill: precision and deadline
in online games“. In: Proceedings of the first annual ACM SIGMM conference on
Multimedia systems. ACM, 2010, pp. 215–222 (cit. on p. 33).

[CERa] CERN. ALICE | CERN. https://home.cern/science/experiments/alice.
(visited on 2019-07-14) (cit. on p. 14).

[CERb] CERN. ATLAS | CERN. https://home.cern/science/experiments/atlas.
(visited on 2019-07-14) (cit. on p. 14).

[CFM94] Ellaine Colburn, Steve Farrow, and Jim MsDonough. ADST Multi-Service Dis-
tributed Training Testbed (MDT2). Lessons Learned. Tech. rep. DTIC Document,
1994 (cit. on p. 2).

[Cha+83] John M. Chambers, William S. Cleveland, Paul A. Tukey, and Beat Kleiner.
Graphical Methods for Data Analysis. Duxbury Press, 1983 (cit. on p. 48).

[Che+05] Kuan-Ta Chen, Polly Huang, Chun-Ying Huang, and Chin-Laung Lei. „Game
Traffic Analysis: An MMORPG Perspective“. In: Proceedings of the International
Workshop on Network and Operating Systems Support for Digital Audio and Video.
NOSSDAV ’05. New York, NY, USA: ACM, 2005, pp. 19–24 (cit. on p. 7).

[Che+06a] Kuan-Ta Chen, Chun-Ying Huang, Polly Huang, and Chin-Laung Lei. „An Empiri-
cal Evaluation of TCP Performance in Online Games“. In: Proceedings of the 2006
ACM SIGCHI International Conference on Advances in Computer Entertainment
Technology. ACE ’06. New York, NY, USA: ACM, 2006 (cit. on pp. 7, 36).

[Che+06b] Kuan-Ta Chen, Polly Huang, G.-S. Wang, Chun-Ying Huang, and Chin-Laung Lei.
„On the Sensitivity of Online Game Playing Time to Network QoS“. In: INFO-
COM 2006. 25th IEEE International Conference on Computer Communications.
Proceedings. Apr. 2006, pp. 1–12 (cit. on p. 7).

[CHK17] Matt Cocar, Reneisha Harris, and Youry Khmelevsky. „Utilizing Minecraft bots
to optimize game server performance and deployment“. In: 2017 IEEE 30th
Canadian Conference on Electrical and Computer Engineering (CCECE). Windsor,
ON: IEEE, Apr. 2017, pp. 1–5 (cit. on p. 12).

[Cho+12] Sharon Choy, Bernard Wong, Gwendal Simon, and Catherine Rosenberg. „The
brewing storm in cloud gaming: A measurement study on cloud to end-user
latency“. In: Proceedings of the 11th annual workshop on network and systems
support for games. IEEE Press, 2012, p. 2 (cit. on p. 12).

[Chu+01] Elizabeth F. Churchill, David N. Snowdon, Alan J. Munro, Dan Diaper, and
Colston Sanger, eds. Collaborative Virtual Environments. Computer Supported
Cooperative Work. London: Springer London, 2001 (cit. on p. 1).

[Cla05] Mark Claypool. „The effect of latency on user performance in Real-Time Strategy
games“. In: Computer Networks. Networking Issue in Entertainment Computing
49.1 (Sept. 2005), pp. 52–70 (cit. on p. 33).

162 Bibliography

https://home.cern/science/experiments/alice
https://home.cern/science/experiments/atlas

[CLW03] M. Claypool, D. LaPoint, and J. Winslow. „Network analysis of counter-strike
and starcraft“. In: Performance, Computing, and Communications Conference,
2003. Conference Proceedings of the 2003 IEEE International. 2003, pp. 261–268
(cit. on pp. 33, 95).

[Com] Open Wonderland Community. Open Wonderland Community Wiki: Setting up
an Open Wonderland Server Behind a NAT or Firewall. http://ow.cyramix.
com/Wiki_page_Setting_up_an_Open_Wonderland_Server_Behind_a_NAT_
or_Firewall.html. (visited on 2019-05-20) (cit. on p. 56).

[Cor] Oracle Corporation. GlassFish. https://javaee.github.io/glassfish/.
(visited on 2018-07-09) (cit. on p. 24).

[Dai+09] Dai Kai-yu, Lu Sheng-qi, Liu Gang, and Sun yi. „Research on path planning of
intelligent virtual human in distributed virtual environment“. In: 2009 IEEE In-
ternational Conference on Intelligent Computing and Intelligent Systems. Shanghai,
China: IEEE, Nov. 2009, pp. 899–903 (cit. on p. 21).

[Dan+01] Peter Danzig, Sugih Jamin, J Mitzel, and Deborah Estrin. „An Empirical Work-
load Model for Driving Wide-Area TCP/IP Network Simulations“. In: Int. Re-
search and Exp. 3 (June 2001) (cit. on p. 36).

[DGK75] Susan J. Devlin, R. Gnanadesikan, and J. R. Kettenring. „Robust Estimation and
Outlier Detection with Correlation Coefficients“. In: Biometrika 62.3 (1975),
pp. 531–545 (cit. on pp. 39, 75).

[Dis12] Working Group for Distributed Interactive Simulation. „IEEE Standard for Dis-
tributed Interactive Simulation–Application Protocols“. In: IEEE Std 1278.1-2012
(Revision of IEEE Std 1278.1-1995) (Dec. 2012), pp. 1–747 (cit. on p. 2).

[DPV05] Alberto Dainotti, Antonio Pescape, and Giorgio Ventre. „A packet-level Traffic
Model of Starcraft“. In: Proceedings of the Second International Workshop on
Hot Topics in Peer-to-Peer Systems. HOT-P2P ’05. Washington, DC, USA: IEEE
Computer Society, 2005, pp. 33–42 (cit. on pp. 36, 41, 48, 49).

[Ent10] Blizzard Entertainment. Blizzard Entertainment:Press Releases. Link to Press
Release. (visited on 2019-06-22). Oct. 7, 2010 (cit. on p. 7).

[ES14] Herman A. Engelbrecht and Gregor Schiele. „Transforming Minecraft into a re-
search platform“. In: 2014 IEEE 11th Consumer Communications and Networking
Conference (CCNC). Las Vegas, NV: IEEE, Jan. 2014, pp. 257–262 (cit. on p. 12).

[Faj+15] E. M. Fajardo, J. M. Dost, B. Holzman, et al. „How much higher can HTCondor
fly?“ In: Journal of Physics: Conference Series 664.6 (Dec. 2015), p. 062014
(cit. on p. 104).

[Fär02] J. Färber. „Network game traffic modelling“. In: Proceedings of the 1st workshop
on Network and system support for games. 2002, pp. 53–57 (cit. on pp. 33, 36).

[Fär04] J. Färber. „Traffic modelling for fast action network games“. In: Multimedia
Tools and Applications 23.1 (2004), pp. 31–46 (cit. on pp. 36, 39).

[FB14] Cynthia Foronda and Eric B. Bauman. „Strategies to Incorporate Virtual Simula-
tion in Nurse Education“. In: Clinical Simulation in Nursing 10.8 (Aug. 2014),
pp. 412–418 (cit. on p. 10).

Bibliography 163

http://ow.cyramix.com/Wiki_page_Setting_up_an_Open_Wonderland_Server_Behind_a_NAT_or_Firewall.html
http://ow.cyramix.com/Wiki_page_Setting_up_an_Open_Wonderland_Server_Behind_a_NAT_or_Firewall.html
http://ow.cyramix.com/Wiki_page_Setting_up_an_Open_Wonderland_Server_Behind_a_NAT_or_Firewall.html
https://javaee.github.io/glassfish/
https://webcache.googleusercontent.com/search\?q=cache:Pz7fOQFw1AUJ:us.blizzard.com/en-us/company/press%2520/pressreleases.html%3Fid%3D2847881+&cd=1&hl=en&ct=clnk&gl=nl&client=firefox-b-e
https://webcache.googleusercontent.com/search\?q=cache:Pz7fOQFw1AUJ:us.blizzard.com/en-us/company/press%2520/pressreleases.html%3Fid%3D2847881+&cd=1&hl=en&ct=clnk&gl=nl&client=firefox-b-e

[FCS13] J.L. Font, C. Callegari, and J.L. Sevillano-Ramos. „Experimental study and
modelling of Networked Virtual Environment server traffic“. In: Wireless Com-
munications and Mobile Computing Conference (IWCMC), 2013 9th International.
July 2013, pp. 1144–1149 (cit. on pp. 14, 22).

