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Abstract. The Leibniz algebras appear as a generalization of the Lie algebras
[8]. The classification of naturally graded p-filiform Lie algebras is known [3],
[4], [5], [9]. In this work we deal with the classification of 2-filiform Leibniz
algebras. The study of p-filiform Leibniz non Lie algebras is solved for p = 0
(trivial) and p = 1 [1]. In this work we get the classification of naturally graded
non Lie 2-filiform Leibniz algebras.

1. Introduction

In this work we study the naturally graded 2-filiform Leibniz algebras. Since the
filiform (1-filiform) Lie algebras have the maximal nilindex, Vergne studied them
and obtained the classification of naturally graded [9]. Many authors have studied
the complete classification for low dimensions. The lists up to dimension 8 can
be found in [7] and the classification filiform up to dimension 11 in [6] The notion
of p-filiform Lie (resp. Leibniz) algebras can be considered as a generalization of
filiform Lie algebras.

The knowledge of naturally graded algebras of a certain family offers significant
information about the complete family. The classification of 2-filiform Lie algebras
and p-filiform has been obtained [5], [4].

In the case of Leibniz algebras only the classification of 0-filiform and 1-filiform
algebras is known [1], [2]. In the present paper we get the classification of naturally
graded 2-filiform Leibniz algebras.

Leibniz algebras are defined by the Leibniz identity:

[x, [y, z]] = [[x, y], z]− [[x, z], y]

We have used the software Mathematica to study particular cases in concrete
finite dimensions and later, by induction, the obtained results are generalized for
arbitrary finite dimension.

Let L be a Leibniz algebra, we define the following sequence:

L1 = L, Ln+1 = [Ln,L]

An algebra L is nilpotent if Ln = 0 for some n ∈ N.
For any element x of L we define Rx the operator of right multiplication as

Rx : z → [z, x], z ∈ L
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Let us x ∈ L\[L,L] and for the nilpotent operator Rx of right multiplication,
define the decreasing sequence C(x) = (n1, n2, ..., nk) that consists of the dimen-
sions of the Jordan blocks of the Rx. Endow the set of these sequences with the
lexicographic order.

The sequence C(L) = maxx∈L\[L,L]C(x) is defined to be the characteristic se-
quence of the algebra L.

Definition 1.1. A Leibniz algebra L is called p-filiform if C(L) = (n− p, 1, . . . , 1
︸ ︷︷ ︸

p

),

where p ≥ 0.

Note that this definition when p > 0 agrees with the definition of p-filiform Lie
algebras.

From now we will use the expression “graded algebra” instead of “naturally
graded algebra”.

Let L be a graded p-filiform n-dimensional Leibniz algebra, then there exists a
basis {e1, e2, . . . , en} such that e1 ∈ L− L2 and C(e1) = (n− p, 1, . . . , 1

︸ ︷︷ ︸

p

).

By definition of characteristic sequence the operator Re1 in Jordan form has one
block Jn−p of size n− p and p block J1 (where J1 = {0}) of size one.

The possibilities for operator Re1 are the follow:

0
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B

@

Jn−p 0 0 · · · 0

0 J1 0 · · · 0

.
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.

.
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, · · · ,
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J1 0 0 · · · 0
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0 0 0 · · · Jn−p
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It is easy to prove that when Jn−p is placed an a different position from the first
are isomorphic cases. Thus, we have only the following possibilities of Jordan form
of the matrix Re1 :

0

B

B

B

@

Jn−p 0 0 · · · 0

0 J1 0 · · · 0

.

.

.

.

.

.

0 0 0 · · · J1

1
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C
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,

0

B

B
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@

J1 0 0 · · · 0

0 Jn−p 0 · · · 0

.

.

.

.

.

.

0 0 0 · · · J1

1

C

C

C

A

Definition 1.2. A p-filiform Leibniz algebra L is called first type (type I) if the
operator Re1 has the form:








Jn−p 0 0 · · · 0
0 J1 0 · · · 0
...

...
0 0 0 · · · J1








and second type (type II) in the other case.
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1.1. Naturally graded filiform and 2-filiform Lie algebras. Naturally graded
p-filiform Lie algebras are known for all p > 0, [4], [5], [9].

Examples of filiform Lie algebras are Ln, Qn defined as follows:

Ln (n ≥ 3) : { [X0, Xi] = Xi+1 1 ≤ i ≤ n− 2.

