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Abstract— In order to cope with uncertainties present in
the renewable energy generation, as well as in the demand
consumer, we propose in this paper the formulation and
comparison of three robust model predictive control techniques,
i.e., multi-scenario, tree-based, and chance-constrained model
predictive control, which are applied to a nonlinear plant-
replacement model that corresponds to a real laboratory-scale
plant located in the facilities of the University of Seville. Results
show the effectiveness of these three techniques considering the
stochastic nature, proper of these systems.

I. INTRODUCTION

A microgrid is a small local network of electric generation

that is able to integrate some renewable energy sources.

Due to the intermittence in the power generation from the

renewable resources, storage devices (e.g., batteries, super-

capacitors, conventional capacitors, etc.) deserve special at-

tention in the operation of this type of systems. In particular,

we focus in this work on the use of hydrogen as an energy

store, see, e.g., [1] and [2].

The control aim in a microgrid is to meet the consumer’s

demand in an optimal, economic, and safe manner despite

the uncertainties that appear in the processes. Taking into

account that there are mathematical models available that

represent the main dynamics of these systems [3], and that

the control problem requires of handling issues such as

constraints, delays and disturbances, model predictive control

(MPC) can be used in this context. MPC is a strategy widely

used in industry for solving problems considering constraints

on the manipulated and controlled variables, delays, nonlin-

earities, etc. The main idea of MPC is to obtain a control

signal solving at each time instant an optimization problem

in a finite prediction horizon based on the system model [4].

The first component of the control signal is implemented

in the current time step and the problem is solved in the

next time instant following a sliding time horizon strategy.

Different MPC approaches have been applied in order to

achieve an economical and optimal efficiency in energy

management of a microgrid, see e.g., [5]–[8].

The classical formulation of MPC does not allow con-

sidering systems with uncertainties although some MPC
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schemes have been proposed to ensure stability and com-

pliance with constraints in the presence of disturbances [9].

It is worthwhile to mention that in the design of predictive

controllers for dynamical systems subject to disturbances

and/or uncertainty, we cannot strictly speak about feasibility

but a probability that a certain solution is feasible.

In this paper, we use three different stochastic-

programming-based MPC techniques to deal with the un-

certainty of the power demand and power generation. In

the first place, we consider multi-scenario MPC (MS-MPC),

which consists of calculating a single control sequence that

takes into account different possible evolutions of the process

disturbances. Hence, the control sequence calculated has a

certain degree of robustness against the possible realizations

of the uncertainties. This approach is used for example in

[10] in the field of control of smartgrids, and [11] for water

systems. One of its advantages is that it is possible to

calculate bounds on the probability of constraint violation

as a function of the number of scenarios considered [12].

An alternative to model the uncertainty that is faced by this

type of systems is to use rooted trees. The rationale behind

this approach is that uncertainty spreads with time, i.e., it

is possible to predict more accurately what the demand will

be in a short horizon than in a large one. For this reason,

the possible evolutions of the disturbances can be confined

within a tree. Consequently, the outcome, the so called tree-

based MPC (TB-MPC), is a rooted tree of control actions.

This approach is used for example in [13] for a semi-batch

reactor example and in [14] in the context of water systems.

Finally, chance-constrained MPC (CC-MPC) is also studied

in this work. CC-MPC uses an explicit probabilistic modeling

of the system disturbances to calculate explicit bounds on

the system constraint satisfaction. For instance, [15] presents

chance-constrained two-stage stochastic program for unit

commitment. In [16] presents a CC-MPC applied to the

stock management in hospital pharmacy. An application of

this technique in the context of the drinking water network

(DWN) of the city of Barcelona can be seen in [17]. Also,

[18] shows a comparison between TB-MPC and CC-MPC

approaches applied to DWN. Further, this subject has drawn

significant interest, a stochastic optimization model applied

in the context of the control of microgrids, seen, e.g., [19]–

[22] and references therein.

All the controllers presented in this paper have been tested

with the nonlinear model of a laboratory-scale microgrid

[23] and presented via simulation. The main contribution

of this paper relies on the suitable review and comparison

of the three proposed robust MPC techniques in order to

2016 European Control Conference (ECC)
June 29 - July 1, 2016. Aalborg, Denmark

978-1-5090-2591-6 ©2016 EUCA 1209

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/286565008?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


highlight their main advantages and weakness when coping

with disturbances and uncertainties within the closed loop of

a hydrogen-based microgrid.

