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Abstract—Deep Learning algorithms have become state-of-the-
art methods for multiple fields, including computer vision, speech
recognition, natural language processing, and audio recognition,
among others. In image vision, convolutional neural networks
(CNN) stand out. This kind of network is expensive in terms of
computational resources due to the large number of operations re-
quired to process a frame. In recent years, several frame-based chip
solutions to deploy CNN for real time have been developed. Despite
the good results in power and accuracy given by these solutions, the
number of operations is still high, due the complexity of the current
network models. However, it is possible to reduce the number of
operations using different computer vision techniques other than
frame-based, e.g., neuromorphic event-based techniques. There ex-
ist several neuromorphic vision sensors whose pixels detect changes
in luminosity. Inspired in the leaky integrate-and-fire (LIF) neuron,
we propose in this manuscript an event-based field-programmable
gate array (FPGA) multiconvolution system. Its main novelty is the
combination of a memory arbiter for efficient memory access to
allow row-by-row kernel processing. This system is able to convolve
64 filters across multiple kernel sizes, from 1 × 1 to 7 × 7, with
latencies of 1.3 µs and 9.01 µs, respectively, generating a continu-
ous flow of output events. The proposed architecture will easily fit
spike-based CNNs.

Index Terms—Address-event-representation, artificial intelli-
gence, computer vision, convolutional neural networks, deep learn-
ing, DVS, FPGA, neuromorphic engineering.

I. INTRODUCTION

CONVOLUTIONAL Neural Networks (CNNs) have been
demonstrated to be one of the most powerful approaches

for solving machine vision tasks. The relatively simple su-
pervised training and their efficiency extracting features from
a scene, make this kind of network useful in different fields,
such as medicine [1], [2] or robotics [3]. CNNs are usually
trained using back propagation algorithms, which keep the
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CNNs output matched to a label for a given input image from
a dataset. The training of the network is usually performed
by hardware accelerators, such as Graphical Processor Units
(GPUs) or high-end servers.

CNN models, such as VGG19 [4] or Alexnet [5], are compu-
tationally expensive because frame-based convolutions require
billions of multiplication and accumulation operations per im-
age. Despite the fact that many smart phones include small
GPUs, deploying a CNN on it requires more power consump-
tion and makes it not ideal due to the limited battery capacity
of these devices. There exist many ASIC implementations of
CNN accelerators that reduce the power consumption apply-
ing different techniques to decrease the number of operations
(i.e., discarding the multiplication of those pixels whose value
is null) [6] and pixel precision without losing accuracy [7].
Although these accelerators achieve good results running com-
putationally expensive network models, as previously cited, the
number of operations is still high. However, there are other tech-
niques, such as neuromorphic event-based techniques, that can
decrease the number of operations and power consumption.

The concept of neuromorphic engineering is based on the
analogy between the behavior of transistors, which is biased
in the subthreshold region, and the physics of biological neu-
rons [8]. This approach opened a new processing paradigm,
which takes inspiration from the structure and functioning of
the human brain, because the information is encoded in spikes
(also called events) that are processed in parallel by massive
layers of neurons interconnected via synapses [9].

Based on this kind of processing, several event-based sen-
sors have been developed, such as the Dynamic Vision Sensor
(DVS) [10]–[12] or artificial cochleas [13]–[15]. DVS repre-
sents a scene in a visual way, where each pixel is a neuron that
generates a spike stream depending on its luminosity changes.
A frame-based camera records all the pixel values of the scene
even if parts of it has not changed. However, a flow of events
of the DVS represents only the moving reality; it does not need
to load all the static pixels of an image. This property reduces
the total number of pixels to be processed. Furthermore, there is
no sample period in these devices. As soon as a pixel changes,
an event is produced and sent out from the sensor. Event-based
processing is, therefore, asynchronous and continuous [16].