Qn (n ≥ 6, n even) :

{
[X0, Xi] = Xi+1 1 ≤ i ≤ n− 2,

[Xi, Xn−1−i] = (−1)i−1 Xn−1 1 ≤ i ≤ n−2
2 .

Provided examples of 2-filiform Lie algebras.

L(n, r)
(
n ≥ 5, 3 ≤ r ≤ 2

⌊
n−1
2

⌋
− 1, r odd

)
:

{
[X0, Xi] = Xi+1 1 ≤ i ≤ n− 3,

[Xi, Xr−i] = (−1)i−1 Y 1 ≤ i ≤ r−1
2 .

Q(n, r) (n ≥ 7, n odd; 3 ≤ r ≤ n− 4, r odd):






[X0, Xi] = Xi+1 1 ≤ i ≤ n− 3,

[Xi, Xr−i] = (−1)i−1 Y 1 ≤ i ≤ r−1
2 ,

[Xi, Xn−2−i] = (−1)i−1 Xn−2 1 ≤ i ≤ n−3
2 .

τ(n, n− 4) (n odd, n ≥ 7):






[X0, Xi] = Xi+1 1 ≤ i ≤ n− 3,
[Xi, Xn−4−i] = (−1)i−1 (Xn−4 + Y ) 1 ≤ i ≤ n−5

2 ,

[Xi, Xn−3−i] = (−1)i−1 (n−3−2i)
2 Xn−3 1 ≤ i ≤ n−5

2 ,

[Xi, Xn−2−i] = (−1)i (i − 1) (n−3−i)
2 Xn−2 2 ≤ i ≤ n−3

2 ,

[Xi, Y ] = (5−n)
2 Xn−4+i 1 ≤ i ≤ 2.

τ(n, n− 3) (n even, n ≥ 6):






[X0, Xi] = Xi+1 1 ≤ i ≤ n− 3,
[Xi, Xn−3−i] = (−1)i−1 (Xn−3 + Y ) 1 ≤ i ≤ n−4

2 ,

[Xi, Xn−2−i] = (−1)i−1 (n−2−2i)
2 Xn−2 1 ≤ i ≤ n−4

2 ,

[X1, Y ] = (4−n)
2 Xn−2.

2. Naturally graded p-filiform Leibniz algebra

It is easy to see that a Leibniz algebra of type I is not a Lie algebra.
Let L be an n-dimensional p-filiform Leibniz algebra. We define a natural gra-

dation of L as follows. Take L1 = L, Li = Li/Li+1, 2 ≤ i ≤ n− p. It is clear that
L ≃

1 ⊕ L2 ⊕ · · · ⊕ Ln−p, where [Li,Lj ] ⊆ Li+j and Li+1 = [Li,L1] for all i.
Let L be a graded p-filiform Leibniz algebra of the first type. Then there exists

a basis {e1, e2, . . . , en−p, f1, . . . , fp} such that

[ei, e1] = ei+1, 1 ≤ i ≤ n− p− 1
[fj , e1] = 0, 1 ≤ j ≤ p.
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From this multiplication we have:

< e1 >⊆ L1, < e2 >⊆ L2, < e3 >⊆ L3, . . . , < en−p >⊆ Ln−p

but we do not know about the places of the elements {f1, f2, . . . , fp}.

Let denote by r1, r2, . . . , rp the places of elements f1, f2, . . . , fp in natural
gradation correspondingly, that is, fi ∈ Lri with 1 ≤ i ≤ p. Further the law of a
Leibniz algebra of type I with the set {r1, r2, . . . , rp} will be denoted by µ(I,r1,...,rp).

We can suppose that 1 ≤ r1 ≤ r2 ≤ · · · ≤ rp ≤ n− p.

Theorem 2.1. Let L be a graded p-filiform Leibniz algebra of type I. Then rs ≤ s
for any s ∈ {1, 2, . . . , p}.

Proof:

Note r1 = 1. In fact, if r1 > 1, then the algebra L is one generated and by [[1],
lemma 1] it is nul-filiform Leibniz algebra, and hence C(L) = (n, 0), that is, we
obtain contradiction with condition C(L) = (n− p, 1, 1, . . . , 1).

Let us prove that r2 ≤ 2. Suppose otherwise, that is, r2 > 2. Then

L1 =< e1, en−p+1 >

L2 =< e2 >

Lr2 = [Lr2−1,L1] =< [< er2−1 >,< e1, f1 >] >=< er2 , [er2−1, f1] >

Consider the multiplication:

[er2−1, f1] = [[er2−2, e1], f1] = [er2−2, [e1, f1]] + [[er2−2, f1], e1]

Since the multiplication [e1, f1] ∈ L2 =< e2 >⊆ Z(L), then the first item is
equal to zero. It is evident that the second item belongs to the linear span < er2 >.
So, f2 /∈ Lr2 and we obtain contradiction method, hence r2 ≤ 2.

