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Abstract In this paper, we introduce a new problem related to bipartite graphs called 
minimum maximal k-partial-matching (MMKPM) which has been modelled by 
using a relaxation of the concept of matching in a graph. The MMKPM problem can 
be viewed as a generalization of the classical Hitting Set and Set Cover 
problems. This property has been used to prove that the MMKPM problem is NP-
Complete. An integer linear programming formulation and a greedy algorithm have 
been proposed. The problem can be applied to the design process of finite state 
machines with input multiplexing for simplifying the complexity of multiplexers.

Keywords Bipartite graph · Partial-matching · NP-completeness · Hitting set · Set 
Cover · Finite state machine

1 Introduction

Bipartite graphs are widely used in practical applications as a model of the interaction 
between two different types of objects [1]. Classical NP-hard problems as Hitting 
Set (HS) or Set Cover (SC) can be modelled with bipartite graphs.

The HS problem can be simply described as follows. Given a collection C = {S1, 
S2, . . . ,  Sn} of nonempty subsets of a finite set S, the goal is to find the smallest 
subset H ⊆ S that hits every set of C , i.e., Si ∩ H �= ∅ for all Si ∈ C . This problem 
can be modelled with a bipartite graph whose right vertices represent the elements of 
S, whose left vertices represent the subsets Si ∈ C , and whose edges represent
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the membership relation between elements and subsets. In this graph, the aim of the 
HS problem is to find the smallest subset of right vertices that cover all left vertices. 
Similarly, the SC problem can be modelled by interchanging the role of the left and 
right vertices. It is known that the SC problem is equivalent to the HS problem [2].

In this paper, we present a new problem related to bipartite graphs called minimum 
maximal k- partial- matching which can be informally described as follows. 
Given a bipartite graph, the aim is to form k sets by selecting for each left vertex 
all of its adjacent right vertices up to k, and adding each of them to one different set. 
The goal of the problem is to minimize the sum of cardinalities of these sets. This 
problem has been described by using a relaxation of the concept of matching in a 
graph.

In the case of k = 1, the purpose of the MMKPM problem is to find the subset of 
the right-vertices with minimum cardinality that cover all left-vertices. Clearly, this 
problem is equivalent to the HS and SC problems when they are modelled with bipar-
tite graphs. Therefore, the MMKPM problem can be viewed as a generalization of the 
HS and SC problems.

The original motivations for considering MMKPM problem arose in the context 
of digital design of Finite State Machines with Input Multiplexing (FSMIM) [7]. The 
complexity of the multiplexers of a FSMIM can be reduced by an appropriate assign-
ment of inputs to multiplexers. The problem of finding the best assignment can be 
mapped onto the MMKPM problem.

The remainder of this paper is organized as follows. We provide the formal defini-
tion of the presented problem in Sect. 2. Its NP-completeness is proved in Sect. 3. An  
Integer Linear Programming (ILP) formulation and a greedy algorithm are presented 
in Sects. 4 and 5, respectively. We provide experimental results obtained by the pro-
posed formulation and algorithm in Sect. 6. Finally, a practical application is shown 
in Sect. 7.

2 Definitions and problem statement

Let G = (U ∪ V, E) be a bipartite graph with edge set E ⊆ U × V . The degree of a 
vertex s ∈ U ∪ V is denoted by dG (s), and the set of the edges in E which are incident 
with s is denoted by E(s). The minimum and maximum degree of the vertices in U are 
denoted by δU (G) = min{dG (u)|u ∈ U } and �U (G) = max{dG (u)|u ∈ U }, respec-
tively. Finally, V (E ′) and U (E ′) denote the set of vertices in V and U , respectively, 
which are incident with any edge of of E ′ ⊆ E .

A matching in G is a set of edges M ⊆ E such that no two edges in M share 
a common endpoint. Different relaxations of this definition have been proposed for 
bipartite graphs [4].

In this paper, we define a partial-matching in a bipartite graph G as a set of edges, 
E ′ ⊆ E , such that no two edges in E ′ share a common endpoint in U . Note that this 
definition allows the edges in E ′ to share common endpoints in V . Let us say that 
a partial-matching is perfect if each vertex in U is incident with exactly one edge in 
the partial-matching. Note that a perfect partial-matching contains the largest possible 
number of edges.



Let us define a k-partial-matching in a bipartite graph G as a collection P =
{P1, P2, . . . , Pk} of k disjoint partial-matchings, i.e., Pi ∩ Pj = ∅ for all i �= j .

