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Abstract. We present the classification of a subclass of n-dimensional naturally graded Zinbiel
algebras. This subclass has the nilindex n − 3 and the characteristic sequence (n − 3, 2, 1). In fact,
this result completes the classification of naturally graded Zinbiel algebras of nilindex n− 3.
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1. Introduction.

Intensive investigation on Lie algebras leads to the appearance of a new algebraic object – Leibniz
algebras. The Leibniz algebras introduced by Loday in [7] are a ”non commutative” algebras analogue
to Lie algebras. It should be mentioned that Leibniz algebras inherit an important Lie algebra property:
the operator of right multiplication on an element of an algebra is a derivation.

Leibniz algebras form a Koszul operad in the sense of V. Ginzburg and M. Kapranov [6]. Under the
Koszul duality the operad of Lie algebras is dual the operad of associative and commutative algebras.
The notion of dual Leibniz algebra defined by J.-L. Loday [8] is precisely the dual operad of Leibniz
algebras in this sense.

In this paper, we study algebras which are the dual to Leibniz algebras in Koszul sense. J.-L. Loday
studied in [8] categorical properties of Leibniz algebras and considered in this connection a new object
– Zinbiel algebras (Leibniz is written in reverse order). Since the category of Zinbiel algebras is Koszul
dual to the category of Leibniz algebras, sometimes they are also called dual Leibniz algebras.

In [2, 5, 9] some crucial properties of Zinbiel algebras were obtained. Particularly, in [5], the authors
prove that every finite-dimensional Zinbiel algebra over complex numbers is nilpotent. However, the
study of nilpotent algebras is too complex and should be carried out with additional conditions, such
as conditions on nilindex, various types of gradations, characteristic sequence and others.

The aim of this work is to continue the study of complex finite-dimensional naturally graded Zinbiel
algebras. The n-dimensional Zinbiel algebras of nilindex k with n− 2 ≤ k ≤ n are classified in [1, 2].
The classification of complex n-dimensional naturally graded Zinbiel algebras of nilindex n − 3 is a
difficult problem and it should be divided into three cases. Namely, it is necessary to consider the
possibilities of the characteristic sequence of such algebras: (n− 3, 3), (n− 3, 1, 1, 1) and (n− 3, 2, 1).
The classification of complex naturally graded Zinbiel algebras of nilindex n − 3 with characteristic
sequence equal to (n− 3, 3) and (n− 3, 1, 1, 1) has been done in [1].

The knowledge of naturally graded algebras of a certain family offers significant information about
their structural properties.

In this paper we obtain the classification of naturally graded Zinbiel algebras of nilindex n− 3 with
characteristic sequence (n − 3, 2, 1). Thus, we complete the study for the n − 3 case. All the spaces
and the algebras are considered over the field of complex numbers. We omit the products which are
equal to zero for convenience.

Throughout all the work we use the software Mathematica (see [3]) to compute the Zinbiel iden-
tity in low dimensions and to formulate the generalizations of the calculations, which are proved for
arbitrary dimension. Moreover, the program allows us to construct new bases using some general
transformation of the generators of the algebra.

Since the direct sum of nilpotent Zinbiel algebras is nilpotent, we shall consider only non split
algebras.

2. Preliminaries

In this section we introduce some definitions, notations and results, which are necessary for the
understanding of graded Zinbiel algebras.
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Definition 2.1. A vector space Z over a field K with a bilinear operation “◦” is called Zinbiel algebra
if for any x, y, z ∈ Z the following identity

(2.1) (x ◦ y) ◦ z = x ◦ (y ◦ z) + x ◦ (z ◦ y)

holds.

Examples of Zinbiel algebras can be found in [2, 5, 8].
Z(a, b, c) denotes the following polynomial:

Z(a, b, c) = (a ◦ b) ◦ c− a ◦ (b ◦ c)− a ◦ (c ◦ b).

Zinbiel algebras are defined by the identity Z(a, b, c) = 0.
For a given Zinbiel algebra Z the sequence of two-sided ideals defined recursively as follow:

Z1 = Z, Zk+1 = Z ◦ Zk, k ≥ 1.

is said to be the lower central series.

Definition 2.2. A Zinbiel algebra Z is called nilpotent if there exists s ∈ N such that Zs 6= 0 and
Zs+1 = 0. The minimal number s satisfying this property is called the index of nilpotency or nilindex
of the algebra Z.

For a given Zinbiel algebra Z we introduce denotations:

R(Z) = {x ∈ Z | y ◦ x = 0 for any y ∈ Z} − − the right annihilator of Z,

L(Z) = {x ∈ Z | x ◦ y = 0 for any y ∈ Z} − − the left annihilator of Z,

Cent(Z) = {x, y ∈ Z | x ◦ y = y ◦ x = 0 for any y ∈ Z} − − the center of Z.

It is easy to see that the center and the right annihilator of Z are two-sided ideals.
Let us denote by Lx the operator of left multiplication on element x, i.e. Lx : Z −→ Z such that

Lx(y) = x ◦ y for any y ∈ Z.
Let Z be a complex n-dimensional Zinbiel algebra and x be an element of the set Z \ Z2. For the

operator Lx we define a descending sequence C(x) = (n1, n2, . . . , nk) with n1 + · · · + nk = n, which
consists of the dimensions of the Jordan blocks of the operator Lx. In the set of such sequences we
consider the lexicographic order, that is, C(x) = (n1, n2, . . . , nk) < C(y) = (m1,m2, . . . ,ms) if there
exists i such that ni < mi and nj = mj for j < i. Taking into account the equality n1 + · · · + nk =
m1 + · · ·+ms such comparison is always applicable.

Definition 2.3. The sequence C(Z) = max{C(x) : x ∈ Z \Z2} is called the characteristic sequence
of the algebra Z.

In [5], the authors prove that Zinbiel algebras of finite dimension are nilpotent. Since we focused
our attention on finite dimension complex nilpotent Zinbiel algebras.

Let Z be a finite-dimensional nilpotent Zinbiel algebra with nilindex equal to s. For i (1 ≤ i ≤ s)
we put Zi = Zi/Zi+1 and we obtain the graded Zinbiel algebra

gr(Z) = Z1 ⊕Z2 ⊕ . . .⊕Zs, where Zi ◦ Zj ⊆ Zi+j .

An algebra Z if called naturally graded if Z ∼= gr(Z). It is not difficult to see that Zi+1 = Z1 ◦ Zi

in the naturally graded algebra Z.
Let Z be a naturally graded Zinbiel algebra with characteristic sequence (n− 3, 2, 1). By definition

of characteristic sequence there exists a basis {e1, e2, . . . , en} in the algebra Z such that the operator
Le1 has one block Jn−3 of size (n− 3), one block J2 of size 2 and one block J1 of size one.

Note that there will be six possibilities for the operators Le1 . By a change of basis it is easy to prove
that the six cases can be reduced to the following three cases:

I.