Let us suppose that the condition of the theorem is true for any value less than
s. We prove that rs ≤ s. We shall prove it by contradiction, that is, suppose that
rs > s.

If rs > s we prove the following embedding:

[ers−rt , ft] ⊆< ers >, 1 ≤ t ≤ s− 1

We shall prove it by descending induction by t.

Let us prove it for t = s− 1. Consider the multiplication:

[ers−rs−1
, fs−1] = [[ers−rs−1−1, e1], fs−1] = [ers−rs−1−1, [e1, fs−1]]+

+ [[ers−rs−1−1, fs−1], e1]
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Since rs > s, we have [e1, fs−1] ∈ Lrs−1+1 =< ers−1+1 >∈ Z(L), that is,
[ers−rs−1−1, [e1, fs−1]] = 0. From the multiplication on the right side on e1 we
have

[[ers−rs−1−1, fs−1], e1] ⊆< ers >

hence, [ers−rs−1
, fs−1] ⊆< ers >.

Let suppose that embedding [ers−rt , ft] ⊆< ers > is true for any value greater
than t+ 1. We prove it for t.

Consider the multiplication:

[ers−rt , ft] = [[ers−rt−1, e1], ft] = [ers−rt−1, [e1, ft]]+
+[[ers−rt−1, ft], e1]

As [e1, ft] ∈ Lrt+1, then in case rt + 1 = rt+1 we have Lrt+1 = {ert+1
, ft+1 ∨

ft+2 ∨ · · · ∨ fs−1}. Therefore the multiplication [ers−rt−1, [e1, ft]] is contained in
linear span < ers > by induction.

If rt + 1 6= rt+1 the following equality [e1, ft] =< ert+1 > is hold (because
Lrt+1 =< ert+1 >) and hence [ers−rt−1, [e1, ft]] = 0. Evidently, the second item
also is contained in the linear span < ers >.

Thus, [ers−rt , ft] ⊆< ers >, 1 ≤ t ≤ s− 1 is proved.
Let us prove that Lrs ⊆< ers > supposing rs > s. Consider the multiplication:

Lrs = [Lrs−1,L1] = [< ers−1 >,< e1, f1 ∨ · · · ∨ fs−1 >]

From [ers−rt , ft] ⊆< ers >, we have that Lrs ⊆< ers >, that is, we obtain the
contradiction which completes the proof of theorem.

�

2.1. Naturally graded 2-filiform Leibniz algebras. In this section naturally
graded 2-filiform Leibniz algebras will be classified.

The classification of the null-filiform Leibniz algebras is an easy task and one for
naturally graded 1-filiform Leibniz algebras is similar to the case of Lie algebras.
However, when p, increases the difficulties also increase exponentially in the study
of Leibniz algebras with respect to Lie algebras.

From [5] we observe the existence of graded 2-filiform Lie algebras in arbitrary
dimension. Let us demonstrate examples of graded 2-filiform Leibniz algebras of
type I which obviously are not Lie algebras.

In this work, we use the following notation:

• {e1, e2, ..., en−2, en−1, en} an adapted basis and
• r1, r2 the places of elements en−1, en.

Example 1. Let L0
n−2 be a graded nul-filiform Leibniz algebra of dimension

n − 2 and L1
n−1 be a graded filiform non Lie Leibniz algebra of dimension n − 1

of type I. Then L0
n−2 ⊕C2 and L1

n−1 ⊕C are graded n-dimensional split 2-filiform
Leibniz algebras of type I.

The following lemma establishes that a graded 2-filiform Leibniz algebra of type
I with condition r1 = r2 = 1 is a split algebra from the above example.
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Lemma 2.2. Let L be a graded 2-filiform Leibniz algebra of type µ(I,1,1). Then L
is a split algebra from example 1.