Let us define a maximal k-partial-matching in a bipartite graph G as a k-partial-
matching that contains the maximum number of edges, i.e., a k-partial-matching P =
{P1, P2, . . . , Pk} such that | ∪k

i=1 Pi | is maximum. It is easy to see that all the partial-
matchings P1, P2, . . . , Pk are perfect iff k ≤ δU (G).

The MMKPM problem can be described as follows. Given a bipartite graph G =
(U ∪ V, E) and a positive integer k ≤ �U (G), the objective is to find a maximal
k-partial-matching P = {P1, P2, . . . , Pk} in G such that

∑k
i=1 |V (Pi )| is minimum.

3 NP-completeness

The MMKPM problem can be described as the following decision problem:

MINIMUM MAXIMAL k-PARTIAL-MATCHING
Instance: Graph bipartite G = (U ∪ V, E), positive integer k ≤ �U (G),
positive integer B.
Question: Is there a maximal k-partial-matching P = {P1, P2, . . . , Pk} in G
such that

∑k
i=1 |V (Pi )| ≤ B?

Theorem 1 The MMKPM problem is NP-complete

Proof It is easy to see that MMKPM ∈ NP since a nondeterministic algorithm needs
only guess k subsets of edges P = {P1, P2, . . . , Pk} and check in polynomial time
whether P is a maximal k-partial-matching and whether

∑k
i=1 |V (Pi )| ≤ B.

The NP-completeness of MMKPM problem has been demonstrated by restriction
to the HS problem allowing only instances with k = 1. The NP-completeness of the
HS problem has been proved in [5]. The HS problem can be described as the following
decision problem:

HITTING SET
Instance: Collection C = {S1, S2, . . . , Sn} of nonempty subsets of a finite set
S, positive integer B ≤ |S|.
Question: Is there a subset H ⊆ S with |H | ≤ B such that H contains at least
one element from each subset in C?

Let I = ((S, C), B) be an instance of the HS problem where S = {s1, s2, . . . , sn}
and C = {S1, S2, . . . , Sm}. We transform I into an instance of the MMKPM problem
I ′ = ((G, K ), B) as follows. A bipartite graph G = (U ∪ V, E) is constructed by
setting U = {u1, . . . , um} and V = {v1, . . . , vn}, and by letting (ui , v j ) ∈ E iff
s j ∈ Si . It is not hard to see that G can be constructed in polynomial time.

In the remaining of the proof, we restrict the instance I ′ to k = 1. Since all sub-
set Si ∈ C are nonempty, δU (G) ≥ 1. So, any feasible solution of I ′ is a maximal
1-partial-matching P = {P1} where P1 is a perfect partial-matching.

We claim that (S, C) has a hitting set H ⊆ S with |H | ≤ B iff G has a maximal
1-partial-matching P = {P1}with |V (P1)| ≤ B. First, suppose that H ⊆ S is a hitting
set with |H | ≤ B. Consider V ′ = {vi ∈ V |si ∈ H}, since H contains at least one
element from each Si ∈ C , each vertex in U is adjacent to at least one vertex in V ′.



So, a maximal 1-partial-matching P = {P1} can be trivially created by selecting for
each vertex in U exactly one edge incident with any vertex in V ′. It is easy to see that
|V (P1)| ≤ |V ′| = |H | ≤ B.

Conversely, suppose that P = {P1} is a maximal 1-partial-matching in G with
|V (P1)| ≤ B. Consider H = {si ∈ S|vi ∈ V (P1)}, since P1 is a perfect partial-
matching in G, for all ui ∈ U there exists (ui , v j ) ∈ E such that v j ∈ V (P1). This
implies that for all Si ∈ C there exists s j ∈ H such that s j ∈ Si . So, H is a hitting set
such that |H | = |V (P1)| ≤ B. ��

