
Finite State Machines With Input Multiplexing: A Performance Study
Ignacio Garcia-Vargas and Raouf Senhadji-Navarro

Abstract—Finite state machines with input multiplexing (FSMIMs)
have been proposed in previous works as a technique for efficient
mapping FSMs into ROM memory. In this paper, we propose a new
architecture for implementing FSMIMs, called FSMIM with state-based
input selection, whose goal is to achieve a further reduction in memory
usage. This paper also describes in detail the algorithms for generat-
ing FSMIMs used by the tool FSMIM-Gen, which has been developed
and made available on the Internet for free public use. A compara-
tive study in terms of speed and area between FSMIM approaches
and other field programmable gate array-based techniques is pre-
sented. The results show that the FSMIM approaches obtain huge
reductions in the look-up table (LUT) usage by using a small num-
ber of embedded memory blocks. In addition, speed improvements
over conventional LUT-based implementations have been obtained in
many cases.

Index Terms—Embedded memory blocks (EMBs), finite state
machine (FSM), field programmable gate array (FPGA), logic
synthesis, ROM.

I. INTRODUCTION

In the last decade, the number of embedded memory
blocks (EMBs) available in field programmable gate arrays (FPGAs)
has increased greatly. The development of efficient techniques for
implementing finite state machines (FSMs) using EMBs is a great
challenge [1]–[6]. The reported advantages of ROM-based FSM
implementations make it an interesting alternative to the conventional
LUT-based implementations. Firstly, the use of EMBs frees look-
up tables (LUTs) that can be used for other general purposes [5].
Secondly, speed improvements have been obtained by the fact
that EMBs have a fixed access memory time independently of its
content [6]. Finally, a considerable power consumption reduction can
be achieved by disabling EMBs during the idle states [4].

Most of the approaches for enhancing the performance of ROM-
based FSM implementations rely on a functional decomposition
of the memory component into two elements: 1) a combinational
address modifier and 2) a smaller memory component [1], [5], [7].
Senhadji-Navarro et al. [8] presented the fundamentals of a new
approach called FSM with input multiplexing (FSMIM) whose
main goal is to reduce the ROM memory depth. This approach
includes optimization techniques and an architecture, hereinafter
called FSMIM with transition-based input selection (FSMIM-T),
which uses a multiplexer bank as address modifier. In [6], signifi-
cant speed improvements and area reductions have been obtained by
FSMIM implementations on FPGAs due to the following two facts:
1) typically, a state transition involves many don’t care inputs [9]
and 2) current FPGAs allow very efficient implementations of wide
multiplexers by using dedicated multiplexers [10].

In this paper, we have made several new contributions with
respect to those presented in [6] and [8]. Firstly, we describe in detail

The authors are with the Departamento de Arquitectura y Tecnología de
Computadores, Universidad de Sevilla, E.T.S. Ingeniería Informática,
Sevilla 41012, Spain (e-mail: raouf@us.es).

the optimization process involved in the FSMIM implementations.
Secondly, we propose a new architecture to implement FSMIMs,
called FSMIM with state-based input selection (FSMIM-S), with the
aim of further reducing the size of the ROM memory. Finally, we
present a comparative study between FSMIM and others techniques.
A tool called FSMIM-Gen for generating FSMIMs from FSMs have
been developed and distributed as open-source [11].

II. CONVENTIONAL ROM-BASED IMPLEMENTATION

The transition and output functions of an FSM can be implemented
using memory [12]. In this paper, we assume Mealy machines with
synchronous outputs because the EMBs available in current FPGAs
are synchronous. Fig. 1(a) shows the reference architecture for ROM-
based implementations of Mealy machines. The ROM stores the FSM
outputs and the next state of each FSM transition. The ROM size in
bits is

CROM = 2m|S|(n + p) ≤ 2m+p(n + p) (1)

where S is the set of states, m is the number of inputs, n is the
number of outputs, and p = ⌈

log2|S|⌉ is the number of state encod-
ing bits. The memory usage grows exponentially with the number
of inputs and the number of state encoding bits [12]. The speed is
degraded due to routing overhead when a large number of EMBs
is required. Moreover, if the memory depth exceeds the maximum
depth of the EMBs, then the speed is further reduced because some
LUTs are used for implementing the multiplexers required to join
the EMBs.

