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Abstract. In this paper we continue the description of solvable Leibniz algebras whose nilradical
is a filiform algebra. In fact, solvable Leibniz algebras whose nilradical is a naturally graded filiform
Leibniz algebra are described in [6] and [8]. Here we extend the description to solvable Leibniz algebras
whose nilradical is a filiform algebra. We establish that solvable Leibniz algebras with filiform Lie
nilradical are Lie algebras.
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1. Introduction

Leibniz algebras were introduced by Loday [12] as a non-skew symmetric version of Lie algebras.
These algebras generalize Lie algebras in natural way. The theory of Leibniz algebras has been actively
investigated in the last two decades. Many results of the theory of Lie algebras have been extended to
Leibniz algebras. For instance, the classical results on Cartan subalgebras [17], Levi’s decomposition
[5], the properties of solvable algebras with given nilradical [7] and other from the theory of Lie algebras
are also true for Leibniz algebras [3, 4, 19].

As far as physical applications are concerned, we note that solvable Lie algebras often occur as Lie
algebras of symmetry groups of differential equations [16]. Group invariant solutions can be obtained
by symmetry reduction, using the subalgebras of the symmetry algebra [22]. In this procedure an
important step is to identify the symmetry algebra and its subalgebras as abstract Lie algebras. A
detailed identification presupposes the existence of a classification of Lie algebras into isomorphism
classes.

In this paper we continue the description of solvable algebras with a given nilradical. The first work
was devoted to the description of such Lie algebras under some condition (see [13]) the complemented
space to nilradical forms abelian subalgebra, consisting of semisimple elements of the algebra. However,
the structure of nilradical depends on this subalgebra. Later, Mubarakzjanov G.M. proposed the
description of solvable Lie algebras with a given structure of nilradical [14] by means of outer derivations
of the nilradical. Papers [1, 2, 6, 15, 20, 21] were devoted to the application of Mubarakzjanov’s
method for solvable Lie algebras with different kinds of nilradicals. Some results of the Lie algebra
theory generalized to Leibniz algebras in [3] allow us to apply the Mubarakzjanov’s method to the case
of Leibniz algebras. In this direction papers [7] and [8] deal with the description of solvable Leibniz
algebras with null-filiform and naturally graded filiform nilradicals, respectively.

The aim of the present paper is to classify solvable Leibniz algebras with filiform nilradical. Thanks
to papers [10] and [11], we already have the classification of filiform Leibniz algebras. It should be
noted that the description of Lie algebras with filiform nilradicals obtained in this work is a new result
for Lie algebras, as well.

In section 2 the necessary definitions and results for understanding the main parts of the paper
are given. In section 3 the classification of solvable Leibniz algebras with filiform non-Lie Leibniz
nilradicals is obtained. The last section deals with the description of solvable Leibniz algebras with
filiform Lie nilradical.

Throughout the paper we consider finite-dimensional vector spaces and algebras over the field of the
complex numbers. Moreover, in the multiplication table of an algebra omitted products are assumed
to be zero and if it is not noted, we shall consider non-nilpotent solvable algebras.

2. Preliminaries

In this section we give the necessary definitions and preliminary results on outer derivations of
nilradicals of Leibniz algebras and the descriptions of filiform Leibniz algebras.
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Definition 2.1. An algebra (L, [−,−]) over a field F is called a Leibniz algebra if for any x, y, z ∈ L,
the so-called Leibniz identity

[
[x, y], z

]
=

[
[x, z], y

]
+
[
x, [y, z]

]

holds.

From the Leibniz identity we conclude that for any x, y ∈ L the elements [x, x] and [x, y] + [y, x] lie
in the right annihilator of the algebra L (denoted by Annr(L) = {x ∈ L : [y, x] = 0, for all y ∈ L}).

Definition 2.2. A linear map d : L → L of a Leibniz algebra L is said to be a derivation if for any
x, y ∈ L, the following condition holds:

d([x, y]) = [d(x), y] + [x, d(y)].

For a given element x of a Leibniz algebra L the operator of right multiplication Rx : L → L, defined
as Rx(y) = [y, x] for y ∈ L, is a derivation. This kind of derivations are called inner derivations.

Any Leibniz algebra L is associated with the algebra of right multiplications R(L) = {Rx| x ∈ L},
which endowed with a structure of Lie algebra by means of the bracket [Rx, Ry] = RxRy −RyRx. The
equality [Rx, Ry] = R[y,x] holds true because of Leibniz identity and an antisymmetric isomorphism
between R(L) and the quotient algebra L/Annr(L) is established.

Definition 2.3. [14] Let d1, d2, . . . , dn be derivations of a Leibniz algebra L. The derivations d1, d2,
. . . , dn are said to be nil-independent if

α1d1 + α2d2 + · · ·+ αndn

is not nilpotent for any scalars α1, α2, . . . , αn ∈ F.
In other words, if for any α1, α2, . . . , αn ∈ F there exists a natural number k such that (α1d1 +

α2d2 + · · ·+ αndn)
k = 0, then α1 = α2 = · · · = αn = 0.

For a Leibniz algebra L, the sequences of two-sided ideals defined recursively as follows:

L1 = L, Lk+1 = [Lk, L1], k ≥ 1, L[1] = L, L[s+1] = [L[s], L[s]], s ≥ 1

are said to be the lower central and the derived series of L, respectively.

Definition 2.4. A Leibniz algebra L is called nilpotent (respectively, solvable) if there exists m ∈ N

(t ∈ N) such that Lm−1 6= 0 and Lm = 0 (respectively, L[t−1] 6= 0 and L[t] = 0). The minimal number
m (respectively, t) with such property is said to be the index of nilpotency (respectively, solvability) of
the algebra L.

Evidently, the index of nilpotency of an n-dimensional algebra is not greater than n+ 1.
Since the sum of two nilpotent ideals is nilpotent ideal, we can consider the maximal nilpotent ideal

of a Leibniz algebra. The maximal nilpotent ideal is called nilradical. Notice that the nilradical is not
the radical in the sense of Kurosh, because the quotient Leibniz algebra by its nilradical may contain
a nilpotent ideal (see [9]).