4 Integer Linear Programming formulation

In this section, we propose a 0/1 ILP formulation for the MMKPM problem. In order
to represent a k-partial-matching P = {P1, P2, . . . , Pk} in a bipartite graph G =
(U ∪ V, E), we define the sets of binary variables xe,i ∈ {0, 1} and yv,i ∈ {0, 1} as
follows:

xe,i =
{

1 if e ∈ Pi ,

0 otherwise.
∀e ∈ E, i = 1, . . . , k

yv,i =
{

1 if v ∈ V (Pi ),

0 otherwise.
∀v ∈ V, i = 1, . . . , k

Then, the MMKPM problem can be formulated in the following way:

minimize
k∑

i=1

∑

v∈V
yv,i (1)

subject to
∑

e∈E(u)

xe,i ≤ 1 ∀u ∈ U, i = 1, . . . , k (2)

k∑

i=1
xe,i ≤ 1 ∀e ∈ E (3)

k∑

i=1

∑

e∈E(u)

xe,i = min k, dG(u) ∀u ∈ U (4)

xe,i ≤ yv,i ∀e ≡ (u, v) ∈ E, i = 1, . . . , k (5)

yv,i ≤ ∑

e∈E(v)

xe,i ∀v ∈ V, i = 1, . . . , k (6)

In (1), the cardinality of V (Pi ) is calculated as
∑

v∈V yv,i . The constraint (2) ensures
that each Pi has at most one edge incident with each vertex in U , i.e., that Pi is a partial-
matching. The solution is a k-partial-matching because the constraint (3) guarantees 
that an edge can not belong to different partial-matchings. Furthermore, the k-partial-
matching of the solution is maximal due to the constraint (4) since it requires that the 
k-partial-matching contains the maximum number of edges incident with each vertex 
in U . Finally, the constraints (5) and (6) ensure that the values of the variables xe,i and 
yv,i are coherent. The constraint (5) guarantees that an edge e ≡ (u, v)  can belong to



the partial-matching Pi only if the vertex v ∈ V (Pi ), i.e., xe,i can be equal to 1 only
if yv,i = 1. On the other hand, the constraint (6) imposes that a vertex v can belong
to V (Pi ) only if there exists an edge e ≡ (u, v) ∈ Pi .

5 Greedy algorithm

A natural greedy strategy to solve an instance of MMKPM is to construct the k-partial-
matching by finding the largest set of edges sharing a common endpoint in V that
can be added to some partial-matching and adding them to the corresponding partial
matching. This procedure must be repeated until the k-partial-matching obtained is
maximal.

Algorithm 1 shows an explicit description of the proposed greedy algorithm based
on the above strategy. To avoid ambiguity, the subscripted notations UG , VG , and EG

are used to denote the vertex set U , the vertex set V , and the edge set E of a graph G,
respectively. Given a bipartite graph G and a partial-matching E ′ ⊆ EG , αG(v, E ′) =
{(u, v) ∈ EG(v) | u /∈ UG(E ′)} is the largest set of edges incident to the vertex v ∈ VG

such that E ′ ∪ αG(v, E ′) continues to be a partial-matching.
The algorithm starts with k empty partial-matchings P = {P1, P2, . . . , Pk} and, in

each iteration, simply looks for the pair (v, Pi ) that gives the largest set αG(v, Pi ). The
obtained set of edges is added to Pi and deleted from G in order to ensure that the final
P is a k-partial-matching. The algorithm terminates when |EG | is equal to κ , which
is the number of edges that remain in G when the k-partial-matching P is maximal.

Algorithm 1 Greedy algorithm for MMKPM
Input: graph bipartite G, positive integer k
Output: maximal k-partial-matching P = {P1, P2, . . . , Pk }
1: Pi ← ∅ for all Pi ∈ P
2: κ ← |EG | −

∑
u∈UG

min k, dG (u)

3: while |EG | > κ do
4: (v, Pi )← arg max

(v,Pi )∈V×P
|αG (v, Pi )|

5: Pi ← Pi ∪ α(v, Pi )

6: G ← G − αG (v, Pi )

7: end while

6 Experimental results

Both the greedy algorithm and the ILP formulation have been coded using SAGE [8].
The ILP formulation has been solved using the solver Gurobi 4.6 [9] as the back end
of SAGE. The experiments have been executed in an Intel(R) Core (TM) i7 CPU 860
at 2.80Ghz with 8GB of RAM running Linux 64 bits (kernel 3.0.15).

The test data set consists of 384 MMKPM instances obtained from 96 randomly
generated graphs for which |V | takes the values 20 and 50; |U | takes the values 0.5·|V |
and 1.5 · |V |; �U (G) takes the values 0.4 · |V | and 0.7 · |V |; and finally, |E | takes the



values 0.4 · |U | ·�U (G) and 0.7 · |U | ·�U (G). For each set of values, six different
graphs have been generated without any isolated vertex. Each graph has been used to
generate different instances of MMKPM for which k takes the four equidistant values
between 2 and �U (G), both included. The experiments have been executed with a
time limit of 2400 seconds.