[Fen+02] W. Feng, F. Chang, W. Feng, and J. Walpole. „Provisioning on-line games: a
traffic analysis of a busy counter-strike server“. In: Proceedings of the 2nd ACM
SIGCOMM Workshop on Internet measurment. 2002, pp. 151–156 (cit. on pp. 8,
12, 33).

[Fen+05] Wu-chang Feng, F. Chang, Wu-chi Feng, and J. Walpole. „A traffic characteriza-
tion of popular on-line games“. In: IEEE/ACM Transactions on Networking 13.3
(June 2005), pp. 488–500 (cit. on pp. 33, 36).

[Fer+07] Stênio Fernandes, Rafael Antonello, Josilene Moreira, Djamel Sadok, and Carlos
Kamienski. „Traffic analysis beyond this world: the case of Second Life“. In:
17th International workshop on Network and operating systems support for digital
audio and video, University of Illinois, Urbana-Champaign. Citeseer, 2007, pp. 4–
5 (cit. on p. 11).

[Fin13] Eric Finn. „Predicting the Perceived Quality of a First Person Shooter Game: the
Team Fortress 2 T-Model“. PhD thesis. WORCESTER POLYTECHNIC INSTITUTE,
2013 (cit. on pp. 13, 19).

[Fis09] Paul A. Fishwick. „An Introduction to openSimulator and Virtual Environment
Agent-based M&S Applications“. In: Winter Simulation Conference. WSC ’09.
event-place: Austin, Texas. Winter Simulation Conference, 2009, pp. 177–183
(cit. on p. 10).

[Fis15] Ronald Aylmer Fisher. Frequency Distribution of the Values of the Correlation
Coefficient in Samples from an Indefinitely Large Population. Journal article. 1915
(cit. on p. 75).

[FLK17] Artur Filipowicz, Jeremiah Liu, and Alain Kornhauser. „Learning to Recognize
Distance to Stop Signs Using the Virtual World of Grand Theft Auto 5“. In: Trans-
portation Research Board 96th Annual MeetingTransportation Research Board.
Jan. 2017 (cit. on p. 8).

[FM94] V.S. Frost and B. Melamed. „Traffic modeling for telecommunications networks“.
In: IEEE Communications Magazine 32.3 (Mar. 1994), pp. 70–81 (cit. on p. 36).

[FO96] John L. Furlani and Peter W. Osel. „Abstract Yourself With Modules“. In: USENIX
Association, Oct. 1996, pp. 193–204 (cit. on p. 105).

[Fog02] B. J. Fogg. Persuasive Technology: Using Computers to Change What We Think
and Do. 1st ed. Morgan Kaufmann, Dec. 2002 (cit. on p. 22).

[Fon+10] Juan Luis Font, Pablo Iñigo, Manuel Domínguez, José Luis Sevillano, and Clau-
dio Amaya. „Architecture, Design and Source Code Comparison of Ns-2 and Ns-3
Network Simulators“. In: Proceedings of the 2010 Spring Simulation Multicon-
ference, 13th Communication & Networking Simulation Symposium. SpringSim
’10. San Diego, CA, USA: Society for Computer Simulation International, 2010,
109:1–109:8 (cit. on pp. 14, 85, 86).

164 Bibliography

[Fon+11a] J. L. Font, D. Cascado, J. L. Sevillano, et al. „Network requirements evaluation
of a multi-user virtual environment“. In: 2011 International Symposium on
Performance Evaluation of Computer Telecommunication Systems. June 2011,
pp. 90–97 (cit. on pp. 13, 85, 86).

[Fon+11b] Juan Luis Font, Pablo Iñigo, Manuel Domínguez, José Luis Sevillano, and
Claudio Amaya. „Analysis of source code metrics from ns-2 and ns-3 network
simulators“. In: Simulation Modelling Practice and Theory 19.5 (May 2011),
pp. 1330–1346 (cit. on p. 14).

[Fon+12a] J.L. Font, J.L. Sevillano, D. Cascado-Caballero, G. Lopez-Munoz, and B. Regassa.
„Design, implementation and validation of a simulation tool for Networked Vir-
tual Environments“. In: 2012 International Conference on Computer, Information
and Telecommunication Systems (CITS). May 2012, pp. 1–5 (cit. on pp. 14, 22).

[Fon+12b] Juan L. Font, Daniel Cascado, José L. Sevillano, Fernando Díaz del Río, and
Gabriel Jiménez. „Network traffic analysis and evaluation of a multi-user virtual
environment“. In: Simulation Modelling Practice and Theory 26 (Aug. 2012),
pp. 1–15 (cit. on pp. 13, 32, 33, 55).

[Foua] AutoHotKey Foundation. AutoHotkey Site. http://www.autohotkey.com/.
(visited on 2012-12-04) (cit. on pp. 32, 108).

[Foub] AutoHotKey Foundation. Random number generation in AutoHotKey. http :
//www.autohotkey.com/docs/commands/Random.htm. (visited on 2012-12-
04) (cit. on p. 32).

[Fouc] Open Wonderland Foundation. jVoiceBridge. Link to jVoiceBridge documentation.
(visited on 2018-07-09) (cit. on p. 23).

[Foud] Open Wonderland Foundation. MTGame. Link to MTGame Library. (visited on
2018-07-09) (cit. on p. 23).

[Foue] Open Wonderland Foundation. Open Wonderland Forum – Google Groups. Link
to Open Wonderland Google Groups. (visited on 2018-07-09) (cit. on p. 57).

[Fouf] Open Wonderland Foundation. Openwonderland Architecture. Link to Open
Wonderland architecture documentation. (visited on 2018-07-09) (cit. on pp. 25,
56, 62).

[Foug] Python Software Foundation. Python.org. https://www.python.org/about/.
(visited on 2019-06-06) (cit. on p. 35).

[Fouh] R Foundation. R: What is R? https://www.r- project.org/about.html.
(visited on 2019-06-06) (cit. on p. 35).

[FRS05] Tobias Fritsch, Hartmut Ritter, and Jochen Schiller. „The effect of latency and
network limitations on MMORPGs: a field study of everquest2“. In: Proceedings
of 4th ACM SIGCOMM workshop on Network and system support for games.
NetGames ’05. New York, NY, USA: ACM, 2005, pp. 1–9 (cit. on p. 7).

[FSC12] J.L. Font, J.L. Sevillano, and D. Cascado. „An experimental evaluation of server
performance in Networked Virtual Environments“. In: 2012 International Sym-
posium on Performance Evaluation of Computer and Telecommunication Systems
(SPECTS). July 2012, pp. 1–6 (cit. on pp. 22, 27).

Bibliography 165

http://www.autohotkey.com/
http://www.autohotkey.com/docs/commands/Random.htm
http://www.autohotkey.com/docs/commands/Random.htm
https://sourceforge.net/projects/openwonderland-jvoicebridge/
https://sourceforge.net/projects/openwonderland-mtgame/
https://groups.google.com/forum/#!forum/openwonderland
https://groups.google.com/forum/#!forum/openwonderland
http://openwonderland.org/index.php/resources/developers
http://openwonderland.org/index.php/resources/developers
https://www.python.org/about/
https://www.r-project.org/about.html

[Gar+09] M. Gardner, G. A. Gánem-Gutiérrez, J. Scott, and C. Fowler. Designing and
Building immersive education spaces using Project Wonderland: from pedagogy
through to practice. Other. 2009 (cit. on p. 22).