Events from neuromorphic vision sensors can be used to
solve machine vision tasks, such as object tracking or pattern
recognition. Regarding pattern recognition, there are many
techniques to extract patterns, such as HOTS [17], which does
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not implement any type of spiking neural network. Techniques
of this kind are implemented in software or deployed in existing
neuromorphic platforms, such as Spinnaker [18] or Brain-
Scales [19]. Spiking convolutional neural networks (SCNN)
replicate the same concept as CNNs in the spiking domain.
SCNNs are highly accurate and provide high efficiency in terms
of power and speed, compared to conventional frame-based
CNNs [20], [21]. These spike- or event-based techniques hold
the main advantage of pseudo-simultaneity [20] , which allows
to start the processing with the arrival of the first event coming
from the sensor, and therefore, obtaining an output while the
sensor is still producing events. For SCNN it implies a different
concept from frame-based CNN. The main disadvantage of
SCNNs is the RAM memory: a CNN only needs RAM for com-
puting one layer, while a SCNN requires to store the membrane
potential state of the whole network to update it properly when
an event arrives. In the same way as chip accelerators in frame-
based domains, many solutions have been developed for FPGA
and ASICs [22]–[24]. A common problem in FPGA convolution
accelerators is the memory access for kernel weights; e.g., for
a 7 × 7 kernel, 49 memory accesses with incrementing latency
and bottlenecks are usually required. However, it can be im-
proved by changing the way in which data are accessed. Row by
row has been implemented on chips before [25], [26], but it was
not successfully implemented in old FPGAs since the memory
resources of these devices were smaller and slower (i.e., 18 Kb
on Spartan 6 vs 36 Kb on 7-families, they not support of direct
cascade of BRAM or absence of integrated FIFOs for Spartan-6
[27]), allowing to implement in an efficient way several inde-
pendent convolution engines with pixel-by-pixel processing.
In this paper, an event-based multi-convolution engine is
presented. This engine is based on the leaky integrate-and-fire
neuron model (LIF). It applies kernel values over neurons,
storing the membrane potentials in embedded memory, and
firing events when neurons reach threshold values. Properties
of the LIF neuron, such as refractory period and leakage, have
been implemented. The main novelty of this design is that
memory is read/written row by row, reducing the latency to
process an input event. The system was implemented in FPGA
(Xilinx Zynq) and tested with the application of different
convolution kernels, visualizing and studying the output.

The paper is organized as follows: Section II describes the
Spiking Convolution, while Section III explains how the en-
gine works. Section IV presents the test scenario that was used
to verify the system functionality. And finally, the experimen-
tal results and conclusions are presented in section V and VI,
respectively.

II. SPIKE-BASED CONVOLUTIONS

CNNs models are commonly formed by three layers: (1) a
convolution layer, where images are convolved; (2) a pooling
layer, where an image is sub-sampled to reduce its size in order
to decrease computation in future layers, and (3) a non-linearity
layer, e.g., RELU [28].

In frame-based image processing, the convolution operation
consists in applying a kernel matrix to a pixel value, multiply-
ing kernel values with corresponding pixels and adding these

results together as a single value. The convolution is performed
by sliding the kernel over all pixels of the image, commonly
starting at the top left corner. In convolution, the zero padding
technique is commonly used to process boundary pixels; other
convolution implementations simplify the computation by skip-
ping the boundaries. Mathematically, it is defined as shown in
Equation 1, where K is an NxM kernel matrix, X is the input
image and Y is the convolved image.

∀i,j → Y (i, j) =
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K (a, b) · X (a + i, b + j)

(1)

Y(i, j) is defined by the corresponding input pixel X(i,j) and
the weighted adjacent pixels, scaled by K values [29].

However, in an event-based processing system, not all pixels
are always processed because neuromorphic sensors get lumi-
nosity changes of the actual scene, and these changes are trans-
mitted as events. An event is represented with an (x, y, p) tuple
that corresponds to the pixel address (x, y) of an image that is
changing, and a polarity bit (p) that indicates if the pixel is ON
or OFF. ON polarity means that the luminosity detected by the
pixel in the present state is higher than the luminosity detected
in the previous state, while OFF polarity means the opposite:
the luminosity detected in the present state is lower than the
luminosity detected in the previous state [30]. In a spiking con-
volution an input image X is coded in such a way that each pixel
X(i, j) is represented by a number of events of a visual source
output (DVS retina). The results of convolution operations are
stored in a Y matrix (capacitors for analog circuits or registers or
RAM cells for digital circuits). When an input event arrives, the
corresponding pixel and its neighbors are modified in Y, adding
the convolution kernel. The following Equation (2) shows the
operation for computing each incoming event with address (i, j):