Table 1 summarizes the results obtained by the ILP formulation and the greedy
algorithm. The table shows different statistics calculated over the six random instances
of each problem size (determined by |U |, |V |, |E |,�U (G), and k). Hereinafter, we
refer to the problem instances solved to optimality by the ILP formulation as “solved

Table 1 Experimental results obtained by ILP formulation and greedy algorithm

Grafo ILP Greedy

|V | |U | |E | �U (G) k Solved Gap R-Gap Time O-Gap Gap Time

20 10 32 8 2 6 – 0.83 0.05 2.80 – 0.01

20 10 32 8 4 6 – 0.00 0.06 0.98 – 0.02

20 10 32 8 6 6 – 0.00 0.08 0.00 – 0.02

20 10 32 8 8 6 – 0.00 0.10 0.00 – 0.03

20 10 56 8 2 6 – 3.70 0.06 6.94 – 0.01

20 10 56 8 4 6 – 6.52 0.25 8.27 – 0.02

20 10 56 8 6 6 – 4.66 0.64 4.45 – 0.03

20 10 56 8 8 6 – 2.38 0.59 2.34 – 0.03

20 10 56 14 2 6 – 4.76 0.06 0.00 – 0.01

20 10 56 14 6 6 – 0.00 0.12 2.83 – 0.02

20 10 56 14 10 6 – 0.88 0.32 0.00 – 0.04

20 10 56 14 14 6 – 0.00 0.25 0.00 – 0.05

20 10 98 14 2 6 – 18.58 0.11 0.00 – 0.01

20 10 98 14 6 6 – 18.44 2.49 5.73 – 0.03

20 10 98 14 10 6 – 14.09 24.93 5.85 – 0.05

20 10 98 14 14 6 – 17.78 123.62 2.00 – 0.07

20 30 96 8 2 6 – 6.19 0.16 9.90 – 0.02

20 30 96 8 4 6 – 9.10 1.69 12.86 – 0.03

20 30 96 8 6 6 – 3.17 3.18 7.26 – 0.03

20 30 96 8 8 6 – 1.59 1.36 2.31 – 0.04

20 30 168 8 2 6 – 12.16 0.45 10.10 – 0.02

20 30 168 8 4 6 – 14.86 6.00 16.37 – 0.03

20 30 168 8 6 6 – 20.23 380.28 19.41 – 0.05

20 30 168 8 8 1 9.60 23.08 1448.73 16.13 27.16 0.06

20 30 168 14 2 6 – 12.64 0.71 10.00 – 0.01

20 30 168 14 6 6 – 17.17 172.53 17.13 – 0.05

20 30 168 14 10 6 – 13.65 270.73 9.67 – 0.07

20 30 168 14 14 6 – 7.65 24.54 0.76 – 0.08

20 30 294 14 2 6 – 22.97 0.78 10.25 – 0.01



Table 1 Continued

Grafo ILP Greedy

|V | |U | |E | �U (G) k Solved Gap R-Gap Time O-Gap Gap Time

20 30 294 14 6 6 – 20.01 232.51 12.97 – 0.07

20 30 294 14 10 0 15.60 – – – 30.05 0.11

20 30 294 14 14 0 19.12 – – – 29.77 0.13

50 25 200 20 2 6 – 11.66 0.62 11.87 – 0.02

50 25 200 20 8 6 – 2.11 114.74 11.40 – 0.19

50 25 200 20 14 6 – 0.00 5.71 2.62 – 0.30

50 25 200 20 20 6 – 0.00 2.18 0.00 – 0.42

50 25 350 20 2 6 – 16.65 1.10 11.95 – 0.02

50 25 350 20 8 0 13.27 – – – 21.81 0.22

50 25 350 20 14 0 17.48 – – – 28.47 0.50

50 25 350 20 20 0 17.83 – – – 27.43 0.66

50 25 350 35 2 6 – 19.59 1.24 13.22 – 0.02

50 25 350 35 13 0 13.50 – – – 25.99 0.47

50 25 350 35 24 1 4.37 0.00 766.37 10.71 11.34 0.69

50 25 350 35 35 5 2.31 0.39 101.41 0.77 2.31 0.93

50 25 612 35 2 6 – 26.16 5.52 2.38 – 0.02

50 25 612 35 13 0 26.93 – – – 32.64 0.53

50 25 612 35 24 0 37.20 – – – 38.82 1.30

50 25 612 35 35 0 44.27 – – – 29.64 1.56

50 75 600 20 2 6 – 19.76 11.22 11.95 – 0.05

50 75 600 20 8 0 27.63 – – – 44.02 0.49

50 75 600 20 14 0 20.75 – – – 33.32 0.65

50 75 600 20 20 0 10.40 – – – 17.10 0.79

50 75 1050 20 2 6 – 27.05 32.26 10.99 – 0.06

50 75 1050 20 8 0 31.57 – – – 41.67 0.70

50 75 1050 20 14 0 55.13 – – – 56.06 1.38

50 75 1050 20 20 0 77.42 – – – 54.39 1.58

50 75 1050 35 2 6 – 28.67 59.34 9.56 – 0.06

50 75 1050 35 13 0 58.68 – – – 55.87 1.35

50 75 1050 35 24 0 80.00 – – – 40.43 1.66