[Gar+11] Michael Gardner, Gabriela Adela Gánem-Gutiérrez, John Scott, Bernard Horan,
and Victor Callaghan. Immersive Education Spaces Using Open Wonderland: From
Pedagogy through to Practice. Book Section. 2011 (cit. on p. 22).

[Gar89] Richard E. Jr Garvey. „SIMNET-D: Extending Simulation Boundaries“. In: Jour-
nal of the American Defense Preparedness Association (1989) (cit. on p. 2).

[GB95] Chris Greenhalgh and Steve Benford. „MASSIVE: A Distributed Virtual Reality
System Incorporating Spatial Trading“. In: ICDCS. 1995 (cit. on p. 9).

[GB96] Matthias Grossglauser and Jean-Chrysostome Bolot. On the Relevance of Long-
Range Dependence in Network Traffic. report. Mar. 1996 (cit. on p. 36).

[Geb+14] Sascha Gebhardt, Sebastian Pick, Thomas Oster, Bernd Hentschel, and Torsten
Kuhlen. „An evaluation of a smart-phone-based menu system for immersive
virtual environments“. In: 2014 IEEE Symposium on 3D User Interfaces (3DUI).
MN, USA: IEEE, Mar. 2014, pp. 31–34 (cit. on p. 20).

[Get+10] K. Getchell, I. Oliver, A. Miller, and C. Allison. „Metaverses as a Platform for
Game Based Learning“. In: 2010 24th IEEE International Conference on Advanced
Information Networking and Applications (AINA). Apr. 2010, pp. 1195–1202
(cit. on p. 11).

[GG15] C. Gittens and J. Greaves. „Transforming BrowserQuest into an epidemiological
tool for modelling disease dissemination“. In: 2015 Computer Games: AI, An-
imation, Mobile, Multimedia, Educational and Serious Games (CGAMES). July
2015, pp. 143–148 (cit. on pp. 8, 10).

[GHT08] Judith Good, Katherine Howland, and Liz Thackray. „Problem-based learning
spanning real and virtual words: a case study in Second Life“. In: Research in
Learning Technology 16.3 (Sept. 2008) (cit. on p. 11).

[GS10] Leif Gustafsson and Mikael Sternad. „Consistent micro, macro and state-based
population modelling“. In: Mathematical Biosciences 225.2 (June 2010), pp. 94–
107 (cit. on p. 35).

[Gun+17] Simon Gunkel, Martin Prins, Hans Stokking, and Omar Niamut. „WebVR meets
WebRTC: Towards 360-degree social VR experiences“. In: 2017 IEEE Virtual
Reality (VR). Los Angeles, CA, USA: IEEE, 2017, pp. 457–458 (cit. on pp. 12,
20).

[Hag96] O. Hagsand. „Interactive multiuser VEs in the DIVE system“. In: IEEE MultiMedia
3.1 (1996), pp. 30–39 (cit. on p. 9).

[Hay06] Elisabeth Hayes. „Situated Learning in Virtual Worlds: The Learning Ecology
of Second Life“. In: Adult Education Research Conference (July 2006) (cit. on
p. 11).

[Haz95] Michiel Hazewinkel, ed. Encyclopaedia of Mathematics (set). 1st ed. Springer,
July 1995 (cit. on p. 40).

166 Bibliography

[HB01] Tristan Henderson and Saleem Bhatti. „Modelling user behaviour in networked
games“. In: Proceedings of the ninth ACM international conference on Multimedia.
MULTIMEDIA ’01. New York, NY, USA: ACM, 2001, pp. 212–220 (cit. on p. 36).

[He+17] Tianyu He, Xiaoming Chen, Zhibo Chen, et al. „Immersive and collaborative
Taichi motion learning in various VR environments“. In: 2017 IEEE Virtual
Reality (VR). Los Angeles, CA, USA: IEEE, 2017, pp. 307–308 (cit. on p. 20).

[Hen14] Tom Henderson. Ns-3 Overview. https : / / www . nsnam . org / docs / ns - 3 -
overview.pdf. (visited on 2019-05-06). July 2014 (cit. on p. 86).

[HL04] Shun-Yun Hu and Guan-Ming Liao. „Scalable Peer-to-peer Networked Virtual
Environment“. In: Proceedings of 3rd ACM SIGCOMM Workshop on Network
and System Support for Games. NetGames ’04. New York, NY, USA: ACM, 2004,
pp. 129–133 (cit. on p. 21).

[Hos90] J. R. M. Hosking. „L-Moments: Analysis and Estimation of Distributions Using
Linear Combinations of Order Statistics“. In: Journal of the Royal Statistical
Society. Series B (Methodological) 52.1 (1990), pp. 105–124 (cit. on p. 47).

[HS17] Juho Hamari and Max Sjöblom. „What is eSports and why do people watch it?“
In: Internet Research 27.2 (Mar. 2017), pp. 211–232 (cit. on p. 8).

[Hüb08] Christian Hübsch. „Analyzing Unreal Tournament 2004 Network Traffic Char-
acteristics“. In: Computer Games & Allied Technology 08 (CGAT 08): animation,
multimedia, IPTV & edutainment: proceedings, Singapore. Ed. by Edmond Prakash.
Apr. 2008 (cit. on p. 36).

[Int] Bohemian Interactive. New Developments in VBS3. Link to document. (visited on
2015-09-26). Orlando, Florida (cit. on p. 3).

[Int12] Zipper Interactive. Zipper Interactive: Official Website. https://web.archive.
org/web/20120424114812/http://zipperint.com/. (visited on 2015-09-26).
Apr. 2012 (cit. on p. 3).

[JEP10] J. A. Joergensen, L. Ellekilde, and H. G. Petersen. „RobWorkSim - an Open Sim-
ulator for Sensor based Grasping“. In: ISR 2010 (41st International Symposium
on Robotics) and ROBOTIK 2010 (6th German Conference on Robotics). June
2010, pp. 1–8 (cit. on p. 10).

[KC08] James Kinicki and Mark Claypool. „Traffic Analysis of Avatars in Second Life“.
In: Proceedings of the 18th International Workshop on Network and Operating
Systems Support for Digital Audio and Video. NOSSDAV ’08. New York, NY, USA:
ACM, 2008, pp. 69–74 (cit. on p. 11).

[Kim+05] Jaecheol Kim, Jaeyoung Choi, Dukhyun Chang, et al. „Traffic Characteristics of
a Massively Multi-player Online Role Playing Game“. In: Proceedings of 4th ACM
SIGCOMM Workshop on Network and System Support for Games. NetGames ’05.
New York, NY, USA: ACM, 2005, pp. 1–8 (cit. on p. 7).

[Kle75] Leonard Kleinrock. Queueing Systems. Volume 1: Theory. 1 edition. New York:
Wiley-Interscience, Jan. 1975 (cit. on p. 36).

[KSB17] Gregory M. Kurtzer, Vanessa Sochat, and Michael W. Bauer. „Singularity: Sci-
entific containers for mobility of compute“. In: PLOS ONE 12.5 (May 2017),
e0177459 (cit. on p. 106).

Bibliography 167

https://www.nsnam.org/docs/ns-3-overview.pdf
https://www.nsnam.org/docs/ns-3-overview.pdf
https://bisimulations.com/sites/default/files/20140903 GameTech 2014 (1).pdf
https://web.archive.org/web/20120424114812/http://zipperint.com/
https://web.archive.org/web/20120424114812/http://zipperint.com/

[Kus04] David Kushner. „Masters of Doom: How Two Guys Created an Empire and
Transformed Pop Culture“. In: Masters of Doom: How Two Guys Created an
Empire and Transformed Pop Culture. Edición: Reprint. New York: Random
House Inc, May 2004, pp. 182–187 (cit. on p. 7).

[KY11] J. Kaplan and N. Yankelovich. „Open Wonderland: An Extensible Virtual World
Architecture“. In: IEEE Internet Computing 15.5 (Sept. 2011), pp. 38–45 (cit. on
p. 22).

