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Abstract. Image processing in digital computer systems usually considers 
visual information as a sequence of frames. These frames are from cameras that 
capture reality for a short period of time. They are renewed and transmitted at a 
rate of 25-30 fps (typical real-time scenario). Digital video processing has to 
process each frame in order to detect a feature on the input. In stereo vision, 
existing algorithms use frames from two digital cameras and process them pixel 
by pixel until it finds a pattern match in a section of both stereo frames. To 
process stereo vision information, an image matching process is essential, but it 
needs very high computational cost. Moreover, as more information is 
processed, the more time spent by the matching algorithm, the more inefficient 
it is. Spike-based processing is a relatively new approach that implements 
processing by manipulating spikes one by one at the time they are transmitted, 
like a human brain. The mammal nervous system is able to solve much more 
complex problems, such as visual recognition by manipulating neuron’s spikes. 
The spike-based philosophy for visual information processing based on the 
neuro-inspired Address-Event- Representation (AER) is achieving nowadays 
very high performances. The aim of this work is to study the viability of a 
matching mechanism in a stereo-vision system, using AER codification. This 
kind of mechanism has not been done before to an AER system. To do that, 
epipolar geometry basis applied to AER system are studied, and several tests 
are run, using recorded data and a computer.  The results and an average error 
are shown (error less than 2 pixels per point); and the viability is proved. 

Keywords: Address-Event-Representation, spike, neuromorphic engineering, 
stereo, epipolar geometry, vision, dynamic vision sensors, retina. 

1 Introduction 

In recent years there have been numerous advances in the field of vision and image 
processing, because these matters can be applied for scientific and commercial 
purposes to numerous fields such as medicine, industry or entertainment. As it can be 
deduced, the images are two dimensional while the daily scene is three 
dimensional. 
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This means that, between the passage from the scene (reality) and the image, there is a 
loss of what we call the third dimension. Nowadays, society has experienced a great 
advance in these aspects: 2D vision has given way to 3D viewing. Industry and 
research teams have started to study this field in depth, obtaining some mechanisms 
for 3D representation using more than one camera. Trying to resemble the vision of 
human beings, researchers have experimented with two-camera-based systems 
inspired by human vision. Following this, a new branch of research has been 
developed, focused on stereoscopic vision [1]. In this branch, researchers try to obtain 
three-dimensional scenes using two digital cameras. Thus, we try to get some 
information that could not be obtained with a single camera, i.e. distance estimation. 

By using digital cameras, researchers have made a breakthrough in this field, going 
up to create systems able to achieve the above. However, digital systems have some 
problems that, even today, have not been solved completely. In any process of 
stereoscopic vision, image matching is the main problem that has consumed a large 
percentage of research resources in this field, and it is still completely open to 
research. Matching is the process performed in every stereo system to find the pixel 
within a camera matrix which corresponds to a particular one of the opposite camera. 
This process is critical, because it allows obtaining high-level results like distance 
calculation [2-3] or shape description. The main problem related to image matching is 
the computational cost needed to obtain appropriate results. There are lots of high-
level algorithms used in digital stereo vision that can solve this problem, but they 
involve a high computational cost. Nowadays, mathematicians are trying to use 
several techniques in order to reduce the number of possible matches in the second 
camera. Calibration mechanisms and Epipolar Geometry are applied to pre-configure 
these systems and to obtain better and more optimal results. 

In parallel to all these computational vision evolution, Neuromorphic Engineering 
arises, whose operation principles are based on the biological models themselves. 
Brains perform powerful and fast vision processing using millions of small and slow 
cells working in parallel in a totally different way. Primate brains are structured in 
layers of neurons, where the neurons of a layer connect to a very large number (~104) 
of neurons in the following one [4]. Connectivity mostly includes paths between non-
consecutive layers, and even feedback connections are present. 

Vision sensing and object recognition in brains are not processed frame by frame; 
they are processed in a continuous way, spike by spike, in the brain-cortex. The visual 
cortex is composed of a set of layers [4], starting from the retina. The processing 
starts when the retina captures the information. In recent years significant progress 
has been made in the study of the processing by the visual cortex. Many artificial 
systems that implement bio-inspired software models use biological-like processing 
that outperform more conventionally engineered machines [5-7]. However, these 
systems generally run at extremely low speeds because the models are implemented 
as software programs. For real-time solutions direct hardware implementations are 
required. A growing number of research groups around the world are implementing 
these principles onto real-time spiking hardware through the development and 
exploitation of the so-called AER (Address Event Representation) technology. 



AER was proposed by the Mead lab in 1991 [8] for communicating between 
neuromorphic chips with spikes. Every time a cell on a sender device generates a 
spike, it transmits a digital word representing a code or address for that pixel, using an 
external inter-chip digital bus (the AER bus, as shown in Fig. 1). In the receiver the 
spikes are directed to the pixels whose code or address was on the bus. Thus, cells 
with the same address in the emitter and receiver chips are virtually connected by 
streams of spikes. Arbitration circuits ensure that cells do not access the bus 
simultaneously. Usually, AER circuits are built with self-timed asynchronous logic. 