III. FSMIM

The FSMIM approach tries to reduce the depth of the ROM mem-
ory by reducing both the m and |S| values in (1). Let us define the
effective inputs of a state s as the subset of FSM inputs that are
relevant to determine the state transitions of s. For any given state,
the ROM could be addressed using only the effective inputs of the
state instead of all FSM inputs. If the maximum number of effective
inputs per state (denoted by m′) is less than m, then the ROM depth
can be reduced from 2m|S| to 2m′ |S|. For this purpose, a combina-
tional component called input selector bank (ISB) is used to select
the effective inputs of each state. The ISB is composed by m′ ele-
ments called input selectors. For each state, each input selector selects
one different effective input of the state from a subset of the FSM
inputs. The ISB selects m′ inputs no matter how many effective inputs
the present state has. For those states that have less effective inputs
than m′, only part of the selected inputs are effective; the rest are
don’t care values for the state. We will refer to them as don’t care
selected inputs (DCSIs). DCSIs can be exploited to form groups of
states that can be encoded with the same code. So, if all states are
grouped into N groups, then the ROM depth can be reduced to 2m′

N
with N ≤ |S|. This allows to reduce the depth even in FSMs with
states sensitive to all inputs (i.e., m′ = m).

An optimization process is used to transform FSMs into FSMIMs
which can be implemented efficiently using both the FSMIM-S and
FSMIM-T architectures.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/286564287?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Fig. 1. ROM-based FSM architectures. (a) Conventional. (b) FSMIM-T.
(c) FSMIM-S.

(a)

S tate

S 2S 1S 0
S0 000
S1 001
S2 010
S3 011
S4 100
S5 101

(b)

(c)

G roup

G 1G 0
g0 00

g123 01
g45 10

(d)

S 2S 1S 0

G 1G 0
000 00
001 01
010 01
011 01
100 10
101 10
110 --
111 --

(e) (g) (f)

S 2S 1S 0 Output
000 x5
001 x5
010 0
011 1
100 x4
101 x4
110 --
111 --

00

01

10

11

0

1

Fig. 2. Example of FSMIM generation. (a) ISS. (b) State encoding. (c) SG.
(d) Group encoding. (e) Truth table of the GE of FSMIM-S. (f) Truth table of
the second input selector of ASG

3 for FSMIM-S. (g) Second input selector
of ASG

3 for FSMIM-T (R1
2 and R0

2 are selection bits).

A. Optimization Process

Before describing the optimization process, we introduce the input
selection matrix (ISM), which represents the relationship between
states and effective inputs. Each row of the ISM contains the effective
inputs of a state and each column contains the FSM inputs connected
to an input selector. Let S = {s1, s2, . . . , sq} and X = {x1, x2, . . . , xm}
be the sets of states and inputs, respectively. Let us define an ISM
as a matrix A = (

aij
) ∈ Mq×m′ , where aij ∈ X ∪ {0, 1, −} repre-

sents the input selected by the jth input selector for the state si. The
values 0 and 1 indicate that the input selector selects the constant
value 0 and 1, respectively, instead of an FSM input. For clarity,
the ISM matrix includes an additional column for representing either
the state si or the group to which si belongs. Fig. 2(a) shows the
ISM of a FSMIM with six states and three input selectors (see the
matrix A).