[LA03] T. Lang and G. Armitage. „A ns2 model for the Xbox system link game HALO“.
In: traffic 1 (2003), p. 3 (cit. on p. 86).

[Lab13] Linden Lab. Infographic: 10 years of Second Life. https://www.lindenlab.com/
releases/infographic-10-years-of-second-life. (visited on 2019-06-05).
June 20, 2013 (cit. on p. 11).

[Lan+03] T. Lang, G. Armitage, P. Branch, and H. Y. Choo. „A synthetic traffic model for
Half-Life“. In: Australian Telecommunications Networks & Applications Conference.
Vol. 2003. 2003 (cit. on p. 36).

[LB10] Huaiyu Liu and M. Bowman. „Scale Virtual Worlds through Dynamic Load
Balancing“. English. In: 2010 IEEE/ACM 14th International Symposium on Dis-
tributed Simulation and Real Time Applications (DS-RT). IEEE, Oct. 2010, pp. 43–
52 (cit. on p. 11).

[LBA04] T. Lang, P. Branch, and G. Armitage. „A synthetic traffic model for Quake3“. In:
Proceedings of the 2004 ACM SIGCHI International Conference on Advances in
computer entertainment technology. 2004, pp. 233–238 (cit. on p. 36).

[LC17] S. W. K. Lee and R. K. C. Chang. „On "shot around a corner" in first-person
shooter games“. In: 2017 15th Annual Workshop on Network and Systems Support
for Games (NetGames). June 2017, pp. 1–6 (cit. on p. 8).

[Le 79] L. M. Le Cam. Maximum likelihood: an introduction. Statistics Branch, Depart-
ment of Mathematics, University of Maryland, 1979 (cit. on p. 47).

[Lel+93] Will E. Leland, Murad S. Taqqu, Walter Willinger, and Daniel V. Wilson. „On the
self-similar nature of Ethernet traffic“. In: ACM SIGCOMM Computer Communi-
cation Review. Vol. 23. ACM, 1993, pp. 183–193 (cit. on p. 36).

[LH13] Charles J. Lesko and Yolanda A. Hollingsworth. „Architecting Scalable Academic
Virtual World Grids: A Case Utilizing OpenSimulator“. In: Journal For Virtual
Worlds Research 6.1 (Apr. 2013) (cit. on pp. 10, 103).

[LHR02] Jani Lakkakorpi, Andreas Heiner, and Jussi Ruutu. Measurement and charac-
terization of Internet gaming traffic. Tech. rep. P.O. Box 407, FIN-00045 NOKIA
GROUP, Finland: Nokia Research Center, Jan. 2002 (cit. on pp. 36, 49).

[Lia+09] Huiguang Liang, Ransi Nilaksha De Silva, Wei Tsang Ooi, and Mehul Motani.
„Avatar mobility in user-created networked virtual worlds: measurements, anal-
ysis, and implications“. In: Multimedia Tools and Applications 45.1-3 (May 2009),
pp. 163–190 (cit. on p. 11).

[Lui01] J.C.S. Lui. „Constructing communication subgraphs and deriving an optimal
synchronization interval for distributed virtual environment systems“. In: IEEE
Transactions on Knowledge and Data Engineering 13.5 (2001), pp. 778–792
(cit. on p. 56).

168 Bibliography

https://www.lindenlab.com/releases/infographic-10-years-of-second-life
https://www.lindenlab.com/releases/infographic-10-years-of-second-life

[Mac87] M. H. (Myron H.) MacDougall. Simulating computer systems : techniques and
tools. MIT Press, Cambridge, Mass., 1987 (cit. on p. 34).

[MAK] VT MAK. VT MAK Official Site. http://www.mak.com/products.html. (visited
on 2015-09-26) (cit. on p. 3).

[Met] Inc. MetaVR. MetaVR real-time PC-based 3D visual simulation. https://www.
metavr.com/. (visited on 2015-09-26) (cit. on p. 3).

[MF08] Chip Morningstar and F. Randall Farmer. „The Lessons of Lucasfilm’s Habitat“.
In: Journal For Virtual Worlds Research 1.1 (2008) (cit. on p. 6).

[MF91] Chip Morningstar and F. Randall Farmer. „Cyberspace“. In: ed. by Michael
Benedikt. Cambridge, MA, USA: MIT Press, 1991, pp. 273–302 (cit. on p. 6).

[MH12] Matthew T. Marino and Michael T. Hayes. „Promoting inclusive education, civic
scientific literacy, and global citizenship with videogames“. In: Cultural Studies
of Science Education 7.4 (Dec. 2012), pp. 945–954 (cit. on p. 8).

[Mob] MobyGames. Drew Johnston Video Game Credits and Biography. http://www.
mobygames.com/developer/sheet/view/developerId,277286/. (visited on
2015-09-26) (cit. on p. 3).

[MP03] Jessica Mulligan and Bridgette Patrovsky. „Developing Online Games: An In-
sider’s Guide“. In: Developing Online Games: An Insider’s Guide. Indianapolis,
Ind: New Riders Games, Mar. 2003, p. 444 (cit. on p. 5).

[MSB13] S. Moller, S. Schmidt, and J. Beyer. „Gaming taxonomy: An overview of concepts
and evaluation methods for computer gaming QoE“. In: 2013 Fifth International
Workshop on Quality of Multimedia Experience (QoMEX). July 2013, pp. 236–241
(cit. on pp. 4, 13).

[MT95] D.C. Miller and J.A. Thorpe. „SIMNET: the advent of simulator networking“. In:
Proceedings of the IEEE 83.8 (Aug. 1995), pp. 1114–1123 (cit. on p. 2).

[Myu03] In Jae Myung. „Tutorial on maximum likelihood estimation“. In: Journal of
Mathematical Psychology 47.1 (Feb. 2003), pp. 90–100 (cit. on p. 47).

[NC04] James Nichols and Mark Claypool. „The Effects of Latency on Online Madden
NFL Football“. In: Proceedings of the 14th International Workshop on Network
and Operating Systems Support for Digital Audio and Video. NOSSDAV ’04. New
York, NY, USA: ACM, 2004, pp. 146–151 (cit. on p. 28).

[NSR16] Steve Nebel, Sascha Schneider, and Günter Daniel Rey. „Mining Learning and
Crafting Scientific Experiments: A Literature Review on the Use of Minecraft in
Education and Research“. In: Educational Technology & Society 19 (Jan. 2016),
pp. 355–366 (cit. on pp. 11, 12).

[OB10] Mohammed S. Obaidat and Noureddine A. Boudriga. Fundamentals of Perfor-
mance Evaluation of Computer and Telecommunications Systems. New York, NY,
USA: Wiley-Interscience, 2010 (cit. on p. 85).

[Oos94] Roland Oosterbaan. „Frequency and regression analysis“. In: IILRI. Vol. 16. Jan.
1994, pp. 175–224 (cit. on p. 47).

Bibliography 169

http://www.mak.com/products.html
https://www.metavr.com/
https://www.metavr.com/
http://www.mobygames.com/developer/sheet/view/developerId,277286/
http://www.mobygames.com/developer/sheet/view/developerId,277286/

[Pax93] Vern Paxson. Empirically-derived analytic models of wide-area TCP connections:
Extended report. Tech. rep. technical report LBL-34086, Lawrence Berkeley
Laboratory, May, 1993. Available as WANTCP-models. 1. ps. Z and WAN-TCP-
models. 2. ps. Z via anonymous FTP to ftp. ee. lbl. gov, 1993 (cit. on pp. 42, 49,
51).

[Pax94] V. Paxson. „Empirically derived analytic models of wide-area TCP connections“.
In: IEEE/ACM Transactions on Networking 2.4 (Aug. 1994), pp. 316–336 (cit. on
p. 36).