Y (i + a, j + b) = Y (i + a, j + b) + K (a, b) ,∀a, b
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Once all the events of pixel X(i,j) have been received and
calculated, the integrator value of the corresponding address Y
(i, j) accumulates X(i + a, j + b) ∀(a, b), times the value of the
kernel, obeying equation (1). In other words we are adding the
kernel value to a neighbor of outputs as many times as number
of input events. This continuous addition is equivalent to mul-
tipling the intensity of a pixel by a kernel value in frame-based
convolutions. The output of the convolution operation, at this
point, is stored in a matrix of integrators Y. The resulting matrix
Y can be sent out in several ways. In this paper, it is inspired by
LIF neuron model [31]. The continuous sum of kernel values
over a neuron increases or decreases its membrane potential de-
pending on positive or negative coefficients, respectively. When
the membrane potential of a neuron reaches a positive threshold
(PTH), a spike is generated with positive polarity and (x, y)
address, resetting its membrane potential, as is shown in Fig. 1.

A biological neuron decreases its membrane potential through
leakage when it does not receive any excitation. We have mim-
icked this property of biological neurons, because a LIF neuron



Fig. 1. Changes on the membrane potential of a neuron along time with input
events (IE).

Fig. 2. Example of event sub-sampling. The input event is shifted to the right,
dividing its value by 2.

that has not received any excitation means that it is not giv-
ing information about the scene. The leakage decay time of a
neuron and the value that the neuron decreases its potential are
parameters that allow controlling the output event rate. This im-
plies that, with a small decay time, neurons would be resetting
more often. On the other hand, a longer decay time makes neu-
rons reset their potential rarely, increasing the number of output
spikes.

Although leakage decreases the event rate at the output, the
event rate would be higher when implementing SCNN, since
one layer comprises several convolutions in parallel. A solution
to stabilize the output rate is implementing the refractory period
(RP) of the LIF neuron. Thus, if a neuron fires and generates a
spike, it should wait for a period of time before receiving any
kind of excitation.

In CNNs, a convolution layer is frequently followed by a
pooling layer [32]. In frame-based CNNs, there exist multiple
types of pooling; e.g., max-pooling applies max filter to the input
image, filtering pixels with the maximum value. In SCNN, sub-
sampling usually consists in dividing by 2 the x, y address of
the output event of a convolution stage, reducing the image size
(address space) [33]. In hardware, this step is easy to implement
with a shift operation to the x,y address one position to the right,
as is shown in Fig. 2.

III. ENGINE ARCHITECTURE

The design developed is a fully programmable digital convo-
lution system inspired in how the LIF neuron works. The archi-
tecture has three interfaces: two address-event representation
interfaces (AER) for the asynchronous handshaking protocol
of four steps, used to send and receive signals between neuro-
morphic systems. And a 32-bit digital interface used by a host

micro controller to configure the accelerator. The system is able
to compute a maximum number of 64 convolution operations in
parallel with kernel sizes from 1 × 1 to 7 × 7. These convolu-
tions are computed row-by-row in a fully shuffled way, where
one complete row is computed per clock cycle. The engine is
able to perform the pooling operation, decreasing the spatial
size of the representation to reduce computation in a SCNN.

The main novelty of the design presented in this paper is
that data from memory is accessed row by row, reducing the
latency to convolve a square kernel. We first give a high-level
overview to processing pipeline. When an input event arrives,
each convolution engine reads the membrane potential, refrac-
tory timestamps and leakage timestamps from memory. Those
values correspond to neurons around the address of the received
event and to the size of the programmed kernel, and they are
read row by row. The convolution engine compares timestamps
with two global counters, one for the refractory period and the
other one for leakage, in order to verify whether the refractory
period has been met and if leakage must be applied. Then, the
convolution engine convolves a membrane potential row with a
kernel row. Those neurons that can fire and reach their threshold
produce an event with x, y address. This process is repeated
until all rows are convolved by all kernel rows.

The following subsections describe functional blocks of the
accelerator and the processing pipeline in detail.

A. Membrane Potential, Timestamps and Kernel Memories

FPGAs are composed of different kinds of resources: lookup
tables (LUT), flip flops (FF) and Block RAM memory
(BRAM). BRAM is the main memory resource; it is a set of
dual-port RAM modules instantiated into the FPGA fabric to
provide on-chip storage for a relatively large set of data. The
available amount of these memories is device specific. In this
design, BRAM is divided into four different memory banks:
membrane potential (MP), leakage timestamps (LT), refractory
timestamps (RT) and kernel values (KV).

