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Abstract

The development of this PhD thesis is focus on the wheel/rail contact force measure-

ment on a 1 : 10 scaled railway vehicle. To that end, the author has designed and man-

ufactured a dynamometric wheelset instrumented with several sensors for the direct

measurement of forces applied on the instrumented wheel. Two different technologies

have been used for the wheelset instrumentation: On the one hand, a set of strain

gauges measure the radial strains experienced by the wheel-web when a lateral load

is applied on the wheel. On the other hand, three high precision lasers have been in-

stalled on the axel that measure the lateral deflection experienced by the wheel due to

the applied lateral loads. Normal contact forces are measured independently through-

out the deflection experienced by the primary suspension. This is also measured with

laser distance sensors. After being instrumented, the wheelset has been submitted to

a calibration process. A calibration test bench where controlled loads can be applied

to the wheelset has been also designed and manufactured. Finally the instrumented

wheelset has been installed on the scaled vehicle and tested on a 5 inches wide scale

track. The force measurements obtained in the experiments with both set of sensors

have been compared with numerical results drawn from a computational model of the

vehicle. A novel procedure to measure the track irregularities applied to the scaled

track has been also include as part of this thesis.

Keywords: Multibody systems, railways dynamics simulations, railway vehicle de-

sign, track irregularities, dynamometric wheelset, wheel/rail contact force measure-

ment, track irregularities measurement, dynamometric wheelset calibration.





Resumen

El desarrollo de esta tesis se centra en la medición experimental de fuerzas de contacto

rueda carril en un veh́ıculo ferroviario a escala 1 : 10. Para ello, el autor ha diseñado y

fabricado un eje dinamométrico instrumentado con multiples sensores para la medición

directa de las fuerzas aplicadas en las ruedas. Para la instrumentación del sistema se

han utilizado dos tecnoloǵıas distintas: Por un lado se dispone de un conjunto de bandas

extensométricas que miden las deformaciones radiales experimentadas por el velo de la

rueda debidas a la carga lateral aplicada en la misma. Por otro lado se han instalado

tres láseres de alta precisión que miden la deflexión experimentada por la rueda debidas

también a las cargas lateral aplicadas. Las fuerzas normales a las que se ve sometida

la rueda son calculadas a través de la medición de la deflexión experimentada por la

suspensión primaria del veh́ıculo, siendo también medida mediante sensores de distancia

láser. Tras la instrumentación el eje dinamométrico ha sido sometido a un proceso de

calibración, para el cual se ha diseñado y fabricado un banco de pruebas a escala donde

puden aplicarse cargas al eje de forma controlada y conocer la respuesta de los sensores.

Finalmente el mencionado eje dinamométrico ha sido instalado en el veh́ıculo a escala

y su funcionamiento ha sido probado en una v́ıa a escala de 5 inches de ancho. En

los experimentos realizados se han contrastado las mediciones de fuerzas realizadas

por ambos sensores y comparado con resultados numéricos obtenidos de un modelo

multicuerpo de simulación del veh́ıculo. Como parte de esta tesis se incluye también la

descripción del novedoso proceso de auscultación y cálculo de irregularidades realizado

en del trazado ferroviario a escala.

Palabras clave: Sistemas multicuerpo, simulación de la dinámica ferroviaria, diseño

de veh́ıculos ferroviarios, irregularidades de v́ıa, eje dinamométrico, medición fuerzas

de contacto rueda/carril, auscultación de v́ıa, calibración eje dinamométrico.
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xxvii





Chapter 1

Introduction

1.1 Literature review

The first application of the rail as an element of support and guidance for vehicles

was in Great Britain in the 16th century. These were mining vehicles that moved on

wooden rails that would later be covered with steel. In the year 1804, an incredible

event took place that would change the course of history forever, the invention of the

steam engine. Not long after in 1814, the first steam-powered locomotive appeared

on the scene followed by the first passenger train in 1825. The railway boom allowed

for the development of once isolated regions, becoming a state issue for countries such

as the United States, Canada, Russia and China. Railways dominated until the 19th

century when the turbine motor was invented and the internal combustion engine was

developed. Currently, the overuse of the internal combustion engine with all of the

environmental problems that it creates is once again bringing attention to railways as

a mode of transportation due to their high safety reliability, high degree of automation

and smaller impact on the environment. Unfortunately, the infrastructure costs for

railways are very high, around 7-10 million Euros per kilometre using the most modern

construction. Its large volume represents a difficulty in integrating it into metropolitan

transport networks, and thus it is necessary to resort to lighter systems such as metros,

trams or buses. In spite of this, it can be said that the 21st century railway has become

1



Chapter 1. Introduction 2

a means of transport with as many comforts as the car and a clear direct competitor

of the plane over medium distances.