Jn−3 0 0
0 J2 0
0 0 J1



 , II.





J2 0 0
0 Jn−3 0
0 0 J1



 , III.





J1 0 0
0 Jn−3 0
0 0 J2



 .

Definition 2.4. A Zinbiel algebra Z is called either of first type (type I), second type (type II) or third
type (type III) if the operator Le1 has the form:

I.





Jn−3 0 0
0 J2 0
0 0 J1



 , II.





J2 0 0
0 Jn−3 0
0 0 J1



 , III.





J1 0 0
0 Jn−3 0
0 0 J2







NATURALLY GRADED ZINBIEL ALGEBRAS WITH NILINDEX n − 3 3

respectively.

From now on we denote by Cj
i the combinatorial numbers Cj

i =

(

i
j

)

.

The following result holds:

Lemma 2.5. [4] Let Z be a Zinbiel algebra such that e1 ◦ ei = ei+1 for 1 ≤ i ≤ k − 1, with respect to
the adapted basis {e1, . . . , ek, ek+1, . . . , en}. Then

ei ◦ ej = Cj
i+j−1ei+j , for 2 ≤ i+ j ≤ k

3. Main Result

3.1. Type I. Algebras of type I with n ≥ 8. So, we have the following brackets:






















e1 ◦ ei = ei+1, 1 ≤ i ≤ n− 4,
e1 ◦ en−3 = 0,
e1 ◦ en−2 = en−1,
e1 ◦ en−1 = 0,
e1 ◦ en = 0.

It is easy to see that Zi ⊇ 〈ei〉 where 1 ≤ i ≤ n − 3. It is evident that dim(Z1) > 1. In fact, if
dim(Z1) = 1, then the algebra Z is one-degenerated and therefore it is a zero-filiform algebra, but it
is not an algebra of nilindex n− 3. Let us assume that en−2 ∈ Zr1 and en ∈ Zr2 , then en−1 ∈ Zr1+1.

We can distinguish the following cases:
Case I. If r1 = r2 = 1.

Then we have that

Z1 =< e1, en−2, en >, Z2 =< e2, en−1 >, Z3 =< e3 >, . . . ,Zn−3 =< en−3 >

and the following products:

e1 ◦ e1 = e2, e1 ◦ en−2 = en−1, en−2 ◦ e1 = α1e2 + α2en−1,
en−2 ◦ en−2 = α3e2 + α4en−1, en−2 ◦ en = α5e2 + α6en−1, en ◦ e1 = β1e2 + β2en−1,
en ◦ en−2 = β3e2 + β4en−1, en ◦ en = β5e2 + β6en−1, e1 ◦ e2 = e3,
en−2 ◦ e2 = γ1e3, en−2 ◦ en−1 = γ2e3, en ◦ e2 = γ3e3,
en ◦ en−1 = γ4e3.

From the equality Z(e1, en, e1) = Z(e1, en, en) = 0 we have β1 = β5 = 0.
Let us consider the equalities Z(e1, en−2, e1) = Z(e1, en−1, e1) = 0 then it follows α1 = 0.
From the equalities

Z(e1, e1, en−2) = Z(en−2, e1, e1) = Z(en−2, en−1, e1) = Z(e1, e1, en) = 0
Z(e1, en, e2) = Z(en, en−1, e1) = Z(e1, en−2, en−2) = Z(e1, en−1, en−2) = 0
Z(e1, en−2, en) = Z(e1, en, en−1) = Z(e1, e1, en−1) = Z(e1, en−2, e2) = 0
Z(en−2, en, e1) = Z(en−2, en−2, e1) = 0

we obtain

γ1 = γ2 = γ3 = γ4 = α3 = α5 = β3 = 0,

and

e2 ◦ en−2 = en−2 ◦ e2 = e2 ◦ en−1 = en−1 ◦ e2 = e2 ◦ en = en ◦ e2 = 0.

Now, by mathematical induction method, we prove that en−1 ◦ ek = 0 and ek ◦ en−1 = 0 with
2 ≤ k ≤ n− 3.

• If k = 2, then we have en−1 ◦ e2 = e2 ◦ en−1 = 0.
• Let us suppose that for some k the equalities en−1 ◦ ek = 0 and ek ◦ en−1 = 0 are true. We
prove it for k + 1.

en−1 ◦ ek+1 = en−1 ◦ (e1 ◦ ek) = (en−1 ◦ e1) ◦ ek − en−1 ◦ (ek ◦ e1) =
= −C1

ken−1 ◦ ek+1 = −ken−1 ◦ ek+1, en−1 ◦ ek+1 = 0.

ek+1 ◦ en−1 = (e1 ◦ ek) ◦ en−1 = e1 ◦ (ek ◦ en−1) + e1 ◦ (en−1 ◦ ek) =
= 0
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As in previous cases, it easy to see that ek ◦ en−2 = en−2 ◦ ek = 0 and ek ◦ en = en ◦ ek = 0 for
2 ≤ k ≤ n− 3.

Thus, we have obtained the following family of algebras:

Z(a1, a2, a3, a4, a5, a6) :















































ei ◦ ej = Cj
i+j−1ei+j , 2 ≤ i+ j ≤ n− 3,

e1 ◦ en−2 = en−1,
en−2 ◦ e1 = a1en−1,
en−2 ◦ en−2 = a2en−1,
en−2 ◦ en = a3en−1,
en ◦ e1 = a4en−1,
en ◦ en−2 = a5en−1,
en ◦ en = a6en−1,

where we omit the products that are equal to zero.

Theorem 3.1. An arbitrary Zinbiel algebra of the family Z(a1, a2, a3, a4, a5, a6) is isomorphic to one
of the following pairwise non-isomorphic algebras:

Z1(1, 0, 0, 0, 1, 0), Z2(0, 0, 0, 0, 1, 0), Z3(0, 1, 0, 1, 0, 0),
Z4(0, 0, 0, 1, 0, 0), Z5(0, 1, 0, 0, 0, 0), Z6(1, 1, 0, 0, 0, 0),
Z7(λ, 0, 0, 0, 0, 0), λ ∈ C, Z8(0, λ, 1, 0, 0, 1), λ ∈ C \ {0}, Z9(α,−

α
(α−1)2 , 1, 0, 0, 1), α ∈ C \ {0, 1},

Z10(0, 0, 1, 0, 1, 1), Z11(1, 0, 1, 0, 1, 1), Z12(0, 0, 1, 1, 0, 0),
Z13(0, 0, 1, 0, 0, 0), Z14(λ, 1, 1, 0, 1, 1), λ ∈ C, Z15(0, 1, 1,−1, 1, 1),
Z16(1, 1, 1, 0, 1, 1).

