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Abstract. Falls are the most common cause of fatal injuries in elderly
people, causing even death if there is no immediate assistance. Fall detec-
tion systems can be used to alert and request help when this type of acci-
dent happens. Certain types of these systems include wearable devices
that analyze bio-medical signals from the person carrying it in real time.
In this way, Deep Learning algorithms could automate and improve the
detection of unintentional falls by analyzing these signals. These algo-
rithms have proven to achieve high effectiveness with competitive per-
formances in many classification problems. This work aims to study 16
Recurrent Neural Networks architectures (using Long Short-Term Mem-
ory and Gated Recurrent Units) for falls detection based on accelerome-
ter data, reducing computational requirements of previous research. The
architectures have been tested on a labeled version of the publicly avail-
able SisFall dataset, achieving a mean F1-score above 0.73 and improving
state-of-the-art solutions in terms of network complexity.
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1 Introduction

According to the World Health Organization [12], unintentional falls are one of 
the most frequent causes of injuries in people over 65 years. Approximately 28%–
35% of this cohort suffer at least one fall per year. This topic is gaining importance 
due to the progressive elderly population increase. Major injuries pose significant 
risk for postfall morbidity and mortality. This risk has been shown to be closely 
correlated to the delay in assist with first aid after the fall [7].

Fall detection systems (FDS) are devices that monitor the user’s activity 
and ideally alert when a fall has occurred. They allow sending an accident noti-
fication immediately to medical entities, caregivers and family members for a 
quick assistance. Among all the different FDS types, wearable devices allow a
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continuous monitoring without dependence on the environment. This kind
of devices usually use accelerometers and different algorithms to distinguish
between daily activities and fall events [4]. Although threshold based algorithms
show very high performance in terms of detection effectiveness and low compu-
tational complexity, they present many difficulties when trying to adapt them to
new types of falls and user complexion. Machine learning methods are considered
more sophisticated approaches to try to solve this problem. However, traditional
supervised classification algorithms are not suitable due to the sequential nature
of fall events, that implies a large computational cost, and the scarcity of datasets
to study these events [5].

Recurrent Neural Networks (RNN) such as Long Short-Term Memory units
(LSTM) and Gated Recurrent Units (GRU) are Deep Learning networks specifi-
cally designed to process sequences. Recent studies shed some light on the poten-
tial of RNNs for accelerometers [6]. This work focuses on finding a cost-effective
RNN architecture in terms of computational complexity and effectiveness for fall
detection in real-time.

2 Materials and Methods

2.1 Dataset

SisFall dataset [10] is used in this study. This dataset is composed of several
simulated activities mainly classified in falls and activities of daily living (ADL).
Each sample contains accelerometer measurements obtained from a device fixed
to the user’s waist. The measurement’s sampling frequency is 200 Hz. The dataset
was complemented with labeling criteria proposed in [6] dividing each activity
into segments with a width of 256 samples and a stride of 128. Each segment can
be classified as Fall, Alert or Background (FALL, ALERT and BKG) considering
if that segment recorded part of a fall event, a fall hazard status or an ADL state
without danger. A subset of 20% approximately (all activities related to 5 adult
subjects and 3 elderly, randomly chosen from each category) was extracted from
the total set for evaluating the effectiveness of models trained in this study. The
dataset includes 94K samples for training (90K BCK, 1K ALERT, 3K FALL)
and 23K for testing (22K BCK, 0.3K ALERT, 0.7K FALL).

2.2 Gated RNN

Gated RNNs introduce some memory-like cells in the architecture that hold
information separated from the rest of the neural network. The information is
managed through a set of gates. During the training of the network, the cells
learn to close or open their gates according to the relevance of the information
that comes from the sequence and the information currently stored.

LSTM units [3] contain three gates. Input and forget gates evaluate the
addition of new information into memory and the deletion of part of the stored
information. The output gate controls what information is provided to the next



Fig. 1. Scheme representing all architectures trained in the first study stage, differen-
tiated between them by having distinct combinations of the highlighted layers.

step. GRUs [1] are more recent cells similar to LSTM that lack of the output gate,
dumping what is stored in the cell’s memory during the entire training process.
Both alternatives have shown to be similarly effective [2], although GRUs are
more economical in terms of computation cost.

2.3 Training and Testing

This work aims to identify the most ideal RNN in order to be implemented in
wearable devices. To this end, due to the high computational cost, the architec-
ture should be simplified. Therefore, our study consists of two stages. First one
is focused on comparing architectures with different layers combinations (See
Fig. 1). The study includes 16 architectures (8 uses LSTM and 8 uses GRU).
These are obtained by including/removing the dotted layers in Fig. 1, and are
simplified versions of the proposed solution in [6] with the exception of number
8, that consist of the same architecture without dropout. Each architecture was
tested by using both GRU and LSTM as RNN layers.