[PF95] Vern Paxson and Sally Floyd. „Wide area traffic: the failure of Poisson modeling“.
In: IEEE/ACM Transactions on Networking (ToN) 3.3 (1995), pp. 226–244 (cit.
on p. 36).

[PH94] Johann Pfanzagl and R. Hamböker. Parametric Statistical Theory. Walter de
Gruyter, 1994 (cit. on p. 47).

[PJ90] Shane P. Pederson and Mark E. Johnson. „Estimating Model Discrepancy“. In:
Technometrics 32.3 (Aug. 1990), p. 305 (cit. on pp. 49–51).

[PKK05] HyoJoo Park, TaeYong Kim, and SaJoong Kim. „Network Traffic Analysis and
Modeling for Games“. In: Internet and Network Economics. Ed. by Xiaotie Deng
and Yinyu Ye. Lecture Notes in Computer Science 3828. Springer Berlin Heidel-
berg, Dec. 2005, pp. 1056–1065 (cit. on pp. 7, 48).

[Proa] Ns-2 Project. The Network Simulator - ns-2. https://www.isi.edu/nsnam/ns/.
(visited on 2019-06-02) (cit. on p. 86).

[Prob] Ns-3 Project. Ns-3 project on Gitlab. https://gitlab.com/nsnam/ns-3-dev.
(visited on 2019-05-26) (cit. on p. 86).

[Proc] Open Wonderland Project. Open Wonderland. http://www.openwonderland.
org/. (visited on 2011-03-15) (cit. on pp. 22, 59).

[Prod] Open Wonderland Project. Wonderland Tutorial. http://code.google.com/
p/openwonderland/wiki/OpenWonderland. (visited on 2018-07-09) (cit. on
p. 24).

[Proe] RedDwarf Project. RedDwarf Project Documentation. Link to RedDwarf site. (vis-
ited on 2011-12-30) (cit. on p. 24).

[Prof] Squid Project. Squid : Optimising Web Delivery. http://www.squid-cache.org/.
(visited on 2019-06-27) (cit. on p. 105).

[Prog] Wireshark Project. Wireshark Checksums. https://www.wireshark.org/docs/
wsug_html_chunked/ChAdvChecksums.html. (visited on 2019-07-10) (cit. on
p. 33).

[Proh] XENON Project. Homepage of the XENON1T Dark Matter Search. http://www.
xenon1t.org/. (visited on 2019-07-14) (cit. on p. 14).

[Pro19] Ns-3 Project. Ns-3 Documentation. https://www.nsnam.org/documentation/.
(visited on 2019-04-06). Apr. 6, 2019 (cit. on pp. 85, 86, 92).

[Rab15] Steven Rabin, ed. Game AI Pro 2: Collected Wisdom of Game AI Professionals. A K
Peters/CRC Press, Apr. 2015 (cit. on p. 11).

170 Bibliography

https://www.isi.edu/nsnam/ns/
https://gitlab.com/nsnam/ns-3-dev
http://www.openwonderland.org/
http://www.openwonderland.org/
http://code.google.com/p/openwonderland/wiki/OpenWonderland
http://code.google.com/p/openwonderland/wiki/OpenWonderland
http://www.reddwarfserver.org/?q=content/open-source-online-gaming-universe
https://www.wireshark.org/docs/wsug_html_chunked/ChAdvChecksums.html
https://www.wireshark.org/docs/wsug_html_chunked/ChAdvChecksums.html
http://www.xenon1t.org/
http://www.xenon1t.org/
https://www.nsnam.org/documentation/

[Ran84] Bo Ranneby. „The Maximum Spacing Method. An Estimation Method Related
to the Maximum Likelihood Method“. In: Scandinavian Journal of Statistics 11.2
(1984), pp. 93–112 (cit. on p. 47).

[RB06] Jason Rutter and Jo Bryce. Understanding Digital Games. SAGE, Apr. 2006 (cit.
on p. 11).

[Rel07] US Army News Release. "Virtual Army Experience" Traveling Exhibit Offers Hands-
on Test Drive of Soldiering in U.S. Army. Link to press release. (visited on 2015-
09-26). July 2007 (cit. on p. 3).

[Rep+14] Alexander Repenning, David C. Webb, Catharine Brand, et al. „Beyond Minecraft:
Facilitating Computational Thinking through Modeling and Programming in
3D“. In: IEEE Computer Graphics and Applications 34.3 (May 2014), pp. 68–71
(cit. on p. 12).

[RG14] Kjetil Raaen and Tor-Morten Grønli. „Latency Thresholds for Usability in Games:
A Survey“. In: Norsk Informatikkonferanse (NIK) (2014) (cit. on p. 19).

[Rhe91] Howard Rheingold. Virtual reality. Summit Books, 1991 (cit. on p. 2).

[RHS10] S. Ratti, B. Hariri, and S. Shirmohammadi. „A Survey of First-Person Shooter
Gaming Traffic on the Internet“. In: IEEE Internet Computing 14.5 (Oct. 2010),
pp. 60–69 (cit. on p. 27).

[Rob94] Warren Robinett. „Interactivity and Individual Viewpoint in Shared Virtual
Worlds: The Big Screen vs. Networked Personal Displays“. In: SIGGRAPH Comput.
Graph. 28.2 (May 1994), pp. 127–130 (cit. on p. 6).

[Rom+10] Salvador J. Romero, Luis Fernandez-Luque, José L. Sevillano, and Lars Vognild.
„Open Source Virtual Worlds and Low Cost Sensors for Physical Rehab of
Patients with Chronic Diseases“. In: Electronic Healthcare. Ed. by Patty Kostkova.
Lecture Notes of the Institute for Computer Sciences, Social Informatics and
Telecommunications Engineering 27. Springer Berlin Heidelberg, Jan. 2010,
pp. 76–79 (cit. on p. 22).

[Ros95] Sheldon M. Ross. Stochastic Processes. 2nd ed. Wiley, Jan. 1995 (cit. on p. 58).

[RP09] Malcolm Ryan and Yusuf Pisan. IE ’09: Proceedings of the Sixth Australasian
Conference on Interactive Entertainment. New York, NY, USA: ACM, 2009 (cit. on
p. 4).

[RPW09] Muhammad Azizur Rahman, Algirdas Pakštas, and Frank Zhigang Wang. „Net-
work modelling and simulation tools“. In: Simulation Modelling Practice and
Theory 17.6 (July 2009), pp. 1011–1031 (cit. on p. 85).

[RSR08] M. Ries, P. Svoboda, and M. Rupp. „Empirical study of subjective quality for
Massive Multiplayer Games“. In: 15th International Conference on Systems,
Signals and Image Processing, 2008. IWSSIP 2008. June 2008, pp. 181–184
(cit. on p. 7).

[s15] Group ‘s’. Cyber1. http://www.cyber1.org/. (visited on 2015-10-24). 2015
(cit. on p. 5).

Bibliography 171

https://web.archive.org/web/20070712082040/http://www.army.mil/-newsreleases/2007/02/12/1821-virtual-army-experience-traveling-exhibit-offers-hands-on-test-drive-of-soldiering-in-us-army/
http://www.cyber1.org/

[Sal+12] J. Saldana, L. Sequeira, J. Fernandez-Navajas, and J. Ruiz-Mas. „Traffic optimiza-
tion for TCP-based Massive Multiplayer Online Games“. In: 2012 International
Symposium on Performance Evaluation of Computer and Telecommunication Sys-
tems (SPECTS). July 2012, pp. 1–8 (cit. on p. 8).

[Sco79] David W. Scott. „On Optimal and Data-Based Histograms“. In: Biometrika 66.3
(Dec. 1979), pp. 605–610 (cit. on p. 51).

[SE79] William Sorlie and Diane L. Essex. „The University of Illinois Basic Medical
Sciences PLATO IV Project–An Evaluation“. In: Journal of Computer-Based In-
struction 5.3 (Feb. 1979), pp. 50–56 (cit. on p. 5).