Several works are already present in the literature regarding spike-based visual 
processing filters. Serrano et al. presented a chip-processor able to implement image 
convolution filters based on spikes that work at very high performance parameters 
(~3GOPS for 32x32 kernel size) compared to traditional digital frame-based 
convolution processors [9-10]. There is a community of AER protocol users for bio-
inspired applications in vision and audition systems. One of the goals of this 
community is to build large multi-chip and multi-layer hierarchically structured 
systems capable of performing complicated array data processing in real time. The 
power of these systems can be used in computer based systems under co-processing. 

Fig. 1. Rate-coded AER inter-chip communication scheme 

The optical sensor used by these research groups is the DVS128 AER retina [11]. 
This sensor works in such a way that each pixel only detects the derivate in time of 
the luminosity. That means that this retina only perceives luminosity variations or, as 
it is very common, objects in movement. This fact simplifies the amount of 
information transmitted, and it helps the researcher to focus on the important 
information of the scene. First, the epipolar geometry principles used in stereo vision 
image matching algorithms will be described. After that, these principles will be 
applied to a stereo vision AER system with the information obtained by the DVS-
retina. Finally, the results and error measurements will be shown. 

2 Epipolar Geometry 

Epipolar geometry [12] is the intrinsic projective geometry between two views. It is 
independent of scene structure, and it only depends on the cameras' internal 
parameters and relative pose. The epipolar geometry between two views is essentially 
the geometry of the intersection of the image planes with the pencil of planes having 



the baseline as axis (the baseline is the line joining the camera centers). This geometry 
is motivated by considering the search for corresponding points in stereo matching. 

Suppose a point X in space is imaged in two views (one from each camera), at x in 
the first, and x’ in the second. In this case, the relation between the corresponding 
image points x and x’, the spatial point X and the camera centers is that all of them are 
coplanar (located in the same plane, π). Clearly, the rays back-projected from x and x’ 
intersect at X, and the rays are coplanar, lying in π. This latter property is the most 
significant in searching for a correspondence (see Fig. 2). 

Supposing now that we know only x, we may ask how the corresponding point x’ is 
constrained. The plane π is determined by the baseline and the ray defined by x. From 
above we know that the ray corresponding to the point x’ lies in π, hence the point x’ 
lies on the line of intersection l’ of π with the second image plane. This line l’ is the 
image in the second view of the ray back-projected from x. In terms of a stereo 
correspondence algorithm the benefit is that the search for the point corresponding to 
x does not need to cover the entire image plane but it can be restricted to the line l’. 
The importance of this fact is that, if a transformation mechanism between x and line 
l’ can be obtained using a pre-calibration step, a simple AER spiking system 
implemented on programmable hardware (FPGA, etc.) will be able to discriminate the 
possible matches calculating the opposite epipolar line. To do that, the spikes building 
blocks can be used to operate with simple elements between spikes [13]. This 
mechanism needs the Fundamental Matrix to do that transformation. 

Fig. 2. Epipolar geometry explanation 

Next, a quick introduction to the calibration mechanism will be shown, as well as 
the projection matrixes calculation. 

3 Pre-calibration Summary 

Camera calibration is, mainly, finding the internal quantities of the camera that affect 
the imaging process, like the position of the image center, the focal length, the lens 
distortion, etc. These parameters are joined to obtain the ‘camera matrix’. This is an 
important process for rebuilding a world model. Several calibration mechanisms exist 
in classical computer vision. Some of them use a two-step process to obtain the 



camera matrix: first approach and optimization. Pin-Hole is the most used camera 
model (the way in which the camera system interacts with the world). This fact, 
determines the mechanism used to calibrate the system. 

In this work, a Pin-Hole model [14] and a Tsai calibration mechanism [15] have 
been used to calibrate the system. Also, as Tsai used in his experiments, a calibration 
grid was built to allow the retina to see the calibration points. In this case, the way in 
which the retina works (section 1) obstructs the calibration process because, in order 
to obtain good calibration results, the objects used in the calibration process cannot be 
in movement (remember that the retina only perceives the variation of the 
luminosity). Hence, the calibration grid built is different from the one used before. It 
is composed of a matrix of 8 by 8 LED lights and has been connected to a 
microcontroller that switches on and off each one of the LEDs. The calibration system 
is shown in Fig.3. 

By capturing the information from the LED grid and processing it in a computer, 
the 64 projection points are obtained on each retina (after the application of some 
image filters). Using the Tsai mechanism [15], both camera matrixes (one for each 
retina) are calculated (first step). These matrixes are used to determine the 2D 
points in each retina, related to the 3D points in the space. Also, they have the 
internal information about each retina (internal parameters), so they describe the 
physical and the environmental properties of the cameras. Next step is testing and 
error measurement: using several space points and testing the conversion from 3D 
to 2D points, the final result is an average error of less than 1%. Also, these 
matrixes are optimized (second step) using the Faugeras mechanism [16]. After 
testing, new matrixes work with an error even smaller than the one obtained before 
(around 0.8%). 