Proof. Let Z be satisfying to the hypothesis of the theorem. Due to the property of natural gradation
of the algebra it is enough to consider the following change of generators:

e′1 = P1e1 + Pn−2en−2 + Pnen,
e′n−2 = Q1e1 +Qn−2en−2 +Qnen,

e′n = R1e1 +Rn−2en−2 +Rnen.

Making the general change of basis in the family Z(a1, a2, a3, a4, a5, a6), we derive the expressions
of the new parameters in the new basis (1):

a′1 =
a1P1Qn−2 + a2Pn−2Qn−2 + a3PnQn−2 + a4P1Qn + a5Pn−2Qn + a6PnQn

P1Qn−2 + a2Pn−2Qn−2 + a3Pn−2Qn + a5PnQn−2 + a6PnQn

,

a′2 =
a2Q

2
n−2 + a3Qn−2Qn + a5Qn−2Qn + a6Q

2
n

P1Qn−2 + a2Pn−2Qn−2 + a3Pn−2Qn + a5PnQn−2 + a6PnQn

,

a′3 =
a2Qn−2Rn−2 + a3Qn−2Rn + a5QnRn−2 + a6QnRn

P1Qn−2 + a2Pn−2Qn−2 + a3Pn−2Qn + a5PnQn−2 + a6PnQn

,

a′4 =
a1P1Rn−2 + a2Pn−2Rn−2 + a3PnRn−2 + a4P1Rn + a5Pn−2Rn + a6PnRn

P1Qn−2 + a2Pn−2Qn−2 + a3Pn−2Qn + a5PnQn−2 + a6PnQn

,

a′5 =
a2Qn−2Rn−2 + a3QnRn−2 + a5Qn−2Rn + a6QnRn

P1Qn−2 + a2Pn−2Qn−2 + a3Pn−2Qn + a5PnQn−2 + a6PnQn

,

a′6 =
a2R

2
n−2 + a3Rn−2Rn + a5Rn−2Rn + a6R

2
n

P1Qn−2 + a2Pn−2Qn−2 + a3Pn−2Qn + a5PnQn−2 + a6PnQn

,

and the following restrictions:

(2)



















Q1 = R1 = 0,

P1Rn−2 + a2Pn−2Rn−2 + a3Pn−2Rn + a5PnRn−2 + a6PnRn = 0,

P1Qn−2 + a2Pn−2Qn−2 + a3Pn−2Qn + a5PnQn−2 + a6PnQn 6= 0,

P1(Qn−2Rn −QnRn−2) 6= 0.

We can distinguish two cases:

Case 1. Let en ∈ R(Z) be, then a3 = a6 = 0.
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From the restrictions,

(P1 + a2Pn−2 + a5Pn)Rn−2 = 0,
(P1 + a2Pn−2 + a5Pn)Qn−2 6= 0,
P1(Qn−2Rn −QnRn−2) 6= 0.







⇒ Rn−2 = 0.

it follows that P1Qn−2Rn 6= 0. Thus, the new parameters are:

a′1 =
a1P1Qn−2 + a2Pn−2Qn−2 + a4P1Qn + a5Pn−2Qn

Qn−2(P1 + a2Pn−2 + a5Pn)
,

a′2 =
a2Qn−2 + a5Qn

P1 + a2Pn−2 + a5Pn

,

a′4 =
Rn(a4P1 + a5Pn−2)

Qn−2(P1 + a2Pn−2 + a5Pn)
,

a′5 =
a5Rn

P1 + a2Pn−2 + a5Pn

,

We observe that the nullity of a5 is invariant. Moreover, it is easy to check that the nullity of the
following expression

a′2a
′

4 − a′1a
′

5 =
(a2a4 − a1a5)P1Rn

(P1 + a2Pn−2 + a5Pn)2

is invariant. Thus, we can distinguish the following non-isomorphic cases:

Case 1.1. Let a5 6= 0 be. Then choosing

Rn =
P1 + a2Pn−2 + a5Pn

a5
, Pn−2 = −

a4P1

a5
, Qn = −

a2Qn−2

a5

we have

a′5 = 1, a′4 = 0, a′2 = 0, a′1 =
(a2a4 − a1a5)P1

(a2a4 − a5)P1 − a25Pn

and the determinant is formed by the potencies of the following non-zero factors: P1Qn−2a5((a2a4 −
a5)P1 − a25Pn).

a) If a2a4 − a1a5 6= 0, choosing Pn = P1(a1−1)
a5

we receive a′1 = 1. It follows the algebra

Z1(1, 0, 0, 0, 1, 0).

b) If a2a4 − a1a5 = 0, then we obtain a′1 = 0 and we have the algebra Z2(0, 0, 0, 0, 1, 0).

Case 1.2. Let a5 = 0 be. Then, a′5 = 0 and we have

a′1 =
a1P1Qn−2 + a2Pn−2Qn−2 + a4P1Qn

Qn−2(P1 + a2Pn−2)
,

a′2 =
a2Qn−2

P1 + a2Pn−2
,

a′4 =
a4P1Rn

Qn−2(P1 + a2Pn−2)
.

with P1Qn−2Rn(P1 + a2Pn−2) 6= 0.
We observe that the nullities of a2 and a4 are invariant, so we can distinguish the following cases:

a) Let a4 6= 0 be. Then, choosing

Rn =
Qn−2(P1 + a2Pn−2)

a4P1
, Qn = −

Qn−2(a1P1 + a2Pn−2)

a4P1
,

we get a′4 = 1 and a′1 = 0.

a.1) If a2 6= 0, then choosing Qn−2 =
P1 + a2Pn−2

a2
, we obtain a′2 = 1 and the algebra

Z3(0, 1, 0, 1, 0, 0).

a.2) If a2 = 0, then we have a′2 = 0 and the algebra Z4(0, 0, 0, 1, 0, 0).
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b) Let a4 = 0 be. Then a′4 = 0 and we have

a′1 =
a1P1 + a2Pn−2

P1 + a2Pn−2
, a′2 =

a2Qn−2

P1 + a2Pn−2
.

We have that the nullity of the following expression:

a′1 − 1 =
P1(a1 − 1)

P1 + a2Pn−2
.

is invariant.

b.1) Let a2 6= 0 be. Then, choosing Qn−2 =
P1 + a2Pn−2

a2
, we obtain a′2 = 1.

• If a1 − 1 6= 0, then putting Pn−2 = −a1P1

a2
, we have a′1 = 0 and the algebra Z5(0, 1, 0, 0, 0, 0).

The determinant of change of basis consists of the potencies of the following non-zero factors
a2(a1 − 1)P1Rn.

• If a1 − 1 = 0, then a′1 = 1 and we obtain Z6(1, 1, 0, 0, 0, 0).

b.2) Let a2 = 0 be. Then, we have a′2 = 0, a′1 = a1 = λ ∈ C and the family Z7(λ, 0, 0, 0, 0, 0), with
λ ∈ C.