The increase in the service speed of rail transport during the last decades has increased

not only the comfort of the vehicles but also the mechanics and security of both the

vehicles and the rails. Under these circumstances, the life cycle of many railway com-

ponents has grown shorter causing a significant increase in the maintenance costs. The

wheel-rail interaction is the principal factor that determines the dynamic behaviour of

a vehicle, which is why the study of this interaction has become very important for the

scientific and technological community. Although the advance of mathematical models

and measuring instruments has been fundamental for the knowledge/study of the phys-

ical processes that occur during the wheel-rail contact, many aspects are still unknown

and thus, some of the practices used today are based on the experience and use of em-

pirical methods. The immediate consequence of the use of these techniques results in

the application of high safety coefficients, with more conservative designs and the use of

traditional materials. In this regard, achieving more precise knowledge about wheel-rail

contact forces is crucial for the development of new methodologies with impacts on the

economic, environmental, and safety-related levels[1, 2].

Railway vehicle running safety criteria are based on wheel-rail contact force magni-

tudes. Recently, novel criteria have been proposed as that presented in [3] by Wei et

al or presented by Braghin et al [4]. In the work by Braghin, the results obtained are

compared with this new criterion where the instantaneous angle of attack of the wheel

with the rail is taken into account with other traditional ones. (Weinstock [5] and

Elkins-Wu [6]). This new criteria, that can be considered to be derived from Nadal’s

criteria [7], is more robust than the traditional one as it is based on parameters that

depend on the wheel-rail geometry.

Despite the variety of existing criteria, the most commonly used safety criteria are [8]:

1. Nadal’s derailment criteria: It establishes the limiting value of Y/Q to prevent

derailment. This limit is related to the flange slope and the coefficient of friction..

2. Prud’homme’s criteria: It establishes the track resistance against applied lateral

loads. The resultant lateral force on each wheelset must be smaller than (10 +

2Q0/3) kN, where Q0 is the static vertical force on a single wheel.
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3. Roll-over safety criteria: It is obtained from the vertical loads on each wheel of

the vehicle. Its magnitude must be above a certain value.

4. Discharge safety criteria: Discharge factor, that is a function of the static vertical

load Q0 and the instantaneous vertical loads on the first and second wheelset of

the bogie must be smaller than a certain value.

In view of these criteria that are well established within the railway industry, it can

be seen that the knowledge of the wheel-rail contact forces turns out to be decisive in

order to quantitatively assess the safety of the running of a railway vehicle.

The European standard EN-14363 [9] defines the tests for the acceptance of the dynamic

behavior of railway vehicles. These tests must be carried out so that new design of

vehicles, or vehicles with modified operating conditions can circulate through European

railway networks. All of these tests require the measurement of wheel-rail forces (normal

and vertical forces) although they do not specify the method to be used. The most

precise way to obtain the values of the aforementioned contact forces is through the so-

called dynamometric axels. In general, these are conventional axels instrumented with

strain gauges for direct measurement of forces. These devices are expensive, due to the

extreme precision required in the location of the gauges and the telemetry equipment

necessary to transfer the signals to the acquisition system. Additionally, its accuracy for

medium frequencies is in not totally clear. Cazzulani et al. [10] studies the metrological

properties of a dynamometric wheelset in order to verify whether it is really capable

of measuring in the appropriate frequency range. In addition, various alternatives are

suggested to better the precision of the measurement when the axel operates in extreme

conditions. Bionda et al. [11] recently presented a study where the precision of the

wheel-rail force measurement is analyzed, determining that it is necessary to use at least

six independent sections of the wheel to obtain a correct measurement of the contact

force.

Furthermore, it is important to note that prior to putting them into operation, dynamo-

metric wheelsets must undergo a severe calibration process [12] where the response of

the system is analyzed when different forces are applied to it. Calibration can be done

on static [13] or dynamic benches [14], also known as rolling rigs. Some of these ma-

chines can test a full scale dynamometric wheelset up to 300 km/h while controlling
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vertical and lateral loads and the relative wheelset-rail yaw angle. The rails are two

rings machined with a conventional UIC profile. With a sophisticated test rig controller,

it is possible to reproduce straight and curve running conditions, including acceleration

and braking. Nevertheless, the dynamic operation of a wheelset on a roller rig differs

from its behavior on a real rail. Bosso et al. [15] carried out a study comparing both

scenarios and finding notable differences. Thus, the high cost of the dynamometric axles

means that even for high-performance laboratory vehicles, such as the ADIF Sénéca

[16], they are prohibitive.