Proof:

Let algebra L has form µ(I,1,1), then for an adapted basis {e1, e2, . . . , en} the
multiplications on the right side on e1 are the following:







[ei, e1] = ei+1, 1 ≤ i ≤ n− 3

[ei, en−1] = αiei+1, 1 ≤ i ≤ n− 3

[en−1, en−1] = αn−1e2

[en, en−1] = αne2

[ei, en] = βiei+1, 1 ≤ i ≤ n− 3

[en−1, en] = βn−1e2

[en, en] = βne2

Using Leibniz identity it is not difficult to obtain the following restrictions:







αi = α, 1 ≤ i ≤ n− 3
βi = β, 1 ≤ i ≤ n− 3
αn−1 = αn = 0
βn−1 = βn = 0

Let us rewrite the multiplications of basis elements taking into account the above
restrictions:







[ei, e1] = ei+1, 1 ≤ i ≤ n− 3

[ei, en−1] = αei+1, 1 ≤ i ≤ n− 3

[ei, en] = βei+1, 1 ≤ i ≤ n− 3

If α 6= 0 we take the change of basis: e′i = ei, 1 ≤ i ≤ n − 1, e′n = αen −
βen−1, we can suppose that the coefficient β is equal to zero, that is, we have the
multiplications:

{

[ei, e1] = ei+1, 1 ≤ i ≤ n− 3

[ei, en−1] = αei+1, 1 ≤ i ≤ n− 3

If α = 0, then taking e′i = ei, 1 ≤ i ≤ n− 2, e′n−1 = en, e′n = en−1, we can also

suppose that coefficient β = 0. In this case it is easy to see that L = L0
n−2 ⊕ C2.

If α 6= 0, the change of basis e′n−1 =
1

α
en−1 (and e′i = ei, i 6= n − 1) allows us

to suppose α = 1 and so L = L1
n−1 ⊕ C.

�

For graded non split 2-filiform Leibniz algebra of type I with condition r2 = 2
the following theorem is hold.

The next results were supported by Mathematica package.
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Proposition 2.3. Let L be an 4-dimensional graded 2-filiform non split Leibniz
algebra of type µ(I,1,2).Then L is isomorphic to the following algebra:

{

[e1, e1] = e2

[e1, e3] = e4

Proof:

We have that the natural gradation is:

< e1, e3 > ⊕ < e2, e4 >

and the multiplication is:






[e1, e1] = e2
[e1, e3] = α1e2 + β1e4
[e3, e3] = α2e2 + β2e4

with β1 6= 0 or β2 6= 0.
If we make the following change of basis β′

2e
′
4 = α2e2 + β2e4 it is possible to

suppose α2 = 0 and






[e1, e1] = e2
[e1, e3] = α1e2 + β1e4
[e3, e3] = β2e4

with β1 6= 0 or β2 6= 0.
According to the characteristic sequence we have that rank(Re1+Ae3) ≤ 1, it

implies that β2 = 0 and β1 6= 0. An elementary change of basis permits to prove
this result.

�

Proposition 2.4. Let L be a 5-dimensional naturally graded 2-filiform Leibniz
algebra of type µ(I,1,2). Then, L is isomorphic to the one of the following pairwise
non isomorphic algebras:

µ1 :







[ei, e1] = ei+1, 1 ≤ i ≤ 2

[e1, e4] = e2 + e5,

[e2, e4] = e3,

µ2 :

{

[ei, e1] = ei+1, 1 ≤ i ≤ 2

[e1, e4] = e5.

µ3 :







[ei, e1] = ei+1, 1 ≤ i ≤ 2

[e1, e4] = ie2 + e5,

[e2, e4] = ie3, i2 = −1

[e5, e4] = e3.

µ4 :







[ei, e1] = ei+1, 1 ≤ i ≤ 2

[e1, e4] = e5.

[e5, e4] = e3.

Proof:

Analogously as in above we can assume that

L1 =< e1, e4 >, L2 =< e2, e5 >, L3 =< e3 >, L4 =< 0 >

Put [e5, e4] = γe3. If γ = 0, then we obtain algebra L(α, 0), otherwise not
restricted of generality we obtain algebra L(α, 1). Since dimension of left annihilator
of the algebra L(α, 0) is equal to 2 (e4, e5 ∈ L(L)) and dimension of left annihilator
of the algebra L(α, 1) is equal to 1 (e4 ∈ L(L)) there are not isomorphic.
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From the above argumentation we have following algebras

L(α, 1) :







[ei, e1] = ei+1, 1 ≤ i ≤ 2
[e1, e4] = αe2 + f2
[e2, e4] = αe3
[f2, e4] = e3

L(α, 0) :







[ei, e1] = ei+1, 1 ≤ i ≤ 2
[e1, e4] = αe2 + f2
[e2, e4] = αe3

If we considered algebra

L(α, 0) :







[ei, e1] = ei+1 1 ≤ i ≤ 2
[e1, e4] = αe2 + f2
[e2, e4] = αe3

We have α = 1 or 0. And we obtain the two first algebras of proposition. By
standard way it is not difficult to check that these algebras are not isomorphic.