Definition 2.5. An n-dimensional Leibniz algebra L is said to be filiform if dimLi = n − i for
2 ≤ i ≤ n.

Let R be a solvable Leibniz algebra. Then it can be decomposed in the form R = N⊕Q, where N is
the nilradical and Q is the complementary vector space. Since the square of a solvable Leibniz algebra
is contained into nilradical [3], we get the nilpotency of the ideal R2 and consequently, Q2 ⊆ N.

Theorem 2.6. [7] Let R be a solvable Leibniz algebra and N be its nilradical. Then the dimension
of the complementary vector space to N is not greater than the maximal number of nil-independent
derivations of N.

A nilpotent Leibniz algebra is called characteristically nilpotent if all its derivations are nilpotent.
If the nilradical N of a Leibniz algebra is a characteristically nilpotent then, according to Theorem
2.6, a solvable Leibniz algebra is nilpotent. Therefore, we shall consider solvable Leibniz algebras with
non-characteristically nilpotent filiform nilradicals. The paper is divided into two parts, the former
deals with non-characteristically nilpotent filiform non-Lie Leibniz nilradicals and the latter one we
describe solvable Leibniz algebras with non-characteristically nilpotent filiform Lie nilradicals.
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Theorem 2.7. [10] Let g be an (n+1)-dimensional non-characteristically nilpotent filiform Lie algebra.
Then, it is isomorphic to one of the following non-isomorphic algebras:

Ln : Qn, n− odd :

{
[e0, ei] = ei+1, 1 ≤ i ≤ n− 1;

{
[e0, ei] = ei+1, 1 ≤ i ≤ n− 2,
[ei, en−i] = (−1)ien, 1 ≤ i ≤ n− 1;

Ar
n+1(α1, . . . , αt), 1 ≤ r ≤ n− 3, t = ⌊n−r−1

2 ⌋ :

[e0, ei] = ei+1, 1 ≤ i ≤ n− 1,

[ei, ej ] =

(
t∑

k=i

(−1)k−iαk

(
j − k − 1
k − i

))

ei+j+r , 1 ≤ i < j ≤ n− 2, i+ j + r ≤ n;

Br
n+1(α1, . . . , αt), 1 ≤ r ≤ n− 3, t = ⌊n−r−2

2 ⌋, n− odd :

[e0, ei] = ei+1, 1 ≤ i ≤ n− 2,
[ei, en−i] = (−1)ien, 1 ≤ i ≤ n− 1,

[ei, ej ] =

(
t∑

k=i

(−1)k−iαk

(
j − k − 1
k − i

))

ei+j+r , 1 ≤ i, j ≤ n− 1, i + j + r ≤ n− 1,

where the parameters (α1, . . . , αt) satisfy the polynomial relations emanating from the Jacobi identity
and at least one parameter αi 6= 0.

In the following theorem, all (n + 1)-dimensional filiform Leibniz algebras decomposes into three
families of algebras.

Theorem 2.8. [18] Any complex (n + 1)-dimensional filiform Leibniz algebra admits a basis
{e0, e1, . . . , en} such that the table of multiplication of the algebra has one of the following forms:

F1(α3, α4, . . . , αn, θ) :







[e0, e0] = e2,
[ei, e0] = ei+1, 1 ≤ i ≤ n− 1,

[e0, e1] =

n−1∑

k=3

αkek + θen,

[ei, e1] =
n∑

k=i+2

αk+1−iek, 1 ≤ i ≤ n− 2;

F2(β3, β4, . . . , βn, γ) :







[e0, e0] = e2,
[ei, e0] = ei+1, 2 ≤ i ≤ n− 1,

[e0, e1] =

n∑

k=3

βkek,

[ei, e1] =

n∑

k=i+2

βk+1−iek, 2 ≤ i ≤ n− 2;

F3(θ1, θ2, θ3) :







[ei, e0] = ei+1, 1 ≤ i ≤ n− 1,
[e0, ei] = −ei+1, 2 ≤ i ≤ n− 1,
[e0, e0] = θ1en,
[e0, e1] = −e2 + θ2en,
[e1, e1] = θ3en,
[ei, ej] = −[ej , ei] ∈ lin < ei+j+1, ei+j+2, . . . , en >, 1 ≤ i ≤ n− 2,

2 ≤ j ≤ n− i,
[ei, en−i] = −[en−i, ei] = α(−1)ien, 1 ≤ i ≤ n− 1,

where α ∈ {0, 1} for odd n and α = 0 for even n. Moreover, the structure constants of an algebra from
F3(θ1, θ2, θ3) should satisfy the Leibniz identity.

It is easy to see that algebras of the first and the second families are non-Lie algebras. Moreover, a
Leibniz algebra of the third family is a Lie algebra if and only if (θ1, θ2, θ3) = (0, 0, 0).

From the list of Theorem 2.8 we only indicate non-characteristically nilpotent filiform non-Lie Leib-
niz algebras.
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Theorem 2.9. [11] An arbitrary non-characteristically nilpotent filiform non-Lie Leibniz algebra is
isomorphic to one of the following non-isomorphic algebras:

• F1(0, 0, . . . , 0, 1) and F s
1 (α3, α4, . . . , αn−1, αn, αn), 3 ≤ s ≤ n, where

αk =

{

0, k 6≡ s mod (s-2)

(−1)tCs−1
t+1 , k ≡ s mod (s-2)

and t =
k − s

s− 2
, 3 ≤ k ≤ n and Cp

n is the p-th

Catalan number,

• X for even n:
F2(0, 0, . . . , 0, 0, 1) and F j

2 (0, 0, . . . , 0, 1
︸︷︷︸

j

, 0, . . . , 0, 0, 0) with n ≥ 4 and 3 ≤ j ≤ n,

X for odd n:
F 1
2 (0, 0, . . . , 0, βn+2

2

, 0, . . . , 0, 0, 1) and F j
2 (0, 0, . . . , 0, 1

︸︷︷︸

j

, 0, . . . , 0, 0, 0) with n ≥ 4 and

3 ≤ j ≤ n,

• F3(1, 0, 0), F3(0, 1, 0), F3(0, 0, 1).