The optimization process starts with the input selector simplifica-
tion (ISS) procedure, which reduces the complexity of the ISB. In

general terms, input selectors with less number of inputs have bet-
ter performance in terms of speed and area. As the ISB is in
the critical path, the speed of the FSMIM implementation can be
enhanced by the ISS procedure. The proposed algorithm is based on
the classical dynamic-programming-based solution of the Knapsack
problem [13]. We have modified this algorithm in order to include
conflicts between items so that two items with conflicts cannot be
stored in the Knapsack. We will refer to it as Knapsack with con-
flicts (KC) problem. Unlike the classical algorithm, the KC problem
does not guaranty an optimal solution. Initially, each item represents
an FSM input. Two inputs have a conflict if they are effective inputs
of the same state. For example, in Fig. 2(a), the inputs x1, x5, and x6
have a conflict because they are effective inputs of the state s0. The
profit of each item (i.e., each FSM input) is equal to its weight.
The weight represents the number of states for which the input is
effective. A different Knapsack is required for each input selector
(or ISM column), so the ISS procedure requires m′ instances of the
KC problem. The subset of inputs assigned to each input selector is
determined by solving its corresponding KC problem. In each step
of the algorithm, one instance of the KC problem is solved. In the ith
step, the items not stored in the previous steps (0, 1, . . . , i − 1) are
used for the current KC problem. If it is not possible to include all
of the items in m′ Knapsacks, then an item is selected to be parti-
tioned into two different items which are treated as different inputs
although represent the same original input. So, the weights of the
new items are reduced and some conflicts could be eliminated. For
example, in Fig. 2(a), the input x1 can be partitioned into the items
x1

1 (the effective input x1 of the state s0) and x2
1 (the effective input x1

of states s1 and s2). So, x1
1 and x2

1 have a weight of 1 and 2, respec-
tively; and there are no conflict between x6 and x2

1. The algorithm
selects the partitioning that removes the greatest number of conflicts,
updates the weights and the conflict relation, and tries again to solve
the m′ instances of the KC problem.

Fig. 2(a) shows an example of the ISS procedure. The matrix A
is the initial ISM, which has six states and three input selectors
(with five, three, and two input signals). The matrix AISS is the ISM
obtained after the ISS procedure. The algorithm for the KC problem
has been applied three times (one for each input selector). In the first
round, the inputs x1, x2, and x3 have been assigned to the first input
selector (first column). The weights of x1, x2, and x3 are 3, 2, and 1,
respectively; this makes a total weight of 6 for the Knapsack related
to the first column (note that 6 is the maximum value). In addition,
x1, x2, and x3 do not have conflicts between them. Similarly, the
algorithm tries to allocate the rest of the items (x4, x5, and x6) in the
rest of the columns (one by one). In this example, no partition has
been required. As a result of the ISS procedure, the input selectors
have three, two, and one input signals.

After the ISS procedure, the state grouping (SG) procedure is
applied to further reduce the memory depth which can also result
in speed improvements [12]. A group of states can be encoded with
the same encoding bits if exists an assignment of values 0 and 1 to
the DCSIs that allows to allocate the transitions of these states in
different words of the ROM. We will refer to these groups of states
simply as groups. The constant values 0 and 1 must be selected by the
ISB in the same way that the FSM inputs (note that the ISM include
these values). For example, the states s2 and s3 of AISS [see Fig. 2(a)]
have been identified by the same group g23 due to the second input
selector selects 0 for s2 and 1 for s3 [see ASG

1 in Fig. 2(c)]. Let us
say that the states s2 and s3 have been grouped into the group g23.
So, in the FSM transitions, the next states s2 and s3 are replaced by
the next group g23 with the input selections (x1, 0, −) and (x2, 1, −),
respectively.

Given an ISM, the SG procedure can be summarized as follows.
The algorithm processes the different columns of the ISM one by
one. The DCSIs of each column are set to 0 or 1 in order to create
new groups. The ISM is updated before the next column is processed.
Both the order in which the columns are processed and the order in
which the groups are created have influence in the final number of
groups obtained. FSMIM-Gen uses different sorting strategies and
selects the best solution. The distribution of the DCSIs in the ISM
determines the minimum number of groups that can be obtained.
However, the distribution of the DCSIs is obtained by the ISS proce-
dure and it is not changed by the SG procedure to avoid increasing
the complexity of the ISB.