Consider algebra L(α, 1), we make the general change of basis

e′1 = a1e1 + a2e4, e′4 = b1e1 + b2e4

where a1b2 − a2b1 6= 0.
In other hand [e′4, e

′
1] = 0 and we have

b1a1 + b1a2α = 0

b1a2 = 0

it implies that b1 = 0. Finally we obtain

α′ =
b2[a1α+ a2(α

2 + 1)]

[(a1 + a2α)2 + a22]

Comparing the coefficients at the basic element we obtain restriction

b22 =
[(a1 + a2α)

2 + a22]
2

a21

It is not difficult to check that the nullity of the following expression is invariant
because:

1 + α′2 =
(1 + α2)((a1 + a2α)

2 + a22)

a21
=

Case 1. α2 +1 6= 0 then putting a2 = − a1α
1+α2 implies α′ = 0. Thus, in this case

we obtain µ4.

Case 2. α2 + 1 = 0 (i.e α = ±i) then we have that b2 = ±
(a1+a2α

2)+a2
2

a1
and

α′ = ±α we obtain α′ = i. Thus, in this case we obtain µ3. �

Theorem 2.5. Let L be an n-dimensional (n ≥ 6) graded 2-filiform non split
Leibniz algebra of type µ(I,1,2). Then L is isomorphic to the one of the following
pairwise non isomorphic algebras:







[ei, e1] = ei+1, 1 ≤ i ≤ n− 3

[e1, en−1] = e2 + en

[ei, en−1] = ei+1, 2 ≤ i ≤ n− 3

{

[ei, e1] = ei+1, 1 ≤ i ≤ n− 3

[e1, en−1] = en
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Proof:

According to the theorem conditions we have the following multiplications in an
adapted basis {e1, e2, . . . , en}:







[ei, e1] = ei+1, 1 ≤ i ≤ n− 3

[e1, en−1] = α1e2 + γ1en

[ei, en−1] = αiei+1, 2 ≤ i ≤ n− 3

[en−1, en−1] = αn−1e2 + γn−1en

[en, en−1] = αne3

[ei, en] = βiei+2, 1 ≤ i ≤ n− 4

[en−1, en] = βn−1e3

[en, en] = βne4

where either γ1 6= 0 or γn−1 6= 0.
Using Leibniz identity it is not difficult to obtain the following restrictions:







αi = α, 1 ≤ i ≤ n− 3
βiγ1 = 0, 1 ≤ i ≤ n− 4
βiγn−1 = 0, 1 ≤ i ≤ n− 4
γ1βn−1 + αn−1 = 0
αn−1 = αn = 0
βiγj = 0, i ∈ {n− 1, n}, j ∈ {1, n− 1}

Since either γ1 6= 0 or γn−1 6= 0, we have that βi = 0 for 1 ≤ i ≤ n − 4 and
βn−1 = βn = 0. Thus, the multiplications have the following form:







[ei, e1] = ei+1, 1 ≤ i ≤ n− 3

[e1, en−1] = αe2 + γ1en

[ei, en−1] = αei+1, 2 ≤ i ≤ n− 3

[en−1, en−1] = γn−1en

It is possible to suppose that

Re1+Aen−1
=












(1 +Aα)In−3

0 0 0
...

...
...

0 0 0
0 0 · · ·
0 0 · · ·
Aγ1 0 · · ·

0 0 0
0 0 0
0 0 Aγn−1












where In−3 is the unit matrix of size n− 3 and 1 +Aα 6= 0.
As rang(Re1+Aen−1

) ≤ n− 3 (otherwise the characteristic sequence for element

e1 + Aen−1 would be greater than (n− p, 1, . . . , 1)), then (1 + Aα)n−3Aγn−1 = 0,
hence γn−1 = 0 and γ1 6= 0. By an elementary change of basis, it is possible to
suppose that γ1 = 1.

By a general change of basis the expression for the new generators is

e′1 =

n−1∑

i=1

Aiei, e′n−1 =

n−1∑

i=1

Biei
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obtaining α′ =
Bn−1α

A1 +An−1α
.

It is easy to see that if α 6= 0 we have the first algebra of the theorem and if
α = 0 the second algebra.

�

Consider now graded 2-filiform Leibniz algebras of type II.