As an alternative to the use of dynamometric axels, there is the measurement of contact

forces through indirect methods. These methods are based on the use of a computa-

tional model that describes the dynamics of the vehicle and the measurement of a

series of inertial sensors installed on it. These types of techniques can be framed within

what is known as Model-Based Condition Monitoring (MBCM) which is commonly

used in machine maintenance. Within the railway industry, the application of MBCM

techniques in the following fields is being actively researched:

1. Detection of derailment at its earliest stage. The works of Mattoto et al. [17],

Boronenko et al. [18], Hubacher and Scheiber [19] and Zeng [20], use MBCM tech-

niques for the timely detection of this phenomenon before reaching catastrophic

situations. In light of these works, it can be seen that these methods are still far

from being able to be implemented in a real system.

2. Estimation of the wheel and rail profile and detection of instabilities. It is known

that excessive wear of the profiles causes loop instabilities (hunting) [21]. MBCM

can be applied to avoid this effect as proposed by Charles et al. [22]. Again, these

methods are still in development.

3. Condition monitoring of the suspension system of railway vehicles. This is the

most innovative use of MBCM. It is currently under development, and it is known

[21] that they have not been commercially implemented, which represents an

opportunity to offer a product with competitive advantages in the market.

In scientific literature, numerous works can be found on the estimation of parameters

and states of railway vehicles based on its instrumentation and the analysis of signals
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of on-board systems. Goda and Goodall [23], Goodall and Kadirkamanathan [24], Li

et al. [25] and Hayashi et al. [26] present different studies where failures in vehicle

suspension are detected based on the measurement of inertial sensors and Kalman

filter-based estimators. Another interesting study is that presented by Charles and

Goodall [27] where the estimate with Extended Kalman Filter (EKF) of creep forces is

used as input in the vehicle’s brake control system. Bruni et al. [28] presents a method

based on Time Domain Signal Analysis for the evaluation of the unstable operation of

the vehicle caused by excessive hunting. Finally, Xia et. al [29] presents a method for

the detection of derailment and the control of the vehicle’s operating speed based on

the measurement of an accelerometer.

In the reference [30], the authors review the various condition monitoring techniques

currently available, making a distinction between model-based techniques and signal-

based techniques. In model-based techniques, Kalman or extended Kalman filters are

generally applied according to whether or not the system is linear. The problem with

this methodology lies in the uncertainties that exist when building the models. On the

other hand, the technique based on signals is based on the instrumentation of the bogies,

being there where any phenomenon that could jeopardize the safety of the vehicle can

be detected more quickly.

Not all applications of condition monitoring are based on a model, there are also some

so-called ”model-free” applications. Xia et al. presents in [31] an inverse model of the

wagon for the prediction of the contact forces from the dynamic response of the vehicle.

This paper presents three different ways to address the problem, called: white-box

inverse model, gray-box inverse model and black-box inverse model. In the white-box

inverse model, there is a complete model of the vehicle with all its equations based on

the physical laws. On the contrary, in the black-box inverse model, only a relationship

between inputs and outputs of the system is available. The gray-box inverse model

is presented as an intermediate solution between the previous two, being much more

efficient.

It can be said that in general, in the field of instrumentation in Mechanical Engineering,

a great advance is being experienced thanks to the tremendous decrease in the price of

the sensors and the rise of the Micro-Electro-Mechanical-Sensors (MEMS). The precise

knowledge of the state of a dynamic system should not be achieved so much by ”brute
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force”, that is, by using a large number of sensors, but by means of instrumentations

based on system models being analysed [[32]-[33]]. In this sense, the Kalman filtering

technique [34] and its variants provide the necessary technology to obtain the state of a

system from an incomplete set of experimental measures. In addition, Kalman filtering

allows theoretical models to be adjusted by obtaining the values of their parameters

from experimental measurements. In the filed of track measurement, Charles [35] has

developed a method for the continuous monitoring of railway vehicles based on dynamic

simulation. Using Kalman’s filtering technique, they manage to asses in real time an

estimate of the wheel and rail profile and the coefficient of friction between the two

surfaces to detect areas of low adhesion where long brakin distances are necessary.