Fig. 2(c) shows an example of the SG procedure applied to AISS

[see Fig. 2(a)]. Initially, the number of groups is equal to the number
of FSM states (G = {s0, s1, s2, s3, s4, s5}). In the first step, s2 and
s3 are grouped into g23 by fixing the DCSIs of the second column
(see ASG

1). Next, g23 and s1 are grouped into g123 by fixing the
related DCSIs to 0 and 1 (see ASG

2). Finally, s4 and s5 are grouped
into g45 (see ASG

3). The SG procedure reduces the number of groups
from 6 to 3 (G = {s0, g123, g45}). So, the number of encoding bits
is reduced from 3 to 2.

B. FSMIM-T Architecture

The FSMIM-T architecture is shown in Fig. 1(b). In this archi-
tecture, the ISB is a multiplexer bank. The bits used to control the
multiplexers, called selection bits, are stored in the ROM memory.
Fig. 2(g) shows the input selector of the second column of ASG

3 [see
Fig. 2(c)]. For each FSM transition, the ROM contains the FSM out-
puts, the next group, and the selection bits for the next state. The
ROM size in bits is

CFSMIM−T = 2m′ |G|(n + p′ + r
) ≤ 2m′+p′(

n + p′ + r
)

(2)

where G is the set of groups, p′ = ⌈
log2|G|⌉ is the number of group

encoding bits, and r is the number of selection bits. In Fig. 2(c),
r = 6 for ASG

3 . Each state encoding bit saved by grouping states
requires the values 0 and 1 to be assigned to at least one different
ISM column. Moreover, a column with constants needs at least two
selection bits [e.g., in Fig. 2(c), the third column of ASG

3 requires two
selection bits to select 0, 1, or x6]. So, p′+r > p (i.e., the ROM width
increases). However, the width increment has less influence on the
speed and size of the ROM than the depth reduction [12]. The goal of
the FSMIM-T architecture is to use a very efficient implementation of
the ISB in terms of speed and area. This is achieved by using multi-
plexers, which can be implemented efficiently in current FPGAs [10].
The inclusion of the selection bits in the ROM allows to reach the
objective at the expense of increasing the ROM width with respect
to the conventional ROM-based implementations (CONV-ROMs).

C. FSMIM-S Architecture

The FSMIM-S architecture is shown in Fig. 1(c). This architecture
has been proposed to allow the implementation of FSMIM with less
memory resources than those required by FSMIM-T. The address
modifier is composed by two combinational components: the ISB
and the group encoder (GE). Unlike the ISB of FSMIM-T, the ISB
of FSMIM-S is controlled by the present state encoding bits. GE is
a combinational component with p inputs and p′ outputs that generate
the encoding bits of the group to which the present state belongs.
The performance of ISB and GE depends on the state and group
encoding. Fig. 2 shows the truth tables of the GE [see Fig. 2(e)] and
of the second input selector [see Fig. 2(f)]. Both are obtained from
ASG

3 [see Fig. 2(c)] by using the encoding of states and groups shown
in Fig. 2(b) and (d), respectively.

TABLE I
PARAMETERS OF THE FSMS USED IN THE EXPERIMENTS

Like in the conventional ROM-based architecture, each word of
the ROM stores the FSM next state and outputs. So, this architecture
can reduce the depth of the ROM with respect to the conventional
ROM-based architecture without increasing the width. The ROM size
in bits is

CFSMIM−S = 2m′ |G|(n + p) ≤ 2m′+p′
(n + p). (3)

From (1) to (3), it can be seen that CFSMIM−S ≤
min{CFSMIM−T, CROM}. This memory reduction is achieved at
expense of increasing the number of used LUTs due to the implemen-
tation of a more complex address modifier. So, FSMIM-S is usually
slower than FSMIM-T.