Let L be a graded n-dimensional p-filiform Leibniz algebra. Then there exists
a basis {e1, e2, . . . , en−p, f1, f2, . . . , fp} of L such that multiplications on the right
side on element e1 will have the form:







[e1, e1] = 0

[ei, e1] = ei+1, 2 ≤ i ≤ n− p− 1

[fj , e1] = 0, 1 ≤ j ≤ p

From these multiplications we have:

< e1 >⊆ L1, < ei+1 >⊆ Li, 2 ≤ i ≤ n− 2

But again we do not know about the position of elements {e2, f2, f3, . . . , fp} in
natural gradation.

Let denote by r1, r2, . . . , rp (r1 ≤ r2 ≤ · · · ≤ rp) the places of elements e2, f2,
f3, . . . , fp correspondingly, that is, e2 ∈ Lr1 , fi ∈ Lri , 2 ≤ i ≤ p.

Let L be a graded 2-filiform Leibniz algebra. Since r1 = 1, further we shall
denote r2 by r.

For the 2-filiform Leibniz algebras of type II the following lemma is hold.

Lemma 2.6. Let L be an n-dimensional 2-filiform Leibniz algebra. Then the fol-
lowing conditions are hold:

a) L has nilindex n− 1;

b) or dim(Li) = n− 1− i, 2 ≤ i ≤ n− 2

or dim(Li) =

{
n− i, 2 ≤ i ≤ r
n− 1− i , r + 1 ≤ i ≤ n− 2

for some r, 2 ≤ r ≤ n− 2

Proof:

a) Let x ∈ L − [L,L] such that C(x) = (n − 2, 1, 1). Hence, Rn−2
x = 0 and

Rn−3
x 6= 0 and, consequently, there exists element y ∈ L, such that Rn−3

x (y) 6= 0.
Therefore Ln−2 6= 0 and Ln−1 = 0 (when Ln−1 6= 0, then by [[1],lemma 1, lemma
4] the algebra L would be either nul-filiform or filiform).

b) Let e1 ∈ L − [L,L] be a maximal characteristic vector of ll, where L is of
type I. Then for r = 1, that is, dim(L/L2) = 3 we have that dim(Li) = n− 1− i,
2 ≤ i ≤ n− 2. For r = 2, that is, dim(L/L2) = 2 we get:

dim(Li) =

{
n− 2, i = 2
n− 1− i, 3 ≤ i ≤ n− 2
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Let algebra L has the type II. For r2 = 1 we obtain that dim(L/L2) = 3, that is,
dim(Li) = n−1−i, 2 ≤ i ≤ n−2. For r2 ∈ {2, 3, . . . , n−2} we get: dim(L/L2) = 2,

that is, dim(Li) =

{
n− i, 2 ≤ i ≤ r
n− 1− i, r + 1 ≤ i ≤ n− 2

�

Lemma 2.7. Let L be a complex n-dimensional (n ≥ 5) graded 2-filiform Leibniz
algebra of type II and r > 2. Then L is a Lie algebra.

Proof:

Let (1) be the family of laws of L:

(1)







[ei, e1] = ei+1, 2 ≤ i ≤ n− 2

[e1, ei] = α1,iei+1, 2 ≤ i ≤ n− 2, i 6= r

[e1, er] = α1,rer+1 + γ1en

[e1, en] = α1,ner+2

[ei, ej ] = αi,jei+j−1, 2 ≤ i, j ≤ n− 2, i + j ≤ n, i+ j 6= r + 2

[ei, er+2−i] = αi,r+2−ier+1 + γien, 2 ≤ i ≤ r

[en, ei] = αn,iei+r, 2 ≤ i ≤ n− r − 1

[ei, en] = αi,nei+r, 2 ≤ i ≤ n− r − 1

[en, en] = αn,ne2r+1, r ≤ n−2
2

where omitted products are zero and (γ1, γ2, . . . , γr) 6= (0, 0, . . . , 0).
Using Leibniz identity we get the following restrictions:







α1,i = α, 2 ≤ i ≤ n− 2
γ1 = 0
α1(α1 + 1) = 0
α1,n = 0, r ≤ n− 4

αn,n = 0, r ≤
n− 3

2

It is necessary to consider separately the cases r = n− 3, r = n− 2 and r = n−2
2

(n even).
Case 1. α = 0. Then (1) will have the following form:







[ei, e1] = ei+1, 2 ≤ i ≤ n− 2

[ei, ej ] = αi,jei+j−1, 2 ≤ i, j ≤ n− 2, i + j ≤ n, i+ j 6= r + 2

[ei, er+2−i] = αi,r+2−ier+1 + γien, 2 ≤ i ≤ r

[en, ei] = αn,iei+r, 2 ≤ i ≤ n− r − 1

[ei, en] = αi,nei+r, 2 ≤ i ≤ n− r − 1

Using Leibniz identity for elements {ei, er+1−i, e1} for 2 ≤ i ≤ r and {ei, e1, er+1−i}
for 2 ≤ i ≤ r, that is,

[ei, [er+1−i, e1]] = [[ei, er+1−i], e1]− [[ei, e1], er+1−i]

[ei, [e1, er+1−i]] = [[ei, e1], er+1−i]− [[ei, er+1−i], e1]

we obtain that γi = 0 for 2 ≤ i ≤ r. Hence en /∈ L2 and r = 1 we have the
contradiction to the condition of the lemma.
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Case 2. α = −1. Then the multiplications (1) will have the form:






[ei, e1] = ei+1, 2 ≤ i ≤ n− 2
[e1, ei] = −ei+1, 2 ≤ i ≤ n− 2
[ei, ej ] = αi,jei+j−1, 2 ≤ i, j ≤ n− 2, i+ j ≤ n i + j 6= r + 2
[ei, er+2−i] = αi,r+2−ier+1 + γien, 2 ≤ i ≤ r
[en, ei] = αn,iei+r, 2 ≤ i ≤ n− r − 1
[ei, en] = αi,nei+r, 2 ≤ i ≤ n− r − 1

where (γ2, . . . , γr) 6= (0, . . . , 0).
Using Leibniz identity it is not difficult to get that

αn,i = αn, 2 ≤ i ≤ n− r − 1
αi,n = αn, 2 ≤ i ≤ n− r − 1
αn = −αn

From equality [e1, [ei, ei]] = 0 for 2 ≤ i ≤ n−3
2 , we have αi,i = 0 for 2 ≤ i ≤ n−1

2 .
When i = n

2 (when n is even), we consider the following equalities:

[en
2
[en

2
−1, e1]] = [[en

2
, en

2
−1], e1]− [[en

2
, e1], en

2
−1] (2)

[en
2
−1[en

2
−1, e1]] = [[en

2
−1, en

2
−1], e1]− [[en

2
−1, e1], en

2
−1] (3)

[e1, [en
2
−1, en

2
]] = [[e1, en

2
−1], en

2
]− [[e1, en

2
], en

2
−1] (4)

From equalities (2) up to (4) we obtain the restrictions:

(5)







αn
2
,n
2
= αn

2
,n
2
−1 − αn

2
+1,n

2
−1

αn
2
,n
2
−1 = −αn

2
−1,n

2

αn
2
,n
2
= αn

2
+1,n

2
−1 + αn

2
−1,n

2

From (5) we have that αn
2
,n
2
= 0.

Thus, we prove that [ei, ei] = 0 for 1 ≤ i ≤ n.
From the following chain of equalities:

[ei, ej] = [ei, [ej−1, e1]] = [[ei, ej−1], e1]− [[ei, e1], ej−1] =
= −[e1, [ei, ej−1]] + [[e1, ei], ej−1] =
= −([[e1, ei], ej−1]− [[e1, ej−1], ei]) + [[e1, ei], ej−1] = [[e1, ej−1], ei] =
= −[ej, ei]

we obtain that [ei, ej ] = −[ej, ei] for 1 ≤ i < j ≤ n, that is, is a Lie algebra.
The cases r = n − 3, r = n − 2 and r = n−2

2 (when n is even) are proved
analogously. �

Next, we will see some examples of graded filiform Leibniz algebras of type II.

Example 2. Let L be a graded filiform Leibniz algebra of type II. Then L ⊕C

is graded 2-filiform Leibniz algebra of type II.

And now, we prove some lemmas for a graded non split and non Lie 2-filiform
Leibniz algebra of type II.