The remainder of this paper is organized as follows. First,

a description of the microgrid and its linear model are shown

in Section II. Section III presents the optimization problem

and the robust MPC techniques formulation. The results from

simulations are shown in Section IV. Finally, in Section V,

some conclusions are drawn.

II. DESCRIPTION OF THE HYLAB MICROGRID

The microgrid used is the plant developed by HyLab. The

plant consists in a modular system equipped with various

components that allow experimentation and simulation of

various types of renewable energy sources. In Figure 1, the

experimental HyLab plant is shown.

Fig. 1: Experimental HyLab Plant

The system consists of a photovoltaic field, emulated by

an electronic power source, which produces electricity to

supply the load. Any power excess is stored in a battery

bank or derived to the electrolyzer. If the power obtained

from renewable energy is not enough, both the fuel cell

and the battery bank can provide power to the load, which

is emulated by the electronic load source. The microgrid

can work either connected to the network or as an isolated

system. The Hydrogen Path is composed of two subsystems:

one for producing and storing hydrogen and the other for

feeding the fuel cell with hydrogen and providing power

to the grid. The fuel cell and the electrolyzer are of a

Proton Exchange Membrane (PEM) type and the hydrogen is

stored as metal hydrides. The converters are used as power

interfaces that allow the energy transfer between different

devices. All units are connected via a DC bus that is regulated

by the battery bank.

A. Microgrid Linear Model and Constraints

Behind the experimental setup, there is a set of nonlinear

complex subsystems. The nonlinear model of the described

plant, its simulation and validation are presented in [23].

In order to apply linear MPC techniques, it is necessary to

take into account a linear model of the system. The linear

continuous system was discretized using Tustin’s method

with a sampling time of 30 s.

The linear model of the plant consists of two input

variables, PH2 and Pgrid, which are measured in kilowatts

(kW). PH2 represents the power of the electrolyzer and the

power of the fuel cells: when it is greater than zero, the

PEM fuel cell is working (Pfc) and when PH2 is negative,

it indicates that the electrolyzer is operating (Pez). Both the

electronic load and the electronic power source can either

deliver or absorb power from the General Power Grid (GPG).

Moreover, Pgrid represents the power of GPG, which is

positive when the power is supplied to the microgrid from

the GPG and it is less than zero when delivering power to the

GPG. The system is subject to disturbances (Pnet) resulting

from the difference between the power produced and the

power demanded. The states are given by the state of charge

of the batteries (SOC) and the metal hydrides level (MHL)
of the storage tank, both measured in percentage (%). The

linear model of the plant can be written as

x(k + 1) = Ax(k) +Bu(k) + Eω(k). (1)

In this model, u(k) = [PH2, Pgrid]
T represents the manip-

ulated variables; x = [SOC,MHL]T are the states of the

system and ω(k) = Pnet represents the system disturbance.

The identification process for obtaining the linear model

of the plant is developed in [8].

In order to avoid damage to the equipment, it is necessary

to consider limits for the Hydrogen Path operation, PH2,

constraints for Pgrid and their incremental signals ∆PH2 and

∆Pgrid, respectively, which correspond to physical limita-

tions of the connection, i.e.,

− 0.9 kW ≤ PH2 ≤ 0.9 kW, (2a)

− 2.5 kW ≤ Pgrid ≤ 2 kW, (2b)

− 0.9 kW ≤ ∆PH2 ≤ 0.9 kW, (2c)

− 2.5 kW ≤ ∆Pgrid ≤ 2 kW. (2d)

Both the battery bank and the metal hydrides storage tank

have limited capacity to prevent any plant damage, i.e.,

40% ≤ SOC ≤ 90%, (3a)

10% ≤ MHL ≤ 90%. (3b)

The input constraints given by (2) can be rewritten as

u(k) ∈ U , (4)

and the state constraints defined by (3) are expressed as

x(k) ∈ X . (5)

III. MPC IN MICROGRID HYDROGEN-BASED STORAGE

Due to the random behavior that compromises the energy

generation from renewable sources and the demand con-

sumers, the use of robust MPC techniques that account for

the uncertainty is a necessity in this context, in order to meet

the energy demand.