IV. EXPERIMENTAL RESULTS

In this paper, we have used Xilinx ISE Design Suite 13.4 and the
xc6slx75-3 FPGA device (Virtex-6). This device includes 172 EMBs
of 18 Kbits which can be configured as two independent EMBs
of 9 Kbits. The techniques CONV-ROM, ISE LUT-based imple-
mentation (LUT-ISE), ISE EMB-based implementation (EMB-ISE),
FSMIM-T implementation, and FSMIM-S implementation have been
compared. The FSMIM technique can be applied to a FSM if m′ < m
and/or if two or more states can be grouped after the ISS procedure
(i.e., there is at least one ISM column with at least two DCSIs).
We have used MCNC benchmarks [14] and 150 FSMs generated by
BenGen tool [15]. We have discarded the cases in which the FSMIM
cannot be applied and the cases whose CONV-ROM requires only one
9 Kbits EMB (i.e., no further reduction can be obtained). The final
number of FSMs used in the experiments was 73. However, ten of
these cases cannot be implemented in the target FPGA device using
CONV-ROM and/or EMB-ISE due to their high resource require-
ments. These cases have been excluded from the tables to allow
a proper comparison (we will refer to them as unsuccessful cases).
Table I shows the mean, standard deviation, minimum value, quar-
tiles, and maximum value of the architectural parameters and of the
speed and area results of the reference techniques (i.e., CONV-ROM
and ISE-LUT). When a residual 9 Kbits EMB is used by ISE, it
is computed as 0.5 EMB. The parameters of FSMIM are shown
normalized with respect to the corresponding parameters of the FSM.

Firstly, we compare the speed increment of each technique with
respect to LUT-ISE because it is the standard technique and it does
not use EMBs (see Table II). The statistic measures shown in this
and other similar tables are: mean, standard deviation, minimum
value, quartiles, and maximum value. Both FSMIM-T and CONV-
ROM achieve a positive average increment. Although CONV-ROM
obtains the best results, the percentage of the cases where each
technique is faster than LUT-ISE is slightly greater for FSMIM-T
(see “Hit” column). In fact, FSMIM-T achieves the highest operat-
ing frequency in the 11% of the cases. As expected, FSMIM-S gets

TABLE II
SPEED INCREMENT WITH RESPECT TO LUT-ISE (%)

Fig. 3. Speed increment in percentage of the ROM-based techniques with
respect to CONV-ROM versus the ROM depth of CONV-ROM.

TABLE III
REDUCTION OF THE NUMBER OF USED EMBS WITH

RESPECT TO CONV-ROM (%)

worse results than FSMIM-T because the address modifier is more
complex. Despite this, FSMIM-S is faster than LUT-ISE in the 38%
of the cases (the increment is greater than or equal to 15% for the 25%
of the cases). Clearly, the worst results are obtained by EMB-ISE.

Compared to CONV-ROM, the FSMIM-S and FSMIM-T tech-
niques are faster in 13% and 30% of the cases, respectively. In
addition, as shown in Fig. 3, the speed increment of the FSMIM-based
architectures with respect to CONV-ROM tends to increase with the
increasing of the ROM depth of CONV-ROM. This shows the impact
of the ROM depth reduction on speed. In fact, for the five cases in
which the ROM depth is greater than the maximum EMB depth, the
average speed increment of FSMIM-S and FSMIM-T are 115% and
131%, respectively. In the unsuccessful cases, the ROM depth are
always greater than 105; so, in a larger target device, it is expected
further increments.

Let us now present a comparison of area between the different
techniques. First, we analyze the EMB reduction of the different
ROM-based techniques with respect to CONV-ROM (see Table III).
Again, the worst technique is EMB-ISE. FSMIM implementations
use much less memory than the other techniques (in the half of the
cases, the EMB reduction is greater than or equal to 50% for both
FSMIM-based architectures). As expected, FSMIM-S always uses
a number of EMBs less than or equal to FSMIM-T. We highlight
that, in six of the unsuccessful cases, CONV-ROM requires more
EMBs than those available in any device of the Virtex-6 family while
FSMIM-S and FSMIM-T require only 2.9 and 5.6 EMBs on average,
respectively.