Smith and Wu [36] propose combining displacement measurements, accurate for low

frequencies, and acceleration, accurate for high frequencies, to obtain high precision

displacement data using multichannel Kalman filtering. Ward et al. [37] proposes

a method for estimating the tangential forces of wheel-rail contact based on Kalman

filtering and a computational model of the lateral dynamics of the vehicle. It is assumed

that the tangential forces are a function of pseudo-slip speeds (creepages) following the

Polach model [38]. This study includes the tangential forces within the vector of vehicle

states. In the publication of Naets et al. [39] they describe a method of estimating

excitation forces in general in multibody systems based on the use of reduced models

sub-system global model parametrization and the EKF method of estimation. This

study also includes the excitation forces in the state vector. In this case, a model with

stochastic variation is assumed. The system uses completely non-linear equations of

multibody systems and shows that real-time estimates can be made.

The estimation of wheel-rail contact forces in the industry is nothing new. In 1891, one

of the first dynamometric axes appears, built for the Southern Pacific Railroad [40].

The objective was to have an infrastructure where wrong wheel designs or possible

manufacturing defects could be detected. The system consisted of two wheels mounted

on an axle that supported some discs powered by a steam engine. By means of a

system of springs and counterweights, the loads applied to the shaft were controlled.

Reference [41] describes how in the 1980s in the Dutch rail network, a laboratory

vehicle was already used for road maintenance that included the Vehicle Response

Analysis (VRA) system. This system was able to estimate lateral and longitudinal

contact forces and from these estimates, determining the coefficients of the Nadad and
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Prued’homme criteria in real time. The system was based on experimentally obtained

transfer functions (”model free”) and signal treatment with analog filters. More recently

[42] a simulation model has been carried out to evaluate wheel-rail contact forces for

irregularities of small wavelengths. The analytical model assumes that the movement

of the axles is independent of the rest of the bodies of the vehicle and is stimulated

by the irregularities of the road. Gullers et al. [43] presents an experimental wheel-

rail force calculation model based on dynamometric axes and a finite axis model to

estimate high frequency forces. In this study, they show that the contact forces in

the range of 100-1250 Hz, which cannot be obtained with dynamometric axes based

exclusively on sensors, contribute significantly to the dynamic response of the vehicle.

Nielsen [44] conducts a similar study measuring high frequency vertical forces. In

addition, an interesting study is carried out about the effect of the shock loads on the

wheel and the influence of the corrugation of the rails on the vertical dynamics of the

vehicle and the contact forces. The results are validated with field tests. In the work

of Jönsson et al. [45], a comparison is made of contact forces obtained experimentally

with those obtained by simulation, showing a strong agreement. This paper proposes

the use of computer simulation together with irregularity measures obtained through

auscultation for the validation of the new designs of railway vehicles. Sun et al. presents

in [46] a bi-directional inverse model of a freight wagon where vertical contact forces

are monitored from inertial measurements. Alternatively, Mehrpouyaa and Ahmadian

employ in [47] a finite element model of a merchandise vehicle for the identification of

the forces applied on the wheelsets. Xia and Cole present in [48] an inverse model of the

vehicle for estimating contact forces based on the use of low-cost inertial sensors used

at the industrial level. The results obtained are validated with VAMPIRE [49]. Ren

and Chen [50] have recently presented a method for the continuous measurement of

contact forces using a dynamometric wheelset and state space theory. The application

of the theory of state space allows continuous monitoring of the contact forces with a

simpler mounting of simple strain gauges. Lai Wei et al. presents in [51] an indirect

method for the measurement of forces based on the placement of displacement sensors

in the suspensions, accelerometers and strain gauges. Something similar is stated by

Gialleonardo et al in [52] where dynamometric wheelset measurements are combined

with suspension deflection measurements to estimate contact force.

The problem of estimating wheel-rail contact forces is intimately related with the precise
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knowledge of the point or points of contact between the wheel and the rail. The

position of the contact point will determine the direction of the forces applied to the

wheels that will affect the dynamics of the vehicle. Various thesis can be found in the

scientific literature focusing on the online analytical determination of the contact points

during the kinematic simulation such as that presented by Malvezzi [53] who uses semi-

analytical methods to determine the point of contact or the hybrid method presented

by Sugiyama [54]. The latter uses look up tables [55] to determine the tire contact and

online calculation when the contact passes to the flange. There are other experimental

studies applied to the determination of the contact point as the one presented in [56]

from the measurement of sensors installed in the wheel that can be found in the scientific

literature.