Memory banks for MP, LT and RT are organized in multiple
blocks that store values in rows of 8 pixels. When a convolution
engine accesses memory data, it transmits three x,y addresses of
the corresponding row to be convolved and the convolution ID
(CID). X address selects memory blocks to be accessed, using
a decoder to enable or disable the banks.

Memories store values for a maximum image size of 128 ×
128 for all convolution engines. Since the memory banks are
shared by all the convolution engines, the CID specifies the
memory region for the corresponding engine and the y address
selects which pixel row is read/written.

Each BRAM memory row stores 8 pixels with a resolution
of 8 bits for MP and 7 bits for timestamps; thus, 128 pixel row,
16 BRAMs blocks are needed. The depth of this memory is
related to the number of convolution engines (N) multiplied by
the number of rows of an image, which is 128.

Fig. 3 shows an example of how MP, RT and LT are
read/written. During an event processing, the convolution en-
gine always reads one row of two consecutive BRAMs, the one
where the input event belongs and the neighbor row. The reason



Fig. 3. Example of BRAM access for an input event with x, y address 7, 2,
respectively. Pixel with x address 7 is in block 0; this block and its neighbor
block are enabled for read/write. Y address and CID generate the memory
address, which in that case is the address 2 of convolution engine 0.

Fig. 4. Kernel memory structure and row generation for convolution
operation.

for this multiple read is that neighbor pixels of the input event
can be involved in the convolution operation, but they can be
stored in a different bank.

Following the same concept, kernel memory is organized in
one shared block, where KVs are stored row by row. When
a kernel row is read, a mask (CM) is generated in order to
let the convolution engines know which pixels of the combined
membrane potential row (MPR) will be convolved. Fig. 4 shows
the kernel memory structure and an example of how the kernel
and the data are organized for the convolution operation.

B. Leakage System

The leakage of a neuron is applied during convolution
decreasing the neuron value by a configurable decay value
(DV). Leakage was implemented using a 32-bit counter. Since
storing the content of this counter for each neuron would need
a large number of resources, only 7 bits from them are stored
in BRAM. These 7 bits are selected using a sliding window
that configures the timing resolution as a function of the input
event rate. During a convolution operation, when an input row

arrives to be convolved, all the LTs of the neurons involved
are compared with the current counter value of the leakage
counter (LC) and then they are updated with the current value
of LC. When the difference between LT and LC is higher than a
configurable leakage period, DV is applied during convolution.
However, there is one issue, even if the window of LC is
properly configured for the input event rate, it will overflow,
applying decay wrongly. In order to avoid that problem, a
solution based on distributed RAM memory was implemented.

Multiple LUTs in a Slice Memory (SLICEM) can be com-
bined in diverse ways to store larger amounts of data. LUTRAM,
or Distributed RAM, is crucial to many high-performance ap-
plications that require relatively small embedded RAM blocks,
such as FIFOs or small register banks.

The solution proposed in this paper consists of a leakage
memory composed of an array of 128 × 128 LUTRAM cells
of 2 bits each, one for each convolution engine. Fig. 5.1 shows
how leakage LUTRAM memory bank (LLM) works for a 3 × 3
kernel size. Initially (t = t0), LLM cells have a value of 0
(Fig. 5.1.a). When LC produces an overflow (Lov ), each cell
adds 1 to its content (Fig. 5.1.b). When an input event (IE) is
convolved, the content of those rows that have been accessed
during the convolution, are reset (Fig. 5.1.c). If another overflow
occurs, the cells increment their values again; those cells that
have reached a value of 2 indicate that long time has passed
since the last access to that neuron. Therefore, those neurons
would have decreased their membrane potential to 0; thus, the
next time one of those neurons is accessed, their MP is reset
(Fig. 5.1.d).

C. Refractory Period System

The refractory period is a property of biological neurons that
guarantees a separation time between two spikes generated by
the same neuron. The refractory period uses another counter
with the same sliding window mechanism as the leakage counter.
During the convolution process, RT is compared with the re-
fractory counter time (RCT). If RT is higher than RCT, the
refractory period is met and the neuron can fire if the threshold
is reached. Otherwise, this neuron must wait until the period is
met. If during convolution, a neuron fires, then it updates its RT
by the result of the RCT plus a programmable refractory period
value (RPV). The resulting timestamp indicates the next time
that neuron will be able to fire. Otherwise, its RT is 0, thus the
neuron can fire next time it will be accessed.