3. Solvable Leibniz algebras with filiform non-Lie Leibniz nilradical

In this section we investigate solvable Leibniz algebras whose nilradical is one from the list of
Theorem 2.9. In order to demonstrate the considering cases for three families of Theorem 2.8, we
divide this section into three subsections.

3.1. Solvable Leibniz algebras with nilradical a non-characteristically nilpotent algebra of

the family F1(α3, α4, . . . , αn, θ).

It follows the matrix form of any derivation of an algebra of the family F1(α3, α4, . . . , αn, θ).

Proposition 3.1. [11] Any derivation of a filiform Leibniz algebras from the family F1(α3, α4, . . . , αn, θ)
has the following matrix form:















a0 a1 a2 a3 . . . an−2 an−1 an
0 a0 + a1 a2 a3 . . . an−2 bn−1 bn
0 0 2a0 + a1 a2 + a1α3 . . . an−3 + a1αn−2 an−2 + a1αn−1 an−1 + a1αn

0 0 0 3a0 + a1 . . . an−4 + 2a1αn−2 an−3 + 2a1αn−1 an−2 + 2a1αn−1

...
...

...
...

. . .
...

...
...

0 0 0 0 . . . (n− 2)a0 + a1 a2 + (n− 3)a1α3 a3 + (n− 3)a1α4

0 0 0 0 . . . 0 (n− 1)a0 + a1 a2 + (n− 2)a1α3

0 0 0 0 . . . 0 0 na0 + a1
















,

where

a0(θ − αn) = 0, a1(αn − θ) = an−1 − bn−1, α3(a1 − a0) = 0,

αk(a1 − (k − 2)a0) =
k

2
a1

k∑

j=4

αj−1αk−j+3, 4 ≤ k ≤ n.

Case F1(0, 0, . . . , 0, 1).

From Proposition 3.1 we conclude that the number of nil-independent outer derivations of algebra
F1(0, 0, . . . , 0, 1) is equal to one. Thus, we have that any solvable Leibniz algebra whose nilradical is
F1(0, 0, . . . , 0, 1) has dimension n+ 2.

Proposition 3.2. There are not any (n + 2)-dimensional solvable Leibniz algebras with nilradical
F1(0, 0, . . . , 0, 1).

Proof. Let L be a solvable Leibniz algebra satisfying the condition of the proposition. We complement
the basis {e0, e1, . . . , en} of nilradical F1(0, 0, . . . , 0, 1) by a basis element x of Q.
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From the table of multiplication of F1(0, 0, . . . , 0, 1) we conclude that < e2, e3, . . . , en >⊆ Annr(L).
Using Proposition 3.1, we derive the following products in the algebra L :

[e0, e0] = e2,
[ei, e0] = ei+1, 1 ≤ i ≤ n− 1,
[e0, e1] = en,

[e0, x] =

n∑

i=1

aiei, [x, e0] =

n∑

i=0

βiei,

[e1, x] =
n−2∑

i=1

aiei + (an−1 + a1)en−1 + bnen, [x, e1] =
n∑

i=0

γiei

[ei, x] =

n∑

k=i

ak−i+1ek, 2 ≤ i ≤ n, [x, x] =

n∑

i=0

δiei.

Taking the change as follows:

x′ = x−

n−1∑

i=2

βi+1ei,

we can assume [x, e0] = β0e0 + β1e1 + β2e2.
The equalities

0 = [e0, [e0, x] + [x, e0]] = [e0, [x, x]] = [e0, [e1, x] + [x, e1]]

imply

β0 = 0, β1 = −a1, δ0 = δ1 = 0, γ0 = γ1 = 0.

Considering

0 = [x, e2] = −a1e2 +
n∑

i=3

γiei,

we obtain a1 = 0. If we substitute a1 = 0 in the relations of Proposition 3.1, we have a0 = 0.
Consequently, the restriction of the operator Rx to nilradical F1(0, 0, . . . , 0, 1) is a nilpotent derivation.
Therefore, we get a contradiction with the existence of any solvable Leibniz algebra with nilradical
F1(0, 0, . . . , 0, 1). �

Case F s
1 (α3, α4, . . . , αn−1, αn, αn).

Let us fix the first non zero parameter αs 6= 0 of the algebra F s
1 (α3, α4, . . . , αn−1, αn, αn). Then,

from the relations of Proposition 3.1, we deduce a1 = (s − 2)a0 and bn−1 = an−1. Therefore, the
number of nil-independent outer derivations of nilradical F s

1 (α3, α4, . . . , αn−1, αn, αn) is equal to one.

Proposition 3.3. There are not any (n + 2)-dimensional solvable Leibniz algebras with nilradical
F s
1 (α3, α4, . . . , αn−1, αn, αn).

Proof. Let L be a solvable Leibniz algebra with nilradical F s
1 (α3, α4, . . . , αn−1, αn, αn). Since in the

general form of a non-nilpotent derivation of nilradical F s
1 (α3, α4, . . . , αn−1, αn, αn) the parameter

a0 6= 0 (otherwise due to equality a1 = (s− 2)a0 a derivation is nilpotent), without loss of generality,
one can assume a0 = 1.

Since for a basis element of the space Q the general form of the derivation Rx is presented in
Proposition 3.1, we have the following multiplications:

[e0, e0] = e2, [ei, e0] = ei+1, 1 ≤ i ≤ n− 1,

[e0, e1] =

n∑

k=3

αkek, [ei, e1] =

n∑

k=i+2

αk+1−iek, 1 ≤ i ≤ n− 2,

[e0, x] = e0 + (s− 2)e1 +

n∑

i=2

aiei, [x, e0] =

n∑

i=0

βiei,

[e1, x] = (s− 1)e1 +

n−1∑

i=2

aiei + bnen, [x, e1] =

n∑

i=0

γiei,
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[ei, x] = (s− 2 + i)ei +

n∑

j=i+1

(aj+1−i + (i− 1)(s− 2)αj−i+2)ej , 2 ≤ i ≤ n,

[x, x] =

n∑

i=0

δiei.