[SGI93] SGI. Dogfight Manual Page from SGI IRIX v6.5. Link to manual page. Unix Manual
Page. (visited on 2015-10-27). 1993 (cit. on p. 6).

[Sha+14] Shayan Shahand, Mohammad Mahdi Jaghoori, Ammar Benabdelkader, et al.
„Computational Neuroscience Gateway: A Science Gateway Based on the WS-
PGRADE/gUSE“. In: Science Gateways for Distributed Computing Infrastruc-
tures: Development Framework and Exploitation by Scientific User Communities.
Springer, Oct. 2014, pp. 139–150 (cit. on pp. 14, 35).

[She+03] Nathan Sheldon, Eric Girard, Seth Borg, Mark Claypool, and Emmanuel Agu.
„The effect of latency on user performance in Warcraft III“. In: Proceedings of
the 2nd workshop on Network and system support for games. NetGames ’03. New
York, NY, USA: ACM, 2003, pp. 3–14 (cit. on pp. 26, 33).

[SJT06] Shun-Yun Hu, Jui-Fa Chen, and Tsu-Han Chen. „VON: a scalable peer-to-peer
network for virtual environments“. In: IEEE Network 20.4 (July 2006), pp. 22–31
(cit. on p. 21).

[SKR07] P. Svoboda, W. Karner, and M. Rupp. „Traffic Analysis and Modeling for World
of Warcraft“. In: IEEE International Conference on Communications, 2007. ICC
’07. June 2007, pp. 1612–1617 (cit. on p. 7).

[SM13] Luís Miguel Sequeira and Leonel Caseiro Morgado. „Virtual Archaeology in
Second Life and OpenSimulator“. In: Journal For Virtual Worlds Research 6.1
(Apr. 2013) (cit. on p. 10).

[Sof93] Id Software. Doom Press Release. Link to John Romero’s blog. (visited on 2015-
11-02). Jan. 1993 (cit. on p. 7).

[Sta12] StatCounter. Top 5 Operating Systems on Oct 2012 | StatCounter Global Stats.
Link to site. (visited on 2012-11-25). 2012 (cit. on p. 28).

[Ste74] M. A. Stephens. „EDF Statistics for Goodness of Fit and Some Comparisons“. In:
Journal of the American Statistical Association 69.347 (Sept. 1974), pp. 730–737
(cit. on p. 40).

[SW09] Galen R. Shorack and Jon A. Wellner. Empirical Processes with Applications to
Statistics. SIAM, Sept. 2009 (cit. on p. 39).

[SZ99] Sandeep Singhal and Michael Zyda. Networked Virtual Environments: Design
and Implementation. Addison-Wesley, 1999 (cit. on pp. 1, 9, 18).

[Teaa] HotKeyNet Team. HotkeyNet Site. http://hotkeynet.com/. (visited on 2012-
12-04) (cit. on pp. 32, 110).

172 Bibliography

http://techpubs.sgi.com/library/tpl/cgi-bin/getdoc.cgi?coll=0650&db=man&fname=/usr/share/catman/u_man/cat6/shadow.z
http://web.archive.org/web/20120825053443/http://www.rome.ro/lee_killough/history/doompr3.shtml
http://gs.statcounter.com/#os-ww-monthly-201210-201210-bar
http://hotkeynet.com/

[Teab] jME Team. jMonkeyEngine. http://jmonkeyengine.org/. (visited on 2018-07-
09) (cit. on p. 24).

[Tea19a] The Wireshark Team. tshark - The Wireshark Network Analyzer 2.6.6. https:
//www.wireshark.org/docs/man-pages/tshark.html. (visited on 2019-02-
07). 2019 (cit. on pp. 57, 107).

[Tea19b] The Wireshark Team. Wireshark · Go Deep. https://www.wireshark.org/.
(visited on 2019-02-07). 2019 (cit. on pp. 33, 56, 57, 107).

[Tec] Technopedia. What is a Sandbox (in Gaming)? - Definition from Technopedia.
https://www.techopedia.com/definition/3952/sandbox-gaming. (visited on
2019-06-23) (cit. on p. 11).

[TL14] Alireza Tavakkoli and D Loffredo. „Lessons from game studies to enhance
gamification in education“. In: WMSCI 2014 - 18th World Multi-Conference on
Systemics, Cybernetics and Informatics, Proceedings 2 (Jan. 2014), pp. 44–49
(cit. on p. 10).

[Tot] Viktor T. Toth. MUD British Legends. http://www.british-legends.com/CMS/
index.php/play-the-game/other-ways-to-play. (visited on 2015-10-27)
(cit. on p. 5).

[Tre03] Helmuth Trefftz. Networked Virtual Environments. Link to the presentation slides.
Tutorial. (visited on 2015-08-01). Honolulu, Hawaii, Aug. 2003 (cit. on p. 18).

[Tuc59] Howard G. Tucker. „A Generalization of the Glivenko-Cantelli Theorem“. In:
The Annals of Mathematical Statistics 30.3 (1959), pp. 828–830 (cit. on p. 40).

[Vaa00] A. W. van der Vaart. Asymptotic statistics. Cambridge: Cambridge University
Press, 2000 (cit. on p. 40).

[VDK13] Mathieu Valero, Raluca Diaconu, and Joaquin Keller. „Manycraft: Massively
distributed minecraft“. In: 2013 12th Annual Workshop on Network and Systems
Support for Games (NetGames). Denver, CO, USA: IEEE, Dec. 2013, pp. 1–3
(cit. on p. 12).

[Vil+10] A. Vilela, M. Cardoso, D. Martins, et al. „Privacy Challenges and Methods for
Virtual Classrooms in Second Life Grid and OpenSimulator“. In: 2010 Second
International Conference on Games and Virtual Worlds for Serious Applications.
Mar. 2010, pp. 167–174 (cit. on p. 10).

[Vot04] O. Voth. „Gaming technology helps troops learn language“. In: IEEE Intelligent
Systems 19.5 (Sept. 2004), pp. 4–6 (cit. on p. 3).

[Wat+06] A. F. Wattimena, Robert E. Kooij, J. M. Van Vugt, and O. K. Ahmed. „Predicting
the perceived quality of a first person shooter: the Quake IV G-model“. In:
Proceedings of 5th ACM SIGCOMM workshop on Network and system support for
games. ACM, 2006, p. 42 (cit. on p. 8).

[Wav01] J. M. P. van Waveren. „The quake III arena bot“. In: Master of Science thesis Delft
University of Technology (2001) (cit. on p. 31).

Bibliography 173

http://jmonkeyengine.org/
https://www.wireshark.org/docs/man-pages/tshark.html
https://www.wireshark.org/docs/man-pages/tshark.html
https://www.wireshark.org/
http://www.british-legends.com/CMS/index.php/play-the-game/other-ways-to-play
http://www.british-legends.com/CMS/index.php/play-the-game/other-ways-to-play
http://arcadia.eafit.edu.co/Publications/networkedVirtualEnvironments.ppt

[WCJ14] Jih-Wei Wu, Ding-Wei Chou, and Jehn-Ruey Jiang. „The Virtual Environment
of Things (VEoT): A Framework for Integrating Smart Things into Networked
Virtual Environments“. In: 2014 IEEE International Conference on Internet of
Things(iThings), and IEEE Green Computing and Communications (GreenCom)
and IEEE Cyber, Physical and Social Computing (CPSCom). Taipei, Taiwan: IEEE,
Sept. 2014, pp. 456–459 (cit. on p. 20).

[Wei+17] Derek Weitzel, Brian Bockelman, Dave Dykstra, Jakob Blomer, and Ren Meusel.
„Accessing data federations with CVMFS“. In: J.Phys.Conf.Ser. 898.6 (Nov. 2017),
p. 062044 (cit. on p. 105).

[WI09] Christian Wagner and Rachael K. F. Ip. „Action Learning with Second Life–A
Pilot Study“. In: Journal of Information Systems Education 20.2 (2009), pp. 249–
258 (cit. on p. 11).