However, during this update, the sum operation of RCT and
RPV may produce an overflow. Therefore, this neuron would
be able to fire before meeting the refractory period. In that case,
the solution proposed uses another LUTRAM bank as the leak-
age system. The refractory LUTRAM memory bank RLM is
formed by 128 × 128 LUTRAM cells of 1 bit, When adding the
actual time to the refractory period, an overflow occurs, which
means that the neuron must wait one counter overflow and some
time before it will be able to fire. Therefore, when the refractory
counter (RC) produces an overflow, instead of adding 1, as for
leakage memories, it subtracts 1 to all cells in the RLM indi-
cating that an overflow has occurred. Fig. 5.2 shows how the



Fig. 5. Leakage and Refractory period memories system.

refractory memory system works. In this example, we suppose a
3 × 3 kernel, where each coefficient is higher than the threshold.
Therefore, after applying the kernel, 9 events would fire, and the
sum operation of RCT and RPV always produces an overflow.
When t = t0 (Fig. 5.2.a), the refractory memories are empty,
since no event has been fired yet. When an input event (IE)
arrives and it is convolved, the sum of RCT and RPV for each
neuron produces an overflow, updating the content of the refrac-
tory memories (Fig. 5.2.b). Although many IE have arrived, the
neurons cannot fire, since they have to wait for an overflow from
RC and some time (tlim ) to meet the refractory period. When
an overflow occurs, the cells are updated subtracting 1 from
their content and indicating that an overflow (tRov ) has occurred
(Fig. 5.2.c). In spite of the memories update, the neurons have
to wait some time until the refractory period is met (t = tlim).
When the refractory period is met, neurons can fire as is shown in
Fig. 5.2.d.

The leakage and refractory memory banks are inside each
convolution engine and they are read/written row by row. When
the leakage counter produces an overflow, the convolution en-
gine cannot update the membrane potential memory until the
content of each leakage memory has been updated, since the
membrane potential could be reset. However, a convolution en-
gine can read from memory during the update operation, reduc-
ing the waiting time.

D. Convolution Engine

The convolution engine module consists of a state machine,
which communicates with the memory, calculating the address
to access the membrane potential, timestamps and kernel rows.

The convolution engine requests access to a memory arbiter,
which gives access for reading or writing data. The main novelty
of this engine is that the membrane potential and kernel values
are read and processed row by row until the entire kernel is
applied, considerably reducing the number of memory accesses.

Although the convolution operation can be performed in one
clock cycle, it would need many resources, since several opera-
tions are required, such as check leakages and refractory times.

In order to reduce the resources, the convolution operation is
divided into two phases for each row: Masks step and Convolu-
tion step.

In previous sections, it was explained how the refractory pe-
riod and leakage work. In the Masks step, timestamps are ver-
ified to either apply decay or determine whether the refractory
period has been met.

Inspired by how SIMD processors work over arrays of
data [34], [35], the Mask step generates two binary masks,
one for leakage and the other for the refractory period. The
leakage mask (LM) indicates to each neuron if decay must be
applied during convolution (logical 1) or not (logical 0). On the
other hand, the refractory mask (RM) indicates if the refractory
period of a neuron has been met or not.

The Convolution step updates the timestamps, leakage mem-
ories and refractory period memories. Before convolution, the
corresponding row values of the leakage memory are checked,
as was previously mentioned. If the leakage value is 2, the mem-
brane potential is reset, otherwise the convolution operation is
performed for that neuron. During the convolution operation,
the leakage mask (LM) is multiplied by DV in order to apply
leakage to the corresponding neurons. Therefore, the convolu-
tion operation consists in adding MP to KV and subtracting DV,



Fig. 6. Kernel memory structure and row generation for convolution
operation.

if it must be applied. However, the LIF neuron cannot fire if
the refractory period is not met; thus, the convolution operation
result is multiplied by the refractory period mask. The Refrac-
tory period mask is a binary mask, which implies that, if the
refractory period is not met, the result of the convolution opera-
tion is 0, since the neuron cannot receive any kind of excitation.
Fig. 6 shows how the convolution operation is performed with
the Leakage mask and the Refractory mask.