Lemma 2.8. There exits no a graded non split and non Lie 2-filiform Leibniz
algebra of type II and r = 1.
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Proof:

Let L be a Leibniz algebra which satisfies the condition of the lemma. Then the
table of multiplication is







[ei, e1] = ei+1, 2 ≤ i ≤ n− 2

[e1, ei] = α1,iei+1, 2 ≤ i ≤ n− 2

[e1, en] = α1,ne3

[ei, ej ] = αi,jei+j−1, 2 ≤ i, j ≤ n− 2, i+ j ≤ n

[en, ei] = αn,iei+1, 2 ≤ i ≤ n− 2

[ei, en] = αi,nei+1, 2 ≤ i ≤ n− 2

[en, en] = αn,ne3

From Leibniz identity we have the following restrictions:

α1,i = α, 2 ≤ i ≤ n− 2
α1(α1 + 1) = 0
α1,n = αn,n = 0

Case 1. α = 0. Using Leibniz identity we get

αi,j = αj , 2 ≤ i ≤ n− 2
αj = 0, 3 ≤ j ≤ n− 2
αi,n = αn 2 ≤ i ≤ n− 2
αn,i = 0 2 ≤ i ≤ n− 2

and taking a change of basis: e′2 = e2 − α2e1, e
′
n = en − αne1, e

′
i = ei for i 6= 2, n,

we have that α2 = αn = 0, that is, L is split.
Case 2. α = −1. Analogous to lemma 2.7, we get a Lie algebra.

�

Lemma 2.9. There exits no a graded non split and non Lie 2-filiform Leibniz
algebra of type II and r = 2.

Proof:

Let L be a Leibniz algebra satisfying the conditions of the lemma. Then, there
exists an adapted basis {e1, e2, . . . , en} of L such that the multiplications will be
the following:







[ei, e1] = ei+1, 2 ≤ i ≤ n− 2

[e1, e2] = α1,2e3 + γ1en

[e1, ei] = α1,iei+1, 3 ≤ i ≤ n− 2

[e1, en] = α1,ne4

[e2, e2] = α2,2e3 + γ2en

[ei, ej ] = αi,jei+j−1, 2 ≤ i, j ≤ n− 2, i+ j ≤ n, (i, j) 6= (2, 2)

[en, ei] = αn,iei+2, 2 ≤ i ≤ n− 3

[ei, en] = αi,nei+2, 2 ≤ i ≤ n− 3

[en, en] = αn,ne5,

where either γ1 6= 0 or γ2 6= 0.
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As in the above two lemmas we obtain:






α1,i = α, 2 ≤ i ≤ n− 2
α(1 + α) = 0
α1,n = αn,n = 0

Let us consider two possible cases for parameter α.
Case 1. α = 0. Then, the multiplications in L have the form:







[ei, e1] = ei+1, 2 ≤ i ≤ n− 2

[e1, e2] = γ1en

[e2, e2] = α2,2e3 + γ2en

[ei, ej ] = αi,jei+j−1, 2 ≤ i, j ≤ n− 2, i+ j ≤ n, (i, j) 6= (2, 2)

[en, ei] = αn,iei+2, 2 ≤ i ≤ n− 3

[ei, en] = αi,nei+2, 2 ≤ i ≤ n− 3

where either γ1 6= 0 or γ2 6= 0.
Using Leibniz identity leads us to the following restrictions:

αi,j = αj , 2 ≤ i, j ≤ n− 2
αj = 0, 3 ≤ j ≤ n− 2
αi,n = αn, 2 ≤ i ≤ n− 3
αn,i = 0, 2 ≤ i ≤ n− 3
αnγ2 = 0
αnγ1 = 0

Either γ1 6= 0 or γ2 6= 0 (otherwise algebra L is split), then αn = 0.
The change of basis given by e′2 = e2 − α2e1, e

′
i = ei, i 6= 2, allows to suppose

α2 = 0.
Consider the operator of right multiplication Re1+Aen−1

, where 0 6= A ∈ C such
that e1 + Aen−1 6= 0. γ2 = 0 and hence γ1 6= 0 may be proved in much the same
way as the proof of theorem 2.5. Without loss of generality we can assume that
γ = 1.

Thus, we have the following multiplications in algebra L:

{

[ei, e1] = ei+1, 2 ≤ i ≤ n− 2

[e1, e2] = en

Taking the change of basis in form:

e′1 = e1 + e2, e′2 = e3 + en,
e′i = ei+1, 3 ≤ i ≤ n− 2,
e′n−1 = e1, e′n = en

we obtain the algebra of type I.
Case 2. α = −1. As in above cases, we get a Lie algebra.

�

From lemmas 2.7, 2.8 and 2.9 we can conclude that there exist no graded non
split and non Lie 2-filiform Leibniz algebras of type II.
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Thus, according to theorem 2.5 we have the classification of non split and non Lie
2-filiform Leibniz algebras. Summing the classification of non split graded 2-filiform
Lie algebras [5] and the result of theorem 2.5 we have completed the classification
of graded non split 2-filiform Leibniz algebras.
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