Evidently, < e2, e3, . . . , en >⊆ Annr(L), consequently, [x, ei] = 0 with 2 ≤ i ≤ n.
The equality [e0, [x, x]] = 0 implies δ0 = δ1 = 0.
Making the following change of basis:

x′ = x−

n−1∑

i=2

βi+1ei

we obtain

[x′, e0] = β0e0 + β1e1 + β2e2, [e0, x
′] = [e0, x] = e0 + (s− 2)e1 +

n∑

i=2

aiei,

[e1, x
′] = [e1, x] = (s− 1)e1 +

n−1∑

i=2

aiei + bnen, [x′, e1] =

n∑

i=0

γ′

iei,

[x′, x′] =

n∑

i=0

δ′iei.

From the equalities

[e0, [e0, x] + [x, e0]] = [e0, [e1, x] + [x, e1]] = 0

we conclude

β0 = −1, β1 = −s+ 2, γ0 = 0, γ1 = −(s− 1).

A contradiction obtained from 0 = [x, e2] = [x, [e1, e0]] = −(s−1)e2+

n∑

k=3

∆kek with s ≥ 3 completes

the proof of the proposition. �

3.2. Solvable Leibniz algebras with nilradical a non-characteristically nilpotent algebra of

the family F2(β3, β4, . . . , βn, γ).

In this subsection we consider the family of algebras F2(β3, β4, . . . , βn, γ). Similar to the above
subsection, firstly we describe the derivations of such algebras.

Proposition 3.4. [11] Any derivation of a filiform Leibniz algebra of the family F2(β3, β4, . . . , βn, γ)
has the following matrix form:
















a0 a1 a2 a3 . . . an−2 an−1 an
0 b1 0 0 . . . 0 −a1γ bn
0 0 2a0 a2 + a1β3 . . . an−3 + a1βn−2 an−2 + a1βn−1 an−1 + a1βn

0 0 0 3a0 . . . an−4 + 2a1βn−3 an−3 + 2a1βn−2 an−2 + 2a1βn−1

...
...

...
...

. . .
...

...
...

0 0 0 0 . . . (n− 2)a0 a2 + (n− 3)a1β3 a3 + (n− 3)a1β4

0 0 0 0 . . . 0 (n− 1)a0 a2 + (n− 2)a1β3

0 0 0 0 . . . 0 0 na0
















,

where

γ(2b1 − na0) = 0, β3(b1 − 2a0) = 0,

βk(b1 − (k − 1)a0) = k
2a1

k∑

j=4

βj−1βk−j+3, 4 ≤ k ≤ n− 1,

βn(b1 − (n− 1)a0) = −a1γ + n
2 a1

n∑

j=4

βj−1βn−j+3.
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Case F2(0, 0, . . . , 0, 0, 1) and n-odd.

From the relations of Proposition 3.4, it follows b1 =
n

2
a0 and a1 = 0. Therefore, the number

of nil-independent outer derivations of the algebra F2(0, 0, . . . , 0, 0, 1) is equal to one. According to
Theorem 2.6, we conclude that any solvable Leibniz algebra whose nilradical is F2(0, 0, . . . , 0, 0, 1) has
dimension n+ 2.

Theorem 3.5. Any solvable (n + 2)-dimensional (the case of odd n) Leibniz algebra with nilradical
F2(0, 0, . . . , 0, 0, 1) is isomorphic to the following algebra:

L1 :

{
[e0, e0] = e2, [e1, e1] = en, [e0, x] = e0,

[ei, e0] = ei+1, 2 ≤ i ≤ n− 1, [x, e1] = −
n

2
e1, [e1, x] =

n

2
e1.

Proof. Using Proposition 3.4, we have the products:

[e0, e0] = e2, [e1, e1] = en, [e0, x] = a0e0 +

n∑

i=2

aiei,

[ei, e0] = ei+1, 2 ≤ i ≤ n− 1, [x, e1] =

n∑

i=0

γiei, [e1, x] =
n
2 a0e1 + bnen,

[x, e0] =

n∑

i=0

µiei, [ei, x] = iei +

n∑

j=i+1

aj+1−iej, 2 ≤ i ≤ n,

[x, x] =

n∑

i=0

δiei.

Without loss of generality we can suppose a0 = 1. It is easy to see that < e2, e3, . . . , en >⊆ Annr(L).
Hence, [x, ei] = 0 for 2 ≤ i ≤ n.

Let us take the following transformation of basis:

e′0 = e0 +

n∑

i=2

Aiei, e′1 = e1, e′i = ei +

n∑

k=i+1

Ak−i+1ek, 2 ≤ i ≤ n, x′ = x

with A2 = −a2, Ai =
1

1− i



ai +
i−1∑

j=2

Ajai−j+1



 , 3 ≤ i ≤ n. Then we obtain

[x′, e′0] = [x, e0] =

n∑

i=0

µiei,

[e′0, x
′] = e0 +

n∑

i=2

aiei +
n∑

i=2

Ai



iei +
n∑

j=i+1

aj+1−iej



 = e0 +
n∑

i=2

aiei +A2(2e2 +
n∑

j=3

aj−1ej)+

A3(3e3 +

n∑

j=4

aj−2ej) + · · ·+An−2((n− 2)en−2 +

n∑

j=n−1

aj−n+3ej) +An−1((n− 1)en−1 + a2en)+

+An(nen) = e0 + (a2 + 2A2)e2 +
n∑

i=3

(iAi + ai +
i−1∑

j=2

Ajai−j+1)ei = e0 +
n∑

i=2

Aiei = e′0.

Thus, we can assume ai = 0 for 2 ≤ i ≤ n.

Now, making the change x′ = x−
n−1∑

i=2

µi+1ei we obtain the family:

[e0, e0] = e2, [e1, e1] = en, [e0, x] = e0,

[ei, e0] = ei+1, 2 ≤ i ≤ n− 1, [x, e1] =

n∑

i=0

γiei, [e1, x] =
n
2 e1 + bnen,

[x, e0] = µ0e0 + µ1e1 + µ2e2, [ei, x] = iei, 2 ≤ i ≤ n,

[x, x] =

n∑

i=0

δiei.
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By setting e′1 = e1 −
2
n
bnen we get b′n = 0.