In the convolution operation, when applying a kernel value
to a neuron, its membrane potential may reach the threshold. In
that case, this neuron must fire, resetting its membrane potential
value and storing its address to an output FIFO. The advantage
of this implementation is that it decreases the number of memory
accesses, since the data are read and convolved row by row. Fig. 7
describes the convolution process. This example highlights that
MP values are kept positive and below the threshold.

E. Hardware Implementation

The design was described as RTL with System Verilog lan-
guage and synthesized for a Zynq-7100 MMP platform using
Vivado 2016.4. This platform contains a PSoC with a Dual
ARM Cortex-A9 MPCore, called processing system (PS), and
a Kintex-7 FPGA, called programmable logic (PL), with 444 K
logic cells in the same chip.

In this implementation, Zynq is running an embedded oper-
ating system (OS) called Petalinux on the PS. The OS allows
developers to configure the system easily. This configuration
consists of a C++ program that reads a text file with the param-
eters values and transmits them to PL. PS and PL communicate
through AXI bus.1 When the system is configured, it receives
and sends events using AER interfaces.

The interfaces of the accelerator are divided into two different
buses: an AXI slave bus [36], which configures the parameters

1AXI stands for Advanced eXtensible Interface. It is an ARM-standard inter-
face bus included in the Advanced Microcontroller Bus Architecture (AMBA)
open-standard third generation. It is used in Zynq for PS and PL high perfor-
mance communication interface.

Fig. 7. Convolution phases diagram.

of the system (leakage time, decay, threshold and kernel val-
ues), and two AER buses [37]–[40], which receive events from
an event-based sensor and send output events. An architecture
diagram is shown in Fig. 8. In this work, a custom board called
SoC-Dock, which adapts Zynq-7100 interfaces to AER, was de-
signed and developed. The FPGA has a consumption of 1.608 W,
measured using Xilinx Power Analysis tools of Vivado after the
implementation step, and a clock frequency of 100 MHz for
64 convolution engines. The resources used for 64 convolution
engines are shown in Table I.

IV. EXPERIMENTAL RESULTS

The experimental setup used in this paper is shown in Fig. 9. It
consists of an AER board that receives events from the computer
through USB and sends them using AER interface to the FPGA,
where the events are processed. Output events from the FPGA
are collected by the USBAERmini2 board and visualized by
JAER software.

The experiment proposed in this paper consists in processing
multiple images from POKER-DVS datasets in order to measure
latencies and the response of the filter against different stimuli.

For the initial test, the FPGA is configured to use the 64 con-
volution engines with different kernel sizes in order to measure



Fig. 8. Block diagram of the system architecture.

TABLE I
FPGA RESOURCES

Fig. 9. Experimental Setup.

the latency from minimum kernel size 1 × 1 to maximum size
7 × 7. As was mentioned above, there exists one case that stops
the system to refresh leakage memory. Updating a row mem-
ory takes 2 clock cycles (one to read and another one to write).
Since the leakage memory has 128 rows and the clock period
is 10 ns, the delay is 2.56 μs. Although this situation occurs
sporadically, the update should coincide with the convolution
operation step. In order to obtain a more precise processing
time of the system, the average time to process an event has
been calculated after processing 10000 events from each image
with different kernel sizes.

Fig. 10. Processing time of the different kernel size with 64 convolution
engines.

Fig. 10 shows the resulting processing time obtained from
the test. The blue bars (PT) represent the processing time ob-
tained with different kernel sizes without any leakage memory
delay, which is the best case. The red bars (PT + UT) show the
worst case, which is the result of processing time plus leakage
memory delay. The orange bars (AVPT) are the average time
obtained after processing 10000 events from different poker im-
ages of Slow-Poker-DVS dataset [41]. The differences obtained
between the best case and the average time are insignificant.
This demonstrates that the worst case does not have an impact
on the processing time and the behavior of the system has a
tendency towards the best case.

The results show that the worst case would be a leakage
overflow when processing the maximum kernel size (7 × 7).
Comparing the time obtained with the latency of the neuro-
morphic sensors, such as the DVS retina, which has a latency
of 12–20 μs, this system is able to process events in real time
even if the worst case occurs. Fig. 11 shows the input event
rate for the best case and worst case previously mentioned
while Fig. 12 shows the output of Poker cards after being pro-
cessed by different convolution engines with different kernel
sizes.



Fig. 11. Input event rate for 64 convolution engines. The blue line represents
the event rate for the best processing time and the red line for the worst case.