MPC is a strategy of control based on the explicit use of a

dynamical model to predict the state/output of the process in

future instants of time along a prediction horizon N . The set
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of future control signals is calculated by the optimization of

an objective function. Only the control signal calculated for

the time instant k ∈ Z+ is applied to the process, whereas

the others are discarded.

The optimization problem to solve at each time instant k

is

min
u[k : k+N−1]

k+N−1
∑

i=k

J(x(i), u(i)), (6)

subject to

x(i + 1) = Ax(i) +Bu(i) + E,ω(i), (7a)

x(i + 1) ∈ X , (7b)

u(i) ∈ U , ∀i ∈ Z
N−1
0 . (7c)

The cost function that is minimized is given by

J(x(k), u(k)) = (x(k)−xref)
TQ(x(k)−xref)+uT (k)Ru(k),

with Q = 1 and R = [500, 600]T , which are weighting

factors obtained after application of economic and technical

criteria, given by [1]. In order to keep appropriate levels in

the states of charge of the battery and the hydrogen tank, the

references given are xref = [60%, 45%]T , respectively.

The controller is designed so that the batteries are the

first way of energy storage. If there exists a big difference

between the demanded energy and the produced energy

by the renewable sources, it proceeds to the production of

hydrogen.

A. Multi-scenarios MPC approach (MS-MPC)

The optimization based on scenarios provides an intuitive

way to approximate the solution to the stochastic optimiza-

tion problem. To design the MS-MPC, it is enough to know

several scenarios with potential evolutions of the energy

demand and generation. A common control sequence that

optimizes all the considered scenarios is calculated, obtaining

in this way a certain robustness against the different possible

evolutions of the disturbances. The scenario-based approach

is computationally efficient since its solution is based on a

deterministic convex optimization, even when the original

problem is not [24].

The main idea for optimization considering a finite number

of scenarios is to rewrite the same system for each one of

known disturbances. The problem to be solved consists of

min
u[k : k+N−1]

K
∑

j=1

(

k+N−1
∑

i=k

J(xj(i), u(i))), (8)

subject to

xj(i+ 1) = Axj(i) +Bu(i) + Eωj(i), (9a)

xj(i+ 1) ∈ X , ∀i ∈ Z
N−1
0 , ∀j ∈ Z

K
1 , (9b)

u(i) ∈ U , (9c)

where K is the number of scenarios considered.

A control sequence is optimized for the augmented system

given by (9a), which includes different possible evolutions

of the original one. The calculation of the controller will

result in a unique robust control action that satisfies all the

potential disturbances of this extended system.

B. Tree-based MPC (TB-MPC)

This technique consists in transforming the different possi-

ble evolutions of disturbances into a rooted tree that, through

its evolution, diverges and generates a reduced number of

scenarios. The points of divergence are called bifurcations

and they represent moments in time in which the evolution

of the disturbances is big enough to consider more than one

trajectory. The formulation of the control problem involves

making tree-based optimization scenarios where only the

most relevant disturbance patterns are modeled. It should be

noticed that the number of scenarios used to build the tree

should be in consonance with the computational capability of

the controller and the probability of risk1 in the development

of the tree.

Unlike the MS-MPC problem, each scenario in the tree has

its own control signal, which means that more optimization

variables are needed. However, given that the control signal

cannot anticipate events beyond the next bifurcation point,

control sequences for different scenarios have to be equal as

long as the scenarios do not branch out. As a consequence,

the solution of this control problem is a rooted-tree of control

actions. Notice that only the first component of this tree,

which is equal for all the scenarios, is actually applied. For

the design of this controller, the bifurcation points of the tree

are checked: if they are equal then the control actions are the

same, so that the number of variables and the calculation time

can be reduced significantly.

The TB-MPC problem formulation to be solved at each

time instant is represented by

min
uj [k : k+N−1]

R
∑

j=1

(
k+N−1
∑

i=k

J(xj(i), uj(i))), (10)

subject to

xj(i+ 1) = Axj(i) +Buj(i) + Eωj(i), (11a)

xj(i+ 1) ∈ X , ∀i ∈ Z
N−1
0 , (11b)

uj(i) ∈ U , ∀j ∈ Z
R
1 , (11c)

where R is the number of reduced scenarios from the initial

K scenarios. In addition, it is necessary to introduce non-

anticipative constraints to force the controller not to actuate

before the uncertainty associated to the bifurcation points is

solved. These constraints are given by

ui(k) = uj(k) if ωi(k) = ωj(k); ∀ i 6= j. (11d)

As said before, a control sequence is optimized for the

extended system with a disturbance tree, and only the first

component of the input tree is actually applied to the system.