Case 2. Let en /∈ R(Z) be, then (a3, a6) 6= (0, 0). We can suppose that a3 6= 0, in another case, a3 = 0
and a6 6= 0 we make the following change of basis f ′

1 = f1 + f3. Thus, a3 6= 0. Taking into account the
expressions given in (1), the restrictions (2) and the following expression:

∆ = a33a4 + a23a4a5 − a1a
2
3a4a5 + a2a3a

2
4a5 − a1a3a4a

2
5−

−a1a
2
3a6 − 3a2a3a4a6 + a1a2a3a4a6 − a22a

2
4a6+

+a3a5a6 + a21a3a5a6 + a2a4a5a6 + a1a2a4a5a6−

−a1a
2
5a6 − a2a

2
6 + 2a1a2a

2
6 − a21a2a

2
6,

the nullity of the following expressions are invariant

a′23 − a′3a
′

5 + a′25 − a′2a
′

6 =
(a23 − a3a5 + a25 − a2a6)(Qn−2Rn −QnRn−2)

2

P1Qn−2 + a2Pn−2Qn−2 + a5PnQn−2 + a3Pn−2Qn + a6PnQn

,

a′3a
′

5 − a′2a
′

6 =
(a3a5 − a2a6)(Qn−2Rn −QnRn−2)

2

P1Qn−2 + a2Pn−2Qn−2 + a5PnQn−2 + a3Pn−2Qn + a6PnQn

,

∆′ =
∆P 2

1 (Qn−2Rn −QnRn−2)
4

(a2Qn−2Rn−2 + a5QnRn−2 + a3Qn−2Rn + a6QnRn)2
,

a′3 − a′5 =
(a3 − a5)(Qn−2Rn −QnRn−2)

P1Qn−2 + a2Pn−2Qn−2 + a5PnQn−2 + a3Pn−2Qn + a6PnQn

.

We can distinguish the following non isomorphic cases:

Case 2.1. Let a3a5 − a2a6 6= 0 be. Then, choosing

Pn−2 = −(a6P1QnRn−2 + a2a5Qn−2R
2
n−2 + a25QnR

2
n−2 − a6P1Qn−2Rn+

+a3a5Qn−2Rn−2Rn + a2a6Qn−2Rn−2Rn + 2a5a6QnRn−2Rn + a3a6Qn−2R
2
n+

+a6QnR
2
n)

1

(a3a5 − a2a6)(Qn−2Rn −QnRn−2)

Pn = −(−a3P1QnRn−2 − a22Qn−2Rn−2 − a2a5QnR
2
n−2 + a3P1Qn−2Rn−

−2a2a3Qn−2Rn−2Rn − a3a5QnRn−2Rn − a2a6QnRn−2Rn − a23Qn−2R
2
n−

−a3a6QnR
2
n)

1

(a3a5 − a2a6)(Qn−2Rn −QnRn−2)

and using the restriction (2), we obtain a′3 = 1.
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a) Let a3 − a5 6= 0 be. Then, choosing

Qn = −
a2Qn−2Rn−2 + a5Qn−2Rn

a3Rn−2 + a6Rn

, Rn−2 =
a3Qn−2 − a5Qn−2 − a6Rn

a3

we get a′5 = 0, a′6 = 1 and a′2 = λ ∈ C \ {0}. The determinant of the change of basis is formed by the
potencies of the following non-zero factors:

(a3Rn−2 + a6Rn)P1Qn−2(a2R
2
n−2 + a3Rn−2Rn + a5Rn−2Rn + a6R

2
n).

a.1) Let ∆ 6= 0 be. Then, we choose

Rn = −
(a2a3a4 − a3a5 − a2a4a5 + a1a

2
5 + a2a6 − a1a2a6)P1

(a3 − a5)(a3a5 − a2a6)
,

Qn−2 = (a23a4 − a1a
2
3a6 − 2a2a3a4a6 + a3a5a6 + a1a3a5a6+

+a2a4a5a6 − a1a
2
5a6 − a2a

2
6 + a1a2a

2
6)

P1

(a3 − a5)2(a3a5 − a2a6)
,

and we get a′1 = a′4 = 0 and the family Z8(0, λ, 1, 0, 0, 1), λ ∈ C\{0}. The determinant of change
of basis is formed by the non-zero potencies of the following factors (a3−a5)(a3a5−a2a6)∆P1.

a.2) Let ∆ = 0 be. Then, we have

∆′ = a′5 = 0, a′3 = a′6 = 1,

a′4 − a′1 − 3a′2a
′

4 + a′2a
′

1a
′

4 − a′22 a
′2
4 − a′2(a

′

1 − 1)2 = 0.

Thus, we obtain the following family

ei ◦ ej = Cj
i+j−1ei+j , 2 ≤ i+ j ≤ n− 3,

e1 ◦ en−2 = en−1,
en−2 ◦ e1 = αen−1,
en−2 ◦ en = en−1,
en−2 ◦ en−2 = βen−1, with β 6= 0
en ◦ en = en−1,
en ◦ e1 = γen−1, with γ − α− 3βγ + αβγ − β2γ2 − β(1 − α)2 = 0

Now, we make the generic change of basis

e′1 = P1e1 + Pn−2en−2 + Pnen,
e′n−2 = Q1e1 +Qn−2en−2 +Qnen,

e′n = R1e1 +Rn−2en−2 +Rnen.

and we have the expressions of the new parameters and the new restrictions:

α′ =
αP1Qn−2 + βPn−2Qn−2 + γP1Qn + PnQn−2 + Pn−2Qn + PnQn

P1Qn−2 + βPn−2Qn−2 + Pn−2Qn + PnQn−2 + PnQn

,

β′ =
βQ2

n−2 + 2Qn−2Qn +Q2
n

P1Qn−2 + βPn−2Qn−2 + Pn−2Qn + PnQn−2 + PnQn

,

γ′ =
αP1Rn−2 + βPn−2Rn−2 + γP1Rn + PnRn−2 + Pn−2Rn + PnRn

P1Qn−2 + βPn−2Qn−2 + Pn−2Qn + PnQn−2 + PnQn

,

1 =
βQn−2Rn−2 +Qn−2Rn +QnRn−2 +QnRn

P1Qn−2 + βPn−2Qn−2 + Pn−2Qn + PnQn−2 + PnQn

,

1 =
βR2

n−2 + 2Rn−2Rn +R2
n

P1Qn−2 + βPn−2Qn−2 + Pn−2Qn + PnQn−2 + PnQn

,

0 = P1Rn−2 + βPn−2Rn−2 + Pn−2Rn + PnRn−2 + PnRn = 0. (∗∗)
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Putting

Pn−2 = −
P1QnRn−2 − P1Qn−2Rn + βQn−2Rn−2Rn +Qn−2R

2
n +QnR

2
n

β(QnRn−2 −Qn−2Rn)
,

Pn = (P1QnRn−2 + β2Qn−2R
2
n−2 − P1Qn−2Rn + 2βQn−2Rn−2Rn+

+βQnRn−2Rn +Qn−2R
2
n +QnR

2
n)