50 75 1050 35 35 0 81.33 – – – 23.05 2.10

50 75 1837 35 2 6 – 35.57 111.99 7.64 – 0.06

50 75 1837 35 13 0 60.00 – – – 48.87 1.76

50 75 1837 35 24 0 – – – – – 3.75

50 75 1837 35 35 0 – – – – – 3.78

35.0 35.0 438.6 19.2 10.6 0.64 34.57 10.82 49.76 6.80 34.17 0.46

instances”; on the other hand, we refer to the instances that could not be solved by the
ILP formulation within the imposed time limit as “non-solved instances”. In the case
of ILP formulation, “Solved” represents the number of solved instances; “Gap”, the



average final percentage optimality gap for non-solved instances; “R-Gap”, the aver-
age percentage gap between the root relaxation and the incumbent for solved instances; 
and “Time”, the average amount of time in seconds spent by solved instances. In the 
case of the greedy algorithm, “Gap” represents the average percentage gap between 
the solution of the greedy algorithm and the best bound found by the ILP formulation 
for non-solved instances; “O-Gap”, the average percentage gap between the solution 
of the greedy algorithm and the optimal objective function value found by the ILP 
formulation for solved instances; and “Time”, the average amount of time in seconds 
spent by the greedy algorithm. The last row shows the average of the different measures 
for all experimental results.

The ILP formulation found an optimal solution in 247 instances. It can be observed 
that the number of solved instances tends to decrease with k, specially for hight values 
of �U (G). This shows that k has a significant influence on the complexity of the 
problem, as expected. The “R-Gap” is less than 5 % in the 40 % of the cases and equal 
to 0 in the 33 %. The greedy algorithm found an optimal solution in 103 instances. 
As expected, the greedy algorithm is faster than the ILP approach in all experiments. 
However, the “Gap” in the ILP formulation is less than in the greedy algorithm in the 
70 % of the non-solved instances (the 12 instances related to the last two problem sizes 
have been excluded because the solver could not calculate any incumbent within the 
imposed time limit). The average percentage difference between the gaps obtained by 
the ILP formulation and greedy algorithm in the consider cases was 36 %. The average 
“O-Gap” is equal to 6.80 % which corresponds to an approximation ratio of 1.07. In 
the case of non-solved instances, the average “Gap” of the greedy algorithm is 34.17 %
which correspond to an approximation ratio of at most 1.52. The approximation ratio 
is lower than 2.28 in all experiments.

7 Practical application

A FSMIM is an special type of Finite State Machine (FSM) oriented to the memory-
based implementation of FSMs [3]. A FSM is a behavioural model composed of inputs 
and outputs, where the outputs depend on the current and previous inputs. A FSM is 
defined as a set of states where the present state determines the input-output relation-
ship at each instant of time. The next state and outputs of the FSM are determined 
by the present state and inputs. The implementation of FSMs is an important area of 
research on Digital Design.