The problem is repeated at each time instant k ∈ Z+.

1It is the risk acceptability level of constraint violation for the states.
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C. Chance-Constrained MPC (CC-MPC)

Given that disturbances have stochastic behavior, one way

of addressing this problem is using CC-MPC.

The CC-MPC problem formulation is stated as

min
u[k : k+N−1]

k+N−1
∑

i=k

E[J(x(i), u(i))], (12)

subject to

x(i + 1) = Ax(i) +Bu(i) + Eω(i), (13a)

P[xmin ≤ x(i+ 1) ≤ xmax] > 1− δx, (13b)

u(i) ∈ U , ∀i ∈ Z
N−1
0 , (13c)

where δx ∈ (0, 1) is the risk of violating this constraint,

xmin is the lower limit and xmax is the upper limit of the

constrained state. Moreover, E denotes the expected value of

the cost function and P, the probability operator.

The application of (13b) along N is necessary to im-

plement the controller. To this end, we assume that the

disturbances behave as Gaussian random variables, hence the

state x is a normal variable too, with mean x̄ and standard

deviation σx(k), i.e., x(k) = N (x̄, σx(k)). The deterministic

equivalent of these chance constraints can be formulated as

follows:

P(x(i + 1) ≥ xmin) ≥ 1− δx.

Using the change of variable, in order to standardize the

normal variable

Z =
x(i+ 1)− x̄(i+ 1)

σx(i+1)
,

it is possible to write

P(Z ≥
xmin − x̄(i+ 1)

σx(i+1)
) ≥ 1− δx,

P(Z ≤
xmin − x̄(i+ 1)

σx(i+1)
) ≤ δx,

ϕ

(

xmin − x̄(i+ 1)

σx(i+1)

)

≤ δx,

where ϕ(·) is the probability distribution function. Therefore,

xmin − x̄(i + 1)

σx(i+1)
≤ ϕ−1(δx).

The deterministic equivalent can be written as

x̄(i+ 1) ≥ xmin − ϕ−1(δx)σx(i+1). (14)

In a similar way, the upper bound of the constrained state

along N can be written as

x̄(i + 1) ≤ xmax + ϕ−1(δx)σx(i+1). (15)

The expressions (14) and (15) have been formulated as the

deterministic equivalent of the chance constraints.

Remark 1: The presence of the additive stochastic distur-

bance may lead to infeasibility when the constraints on the

states and inputs, and the risk of violation of constraints are

not suitably chosen. Hence, from a practical point of view,

in this application the disturbance is small enough to ensure

feasibility of (8), (10), and (12).

IV. RESULTS

The simulations were performed using the nonlinear model

as plant replacement, see [23]. The prediction horizon was

N = 5, the sampling time was 30 s, and the simulation period

36 hours. The linear model of the HyLab microgrid described

in the Section II was used as internal model for the controller.

The selected disturbance for verifying the performance of the

system was the real demand registered on May 23, 2014,

which is shown in Figure 2.

Fig. 2: Energy generated by solar panels, demand of energy

and disturbance corresponding to May 23, 2014

Both, MS-MPC and TB-MPC simulations were performed

by using the peninsular electricity demand and the solar

generation registered by the Spanish National Electricity Net-

work2. These disturbance scenarios were the result from the

difference between the electric demand and energy generated

from solar-based sources at each time instant, for the months

August 2013, January and April 2014. These months were

chosen to have significant differences on the scenarios and

all the data were scaled for the microgrid allowable values.

The MS-MPC simulations were performed considering 90

scenarios. For this number of scenarios, we expected the risk

of violation of constraints according to the bound given by

[24], i.e., δx < 2.2%. In Figure 3(a), the control signals

and the disturbance are presented. In Figure 3(b), the system

states are shown: the state of battery charge (SOC) and the

metallic hydrides level (MHL). It can be seen in Figures 3(a)

and 3(b) that the control actions drove the system towards the

desired reference for each of the aforementioned states. The

average tracking error of the reference to the level of battery

charge (SOC) was 7.8% and metal hydride level (MHL),

2.9%. The final cumulative cost according to (8) was 1.6×
107.