1

β(QnRn−2 −Qn−2Rn)
,

Qn−2 = Rn−2 +Rn,

Qn = −
βQn−2Rn−2

Rn−2 +Rn

= −βRn−2,

we get

α′ = −(−P1Rn−2 + 2βP1Rn−2 − αβP1Rn−2 + β2γP1Rn−2+

+βR2
n−2 − β2R2

n−2 − P1Rn + βP1Rn − αβP1Rn+

+Rn−2Rn − βRn−2Rn +R2
n − βR2

n)
1

β(βR2
n−2 +Rn−2Rn +R2

n)
,

γ′ = (P1Rn−2 − βP1Rn−2 + αβP1Rn−2 − βR2
n−2 + P1Rn+

+βγP1Rn −Rn−2Rn −R2
n)

1

β(βR2
n−2 +Rn−2Rn +R2

n)
,

β′ = β 6= 0

with P1(βR
2
n−2 +Rn−2Rn +R2

n) 6= 0. It is easy to prove that:

γ′ − α′ − 3β′γ′ + α′β′γ′ − β′2γ′2 − β′(α′ − 1)2 =
γ − α− 3βγ + αβγ − β2γ2 − β(α − 1)2

βR2
n−2 +Rn−2Rn +R2

n

P 2
1 = 0.

Now, if we choose

Rn =
1

2
(P1 + βγP1 −Rn−2)−

−

√

(P1 + βγP1 −Rn−2)2 + 4(P1Rn−2 − βP1Rn−2 + αβP1Rn−2 − βR2
n−2)

2

we get γ′ = 0, β′ = β 6= 0, α′ + β′(α′ − 1)2 = 0 with α′ ∈ C \ {0, 1}, thus β′ = −
α′

(α′ − 1)2

and we have the family Z9(α,−
α′

(α′
−1)2 , 1, 0, 0, 1), with α ∈ C \ {0, 1}.

b) Let a3 − a5 = 0 be. Then, we have a′3 = a′5 = 1, a23 − a2a6 6= 0 and

a′1 =
((a1 − 1)Qn−2 + a4Qn)P1

a2Qn−2Rn−2 + a3QnRn−2 + a3Qn−2Rn + a6QnRn

+ 1,

a′2 =
a2Q

2
n−2 + 2a3Qn−2Qn + a6Q

2
n

a2Qn−2Rn−2 + a3QnRn−2 + a3Qn−2Rn + a6QnRn

,

a′4 =
((a1 − 1)Rn−2 + a4Rn)P1

a2Qn−2Rn−2 + a3QnRn−2 + a3Qn−2Rn + a6QnRn

,

a′6 =
a2R

2
n−2 + 2a3Rn−2Rn + a6R

2
n

a2Qn−2Rn−2 + a3QnRn−2 + a3Qn−2Rn + a6QnRn

,

with

P1(QnRn−2 −Qn−2Rn)(a2Qn−2Rn−2 + a3QnRn−2 + a3Qn−2Rn + a6QnRn) 6= 0,
P1Rn−2 + a2Pn−2Rn−2 + a3Pn−2Rn + a5PnRn−2 + a6PnRn = 0.

We can suppose a′2 = 0 ,

• a2 6= 0, if we choose Qn−2 =
−a3 ±

√

a23 − a2a6
a2

Qn, we get a′2 = 0,

• a2 = 0, if we choose Qn−2 = −
a6Qn

2a3
we have a′2 = 0.



NATURALLY GRADED ZINBIEL ALGEBRAS WITH NILINDEX n − 3 9

Analogously, we can suppose that a′4 = 0 , using Rn.

Now, we have the new family:

ei ◦ ej = Cj
i+j−1ei+j , 2 ≤ i+ j ≤ n− 3,

e1 ◦ en−2 = en−1,
en−2 ◦ e1 = a′1en−1,
en−2 ◦ en = en−1,
en ◦ en−2 = en−1,
en ◦ en = a′6en−1.

and we make a generic change of basis. Choosing Pn and Pn−2 (as in previous cases) we get a′′3 = a′′5 = 1.

Putting Rn−2 = 0, Qn−2 = −
a6Qn

2
we have a′′4 = a′′2 = 0 and

a′′1 =
(1− a′1)P1 +Rn

Rn

, a′′6 =
2Rn

Qn

It is easy to check that the nullity of a′′1 − 1 is invariant because

a′′1 − 1 =
(a′1 − 1)P1Qn−2

(Qn−2 + a6Qn)Rn

Moreover, choosing Qn = 2Rn we obtain a′6 = 1. The determinant of change of basis is formed by the
non-zero potencies of the following factors a6P1QnRn.

Now, we can distinguish two cases:

b.1) If a′1 − 1 6= 0, choosing Rn = (a′1 − 1)P1 we get a′′1 = 0 and the algebra Z10(0, 0, 1, 0, 1, 1).

b.2) If a′1 − 1 = 0, then a′′1 = 1 and we have Z11(1, 0, 1, 0, 1, 1).

Case 2.2. Let a3a5 − a2a6 = 0 be.

As a3 6= 0 ⇒ a5 = a2a6

a3

. We substitute in (1) and in (2) and we choose

Pn−2 = −
a3P1Rn−2 + a2a6PnRn−2 + a3a6PnRn

a3(a2Rn−2 + a3Rn)
.

Now, taking into account the new parameters (1), we get to:

a′2 =
(a2Qn−2 + a3Qn)(a3Qn−2 + a6Qn)(a2Rn−2 + a3Rn)

a23P1(Qn−2Rn −QnRn−2)
,

a′3 =
(a3Qn−2 + a6Qn)(a2Rn−2 + a3Rn)

2

a23P1(Qn−2Rn −QnRn−2)
6= 0.

with a3P1(QnRn−2 −Qn−2Rn)(a2R1 + a3Rn) 6= 0 and that the nullity of the following expressions:

a′1a
′

6 − a′3a
′

4 =
a3(a1a6 − a3a4)(a2Rn−2 + a3Rn)(Qn−2Rn −QnRn−2)P1

(a3a6PnQn + a3P1Qn−2 + a2a3Pn−2Qn−2 + a2a6PnQn−2 + a23Pn−2Qn)2
,

a′23 − a′2a
′

6 =
(a23 − a2a6)(a3Qn−2 + a6Qn)(a2Rn−2 + a3Rn)(Qn−2Rn −QnRn−2)

(a3a6PnQn + a3P1Qn−2 + a2a3Pn−2Qn−2 + a2a6PnQn−2 + a23Pn−2Qn)2
,

are invariant. Thus, we can distinguish the non isomorphic cases:
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a) Let a23 − a2a6 6= 0 be. Then, choosing