The equalities

0 = [e0, [x, x]] = [e1, [x, x]] = [e0, [e0, x] + [x, e0]] = [e1, [e0, x] + [x, e0]] = [e1, [e1, x] + [x, e1]]

derive

δ0 = δ1 = µ1 = γ0 = 0, µ0 = −1, γ1 = −
n

2
.

Applying Leibniz identity for the triples {x, e0, e1}, {x, x, e0} and {x, x, e1}, we conclude

γi = 0, 2 ≤ i ≤ n, δi = 0, 2 ≤ i ≤ n− 1, µ2 = 0.

Finally, putting x′ = x−
δn
n
en, we obtain the family of algebras L1. �

Case F2(0, 0, . . . , 0, βn+2

2

, 0, . . . , 0, 0, 1) and n-even.

Similarly, we get a0 = 1, b1 = n
2 , a1 = 0 and that any solvable Leibniz algebra whose nilradical is

F 1
2 (0, 0, . . . , 0, βn+2

2

, 0, . . . , 0, 0, 1) has dimension n+ 2.

Theorem 3.6. Any solvable Leibniz algebra with nilradical F 1
2 (0, 0, . . . , 0, βn+2

2

, 0, . . . , 0, 0, 1) (the case

of even n) is isomorphic to an algebra of the following family of algebras:

L
βn+2

2

2 :







[e0, e0] = e2, [e0, e1] = βn+2

2

en+2

2

, [e0, x] = e0,

[ei, e0] = ei+1, 2 ≤ i ≤ n− 1, [e1, e1] = en, [e1, x] =
n

2
e1,

[x, e0] = −e0, [ei, e1] = βn+2

2

en+2i

2

, 2 ≤ i ≤ n

2
, [ei, x] = iei, 2 ≤ i ≤ n.

[x, e1] = −
n

2
e1 − βn+2

2

en

2
,

Proof. Using the previous arguments and Proposition 3.4, we obtain the multiplications:

[e0, e0] = e2, [e0, e1] = βn+2

2

en+2

2

, [e0, x] = e0 +

n
∑

i=2

aiei,

[ei, e0] = ei+1, 2 ≤ i ≤ n− 1, [e1, e1] = en, [e1, x] =
n

2
e1 + bnen,

[x, e0] =

n
∑

i=0

µiei, [ei, e1] = βn+2

2

en+2i

2

, 2 ≤ i ≤ n

2
, [ei, x] = iei +

n
∑

j=i+1

aj+1−iej , 2 ≤ i ≤ n,

[x, e1] =
n
∑

i=0

γiei, [x, x] =
n
∑

i=0

δiei.

Taking the following transformation of basis:

e′0 = e0 +
n∑

i=2

Aiei, e′1 = e1, e′i = ei +
n∑

k=i+1

Ak−i+1ek, 2 ≤ i ≤ n, x′ = x

with

A2 = −a2, Ai =
1

1− i



ai +

i−1∑

j=2

Ajai−j+1



 , 3 ≤ i ≤ n,

we can assume that ai = 0 for 2 ≤ i ≤ n.
By setting

x′ = x−
n−1∑

i=2

µi+1ei, e′1 = e1 −
2

n
bnen

we reduce the above multiplication to the following one:

[e0, e0] = e2, [e0, e1] = βn+2

2

en+2

2

, [e0, x] = e0,

[ei, e0] = ei+1, 2 ≤ i ≤ n− 1, [e1, e1] = en, [e1, x] =
n
2
e1,

[x, e0] = µ0e0 + µ1e1 + µ2e2, [ei, e1] = βn+2

2

en+2i

2

, 2 ≤ i ≤ n

2
, [ei, x] = iei, 2 ≤ i ≤ n,

[x, e1] =
n
∑

i=0

γiei, [x, x] =
n
∑

i=0

δiei.

From the equalities

[e1, [x, x]] = [e0, [x, x]] = [e1, [e0, x] + [x, e0]] = [e0, [e0, x] + [x, e0]] =

= [e1, [e1, x] + [x, e1]] = [e0, [e1, x] + [x, e1]] = 0
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we derive
δ1 = δ0 = µ1 = γ0 = 0, µ0 = −1, γ1 = −

n

2
Applying the Leibniz identity for the triples {x, e0, x}, {x, e0, e1} and {x, x, e1}, we obtain µ2 = 0,

δi = 0 with 2 ≤ i ≤ n− 1, γi = 0 with 2 ≤ i ≤ n− 1, i 6= n
2 and γn

2
= −βn+2

2

.

The following change: x′ = x− δn
n
en deduce δ′n = 0. �

Case F j
2 (0, 0, . . . , 0, 1

︸︷︷︸

j

, 0, . . . , 0, 0, 0), n ≥ 4 and 3 ≤ j ≤ n.

Let us fix values j and j0, 3 ≤ j, j0 ≤ n such that βj0 is the first non zero parameter. Similar to the
above cases and using Proposition 3.4, we derive

d(e0) =
n∑

i=0

aiei, d(e1) = b1e1 + bnen

and using the restrictions on derivations we have:

β2j0−2(b1 − (2j0 − 3)a0) = 0 =
2j0 − 2

2
a1(β

2
j0
) ⇒ a1 = 0,

2j0 − 2 ≤ n ⇒ j0 ≤ ⌊
n+ 2

2
⌋

and b1 = (j − 1)a0.
Thus,

{
a1 = 0 if 3 ≤ j ≤ ⌊n+2

2 ⌋
a1 in other case

Similar to the previous cases, we can suppose a0 = 1 and b1 = (j0 − 1). Therefore, the number of

nil-independent outer derivations of the algebras F j0
2 (0, 0, . . . , 0, 1

︸︷︷︸

j0

, 0, . . . , 0, 0, 0) is equal to one. We

use F j0
2 to denote F j0

2 (0, 0, . . . , 0, 1
︸︷︷︸

j0

, 0, . . . , 0, 0, 0).