Fig. 12. Example of filters output for different images and kernel sizes. Club
and spade card output are two Sobel filters (first row) and two directional Gabor
filters (second), while diamond card output consist of Gabor filters to detect
edges. The kernel sizes of filters for each image are 3 × 3 (club), 5 × 5 (spade)
and 7 × 7 (diamond).

In order to demonstrate a practical approach of this kind of
engine, a second experiment was developed. This experiment
consists in showing to a DVS retina a propeller with a disk
circle, with a dot inside, turning at high speed (2000 revolutions
per second). The input stimulus contains two circles: one for

Fig. 13. Input Image (a) and convolution engine output (b) that detects internal
circle. Image (c) shows a representation of all events in a period of time, blue
points represents input events and yellow points correspond to system output.
Image (d) represents the input events (blue) and output events of the system
(red).

the disk and another one for the dot, as shown in Fig. 13.a. The
purpose of this experiment is to detect the internal circle with
the 64 convolution engines configured with a 7 × 7 kernel. As
can be seen in Fig. 13.b, the histogram of the output stream of
events corresponds to the internal dot of the circle.

However, in order to give more precise results and to de-
termine the latency between input and output, the events be-
havior in this experiment was analyzed. In Fig. 13.c, the input
events(blue) are merged with the output events(yellow). As can
be seen, the output events follow the internal circle (dot).

Another visualization of the same results is shown in Fig. 13.d
where the input events(blue) are compared with the output
events (red). In this representation, the effects of the convolution
operation can be seen, where the events that do not correspond
to the internal circle are filtered. Both figures show that the la-
tency between the input and output events is insignificant, thus
it can be stated that the system is able to process input without
any delay. As is mentioned before, the design presented is able
to process traffic from a DVS in real time. In order to have an
equivalence with frame-based cameras, a DVS sensor provides
timing resolutions better than 100 kFrames/s [12].

V. ANALYSIS AND COMPARISON

Regarding other FPGA/ASIC implementations of event-
driven convolution engines, Serrano et al. [25] and Camuñas
et al. [26], set the convolutional node to update neuron states
row by row. They developed convolution chips that manage to
convolve larger kernels (up to 16 × 16 and 32 × 32 with la-
tencies of 0.35 μs and 0.14 μs, respectively), with row by row
capabilities. Although these solutions manage to perform huge
numbers of operations per second with low power consump-
tion, these chips do not implement LIF neuron properties (i.e.,
refractory period) and/or can only perform one convolution, thus
deploying medium or large SCNNs would be a complex task.
More recent ASIC solutions, such as developed in Camuñas



TABLE II
COMPARISON WITH PRIOR WORK

et al. [22], present a multi-kernel solution that is able to perform
up to 24 row by row convolutions in parallel with a maximum
kernel size of 32 × 32. The multi-kernel property allows to
perform multiple convolutions in one chip (e.g., a feature map
of a CNN); however, like the other ASICs chips, it does not
implement the refractory period of LIF neurons that is needed
for SCNNs.

On the other hand the solution proposed in Camuñas
et al. [42], based on a Spartan-6 FPGA, implements the LIF neu-
ron properties and 22 convolution modules, with multi-kernel
capabilities, but without row-by-row support, in the same chip.
This solution allows to implement many convolution cores in
FPGA with low resources.

It has been previously attempted to develop a row-by-row
multi convolution system; however, due to the memory distri-
bution of previous FPGAs, all BRAM resources had to be used
for just one convolution engine, which needs only a few rows of
the memories. The idea of sharing wasted memory resources to
implement several convolutions was also attempted but BRAM
performance was not optimal to support it [27]. In the design
proposed in this work, BRAM is shared by all convolution mod-
ules with their own memory space thanks to the memory arbiter
proposed, which performs good with new BRAM of 7-families.
This solution could be implemented in an ASIC, giving the best
performance. Different convolution nodes could implement dif-
ferent layers of a SCNN working over a shared memory (at
different memory spaces), without delaying neither the input
nor the intermediate events.