Qn = −
a2Qn−2

a3
,

⇒ a′2 = a′5 = 0

Pn =
(a2a

3
3P1Rn−2 − a1a2a

3
3P1Rn−2 + a22a

2
3a4P1Rn−2 − a22a3a6P1Rn−2 − a1a

4
3P1Rn + a2a

3
3a4P1Rn)

(a23 − a2a6)2(a2Rn−2 + a3Rn)
,

⇒ a′1 = 0,

Rn−2 = −
a6Rn

a3
,

⇒ a′6 = 0

P1 =
(a23 − a2a6)

2Rn

a33
,

⇒ a′3 = 1.

it is easy to check that the determinant of the change of basis is formed by the potencies of the following
non-zero factors a3(a

2
3 − a2a6)P1Qn−2Rn. We compute the new parameter a4 :

a′4 =
(a3a4 − a1a6)Rn

a3Q1

a.1) If a3a4 − a1a6 6= 0, then choosing Qn−2 =
(a3a4 − a1a6)Rn

a3
, we have a′4 = 1 and

Z12(0, 0, 1, 1, 0, 0).
a.2) If a3a4 − a1a6 = 0, then a′4 = 0 and we have Z13(0, 0, 1, 0, 0, 0).

b) Let a23 − a2a6 = 0 be. We have that a3 6= 0, a2 6= 0 and a6 6= 0. It implies that a6 =
a2

3

a2

and

a5 = a2a6

a3
= a3. As in case a), we choose

Pn = −
a2(P1Rn−2 + a2Pn−2Rn−2 + a3Pn−2Rn)

a3(a2Rn−2 + a3Rn)
.

It is easy to check that the nullity of the expressions

a′3 − a′1a
′

3 + a′2a
′

4 =
(a3 − a1a3 + a2a4)(a2Qn−2 + a3Qn)(a2Rn−2 + a3Rn)

2

a2a23P1(Qn−2Rn −QnRn−2)

is invariant.
Choosing

P1 = −
(a2Qn−2 + a3Qn)(a2Rn−2 + a3Rn)

2

a2a3(QnRn−2 +Qn−2Rn)
⇒ a′3 = a′5 = 1

Rn =
a2Qn−2 + a3Qn − a2Rn−2

a3
⇒ a′2 = a′6 = 1.

we get

a′1 =
a1Qn−2 + a4Qn −Rn−2

Qn−2 −Rn−2
,

a′4 =
a2a4Qn−2 + a3a4Qn − a3(1− a1)Rn−2 − a2a4Rn−2

a3(Qn−2 −Rn−2)
.

with a2a3(a2Qn−2 + a3Qn)(Qn−2 −Rn−2) 6= 0.
Thus, we can distinguish two non isomorphic cases:

b.1) Let a3 − a1a3 + a2a4 6= 0 be.

If a4 6= 0, then choosing

Qn =
−a2a4Qn−2 + a3Rn−2 − a1a3Rn−2 + a2a4Rn−2

a3a4

we have a′4 = 0 and a′1 = a1a3−a2a4

a3

6= 1, that is, a′1 = λ ∈ C \ {1}. The determinant of

the change of basis is formed by the potencies of the non-zero factors a2a3a4(a3 − a1a3 +
a2a4)Rn−2(Qn−2 −Rn−2). We obtain Z14 = (λ, 1, 1, 0, 1, 1), λ ∈ C \ {1}.
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If a4 = 0, then choosing Rn−2 = 0 and Rn−2 6= Qn−2, we have a′4 = 0. The determinant
of the change of basis is formed by the potencies of the non-zero factors a2a3Qn−2(a2Qn−2 +
a3Rn). We get to the previous family.

b.2) Let a3 − a1a3 + a2a4 = 0 be.

We can suppose a4 =
(a1 − 1)a3

a2
. It is easy to prove that the nullity of

a′1 − 1 =
(a1 − 1)(a2Qn−2 + a3Qn)(a2Rn−2 + a3Rn)

a2a3(QnRn−2 −Qn−2Rn)

is invariant.
Putting the adequate values of the parameters Pn, P1 and Rn, we get to a′2 = a′3 = a′5 =

a′6 = 1 and

a′1 =
a1a2Qn−2 − a3Qn + a1a3Qn − a2Rn−2

a2a3(QnRn−2 −Qn−2Rn

with a2a3(a2Qn−2 + a3Qn)(Qn−2 −Rn−2) 6= 0.
Now, we can distinguish two cases:

– If a1 − 1 6= 0, choosing Qn = −
a2(a1Qn−2 −Rn−2)

(a1 − 1)a3
, we have a′1 = 0, a′4 = −1 and the

algebra Z15(0, 1, 1,−1, 1, 1).

– If a1 − 1 = 0, we have a′1 = a′4 = 1 and Z16(1, 1, 1, 0, 1, 1).

The theorem is proved. �

Case II. If r1 ≥ 3, r2 = 1, then we have the following gradation:

Z1 = 〈e1, en〉, Z2 = 〈e2〉, . . . , Zr1 = 〈er1 , en−2〉, Zr1+1 = 〈er1+1, en−1〉, . . . , Zn−3 = 〈en−3〉

Let Z be a n-dimensional naturally graded Zinbiel algebra of type I with r1 ≥ 3 and r2 = 1, then
the following lemma is true.

Lemma 3.2. If r1 ≥ 3, r2 = 1 and n ≥ 7, there are not any naturally graded Zinbiel algebras.

Proof. According to the properties of the gradation, Z1 ◦ Z1 = Z2, we have:

en ◦ e1 = α1e2,
en ◦ en = α2e2.

From Z(e1, en, e1) = Z(e1, en, en) = 0 we get α1 = α2 = 0.
Furthermore, we have

en ◦ ei = en ◦ (e1 ◦ ei−1) = (en ◦ e1) ◦ ei−1 − (i− 1)en ◦ ei ⇒ en ◦ ei = 0 for 1 ≤ i ≤ n− 3,

and

ei ◦ en = (e1 ◦ ei−1) ◦ en = e1 ◦ (ei−1 ◦ en) + e1 ◦ (en ◦ ei−1) = 0 ⇒ ei ◦ en = 0 for 1 ≤ i ≤ n− 3.

We observe that it is not possible to obtain the element en−2 for n ≥ 7, this contradicts with the
supposition r1 ≥ 3. Thus, in this case, we do not obtain any naturally graded Zinbiel algebra. �

Case III. If r1 = 2, r2 = 1, then

Z1 = 〈e1, en〉, Z2 = 〈e2, en−2〉, Z3 = 〈e3, en−1〉, Z4 = 〈e4〉, . . . , Zn−3 = 〈en−3〉

Let Z be a n-dimensional naturally graded Zinbiel algebra of type I with r1 ≥ 2 and r2 = 1, then
the following lemma is true.