Theorem 3.7. Any solvable (n+ 2)-dimensional Leibniz algebra with nilradical F j0
2 with 3 ≤ j0 ≤ n

is isomorphic to the following algebra:

Lj0
3 :







[e0, e0] = e2, [e0, e1] = ej0 , [e0, x] = e0,

[ei, e0] = ei+1, 2 ≤ i ≤ n− 1, [ei, e1] = ej0+i−1, 2 ≤ i ≤ n− 1− j0, [e1, x] = (j0 − 1)e1,

[x, e0] = −e0, [x, e1] = −(j0 − 1)e1 − ej0−1, [ei, x] = iei, 2 ≤ i ≤ n.

Proof. The proof is carried out by applying arguments used in Theorems 3.5 and 3.6. �

3.3. Solvable Leibniz algebras with nilradical a non-characteristically nilpotent algebra of

the family F3(θ1, θ2, θ3).

Let L be a filiform Leibniz algebra from the family F3(θ1, θ2, θ3) and let {e0, e1, . . . , en} be a basis.
The following proposition describes the derivations of such algebras.

Proposition 3.8. [11] A derivation d of a filiform Leibniz algebra of the family F3(θ1, θ2, θ3) have the
following form:

d(e0) =
n∑

i=0

aiei, d(e1) =
n∑

i=1

biei,

d(ei) = ((i− 1)a0 + b1)ei +
n−1∑

j=i+1

bj−i+1ej + (bn−i+1 + (−1)i−1αan−i+1)en,

d(en) = ((n− 1)a0 + b1 + αa1)en

with the following restrictions:
θ1((n− 3)a0 + b1) = a1θ2,
2a1θ3 = (n− 2)a0θ2,
θ3((n− 1)a0 − b1) = 0.
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We consider the case of solvable Leibniz algebras with non-Lie filiform nilradical of the family
F3(θ1, θ2, θ3) bellow.

Theorem 3.9. There is not any solvable Leibniz algebra whose nilradical is a non-characteristically
filiform non-Lie algebra of the family F3(θ1, θ2, θ3).

Proof. Let us consider firstly the Case F 1
3 (1, 0, 0). Proposition 3.8 leads to b1 = (3−n)a0 and we can

suppose a0 = 1 making the change x′ = 1
a0
x. Thus, we have the following products:

[ei, e0] = −[e0, ei] = ei+1, 1 ≤ i ≤ n− 1,
[e0, e0] = en,
[ei, en−i] = −[en−i, ei] = (−1)iαen, 1 ≤ i ≤ n− 1,

[e0, x] = e0 +
n∑

i=1

aiei,

[e1, x] = (3− n)e1 +
n∑

i=2

biei,

[ei, x] = ((i − 1) + b1)ei +
n−1∑

j=i+1

bj−i+1ej + (bn−i+1 + (−1)i−1αan−i+1)en,

[en, x] = ((n− 1) + b1 + αa1)en,

[x, e0] =
n∑

i=0

βiei,

[x, e1] =
n∑

i=0

γiei,

[x, x] =
n∑

i=0

δiei.

It is easy to check that by the change x′ = x+
n−1∑

i=1

ai+1ei we can suppose ai = 0 with 2 ≤ i ≤ n.

Applying the Leibniz identity for the elements {e2, en−2, x} and {e0, e0, x}, we get a contradiction
with α = 1. Thus, α = 0.

Taking the following basis transformation:

e′0 = e0 +
a1

n− 2
e1, e′i = ei, 1 ≤ i ≤ n, x′ = x+

a1
n− 2

n−1∑

i=1

bi+1ei,

we can suppose a1 = 0.
Putting

e′0 = e0, e′i = ei +
n∑

j=i+1

Aj−i+1ej , 1 ≤ i ≤ n,

with

A2 = −b2, Ai =
1

1− i
(bi +

i−1∑

j=2

Ajbi−j+1), 3 ≤ i ≤ n,

one can assume bi = 0 for 2 ≤ i ≤ n.
Let us resume the products of the family

[ei, e0] = −[e0, ei] = ei+1, 1 ≤ i ≤ n− 1,
[e0, e0] = en,

[e0, x] = e0, [x, e0] =
n∑

i=0

βiei,

[ei, x] = (i− n+ 2)ei, 1 ≤ i ≤ n, [x, e1] =
n∑

i=0

γiei,

[x, x] =
n∑

i=0

δiei.

Considering Leibniz identity for the elements of the form

{e0, x, e0}, {e0, x, e1}, {e1, x, e1}, {e1, x, e0},

we obtain that

β0 = −1, βi = 0, 1 ≤ i ≤ n− 2, γ0 = 0, γ1 = n− 3, γi = 0, 2 ≤ i ≤ n− 1.

Using the induction method, we get [x, ei] = −(i− n+ 2)ei, with 2 ≤ i ≤ n.
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From the equality 0 = [x, [e0, e0]], we have [x, en] = 0, but this is a contradiction, because [x, en] =
−2en. Therefore, there are not any solvable Leibniz algebras with F 1

3 (1, 0, 0)-nilradical.

Similar study of Case F 2
3 (0, 1, 0) and Case F 2

3 (0, 0, 1) leads to non-existence of solvable Leibniz
algebras with nilradicals F 2

3 (0, 1, 0) and F 2
3 (0, 0, 1). �

4. Solvable Leibniz algebras with filiform Lie nilradical

In this section we study solvable Leibniz algebras whose nilradical is a filiform Lie algebra. Since
we consider non-nilpotent solvable Leibniz algebras, it is sufficient to consider non-characteristically
nilpotent filiform Lie nilradicals. In this section we restrict ourselves to the study of the families
Ar

n+1(α1, . . . , αt), B
r
n+1(α1, . . . , αt) of Theorem 2.7, because the other two algebras of Theorem 2.7

have been already studied in [8].

Case Ar
n+1(α1, . . . , αt) with 1 ≤ r ≤ n− 3 and t = ⌊n−r−1

2 ⌋.