[Wol02] Mark J. P. Wolf. „The Medium of the Video Game“. In: The Medium of the Video
Game. 1 edition. Austin: University of Texas Press, Feb. 2002, pp. 113–134
(cit. on p. 4).

[XS16] Mingze Xi and Shamus P. Smith. „Supporting path switching for non-player char-
acters in a virtual environment“. In: 2016 IEEE Virtual Reality (VR). Greenville,
SC, USA: IEEE, Mar. 2016, pp. 315–316 (cit. on p. 21).

[Yan+04] Nicole Yankelovich, William Walker, Patricia Roberts, et al. „Meeting central:
making distributed meetings more effective“. In: ACM, Nov. 2004, pp. 419–428
(cit. on p. 21).

[Yan12] Yang Yang. Understanding Switch Latency, Cisco Nexus 3000 Series Switches. Link
to paper. (visited on 2013-04-02). 2012 (cit. on p. 28).

[YJG03] Andy B. Yoo, Morris A. Jette, and Mark Grondona. „SLURM: Simple Linux Utility
for Resource Management“. In: Job Scheduling Strategies for Parallel Processing.
Ed. by Dror Feitelson, Larry Rudolph, and Uwe Schwiegelshohn. Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2003, pp. 44–60 (cit. on
p. 104).

[YK13] Amir Yahyavi and Bettina Kemme. „Peer-to-peer Architectures for Massively
Multiplayer Online Games: A Survey“. In: ACM Comput. Surv. 46.1 (July 2013),
9:1–9:51 (cit. on pp. 9, 18).

[ZA04] Sebastian Zander and Grenville Armitage. „Empirically measuring the QoS
sensitivity of interactive online game players“. In: Proc. ATNAC. 2004, pp. 511–
518 (cit. on p. 8).

[ZA05] S. Zander and G. Armitage. „A traffic model for the Xbox game Halo 2“. In:
Proceedings of the international workshop on Network and operating systems
support for digital audio and video. 2005, pp. 13–18 (cit. on p. 36).

174 Bibliography

http://www.cisco.com/en/US/prod/collateral/switches/ps9441/ps11541/white_paper_c11-661939.html
http://www.cisco.com/en/US/prod/collateral/switches/ps9441/ps11541/white_paper_c11-661939.html

List of Figures

2.1 Open Wonderland client-server architecture 23
2.2 Structure of a Open Wonderland cell 25
2.3 Structure of Open Wonderlad Testbed 1 27
2.4 Structure of Open Wonderland Testbed 2 30

3.1 Workflow for the NVE analysis and modelling pipeline 38
3.2 ACF for uniform random sequence plus periodic series 43
3.3 Q-Q plot, normal sample vs. normal quantiles 50

4.1 ECDF for OSIAT and CDF for exponential distribution, OWTB1 59
4.2 ACF for OSIAT values, 2-player session, OWTB1 61
4.3 ACF for OSIAT values, 2-player session, OWTB2 61
4.4 ECDF and fitting CDF for user activity study sessions, OWTB1 63
4.5 PDF for the aggregation of OSIAT values from OWTB1 66
4.6 PDF for the aggregation of OSIAT values from OWTB2 67
4.7 ECDF and fitting CDF, Client 1, 5-client session, OWTB1 68
4.8 Detail of ECDF and fitting CDF, Client 1, 5-client session, OWTB1 68
4.9 Exponential λ rate values for OWTB2 clients and sessions 72
4.10 Weibull λ scale and κ shape values for OWTB2 clients and sessions . . 72
4.11 Q-Q for OSIAT models, t3-player session, OWTB1 74
4.12 Q-Q for OSIAT models, 3-player session, OWTB2 75
4.13 OSPS values for OWTB1 . 79
4.14 OSPS values for OWTB2 . 80
4.15 ACF for OSPS values, 2-player session, OWTB1 80
4.16 ACF for OSPS values, 2-player session, OWTB2 80

5.1 Structure of the ns-3 simulation for OSIAT 88
5.2 Class diagram for WonderMovClient and WonderMovServer 89
5.3 Sequence diagram for OWL traffic models 89
5.4 Class diagram for WonderMovClientHelper and WonderMovServerHelper 90
5.5 Class diagram for exponential-based OSIAT model 91
5.6 Class diagram for Weibull-based OSIAT model 91
5.7 Class diagram for OSPS model . 92
5.8 Exponential-based OSIAT model vs. empirical OSIAT 96
5.9 Weibull-based OSIAT model vs. empirical OSIAT 96

175

D.1 ECDFs OSIAT values, 2-player session, OWTB1 119
D.2 ECDFs OSIAT values, 3-player session, OWTB1 120
D.3 ECDFs OSIAT values, 5-player session, OWTB1 121
D.4 ECDF plots for OSIAT, 2-player session, OWTB2 122
D.5 ECDF plots for OSIAT, 3-player session, OWTB2 122
D.6 ECDF plots for OSIAT, 5-player session, OWTB2 123
D.7 ECDF plots for OSIAT, 8-player session, OWTB2 124
D.8 ECDF plots for OSIAT, 10-player session, OWTB2 125
D.9 ACF for OSIAT, 2-player session, OWTB1 126
D.10 ACF for OSIAT, 3-player session, OWTB1 126
D.11 ACF for OSIAT, 5-player session, OWTB1 127
D.12 ACF for OSIAT, 2-player session, OWTB2 128
D.13 ACF for OSIAT, 3-player session, OWTB2 128
D.14 ACF for OSIAT, 5-player session, OWTB2 129
D.15 ACF for OSIAT, 8-player session, OWTB2 130
D.16 ACF for OSIAT, 10-player session, OWTB2 131
D.17 Q-Q for OSIAT models, 2-player session, OWTB1 141
D.18 Q-Q for OSIAT models, 3-player session, OWTB1 141
D.19 Q-Q for OSIAT models, 5-player session, OWTB1 142
D.20 Q-Q for OSIAT models, 2-player session, OWTB2 143
D.21 Q-Q for OSIAT models, 3-player session, OWTB2 143
D.22 Q-Q for OSIAT models, 5-player session, OWTB2 144
D.23 Q-Q for OSIAT models, 8-player session, OWTB2 145
D.24 Q-Q for OSIAT models, 10-player session, OWTB2 146
D.25 ACF for OSPS, 2-player session, OWTB1 152
D.26 ACF for OSPS, 3-player session, OWTB1 152
D.27 ACF for OSPS, 5-player session, OWTB1 153
D.28 ACF for OSPS, 2-player session, OWTB2 154
D.29 ACF for OSPS, 3-player session, OWTB2 154
D.30 ACF for OSPS, 5-player session, OWTB2 155
D.31 ACF for OSPS, 8-player session, OWTB2 156
D.32 ACF for OSPS, 10-player session, OWTB2 157

176 List of Figures

List of Tables

2.1 Hardware setup for OWTB1 . 28
2.2 Hardware setup for OWTB2 . 30

3.1 Quantiles for Q-Q example . 49

4.1 Quantiles for OSIAT from active/inactive testing sessions 63
4.2 Quantiles for OSIAT, OWTB1 sessions 64
4.3 Summary of MLE parameters for OWTB1 and OWTB2 73
4.4 λ̂2 for exponential and Weibull-based models, OWTB1 77
4.5 λ̂2 for exponential and Weibull-based models, OWTB2 77
4.6 Relative frequency for OSPS, OWTB1 81
4.7 Relative frequency for OSPS, OWTB2 82

5.1 BW and packet rate for testbed and simulated OWL traffic 95

D.1 Quantiles for OSIAT, OWTB2 sessions 132
D.1 Quantiles for OSIAT, OWTB2 sessions 133
D.2 Cacp values for exponential and Weibull-based models, OWTB1 134
D.3 Cacp values for exponential and Weibull-base models, OWTB2 134
D.3 Cacp values for exponential and Weibull-base models, OWTB2 135
D.3 Cacp values for exponential and Weibull-base models, OWTB2 136
D.4 MLE exponential, λ rate for OWTB1 sessions 136
D.5 MLE Weibull, κ shape and λ scale for OWTB1 sessions 137
D.6 MLE exponential λ rate for OWTB2 sessions 137
D.6 MLE exponential λ rate for OWTB2 sessions 138
D.7 MLE Weibull, κ shape and λ scale for OWTB2 sessions 139
D.7 MLE Weibull, κ shape and λ scale for OWTB2 sessions 140
D.8 Pearson’s r for OSIAT exponential and Weibull-based models, OWTB1 . 147
D.9 Pearson’s r for OSIAT exponential and Weibull-based models, OWTB2 . 147
D.9 Pearson’s r for OSIAT exponential and Weibull-based models, OWTB2 . 148
D.9 Pearson’s r for OSIAT exponential and Weibull-based models, OWTB2 . 149
D.10 λ̂2 metric for exponential and Weibull-based models, OWTB1 149
D.11 λ̂2 metric for exponential and Weibull-based models, OWTB2 150
D.11 λ̂2 metric for exponential and Weibull-based models, OWTB2 151

177

List of Tables 179

Acronyms

ACF autocorrelation function.