Lemma 3.3. If r1 = 2, r2 = 1 and n ≥ 8, then there are not any naturally graded Zinbiel algebra.

Proof. According to the properties of the gradation, Z1 ◦Z1 = Z2, we obtain the following multiplica-
tion:

en ◦ e1 = α1e2 + β1en−2,
en ◦ en = α2e2 + β2en−2.

From the identity Z(e1, en, e1) = Z(e1, en, en) = 0, α1 = β1 = α2 = β2 = 0 follows.
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As in the previous case, we prove that en ◦ ei = ei ◦ en = 0 for 1 ≤ i ≤ n− 3, and therefore it is not
possible to obtain the the element en−2 for n ≥ 8 and it contradicts the gradation. Thus, in this case,
we do not obtain any naturally graded Zinbiel algebra. �

Case IV. If r1 = 1, r2 ≥ 4, then

Z1 = 〈e1, en−2〉, Z2 = 〈e2, en−1〉, . . . , Zr1 = 〈er1 , en〉, . . . , Zn−3 = 〈en−3〉

Let Z be a n-dimensional naturally graded Zinbiel algebra of type I with r1 = 1 and r2 ≥ 4, then
the following lemma is true.

Lemma 3.4. If r1 = 1, r2 ≥ 4 and n ≥ 8, there are not any naturally graded Zinbiel algebras.

Proof. Similar to Case II and Case III. �

Case V. If r1 = 1, r2 = 2, then

Z1 = 〈e1, en−2〉, Z2 = 〈e2, en−1, en〉, . . . , Z3 = 〈e3〉, . . . , Zn−3 = 〈en−3〉

Let Z be a n-dimensional naturally graded Zinbiel algebra of type I with r1 = 1, r2 = 2 and n ≥ 8.
We have

en−2 ◦ e1 = α1e2 + β1en−1 + γ1en,

en−2 ◦ en−2 = α2e2 + β2en−1 + γ2en,

en−2 ◦ en−1 = δ1e3,

en−2 ◦ en = δ2e3,

en ◦ e1 = δ3e3,

en ◦ en−2 = δ4e3,

en ◦ en−1 = δ5e3,

en ◦ en = δ6e3.

We compute the following identities of Zinbiel

Z(e1, en−2, e1) = Z(e1, en−1, e1) = Z(e1, e1, en−2) = Z(en−2, e1, e1) = 0
Z(en−2, en−1, e1) = Z(en−2, en−2, e1) = Z(e1, en−2, en−2) = Z(e1, en, e1) = 0
Z(en−2, en, e1) = Z(e1, en, en−2) = Z(e1, en−2, en−1) = Z(e1, en−2, en) = 0
Z(en, en−1, e1) = Z(e1, en, en) = 0.

and we have α1 = α2 = δ1 = δ2 = δ3 = δ4 = δ5 = δ6 = 0, and

e2 ◦ en−2 = en−2 ◦ e2 = en−1 ◦ en−2 = en−1 ◦ en−1 = en−1 ◦ en = 0.

Now we will consider the following multiplication:

en−1 ◦ ei = (en−1 ◦ e1) ◦ ei−1 − (i − 1)en−1 ◦ ei

⇒ en−1 ◦ ei = 0, 1 ≤ i ≤ n− 3,

ei ◦ en−1 = (e1 ◦ ei−1) ◦ en−1 =

= e1 ◦ (ei−1 ◦ en−1) + e1 ◦ (en−1 ◦ ei−1) = 0

⇒ ei ◦ en−1 = 0, 1 ≤ i ≤ n− 3,

en−2 ◦ ei = (en−2 ◦ e1) ◦ ei−1 − (i − 1)en−2 ◦ ei

⇒ en−2 ◦ ei = 0, 2 ≤ i ≤ n− 3,

ei ◦ en−2 = (e1 ◦ ei−1) ◦ en−2 =

= e1 ◦ (ei−1 ◦ en−2) + e1 ◦ (en−2 ◦ ei−1) = 0,

⇒ ei ◦ en−2 = 0, 2 ≤ i ≤ n− 3,

en ◦ ei = (en ◦ e1) ◦ ei−1 − (i − 1)en ◦ ei

⇒ en ◦ ei = 0, 1 ≤ i ≤ n− 3,

ei ◦ en = (e1 ◦ ei−1) ◦ en =

= e1 ◦ (ei−1 ◦ en) + e1 ◦ (en ◦ ei−1) = 0

⇒ ei ◦ en = 0, 1 ≤ i ≤ n− 3,
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Thus, we have received the following family:

Z(β1, β2, γ1, γ2) :



















ei ◦ ej = Cj
i+j−1ei+j , 2 ≤ i+ j ≤ n− 3,

e1 ◦ en−2 = en−1,

en−2 ◦ e1 = β1en−1 + γ1en,

en−2 ◦ en−2 = β2en−1 + γ2en, with (γ1, γ2) 6= (0, 0).

Theorem 3.5. Let Z be an n-dimensional naturally graded Zinbiel algebra of type I with r1 = 1,
r2 = 2 and n ≥ 8. Then, Z is isomorphic to one of the following algebras, pairwise non isomorphic:

Z17(λ, 0, 0, 1), λ ∈ C, Z18(1, 0, 1, 1), Z19(0, 1, 1, 0), Z20(0, 0, 1, 0).

Proof. As in Theorem 3.1 we make the generic change of basis and we study all de cases. �

Case VI. If r1 = 1, r2 = 3, then

Z1 = 〈e1, en−2〉, Z2 = 〈e2, en−1〉, . . . , Z3 = 〈e3, en〉, . . . , Zn−3 = 〈en−3〉

Let Z be an n-dimensional naturally graded Zinbiel algebra of type I with r1 = 1, r2 = 3 and n ≥ 8.

Theorem 3.6. Let Z be an n-dimensional naturally graded Zinbiel algebra of type I with r1 = 1,
r2 = 3 and n ≥ 8. Then, Z is isomorphic to the following algebra:

Z21 :



















ei ◦ ej = Cj
i+j−1ei+j , 2 ≤ i+ j ≤ n− 3,

e1 ◦ en−2 = en−1,

en−2 ◦ e1 = −en−1,

en−2 ◦ en−1 = en.

Proof. Using the gradation and its properties, we compute Z1 ◦ Z1, Z1 ◦ Z2 and Z2 ◦ Z1 and we have:

en−2 ◦ e1 = α1e2 + β1en−1,
en−2 ◦ en−2 = α2e2 + β2en−1,
en−2 ◦ en−1 = α3e3 + β3en,
en−1 ◦ en−2 = 2α2e3,
en−2 ◦ e2 = α4e3 + β4en,
en−1 ◦ e1 = α1e3,
e2 ◦ en−2 = α1e3.