Below we present some description of the derivations of the family of algebras Ar
n+1(α1, . . . , αt).

Proposition 4.1. Any derivation of a filiform Lie algebra of the family Ar
n+1(α1, . . . , αt) with 1 ≤

r ≤ n− 3 and t = ⌊n−r−1
2 ⌋ has the form:

d(e0) =
n∑

i=0

aiei,

d(e1) = (1 + r)a0e1 +
n∑

i=2

biei,

d(ei) = (i+ r)a0ei +
n∑

j=i+1

(∗)ej , 2 ≤ i ≤ n,

where {e0, e1, . . . , en} is a basis of the family Ar
n+1.

Proof. Let us denote

d(e0) =
n∑

i=0

aiei, d(e1) =
n∑

i=0

biei.

Using the induction method and the properties of derivation, we establish

d(ei) = ((i − 1)a0 + b1)ei +

n∑

j=i+1

(∗)ej, 2 ≤ i ≤ n.

From the equalities

0 = d([e1, en−1]) = [d(e1), en−1] + [e1, d(en−1)] = b0en

we get b0 = 0.

• If α1 6= 0, then from the equality d([e1, e2]) = d(α1er+3) we have b1 = (r + 1)a0.
• If α1 = 0, then there exists i, 2 ≤ i ≤ t such that αi 6= 0. The equality d([ei, ei+1]) =

d(αie2i+1+r) implies b1 = (r + 1)a0.

Thus, we obtain the form of derivation which is asserted in the proposition. �

From Proposition 4.1, we conclude that the number of nil-independent outer derivations of the
algebra Ar

n+1(α1, . . . , αt) is equal to one. Consequently, according to Theorem 2.6, any solvable Leibniz
algebra whose nilradical is Ar

n+1(α1, . . . , αt) has dimension n+ 2.
In this section we use similar arguments to those from the above section.
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Theorem 4.2. Any solvable Leibniz algebra with nilradical Ar
n+1(α1, . . . , αt) is isomorphic to the

following family of Lie algebras:

[e0, ei] = ei+1, 1 ≤ i ≤ n− 1,

[ei, ej ] =

(

t
∑

k=i

(−1)k−iαk

(

j − k − 1
k − i

))

ei+j+r, 1 ≤ i < j ≤ n− 2, i+ j + r ≤ n,

[e0, x] = e0 + a1e1,

[e1, x] = (1 + r)e1 +
n
∑

i=2

biei,

[e2, x] = (2 + r)e2 +
n
∑

i=3

bi−1ei,

[ei, x] = (i+ r)ei +
i−1+r
∑

j=i+1

bj−i+1ej +

(

b1+r + a1

(

i−1
∑

k=2

(

t
∑

s=1

(−1)s−1αs

(

k − s− 1
s− 1

))))

ei+r+

+
n
∑

j=i+1+r

bj−i+1ej with 3 ≤ i ≤ n− r,

[ei, x] = (i+ r)ei +
n
∑

j=i+1

bj−i+1ej , n− r + 1 ≤ i ≤ n.

Proof. From Proposition 4.1 we have the following products:

[e0, ei] = ei+1, 1 ≤ i ≤ n− 1,

[ei, ej] =

(
t∑

k=i

(−1)k−iαk

(
j − k − 1
k − i

))

ei+j+r , 1 ≤ i < j ≤ n− 2, i+ j + r ≤ n,

[e0, x] =
n∑

i=0

aiei,

[e1, x] = (1 + r)a0e1 +
n∑

i=2

biei,

[ei, x] = (i+ r)a0ei +
n∑

j=i+1

(∗)ej , 2 ≤ i ≤ n.

Since a0 6= 0, by scaling of basis element x, we can suppose a0 = 1. The change x′ = x−

n−1∑

i=1

ai+1ei

admits to suppose ai = 0 for 2 ≤ i ≤ n.
Thus, we have

[e0, ei] = ei+1, 1 ≤ i ≤ n− 1,

[ei, ej] =

(
t∑

k=i

(−1)k−iαk

(
j − k − 1
k − i

))

ei+j+r , 1 ≤ i < j ≤ n− 2, i+ j + r ≤ n,

[e0, x] = e0 + a1e1,

[e1, x] = (1 + r)e1 +
n∑

i=2

biei,

Using Jacobi identity and the induction method, we obtain the expressions of the products [ei, x]
with 2 ≤ i ≤ n, which complete the proof of theorem. �

Proposition 4.3. There are not any solvable non-Lie Leibniz algebras with nilradical Ar
n+1(α1, . . . , αt).

Proof. From Proposition 4.1 and applying similar arguments to the ones used in the proof of Theorem
4.2, we have

[e0, ei] = ei+1, 1 ≤ i ≤ n− 1,

[ei, ej ] =

(

t
∑

k=i

(−1)k−iαk

(

j − k − 1
k − i

))

ei+j+r, 1 ≤ i < j ≤ n− 2, i+ j + r ≤ n,

[e0, x] = e0 + a1e1,

[e1, x] = (1 + r)e1 +
n
∑

i=2

biei,

[e2, x] = (2 + r)e2 +
n
∑

i=3

bi−1ei,

[ei, x] = (i+ r)ei +
i−1+r
∑

j=i+1

bj−i+1ej +

(

b1+r + a1

(

i−1
∑

k=2

(

t
∑

s=1

(−1)s−1αs

(

k − s− 1
s− 1

))))

ei+r+

+
n
∑

j=i+1+r

bj−i+1ej with 3 ≤ i ≤ n− r,

[ei, x] = (i+ r)ei +
n
∑

j=i+1

bj−i+1ej , n− r + 1 ≤ i ≤ n.
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Let us denote

[x, e0] =
n∑

i=0

βiei, [x, e1] =
n∑

i=0

γiei, [x, x] =
n∑

i=0

δiei.

Applying the Leibniz identity for the elements

{e0, x, x}, {e0, x, e0}, {e1, x, e0}

we derive

δi = 0, 0 ≤ i ≤ n− 1, βi = 0, 2 ≤ i ≤ n− 1, β1 = −a1, β0 = −1.