2https://demanda.ree.es/movil/peninsula/demanda/total
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(b) States using MS-MPC.
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(c) Control signals applying TB-MPC.
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(d) States using TB-MPC.
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(e) Control signals applying CC-MPC.
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(f) States using CC-MPC.

Fig. 3: Signals applying the proposed robust MPC approaches and disturbances.

The TB-MPC simulations were performed by using an

original number of 90 scenarios, which were reduced to 5

scenarios forming a tree using GAMS [25] with δx < 12%.

This reduction tried to replicate the main dynamics of all

original disturbances considered in a small disturbance tree.

The results are shown in Figures 3(c) and 3(d), where the

control actions and system states are respectively presented.

As shown in Figures 3(c) and 3(d), the control actions

satisfied the constraints of the system, driving the outputs

(SOC, MHL) to the given reference. The average tracking

error of the reference to the level of battery charge (SOC)

was 7.72% and to the level of metallic hydrogen was 2.97%.

The final cumulative cost according to (8) was 1.59× 107.

Simulations for CC-MPC were performed considering the

failure probability δx < 1%. The disturbances were modeled

as a normal function with µ = 0.3020 and σ = 0.5245,

which were obtained from the historical data registered at

May 23, 2013, that is, one year ago since the simulation day.

Figures 3(e) and 3(f) show that the control actions drove the

system towards the desired reference of each of the states.

The final cumulative cost was according to (8) 1.96×107.

The average tracking error of the reference to the level of

battery charge (SOC) was 6.88% and to the level of metallic

hydrogen was 2.2%. Table I shows the average percentage

error tracking the reference states, final cumulative costs, and

computational times for the proposed strategies referred to

the single day operation.

Figures 3(a), 3(b), referred to MS-MPC, and Figures 3(e),

3(f), carried out by CC-MPC, look very similar but the

corresponding performances in Table I are quite different.

On the contrary, Figures 3(c), 3(d), corresponding to TB-

MPC, show a slightly different input and state behavior

but the performance is similar to the one of MS-MPC.

The difference between MS-MPC and CC-MPC was the
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computational time: the former technique worked with an

extended system while the latter only required to rewrite

the constraints considering the probabilistic nature of the

disturbances affecting the system. For this reason, the MS-

MPC controller needed to operate with bigger matrices,

which justifies its bigger computational time. The results

obtained by modeling the disturbance as a tree had the

minimum cost in comparison with the others but using more

computational time due to it represented the disturbance sce-

narios into a disturbance tree at each time instant. In addition,

the performance was tested with a traditional MPC, which

expected a disturbance corresponding with the difference

between the generation power and the demand at May 23,

2013. The robust MPC controllers provided better results

with respect to the cumulative final cost, compared with a

traditional MPC.

TABLE I: Cumulate final costs and average tracking errors

Approach Final cost SOC (%) MHL (%) Time (s)

MS-MPC 1.60× 107 7.80 2.90 0.16± 0.01

TB-MPC 1.59× 10
7

7.72 2.97 0.39± 0.12

CC-MPC 1.96× 10
7

6.88 2.20 0.03± 0.01

MPC 1.90× 108 1.50 3.60 0.16± 0.02

V. CONCLUSIONS

We have applied three robust MPC schemes to a microgrid

based on hydrogen storage. Acting on the power of the fuel

cell, electrolyzer and grid, the controllers were able to reg-

ulate the metallic hydride level and charge the battery bank

to desired values. In addition, the controllers considerate

constraints in both the manipulated variables and the system

states for optimal performance and high functionality. As it

has been seen, the system can deliver hydrogen energy once

it has been stored in the form of metal hydrides to further

contribute to the grid to satisfy the energy demand under the

influence of uncertainties in the demand for electricity and

generation.

The results obtained with the three presented versions of

MPC were similar. The choice of the technique to be used

will depend on the one hand if it exists a sufficient number of

scenarios for considering the MS-MPC or TB-MPC, and on

the other hand, if it is possible to model the disturbances as

a probability distribution function for applying the CC-MPC.
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