From the following Zinbiel identities:

Z(e1, en−1, e1) = Z(en−2, e1, e1) = Z(en−2, en−1, e1) = Z(en−2, en−2, e1) = Z(en−2, en−2, e2) = 0

we obtain that

(3) :























α1 = α4 = β4 = 0,
3α3 + β3(en ◦ e1) = 0,
2α2 − (β1 + 1)α3 = 0,
(β1 + 1)β3 = 0,
β2(en−1 ◦ e2) = 0.

From the restrictions, it is easy to see that α2 = 0. Moreover, we compute en−1 ◦ e2 = e2 ◦ en−1 = 0.
Furthermore, from the multiplication Z1 ◦ Z3 and Z3 ◦ Z1, we have

en ◦ e1 = δ1e4,
en−2 ◦ en = δ3e4,
en ◦ en−2 = δ4e4,

en ◦ en =

{

δ2e6, n ≥ 9,
0, n = 8

Now we will consider the following equalities:

Z(e1, en, e1) = Z(en−2, en, e1) = Z(e1, en, en−2) = Z(en−2, en−2, en−2) = 0

we get δ1 = δ3 = δ4 = 0.
If n ≥ 10, we make Z(e1, en, en) = 0 and we obtain δ2 = 0. Thus, en ∈ Center(Z).
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Taking (3) into account we have α3 = 0. Thus, en−2◦en−1 = β3en. If β3 = 0 we have a contradiction
of the gradation, in particular with r2 = 3. Thus, β3 6= 0. We can suppose en−2 ◦ en−1 = en. By using
(3), we can see β1 = −1.

From Z(en−2, e1, en−2) = 0 we get β2 = 0. Now, similar to previous cases we prove that

en−1 ◦ ei = ei ◦ en−1 = en−2 ◦ ei = ei ◦ en−2 = 0, for 2 ≤ i ≤ n− 3.

Furthermore, we have:
en−1 ◦ en−1 = δ5e4,
en−1 ◦ en = δ6e5,
en ◦ en−1 = δ7e5,

and from the equalities: Z(e1, en−2, en−1) = Z(e1, en−2, en) = Z(en−2, en−1, en−1) = 0, we get δ5 =
δ6 = δ7 = 0.

It only has to be proved that when n = 9, then δ2 = 0. Now, from Z(en−2, en−1, en) = 0 we lead to
δ2 = 0.

Finally, we obtain the algebra of the theorem. �

3.2. Type II. Now we will consider naturally graded Zinbiel algebra of the second type.
Let Z be a n-dimensional naturally graded Zinbiel algebra of type II, then there exists a basis

{e1, e2, . . . , en} such that the operator of left multiplication Le1 has the following matrix form:




J2 0 0
0 Jn−3 0
0 0 J1





We have the products:
e1 ◦ e1 = e2,
e1 ◦ e2 = 0,
e1 ◦ ei = ei+1, 3 ≤ i ≤ n− 2,
e1 ◦ en−1 = 0,
e1 ◦ en = 0.

Thus, the subspaces of the natural gradation are:

< e1, e3 >⊆ Z1, < e2, e4 >⊆ Z2, < e5 >⊆ Z3, . . . , < en−1 >⊆ Zn−3

Let us assume that en ∈ Zr with 1 ≤ r ≤ n− 3.

Theorem 3.7. There does not exist any naturally graded Zinbiel algebra of type II with dimension
greater or equal to 9.

Proof. Using the property of the gradation, Zi ◦ Zj ⊆ Zi+j , we have that e3 ◦ e1 = α1e2 + β1e4 and
e3 ◦ e2 = β2e5 + (∗)en, where (∗) indicates the coefficient of the vector en when r = 3, or (∗) = 0.

Let us consider the following product:

e4 ◦ e1 = (e1 ◦ e3) ◦ e1 = (1 + β1)e5,
e2 ◦ e3 = (e1 ◦ e1) ◦ e3 = (1 + β1)e5,
e2 ◦ e4 = (e1 ◦ e1) ◦ e4 = (2 + β1)e6,
e4 ◦ e2 = (e1 ◦ e3) ◦ e2 = (1 + β1 + β2)e6,
e5 ◦ e1 = (e1 ◦ e4) ◦ e1 = (2 + β1)e6,
e2 ◦ e5 = (e1 ◦ e1) ◦ e5 = (3 + β1)e7,
e5 ◦ e2 = (e1 ◦ e4) ◦ e2 = (3 + 2β1 + β2)e7,

From the following identities:

0 = Z(e1, e2, e3) ⇒ e3 ◦ e3 = (1 + β1 + β2)e6,
⇒ e3 ◦ e3 ∈ Z2 and e6 ∈ Z4,
⇒ 1 + β1 + β2 = 0

0 = Z(e1, e2, e4) ⇒ e3 ◦ e4 = (3 + 2β1 + β2)e7,
⇒ e3 ◦ e4 ∈ Z3 and e7 ∈ Z5,
⇒ 3 + 2β1 + β2 = 0

0 = Z(e1, e2, e5) ⇒ e3 ◦ e5 = (6 + 3β1 + β2)e8,
⇒ e3 ◦ e5 ∈ Z4 and e8 ∈ Z6,
⇒ 6 + 3β1 + β2 = 0.
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We have the next system of equations:

1 + β1 + β2 = 0
3 + 2β1 + β2 = 0
6 + 3β1 + β2 = 0

It is trivial to see that this system of equations do not have solution. Then, there does not exist
any naturally graded Zinbiel algebra of type II with dimension greater or equal to 9. �

3.3. Type III. Now we will consider naturally graded Zinbiel algebra of type III.
Let Z be a n-dimensional naturally graded Zinbiel algebra of type III, then there exists a basis

{e1, e2, . . . , en} such that the operator of left multiplication Le1 has the following matrix form:




J1 0 0
0 Jn−3 0
0 0 J2





We have the products:
e1 ◦ e1 = 0,
e1 ◦ ei = ei+1, 2 ≤ i ≤ n− 3,
e1 ◦ en−1 = en,
e1 ◦ en = 0.

Then, the subspaces of the natural gradation are:

< e1, e2 >⊆ Z1, < e3 >⊆ Z2, < e4 >⊆ Z3, . . . , < en−2 >⊆ Zn−3

Theorem 3.8. There does not exist any naturally graded Zinbiel algebra of type III with dimension
greater or equal to 7.

Proof. Using the identity (a ◦ b) ◦ c = (a ◦ c) ◦ b we have

e3 ◦ e1 = (e1 ◦ e2) ◦ e1 = (e1 ◦ e1) ◦ e2 = 0

that is, e3 ◦ e1 = 0.
From the following identity we have:

0 = (e1 ◦ e1) ◦ e3 = e1 ◦ (e1 ◦ e3) + e1 ◦ (e3 ◦ e1) = e1 ◦ e4 = e5

We get a contradiction because n ≥ 6. Thus, there does not exist any naturally graded Zinbiel
algebra of type III. �
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