In order to evaluate the number of LUTs saved in the implemen-
tation of FSMs by using EMBs, we have calculated the reduction of
the number of used LUTs with respect to LUT-ISE (see Table IV).
The worst technique is EMB-ISE, which uses more LUTs than
LUT-ISE on average despite the fact that it uses a considerable
number of EMBs. The average reduction is greater than 80% for

TABLE IV
REDUCTION OF THE NUMBER OF USED LUTS WITH

RESPECT TO LUT-ISE (%)

TABLE V
NUMBER OF SAVED LUTS PER USED EMB

TABLE VI
COMPARATIVE OF FSMIM-S RESULTS WITH

RESPECT TO FSMIM-T (%)

CONV-ROM and FSMIM-based techniques. Therefore, in these tech-
niques, the use of EMBs allows a huge reduction of the LUT usage.
As expected, CONV-ROM obtains the best results. However, the aver-
age reduction of FSMIM-T is very close to that of CONV-ROM
despite the fact that CONV-ROM do not include any address mod-
ifier. We have also calculated the number of saved LUTs per used
EMB for each technique (see Table V). Although both FSMIM imple-
mentations achieve better results than CONV-ROM, FSMIM-S is the
most effective technique for saving LUTs.

Table VI shows a comparison between FSMIM-S and FSMIM-T.
We have used the cases in which FSMIM-T requires more than
one 9 Kbits EMB (the unsuccessful cases have also been included).
FSMIM-S reduces significantly the number of EMBs at expense of
a little speed reduction. Although the relative LUT increment of
FSMIM-S is high, the number of used LUTs (22 on average) is not
significant compared to the number of saved LUTs (446 on average).
The number of saved LUTs of FSMIM-S is only 12% less than
FSMIM-T on average; however, it is important to highlight that
FSMIM-S saves 45% more LUTs per used EMB.

V. CONCLUSION

Regarding the area results, the studied techniques could be sorted
in ascending order of EMB usage and descending order of LUT usage
as follows: LUT-ISE, FSMIM-S, FSMIM-T, and CONV-ROM. The
possibility of exploiting all kinds of resources available in FPGAs
allows to fit the design into a smaller (and cheaper) device. FSMIM-
based architectures allow to find an adequate tradeoff between LUT
and EMB usage. In fact, they obtain huge reductions in the LUT
utilization by using a reasonable number of EMBs. The proposed
FSMIM-S architecture extends the number of available alternatives
for satisfying the area constraints. FSMIM-S is the best design option
when the number of unused EMBs is limited. Otherwise, FSMIM-T
is a better option if the speed is critical. Although CONV-ROMs

with small ROM depth are faster on average than FSMIM imple-
mentations, this trend is reversed when the ROM depth increases.
We think that FSMIM-Gen is a useful tool for integrating the use of
EMBs in the conventional design flow.

In future work, we plan to enhance the performance of the FSMIM
technique. Recently, we have modeled the ISS optimization prob-
lem as a new generalization of the classical hitting set problem,
and proposed an integer linear programming formulation [16]. We
plan to integrate this formulation into FSMIM-Gen. Moreover, we
will study the influence of the state and group encoding on the per-
formance of the ISB and GE of FSMIM-S-based implementations.
We plan to integrate an algorithm for finding efficient encoding into
FSMIM-Gen.

ACKNOWLEDGMENT

The authors would like to thank Prof. L. Józwiak for providing us
a benchmark set generated by the BenGen tool.

REFERENCES

[1] G. Borowik, T. Luba, and B. J. Falkowski, “Logic synthesis
method for pattern matching circuits implementation in FPGA with
embedded memories,” in Proc. 12th Int. Symp. Design Diagn.
Electron. Circuits Syst. (DDECS), Liberec, Czech Republic, 2009,
pp. 230–233.