AHK AutoHotKey.

AI artificial intelligence.

AOL America Online.

ARMA autoregressive-moving-average.

BYOC bring your own computer.

CDF cumulative distribution function.

CLI command-line interface.

CSMA carrier sense multiple access.

CSV comma-separated value.

CVMFS CernVM File System.

DDoS distributed denial-of-service.

DIS Distributed Interactive Simulation.

DIVE Distributed Interactive Virtual Environment.

DoD Department of Defense.

181

ECDF empirical cumulative distribution function.

FCS frame check sequence.

FPS first-person shooter.

GoF goodness of fit.

GPU graphics processing unit.

GUI graphical user interface.

HKN HotKeyNet.

HPC high-performance computing.

HTC high-throughput computing.

IAT inter-arrival time.

IDT inter-departure time.

IoT Internet of things.

JDK Java Development Kit.

JRE Java Runtime Environment.

LAN local area network.

LSVE large-scale virtual environment.

MLE maximum likelihood estimation.

MMORPG massively multiplayer online role-playing game.

MUD Multi-User Dungeon.

182 Acronyms

MWTB Mounted Warfare TestBed.

NIC network interface controller.

NVE networked virtual environment.

OO object oriented.

OSIAT object synchronisation inter-arrival time.

OSPS object synchronisation packet size.

OWL Open Wonderland.

OWTB1 Open Wonderland TestBed 1.

OWTB2 Open Wonderland TestBed 2.

P2P peer-to-peer.

PCC Pearson correlation coefficient.

PDF probability density function.

PLATO Programmed Logic for Automatic Teaching Operations.

PS packet size.

QoE quality of experience.

QoS quality of service.

RPG role-playing game.

RTS real-time strategy.

SGI Silicon Graphics, Inc..

Acronyms 183

SIF Singularity Image Format.

SP1 Service Pack 1.

VAE Virtual Army Experience.

VBR variable bitrate.

VBS1 Virtual Battlefield Systems 1.

VR virtual reality.

WoW World of Warcraft.

184 Acronyms

Colophon

The research presented in this thesis was performed at the Department of Computer
Technology and Architecture, part of the Escuela Superior de Ingeniería Informática,
University of Seville, in collaboration with University of Pisa, Italy.

Financial support for travel, conference attendance, publications and other logistics
were provided by Consejería de Educación of Junta de Andalucía through the
program Incentivos para la formación de personal docente e investigador predoctoral
en áreas de conocimiento deficitarias and the Department of Computer Technology
and Architecture, University of Seville.

Special thanks to the Cátedra Telefónica for its support during the realisation of the
present work.

This thesis was typeset with LATEX 2ε. It uses the Clean Thesis style developed by
Ricardo Langner. The bibliography has been managed using Zotero.

Declaration

I Juan Luis Font Calvo, student of the Department of Computer Technology and
Architecture of the University of Seville, declare that I have developed and written
the enclosed PhD Thesis completely by myself, and have not used sources or means
without declaration in the text. Any thoughts from others or literal quotations are
clearly marked. The PhD Thesis was not used in the same or in a similar version to
achieve an academic grading or is being published elsewhere.

Sevilla, July 2019

Juan Luis Font Calvo

	Cover
	Titlepage
	Abstract
	Acknowledgement
	1 Introduction
	1.1 Historical overview
	1.1.1 Military use
	1.1.2 Entertainment industry and video games
	1.1.3 Academia and research

	1.2 Motivation and goals
	1.3 Summary

	2 Networked virtual environments: characterisation and case study
	2.1 Networked virtual environment
	2.1.1 NVE software
	2.1.2 NVE hardware

	2.2 Open Wonderland
	2.2.1 Architecture and internal components
	2.2.2 In-game elements and interactions
	2.2.3 Networking

	2.3 Experimental testbeds based on Open Wonderland
	2.3.1 Open Wonderland Testbed 1
	2.3.2 Open Wonderland Testbed 2
	2.3.3 Guidelines to conduct gaming session
	2.3.4 Network traffic capture

	2.4 Summary

	3 Analysis and modelling pipeline for NVE network traffic
	3.1 Background
	3.2 Analysis pipeline for microscale modelling
	3.3 Data Filtering
	3.4 Data preview and preliminary analysis
	3.5 Correlation and Autocorrelation
	3.6 Selection of a probability distribution
	3.6.1 Exponential distribution
	3.6.2 Weibull distribution

	3.7 Probability distribution fitting
	3.8 Statistical Discrepancy
	3.8.1 Q-Q plots
	3.8.2 Lambda square and hat lambda square for discrepancy measurement

	3.9 Summary

	4 Analysis and modelling of NVE network traffic: Open Wonderland
	4.1 Object synchronisation in Open Wonderland
	4.2 Microscale modelling and analysis pipeline
	4.3 Data filtering criteria
	4.4 Object synchronisation inter-arrival time
	4.4.1 Data preview
	4.4.2 Autocorrelation
	4.4.3 User activity
	4.4.4 Data modelling
	4.4.5 Statistical discrepancy

	4.5 Object synchronisation packet size
	4.5.1 Data preview
	4.5.2 Autocorrelation
	4.5.3 Data Modelling

	4.6 Summary

	5 Simulation based on NVE models
	5.1 Simulation framework: ns-3
	5.2 Simulation implementation
	5.2.1 Implementation and code structure
	5.2.2 Simulation executable

	5.3 Simulation results
	5.3.1 Simulation based on exponential-based OSIAT model
	5.3.2 Simulation based on Weibull-based OSIAT model
	5.3.3 Conclusions

	5.4 Summary

	6 Conclusions and future work
	6.1 Conclusions
	6.2 Future work

	A NVE simulations and HTC environments
	A.1 Running NVE simulations in HTC environments
	A.2 Software distribution in HTC environments
	A.3 Summary

	B Testbed Appendix
	B.1 Traffic capture with Wireshark and tshark
	B.2 AutoHotKey scripts
	B.3 HotKeyNet scripts

	C R implementation of OWL network traffic models and discrepancy metrics
	C.1 Activity Correlation Parameter for OWL OSIAT models
	C.2 Exponential-based OSIAT model for OWL
	C.3 Weibull-based OSIAT model for OWL
	C.4 Statistical discrepancy metrics

	D Derivatives from the analysis of Open Wonderland network traffic
	D.1 ECDF and fitting CDFs for OSIAT
	D.2 Autocorrelation functions for OSIAT
	D.3 Tail quantiles for OSIAT
	D.4 Activity Correction Parameter for OSIAT models
	D.5 MLE parameters for OSIAT models
	D.6 Q-Q plots for OSIAT values
	D.7 Pearson Correlation Coefficient for OSIAT models
	D.8 Lambda Square values for OSIAT models
	D.9 Autocorrelation functions for OSPS

	Bibliography
	Colophon
	Declaration