Due to the dataset being highly unbalanced, the overall classification accu-
racy is not an appropriate way to measure the effectiveness of the system. We
compared the effectiveness employing the F1-score [8] for each class and average,
which measures the relations between data’s positive labels and those given by a
classifier through a combination of precision and accuracy. Regarding the archi-
tecture complexity, the observed metric was the number of trainable parameters.

The second stage aimed to optimize the architectures that obtained the
best results. Firstly, in order to deal with overfitting, dropout technique [9]
was applied in the dense and recurrent layers, with the exception of the last
dense used to classify the input. It was tested with 0% (without dropout), 20%
and 35% values for each layer. Secondly, we used the best results combinations
obtained previously to adjust batch size and learning rate hyperparameters by
grid search with {32,64} and {0.0015, 0.001, 0.0005} values respectively.

3 Results and Discussion

Main results of first stage are presented in Table 1. F-1 score did not reach 0.33
for the ALERT class. Some reason for this can be the scarcity of this class
examples in the dataset [5] and the falling conditions. The application of batch



Fig. 2. Scheme representing the architecture with best results obtained in the first
stage in terms of number of trainable parameters and mean F1-score.

Table 1. Results obtained with proposed architectures. First 8 rows corresponds to
training results using LSTM as RNN layers and second ones using GRU. The avg
subscript means the average between metrics values obtained. The prec. term consists
of precision metric. Codes d1, bn and rnn2 indicates the presence in the architecture
of first dense layer, batch normalization and second RNN layer respectively.

Additional layers Loss F1BKG F1ALE F1FALL Prec.avg Recallavg F1avg Param.

1 - 1.83 0.88 0.09 0.58 0.49 0.76 0.52 4835

2 rnn2 1.56 0.94 0.21 0.69 0.55 0.87 0.61 13283

3 bn 1.04 0.95 0.22 0.83 0.61 0.91 0.66 4847

4 bn, rnn2 1.02 0.96 0.29 0.82 0.63 0.91 0.69 13295

5 d1 2.07 0.85 0.08 0.45 0.45 0.73 0.46 8675

6 d1, rnn2 1.37 0.94 0.20 0.71 0.56 0.86 0.62 17123

7 d1, bn 0.97 0.95 0.25 0.82 0.62 0.91 0.67 8803

8 d1, bn, rnn2 [6] 1.31 0.96 0.26 0.82 0.63 0.89 0.68 17251

9 - 1.75 0.87 0.09 0.64 0.51 0.78 0.53 3651

10 rnn2 1.63 0.95 0.23 0.74 0.58 0.85 0.64 9987

11 bn 1.10 0.97 0.32 0.82 0.64 0.90 0.70 3663

12 bn, rnn2 1.20 0.96 0.29 0.80 0.62 0.90 0.69 9999

13 d1 1.89 0.84 0.09 0.43 0.44 0.75 0.45 6563

14 d1, rnn2 1.11 0.94 0.21 0.71 0.56 0.89 0.62 12899

15 d1, bn 0.97 0.96 0.28 0.87 0.65 0.92 0.70 6691

16 d1, bn, rnn2 1.28 0.97 0.34 0.82 0.64 0.90 0.71 13027

normalization presents the best contribution to performance results. Although
the second RNN layer improves the results, the amount of parameters that it
adds to the network implies a higher computational cost. Due to the low number
of parameters and good results in comparison with the rest of the models, it was
considered to optimize results of both architectures 3 and 11 (Fig. 2).

Table 2 shows the best results obtained after the parameter optimization.
Effectiveness results are very similar to [6], of which is estimated an F1-score of
0.71 considering that they had used approximately the same number of samples
in each class as in this study. However, the model obtained in this study has
a much lower complexity since it lacks a dense layer and an additional LSTM
layer. This implies a direct impact on the energy saving of the real-time capable
device in which the model would be integrated, being able to have an autonomy
greater than 20 h of [11].



Table 2. Results obtained after grid search optimization.

RNN

type

Learn.

rate

Batch

size

Input

drop

RNN

drop

Param F1BKG F1ALE F1FALL Precavg Recallavg F1avg

lstm 0.001 32 0.35 0 4847 0.98 0.42 0.85 0.69 0.88 0.75

gru 0.001 64 0.35 0.2 3663 0.98 0.37 0.85 0.69 0.88 0.73

4 Conclusions

In this paper, we present the use of Gated RNN based in LSTM and GRU layers
as a method implementable in wearable devices with accelerometer to detect
falls in real-time. After a study of 16 architectures, the best results in terms of
computational complexity and classification are formed by a batch normalization
layer receiving the input, a RNN layer and a dense end layer for the classification
of the event. FALL and BKG classes are well classified, with F1-scores above 0.98
and 0.85 respectively. Mean F1-score obtained was 0.75 and 0.73 for LSTM and
GRU versions, respectively. In future studies the authors will implement this
model in a hardware device suitable for use as a wearable FDS.
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