The aim of FSMIMs is to take advantage of the fact that, usually, a state is sensitive 
only to a subset of inputs (note that the number of these inputs can be different for each 
state). A multiplexer is a digital device with n input lines (hereinafter called channels) 
that allows to select one channel to connect it to the output line. The complexity of 
multiplexers grows with the number of channels. In a FSMIM, a set of multiplexers 
selects the appropriate subset of inputs for the current state. The largest subset of 
inputs determines the number of multiplexers. Therefore, there can exist states that 
are sensitive to a smaller number of inputs than the number of multiplexers. For these 
states, the FSMIM ignores the inputs selected by the unnecessary multiplexers. One of 
the most critical issues in the FSMIM design process is to simplify the complexity of



(a) (b)

Fig. 1 An example of application of the MMKPM problem for simplifying the multiplexers of a FSMIM:
a inputs of each state, and b connection of inputs to multiplexers

the multiplexers by reducing its number of channels [3,7]. The problem of minimizing
the number of channels of all multiplexers can be modelled as the MMKPM problem
as follows:

Let U and V represent the set of states and inputs of a FSMIM, respectively.
A bipartite graph G = (U ∪ V, E) is created such that (u, v) ∈ E iff the state u ∈ U
is sensitive to the input v ∈ V . The number of multiplexers is given by k = �U (G).
Each maximal k-partial-matching P = {P1, P2, . . . , Pk} in G represents a set of mul-
tiplexers M = {M1, M2, . . . , Mk} of the FSMIM: the set of inputs connected to Mi

is given by V (Pi ), each edge (u, v) ∈ Pi implies that v is the input selected by Mi

for the state u, and the total number of channels of M is given by
∑k

i=1 |V (Pi )|.
All appropriate inputs for each state can be selected if and only if P is maximal and
k = �U (G). So, the set of multiplexers with the least number of channels is given by
the minimum maximal k-partial-matching in G.

The MMKPM problem has been applied to a set of FSM benchmarks [6] by solv-
ing the ILP formulation with Gurobi 4.6 [9]. As an example, we present the results
obtained by the test case sand. This FSM has 32 states and 11 inputs. However, the
states sensitive to the same subset of inputs are represented by the same vertex in U .
This reduces the significant set of states to 12. Figure 1 shows the subset of inputs
related to each state (Fig. 1a) and the connection of inputs to multiplexers established
by the solution (Fig. 1b). The largest subset of inputs has 7 inputs (this determines
the value of k). The total number of channels of the solution is equal to 12. As can
be observed, the optimal solution connects the input i4 to multiplexer M1 and M6.
Therefore, no solution can connect each input to exactly one multiplexer. The solution
can be interpreted by observing, e.g., the state s10: the multiplexers M2, M5, M6, M3,
and M1 select the inputs i8, i11, i5, i6, and i7, respectively, when s10 is the current state.
The FSMIM is designed in such way that the channels selected by the multiplexers
M4 and M7 have no influence on the state s10.



References

1. Asratian, A.S., Denley, T.M.J., Häggkvist, R.: Bipartite Graphs and Their Applications. Cambridge
University Press, New York (1998)

2. Ausiello, G., D’Atri, A., Protasi, M.: Structure preserving reductions among convex optimization prob-
lems. J. Comput. Syst. Sci. 21(1), 136–153 (1980)

3. Garcia-Vargas, I., Senhadji-Navarro, R., Jimenez-Moreno, G., Civit-Balcells, A., Guerra-Gutierrez, P.:
Rom-based finite state machine implementation in low cost fpgas. In: IEEE International Symposium
on Industrial Electronics, 2007. ISIE 2007, pp. 2342–2347 (2007)

4. Harvey, N.J.A., Ladner, R.E., Lovász, L., Tamir, T.: Semi-matchings for bipartite graphs and load
balancing. J. Algorithms 59(1), 53–78 (2006)

5. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.)
Complexity of Computer Computations., pp. 85–103. Plenum Press, New York (1972)

6. McElvain, K.: IWLS’93 benchmark set: Version 4.0 (1993)
7. Senhadji-Navarro, R., Garcia-Vargas, I., Jimenez-Moreno, G., Civit-Ballcels, A.: Rom-based fsm imple-

mentation using input multiplexing in fpga devices. Electron. Lett. 40(20), 1249–1251 (2004)
8. Stein, W.: Sage: Open Source Mathematical Software. The Sage Group (2008). http://www.sagemath.

org
9. Gurobi Optimization, Inc.: Gurobi Optimizer Reference Manual. http://www.gurobi.com

http://www.sagemath.org
http://www.sagemath.org
http://www.gurobi.com

	The minimum maximal k-partial-matching problem
	Abstract
	1 Introduction
	2 Definitions and problem statement
	3 NP-completeness
	4 Integer Linear Programming formulation
	5 Greedy algorithm
	6 Experimental results
	7 Practical application
	References