Verifying the Leibniz identity for the products and using the induction method, we compute the
following products:

[x, e2] = −(1− γ1)e2 +
n
∑

i=3

γi−1ei,

[x, ei] = −(i− 1− γ1)ei +
i−1+r
∑

j=i+1

γj−i+1ej +

(

γ1+r + a1

(

i−1
∑

k=2

(

t
∑

s=1

(−1)s−1αs

(

k − s− 1
s− 1

))))

ei+r+

+
n
∑

j=i+1+r

γj−i+1ej , 3 ≤ i ≤ n− r,

[x, ei] = −(i− 1− γ1)ei +
n
∑

j=i+1

γj−i+1ej , n− r + 1 ≤ i ≤ n.

Since [e1, x] + [x, e1] ∈ Annr(L), we get

[en−1, [e1, x] + [x, e1]] = [e0, [e1, x] + [x, e1]] = [x, [e1, x] + [x, e1]] = 0,

from which we obtain

γ0 = 0, γ1 = −1− r, γi = −bi, 2 ≤ i ≤ n− 1, µn = −bn.

Similarly, from [x, [e0, x] + [x, e0]] = 0 we conclude βn = 0.
Considering the equality 0 = [x, [x, x]] we get δn = 0. Thus, we obtain a Lie algebra. �

Case Br
n+1(α1, . . . , αt) with 1 ≤ r ≤ n− 4 and t = ⌊n−r−2

2 ⌋.

The study of this case is similar to previous case.

Proposition 4.4. Any derivation of a filiform Lie algebra of the family Br
n+1(α1, . . . , αt) with 1 ≤

r ≤ n− 4 and t = ⌊n−r−2
2 ⌋ has the form:

d(e0) = a0e0 +
n∑

i=2

aiei,

d(e1) = (1 + r)a0e1 +
n∑

i=2

biei,

d(ei) = (i+ r)a0ei +
n∑

j=i+1

(∗)ej, 2 ≤ i ≤ n− 1,

d(en) = (n+ 2r)a0en,

where {e0, e1, . . . , en} is a basis of the family Br
n+1.

Proof. In an analogous way to the proof of Proposition 4.1. �

From Proposition 4.4 and Theorem 2.6, we conclude that any solvable Leibniz algebra whose nil-
radical is Br

n+1(α1, . . . , αt) has dimension n+ 2.
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Theorem 4.5. Any solvable Leibniz algebra with nilradical Br
n+1(α1, . . . , αt) is isomorphic to an al-

gebra of the following family of Lie algebras:

[e0, ei] = ei+1, 1 ≤ i ≤ n− 2,
[ei, en−i] = (−1)ien, 1 ≤ i ≤ n− 1,

[ei, ej ] =

(
t∑

k=i

(−1)k−iαk

(
j − k − 1
k − i

))

ei+j+r, 1 ≤ i, j ≤ n− 1, i+ j + r ≤ n− 1,

[e0, x] = e0,

[e1, x] = (1 + r)e1 +
n−1∑

i=2

biei,

[ei, x] = (i + r)ei +
n−1∑

j=i+1

bj−i+1ej, 2 ≤ i ≤ n− 1,

[en, x] = (n+ 2r)en.

Proof. The proof is similar to Theorem 4.2. �

Proposition 4.6. There are not any solvable non-Lie Leibniz algebras with nilradical Br
n+1(α1, . . . , αt).

Proof. The proof is similar to Proposition 4.3. �

From Propositions 4.3 and 4.6, we resume that any solvable Leibniz algebra whose nilradical is
either Ar

n+1(α1, . . . , αt) or B
r
n+1(α1, . . . , αt) is Lie algebra.

Conjecture.

(i) By the following transformation basis of an algebra of the family from Theorem 4.2:

e′0 = e0, e′1 = e1 +

n−1∑

i=2

Aiei, e′i = ei +

n∑

j=i+1

Aj−i+1ej, 2 ≤ i ≤ n, (∗)

with

A2 = −b2, Ai =
1

1− i
(bi +

i−1∑

j=2

Ajbi−j+1), 3 ≤ i ≤ n,

we can eliminate the parameters bi = 0 with 2 ≤ i ≤ n

(ii) By the transformation of basis (*) an algebra of the family from Theorem 4.5 with

A2 = −b2, A3 =
b22
2
, A2k =

1

1− 2k
(b2k +

k∑

j=2

A2j−1b2k−2j+2), 2 ≤ k ≤
n− 1

2
,

A2k+1 = −
1

2k
(

k∑

j=1

A2jb2k−2j+2), 2 ≤ k ≤
n− 3

2
,

we can eliminate the parameters bi = 0 with 2 ≤ i ≤ n.

The correctness of Conjecture was checked for fixed low dimensions by program Mathematica.
However, we could not to generalize the calculation for low dimensions for any finite dimension because
the great number of complex calculations needed.
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trivial Levi decomposition cannot have filiform radical, Int. Math. Forum 1 (2006), 309–316.
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[L.M. Camacho] Dpto. Matemática Aplicada I. Universidad de Sevilla. Avda. Reina Mercedes, s/n. 41012
Sevilla. (Spain)

E-mail address: lcamacho@us.es

[B.A. Omirov, K.K. Masutova] Institute of Mathematics (Uzbekistan), 29, F.Hodjaev srt., 100125,
Tashkent (Uzbekistan)

E-mail address: omirovb@mail.ru, kamilyam81@mail.ru


	1. Introduction
	2. Preliminaries
	3. Solvable Leibniz algebras with filiform non-Lie Leibniz nilradical
	3.1. Solvable Leibniz algebras with nilradical a non-characteristically nilpotent algebra of the family F1(3,4,…,n,).
	3.2. Solvable Leibniz algebras with nilradical a non-characteristically nilpotent algebra of the family F2(3,4,…,n,).
	3.3. Solvable Leibniz algebras with nilradical a non-characteristically nilpotent algebra of the family F3(1,2,3).

	4. Solvable Leibniz algebras with filiform Lie nilradical
	 Acknowledgements
	References

