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Abstract: 
This paper presents several non-linear models adjusted in order to capture the 
dynamics of a gypsum kiln. The behavior of this kind of processes is affected by non- 
linear effects caused by the existence of disturbances and the coupling among some 
variables. The use of second order Volterra and Hammerstein models as appropriate 
solutions to  describe the process dynamics is analyzed. A thorough study of the best 
model order and structure is performed. Coefficients that best fit real data are also 
selected. This work aims to  obtain a good non-linear model in order to  implement 
a non-linear predictive controller, able to  improve the performances of those linear 
controllers already tested on the plant. 
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1. INTRODUCTION 

The development of non-linear model for process 
control is a difficult task. Therefore, although 
a great deal of processes is non-linear, linear 
models for control tend to be used because of their 
simplicity and thanks to  the existence of already 
tested identification techniques. Moreover, there 
are many instances in which processes work in the 
vicinity of a nominal operating point and linear 
models are able to  perform well. 

However, there exist many situations in which 
non-linear effects justify the need of non-linear 
models, such as in the case of strong non-linear 
processes subject to big disturbances (pH con- 
trol, for instance) or setpoint tracking problems 
where the operating point is continually changing, 
showing the non-linear process dynamics. This 
is the case of the plant analyzed in this paper, 
where continuos changes in operating conditions 
make it necessary the development of a non-linear 
description. 

Linear Model Predictive Control (MPC) (Camacho 
and Bordons, 1999) is arguably the most popular 
advanced control technique in industry, due to the 
intuitive control problem formulation and its abil- 
ity to  deal with economic objectives and operating 
constraints. Linear MPC schemes are nowadays the 
best choice to implement the control strategies in 
the process industry, with a considerable number 
of commercial products and applications running 
(Qin and Badgwell, 1997). Part  of its success is 
due to the relative simply way of obtaining exper- 
imental models, mainly step response or low-order 
transfer function, from process data. 

However, the building of a non-linear model is 
something much more difficult to  achieve, either 
from input/output data or first principles. Lee 
(Lee, 2000) argues that this inability to  construct 
a nonlinear model on a reliable and consistent 
basis is the most important reason that non-linear 
MPC has had so much less influence on indus- 
trial control practice than linear MPC has, despite 
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nonlinear dynamics are significant in industrial 
processes. 

One of the features of non-linear models is the 
difference in qualitative behaviour between differ- 
ent model families. In consequence, this work is 
focused only on a class of models, as described in 
next section. 

In this work, different model structures of the 
same class have been tested in order to obtain the 
best description that fits process data from a real 
plant. This is the first step before implementing 
the MPC controller to improve the current control 
performance. 

The control of rotary kilns is a difficult problem 
due to  the slow dynamics and to  the great noise 
to  signal ratio. Although there exist several ref- 
erences of applications of advanced control tech- 
niques to rotary cement kilns (Martin-Sanchez 
and Rodellar, 1996), the control of gypsum kilns 
is scarcely reported in literature. 

The paper is organized as follows. In section 2 
a description of the process is presented. Model 
attainment is described in section 3, showing the 
different non-linear models that are used in this 
work and whose performances are compared in 
section 4. Finally the major conclusions to be 
drawn are given. 

2. PROCESS DESCRIPTION 

Gypsum is a soft white chalk-like substance that is 
employed in bulding work. When gypsum mineral 
(CaS04 2H20) is heated, it loses part of the water, 
turning into another product which, when mixed 
with water, produces a quick-drying whitish mix- 
ture used for plaster casts, in decorative building 
work, etc. 

There exist different industrial processes for gyp- 
sum production, that can be continuous or batch 
systems. In this work, gypsum is produced in a 
three-step rotary kiln, where the raw material 
coming from the mills enters the drum, where 
it is exposed a t  high temperatures until the fi- 
nal product is obtained (see figure 1). Heating is 
produced by means of a fuel-fired furnace, which 
generates a hot air current that is in contact with 
the raw material along the drum. The material 
is continually transported by the rotation of the 
drum and a series of blades inside, so that while 
turning the drum, these blades take the material 
and throw it in waterfall within the air current. 
Generally, the drum turns to a speed between 3 
to  7 rpm, and the speed of the air varies between 
1.5 to  4 m/s. 