[2] B. Le Gal, A. Ribon, L. Bossuet, and D. Dallet, “Reducing and smooth-
ing power consumption of ROM-based controller implementations,” in
Proc. 23rd ACM Symp. Integr. Circuits Syst. Design, New York, NY,
USA, 2010, pp. 8–13.

[3] J. Cong and K. Yan, “Synthesis for FPGAs with embedded memory
blocks,” in Proc. ACM/SIGDA 8th Int. Symp. Field Program. Gate
Arrays (FPGA), New York, NY, USA, 2000, pp. 75–82.

[4] A. Tiwari and K. A. Tomko, “Saving power by mapping finite-
state machines into embedded memory blocks in FPGAs,” in Proc.
Design Autom. Test Europe Conf. Exhibit., vol. 2. Paris, France, 2004,
pp. 916–921.

[5] M. Rawski, H. Selvaraj, and T. Luba, “An application of functional
decomposition in ROM-based FSM implementation in FPGA devices,”
in Proc. Euromicro Symp. Digit. Syst. Design, Belek-Antalya, Turkey,
2003, pp. 104–110.

[6] I. Garcia-Vargas, R. Senhadji-Navarro, G. Jimenez-Moreno,
A. Civit-Balcells, and P. Guerra-Gutierrez, “ROM-based finite state
machine implementation in low cost FPGAs,” in Proc. IEEE Int. Symp.
Ind. Electron. (ISIE), Vigo, Spain, 2007, pp. 2342–2347.

[7] H. Selvaraj, M. Rawski, and T. Luba, “FSM implementation in embed-
ded memory blocks of programmable logic devices using functional
decomposition,” in Proc. IEEE Int. Conf. Inf. Technol. Cod. Comput.,
Las Vegas, NV, USA, 2002, pp. 355–360.

[8] R. Senhadji-Navarro, I. Garcia-Vargas, G. Jimenez-Moreno, and
A. Civit-Ballcels, “ROM-based FSM implementation using input
multiplexing in FPGA devices,” Electron. Lett., vol. 40, no. 20,
pp. 1249–1251, 2004.

[9] M. W. Weiss, S. C. Seth, S. K. Mehta, and K. L. Einspahr, “Design
verification and functional testing of finite state machines,” in Proc. 14th
Int. Conf. VLSI Design, Bangalore, India, 2001, pp. 189–195.

[10] Using Dedicated Multiplexers in Spartan-3 Generation FPGAs,
Application Note: Spartan-3 FPGA Series, Xilinx Inc., San Jose, CA,
USA, 2005.

[11] I. Garcia-Vargas. (Mar. 2013). Home Page—Prof. Ignacio Garcia-
Vargas. [Online]. Available: http://personal.us.es/iggv/en/material.html,
accessed Mar. 3, 2015.

[12] R. Senhadji-Navarro, I. Garcia-Vargas, and J. L. Guisado, “Performance
evaluation of RAM-based implementation of finite state machines in
FPGAs,” in Proc. 19th IEEE Int. Conf. Electron. Circuits Syst. (ICECS),
Seville, Spain, 2012, pp. 225–228.

[13] H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack Problems. Berlin,
Germany: Springer, 2004.

[14] K. McElvain. (1993). IWLS 93 Benchmark Set: Version 4.0, Distributed
as a Part of the IWLS 93 Benchmark Set. [Online]. Available:
http://ddd.fit.cvut.cz/prj/Benchmarks

[15] L. Jozwiak, D. Gawlowski, and A. Slusarczyk, “An effective solution of
benchmarking problem: FSM benchmark generator and its application to
analysis of state assignment methods,” in Proc. Euromicro Symp. Digit.
Syst. Design (DSD), Rennes, France, 2004, pp. 160–167.

[16] I. Garcia-Vargas and R. Senhadji-Navarro, “The minimum maximal
k-partial-matching problem,” Optim. Lett., vol. 7, no. 8, pp. 1959–1968,
2012.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