Fig. 3. Calibration system description 



The main question is: having the 2D point of one retina, how can it be determined 
which point in the other retina corresponds to the same 3D point? This is necessary in 
order to obtain the coordinates of the 3D point and this process is known as 
the ‘matching’ step. To do that, in this work, epipolar geometry is applied to obtain 
the epipolar lines related to these points. Next, the mechanism used to calculate the 
epipolar lines from both projection matrixes will be shown. 

4 Epipolar Lines Applied to a Calibrated AER Stereo-Vision 
System 

The aim of this work, given a 2D point coordinates from one retina, is to discriminate 
the possible matches on the second retina. To do this, the epipolar line within the 
matching point will be calculated. Summarizing the classical machine vision 
principles, given a camera matrix P and a 3D point coordinates (X, Y, Z); the 2D 
point represented on the retina (U, V) is obtained using equation 1. 

(1) 

To obtain the epipolar line, the inverse process will be done: given a 2D point from 
one of the retinae, the corresponding 3D point should be determined and, with its 
information and using the camera matrix of the second retina, the 2D coordinates of 
the second one will be obtained. However, a transformation from 3D to 2D entails a 
loss of information, so the distance information (coordinate Z) is impossible to obtain 
given only one 2D point (inverse process). So, how can the matching point (2D point 
in the other retina) be obtained? As said before, the final result will give the line 
within which the matching point is, not the exact point itself. The triangulation 
process is necessary to find the intersection of the rays projected from both retinae. 
Using the Pin-Hole model and both camera matrixes, the equation system can be 
modified to obtain the fundamental matrix (combining both retinae cameras), 
resulting on equation 2. 

,

(2) 

where M is the spatial point, (ui, vi) are the coordinates of the 2D points projected 
on the left retina, (u’i, v’i)  are the coordinates of the 2D point projected on the right 
retina, PL is the left camera matrix, PR is the right camera matrix and F is the 
fundamental matrix (to obtain a 3D point given both 2D points). This system is solved 
using Singular-Value Decomposition (SVD), obtaining the resulting points in the last 



column of the V matrix: (V1,4  V2,4  V3,4  V4,4)
t. Finally, dividing by the scale factor: 

(V1,4/V4,4   V2,4/V4,4   V3,4/V4,4   V4,4/V4,4)
t ;which is: (Xi   Yi   Zi   1)t. The system F, can 

be obtained step by step, starting on the projection matrixes. Demonstration: 

(3) 

Using t: (4) 

Grouping the coefficients of the 3D coordinates: 

(5) 

Changing the name of the previous expressions for a1, b1, c1, d1, a2, b2, c2 and d2: 

(6) 

With the given values of one vision sensor, two equations with three unknown 
terms can be obtained. Summarizing, given the 2D point of one retina, the line in 
space, where the 3D point is, can be calculated (line l). Using two 3D random 
points situated on l and calculating its projections on the second retina, two 2D 
points are obtained. The line obtained by linking these 2D points is known as the 
‘epipolar line’ (placed on the second retina): the matching point has to be situated 
over it. Using two random Z coordinates (i.e. -10 and 10), two 3D points are 
calculated. With these points, their projections over the second retina are calculated 
using its camera matrix. After that, the projected line on the second retina can be 
shown using the inclination calculated between both 2D points. If there is no error, 
the matching point must be situated on this line. Next, results and error 
measurements will be shown. 

5 Matching Results and Error Measurement 

With the results, epipolar lines between both retinas have been calculated. To see all 
the data, Fig.4 shows the epipolar lines obtained from the opposite retina and the 
‘target’ points of this retina. In one case, it shows the epipolar lines calculated from 
the right retina with the points projected on the left retina. The other case is the 
opposite. To appreciate them better, examples have been run with 64 and 8 points. 



Fig. 4. Epipolar lines VS 2D projected points 

It is easier to understand the results by watching the 8-point tests. For example: in 
the bottom-left image (left retina), the first point is the one in the left. A red asterisk 
can be seen, which is the point captured by the left retina, and a blue line passing next 
to the point, which is the epipolar line obtained by the right retina and projected on 
the left retina. As it can be seen, the point is situated over the line (almost no error). 

To calculate the error, the distance between each epipolar line to the point itself has 
been calculated. Average error for the 64-point test is 2.2299 pixels per point for the 
left retina and 1.3957 for the right one. For the 8–point test the average error is 1.4240 
for the left retina and 1.2239 for the right one. The obtained error is tolerable. 

6 Conclusions 

In this work, a matching algorithm based on epipolar geometry and a calibrating step 
has been tested under a neuromorphic AER-DVS stereo vision system. Mathematical 



principles have been shown and demonstrated. The implemented system has been 
detailed, tested using sixty-four 3D points coordinates and its error has been 
measured. All the results, errors, graphs and formulas have been presented. 

The proposed system obtains a tolerable error (less than 2 pixels per point) to work 
under a spiking system with two DVS128 retinae [11]. It has been proved that this 
mechanism works with spiking data and under the restrictions of an AER system. 

As further research, the next step is to implement the full mechanism into 
programmable hardware, like FPGAs, in order to obtain an autonomous system 
without the computer intervention. 
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