Since it is a three-step kiln, the drum is composed 
of three concentric cylinders. The raw material 

enters into the middle one, where it is pre-heated 
with the outlet air; then i t  passes to the inner 
cylinder where it reaches the highest temperature 
and calcination is produced. At the end, the 
product temperature is reduced during its travel 
through the outer cylinder and it falls down to 
the conveyer belt that carries the final product to 
storage. The process can be controlled acting on 
fuel and product feeds. 

Air Final Product 

Fig. 1. Gypsum kiln 

The state of the process is not depicted by a 
single variable but by several variables that are 
measured in the plant. Outlet product temper- 
ature can be considered as the process output, 
although it is highly influenced by other tem- 
peratures, mainly by the calcination temperature. 
Plant operators know that a relationship between 
these variables exist, since the behaviour of the 
calcination temperature anticipates to  outlet tem- 
perature evolution. Therefore, in order to better 
control the plant, a good model of this part of the 
process has to be obtained. 

The first approach to  control was done with a 
low order linear model and a predictive control 
structure, as shown in (Dorado et al., 2000), 
although several problems appeared due to non- 
linear dynamics. This work intends to  obtain a 
good non-linear model in order to implement a 
non-linear predictive controller in the future. 

3. MODEL ATTAINMENT 

In spite of the advantages associated to funda- 
mental modeling, the difficulties associated with 
obtaining such a relationship for this case, as it 
has been previously shown through the process 
description, lead to the alternative of achieving a 
model through input/output analysis. 

Among all the possibilities lying in the field of 
empirical modeling applied to  non-linear systems 
(NMAXs, NARXs, NARMAXs ...)( Lee, 2000) two 
particular combinations have been chosen for this 
study: quadratic Hammerstein and second-order 
Volterra models. This kind of models have already 
been used in Nonlinear Predictive Control and 
some of its advantages outlined (Haber et al., 
2000)(Maner et al., 1996). 
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The quadratic Hammerstein model has been cho- 
sen as follows: 

N 

y(k + d)  = ho + c hliU(k - i) 
i=O 

N 

i=O 

while the second-order Volterra model with trun- 
cation of order N is given by the expression: 

N 

y ( k  + d )  = ho + c h*iU(k - i) 
i=O 

N N  

The triangular form is used without any loss of 
generality, since the second-order parameters are 
symmetric for the Volterra model. 

In both cases the term ho is a bias. The hli terms 
are the impulse response coefficients and the h2i 
and h2ij terms are the second-order Hammerstein 
and Volterra terms respectively. 

Once the model type has been decided, there are 
some issues to be treated, such as the number 
of lagged data to be considered (truncation of 
the models) and determining what delay best 
describes the process when a particular model is 
being studied. 

Real data from a gypsum kiln has been studied. 
This data represents the last step of the process, 
in which the final properties of the product are 
defined. This is a process in which there exists 
a non negligible delay due to mass transport 
along the rotary kiln. Both the input and output 
temperatures have been properly scaled according 
to their normal span, in order to avoid numerical 
trouble while calculating the models. 

To calculate the parameters for the models, ad 
hoc Matlab functions have been developed. They 
get as an input the sampled data and the model 
structure (Volterra, Hammerstein, and truncation 
order). Coefficients are calculated according to 
least-squares method. 

In figure 2 ,  original work-data is presented. Tem- 
peratures values have already been scaled to work- 
ing values for identification and estimation. The 
sample period for the data was 2 minutes. 

One important issue not always well treated is 
the delay determination for processes. In this 
work, a thorough search for the best combina- 
tion delay/model-order has been done for the 
three models studied: Linear, Hammerstein and 

Fig. 2.  Sampled data 
Volterra. They are firstly presented and later on 
compared. 

4. COMPARISON 

A linear model to fit the data has been considered, 
so that a clear reference of the advancement non- 
linear models represent can be compared. The 
Linear model has been chosen according to the 
following structure: 

A(q-')y(k + d )  = bo + B(q-')u(k - i) (3) 

where 4-l is the backward shift operator, y ( k + d )  
is the delayed output, u ( k  - i) is the input and bo 
is a bias. 

Estimation error has been considered as the mean 
quadratic error, according to expression (4) , and 
it has been used as a reference to compare the 
performance for the models studied. 

I n  

ci is the model estimation, while yi is the original 
data. The number of samples is n. 

In figure 3 the outcome of the search for the 
best possible combination model-order/delay is 
presented. Vertical axis shows the estimation error 
for each model. Ny is the order for A(q- ' )  polyno- 
mial. Best approximation was obtained when only 
one lagged input was considered, regardless the 
value of Ny. Thus Nu=l is fixed throughout the 
search of the other parameters. It can be seen that 
optimal delay for the process is independent of 
the order selection in this linear model. However, 
and as it was predictable, a slight improvement of 
the model is achieved while increasing the model 
order. 