Comparing this implementation with the results presented in
Camuñas et al. [42], they achieved better latency for small kernel
sizes around 0.8 μs (1 × 1) and 1.2 μs (2 × 2). Despite the fact
that their convolution node has a similar latency for 3 × 3 and
4 × 4 kernel size, its latency get worsen for bigger kernel sizes,
obtaining a latency of 8, 12 and 15 μs for 5 × 5, 6 × 6 and
7 × 7 kernel size, respectively. Apart from latencies, the use of
computer units stands out, while other systems use digital signal
processors (DSP) or one adder for each convolution module. In
the engine presented in this paper, since the memory is shared,
only one convolution engine can read a data row in a given clock
cycle. Thus, one row operation is done per cycle, so 7 adders are
used for all convolution engines, because 7 × 7 is the maximum
kernel size supported.

With respect to the number of operations, our processor man-
ages to perform a peak of 348.06 Mop/s when 64 convolvers are
active and processing 7× 7 kernels. Although the number of op-
erations is below those of ASIC solutions: 731.429 Mop/s [25]
and 7314.29 Mop/s [26]; these solutions only implement one

convolution with larger kernels and lower latency. Our de-
sign surpasses the performance of the architecture presented
in Camuñas et al. [42] which reaches a maximum number of
68.75 Mop/s.

Due to the fact that ASIC chips only perform one convolution
operation, in order to make a fair comparison, we measured the
power consumption for one synthesized convolution module,
obtaining 0.92 mW, which is lower than the power consump-
tion of 200 mW in Camuñas et al. [26]. However, regarding the
implementation presented in Camuñas et al. [22], our design
is lower in terms of Mop/s and power consumption (36 KOp/s
and 200 mW, respectively), due to the fact that FPGAs consume
more power and are usually slower than ASIC solutions. Infor-
mation of the ASIC and FPGA designs compared in this section
are shown in Table II.

FPGA has a high static power consumption, thus effective
power is commonly measured as the difference of the system
in idle state and processing data in real time. In Idle state the
system is not processing events, and thus there is no compu-
tation. On the other hand a high input throughput, such as the
propeller experiment, represents the worst scenario, because the
system is continuously computing incomings events. The power
consumption measured is 59 mW, which is lower than other
frame-based CNN accelerators implemented in the same chip
(Zynq 7100), such as NullHop [6]. NullHop accelerator obtains
a power consumption of 750 mW. Although NullHop can per-
form 128 convolutions, the power consumption is much higher
even if we duplicate our system. This comparison demonstrates
the low power efficiency obtained by event-based systems.

VI. DISCUSSION AND CONCLUSION

In this paper, we have described an event-based multi-
convolution engine system for FPGA. It is able to compute
a maximum of 64 convolutions with different kernel sizes, from
1× 1 to 7× 7, with a latency of 1.3 μs and 9.01 μs. The presented
engine is able to read and write data row by row, reducing mem-
ory accesses. It also implements LIF neuron properties, such
as refractory period and leakage, which enable the system for
possible SCNN implementations. The maximum kernel size of
7 × 7 is limited not only by BRAM memory; larger kernels
would need to read and write more than one neighbor row from
BRAM banks, because of its data bus width. This would affect
the LUT needed resources and the operation frequency of the
system for the selected Zynq of this study. With new Ultra-
RAM memories available in new Xilinx devices, such as Zynq
Ultrascale, kernel sizes could be increased.



Neuromorphic systems such as the one presented in this work
takes inspiration in human brain to process data in real time with
low power consumption. Frame-based Convnets process huge
amount of data per layer and each layer has to wait for the com-
putation of its previous layer to start. Neuromorphic systems
process events generated by event-based sensors (e.g., DVS),
resulting in a large spare data that reduce the overall processing
time because of the absence of long wait states, and therefore,
the power consumption. Spiking convolutional neural networks
allow input events from a sensor to propagate through layers
without waiting for previous layers as in frame based Convnets.
Thus, there are no delays between layers. Despite the advantages
of neuromorphic systems, accuracies of frame-based accelera-
tors are still better, due to the simple training algorithms, such
as backpropagation and the large number of datasets. However,
there are recent works in event-based pattern recognition using
SCNNs [43] or other techniques, such as HATS [44], which
suggest that it is a matter of time until neuromorphic systems
become competitive in terms of speed, classification and power
consumption.

In future works, we aim to deploy a SCNN in the convolution
processor in order to recognize event based datasets, such as N-
MNIST [45] or Poker-DVS [41], and test system behavior. Apart
from SCNN implementations we are working on combining the
presented system with other neuromorphic platforms, such as
Spinnaker, which could perform the fully connected layer of a
SCNN in a simpler way.
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