Hammerstein model as described in equation (1) 
was adjusted to the data, modifying both the 
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Fig. 3. Linear Models 

delay and the model truncation order, in the same 
way as it  has been done for the linear case. The 
error fitting this sample is presented in figure 4. 
As well as in the linear case, the optimal delay for 
Hammerstein models remains stable centered in 
one value (16 samples), presenting no variations 
even when the truncation order increased. Accu- 
racy of the model is accomplished through higher 
order models. However, this accuracy was not 
significantly improved after the 5th order model. 

Fig. 4. Hammerstein Models 

Volterra model as shown in equation (2) has 
proven to be the best choice to  get an accurate 
description of the data. However, the most signif- 
icant difference with the other two cases already 
presented lays in the fact that optimal delay for 
identification shifts to lower values as order-model 
increases. This is caused by the fact that  crossed 
product between lagged inputs offers a richer in- 
formation about the system than in the other 
models. The result is given in figure 5. Optimal 
delay is placed for low order systems close to 16 
samples, but it comes to be about 3 or 4 samples 
when Volterra model is truncated in higher values, 
like in the 15th term. Once more, accuracy is 
improved while increasing the model order, and in 

this case "information saturation" is not achieved 
as quickly as in Hammerstein models. 
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Fig. 5. Volterra Models 

In figure 6, plots for the minimun values of the 
previous surfaces (figures 3, 4 and 5) are pre- 
sented. For the linear case, order is related to  
A(q-')  polynomial (and thus the lagged outputs 
considered), while for the non-linear models this 
means the truncation order N. For the two first 
cases, very high order models do not necessarily 
means significant improvement in model error, 
while Volterra models always achieves the best 
correlation, and increasing its order makes per- 
formance improve further away than in the other 
cases. 

One of Volterra model drawbacks is the need for 
a large number of parameters t o  be calculated. 
For the 5th order Hammerstein model, only 5 
coefficients are needed to describe the quadratic 
part, while 15 are required for Volterra model. 
When it comes to  N=15, Hammerstein still needs 
15 and Volterra yields 120 coefficients. 

U0d.l .m lor bu( *.lnata 

Fig. 6. Error comparison 

Different models obtained through this search 
are presented in figure 7. The linear model is 
a third order model in A(q- ' )  polynomial. For 
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Model 

Linear 
Hammerstein 

Volterra 

Hammerstein model, N=5 has been chosen as the 
best trade-off between order and accuracy, and for 
Volterra N=10 was chosen. 

Order Estimation Error 

Ny=3 0.0120 
N=5 0.0108 

N=10 0.0050 
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Fig. 7. Model Identification 

Table 1 shows the estimation error for the models 
considered. Results are improved with the non- 
linear models, especially by the use of a Volterra 
structure, which particularly fits the given data. 

In order to validate these models, a different set 
of data was taken to  compare their efficiency. This 
data is presented in figure 8. 
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Fig. 8. Validation Data 

Estimation using the parameters obtained for the 
"training" data was carried out. Best results were 
found using Volterra model, while Hammerstein 
and Linear models came at a second and third 
place. The approximations made by all three 
models are presented in figure 9. 
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Fig. 9. Models responses for validation data 

The possibility of using autoregressive Hammer- 
stein (5) and Volterra (6) models has also been 
studied. 

N 

i=O 
N 

i=O 

i=O 

However, the use of these models does not provide 
significant estimation improvements. There is an 
advantage on this fact, and that is that stabil- 
ity results for MPC controllers based on Volterra 
models are easier t o  obtain, because the model 
only depends on past inputs, versus the depen- 
dence on both past inputs and outputs for autore- 
gressive model-based controllers. Stability results 
for second order Volterra model-based controllers 
have been already presented (Genceli and Niko- 
lau, 1995). 

5. CONCLUSIONS 

The work has analyzed the use of different non- 
linear models t o  capture the dynamics of a gyp- 
sum kiln. A thorough search of the best param- 
eters of second order Volterra and Hammerstein 
models has been performed, obtaining a set of 
coefficients that fit the real data with satisfactory 
results. 

Taking into account the trade-off between com- 
plexity and accuracy, a loth order Volterra model 
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is proposed as the best choice that will allow the 
use of a non-linear predictive controller in the 
plant. 
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