As previously mentioned, the determination of the wheel-rail contact forces in the

railway industry is generally based on the use of strain gauges which obtain the value

of wheel-rail contact loads by measuring the strain of the points where they are placed.

Depending on the position of the sensors used, the following are distinguished: methods

based on the axle body, methods based on the wheel core, methods based on elements

of the primary suspension and mixed methods that combine other previous methods.

The first two are currently used the most.

The forces that exist at the wheel-rail contact point are divided into three types: vertical

loads Fz (V o Q), lateral loads Fy (L o Y ) and longitudinal loads Fx. Of the three

aforementioned forces, the longitudinal forces are the simplest to measure through

placing sensors on the shaft body. In [57] they obtain the longitudinal force from the

torque applied to the shaft, which is measured by strain gauges. It should be noted

that obtaining wheel-rail forces using sensors placed on the axle body can be affected

by the variation in the position of the contact point as described by Elkins and Cartert

[58]. In addition, the influence of the variation in the position of the contact point

cannot be eliminated from the measurement of the lateral load. On the other hand,

the inertia of the axle masses that lie between the contact point and the sensors are an

additional source of error that must be eliminated. These methods also present space

problems for placing the sensors between the grease boxes and the wheels.

On the other hand, several solutions have been developed to obtain wheel-rail forces

with methods based on the placement of sensors in the wheel web. In general, all of



Chapter 1. Introduction 9

them have strain gauges whose angular and radial positions must be perfectly defined

through previous studies. Angular parameters are used to eliminate the influence of

wheel rotation on measurements, while radial parameters are used to decouple mea-

surements of contact forces (normal, lateral and longitudinal). The connection of the

extensometric sensors is usually carried out through the use of Wheatstone bridges. Dif-

ferent connection configurations can be made depending on the type of measurement

[59]. In the work presented by Feng Yu [60], a method of placing the strain gauges at

full bridge is analysed so that the measurement of the normal load is decoupled from

the lateral load.

For the determination of the radial position of the sensors, a few different alternatives

have been proposed. For example, as described by Kanehara and Fujioka [56], the

sensors can be placed at points of the wheel web where the sensitivity to one of the

forces is zero, or holes can be made in the wheel core and instrumented in nearby areas

and inside the holes. These methods present problems because the hypotheses used

further simplify the problems related to the decoupling of forces.

Regarding the angular positioning of the sensors to eliminate the influence of the rota-

tion of the wheel on the measured signals, one of the most used strategies is to place

the sensors in the same radial position separated by a specific angle. This is because

the strains measured by the sensors vary periodically with the rotational movement

of the wheel. If the number of sensors used is increased and their measurements are

combined, the result is a data point that tends towards a continuous distribution of

the deformation of these points with the variation of the angular position of the con-

tact point. These techniques have certain disadvantages related to robustness, due to

the high number of strain gauges necessary to eliminate the effects of ripple. They

also present problems because the average sensitivities obtained from the measurement

bridge are lower than the real ones. This last one is caused by the cycles of positive

and negative deformations experienced by strain gauges during a complete turn of the

wheel.

Another alternative to reduce the effect of angular variation of the contact point is based

on measuring the deformation of the strain gauges when they pass through a specific

angular position (Kanehara and Ohno [61]). This methodology eliminates the influence

of the angular variation of the wheel, but reduces the bandwidth for the measurement
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of the contact forces due to a decrease in the sampling frequency in the system. These

solutions are not usually recommended due to the high number of gauges needed to

achieve minimum sampling frequencies that ensure efficient data acquisition.

A third strategy for the configuration of strain gauges is usually to place two of them

offset by an angle of 90◦ in the same radial position. The signals of these gauges are

independent and are considered sinusoidal. Gomez et al. [62] describes an example of

this technique used in a 1 : 2.6 scale model, analyzing the effects separately of applying a

constant vertical force and a constant lateral force. It can be seen that the deformation

signals at different radial positions follow a very different variation from one another.

The data in the frequency domain is also analyzed, obtaining the amplitudes of the

main harmonics for each of the radial positions. In most cases, the greatest amplitudes

belong to the first harmonics, which together with the second harmonics are typically

the most useful.

In this way, the actual variation in time of the applied force can be determined based

on the variation in the amplitude of one of the harmonics. This is a strategy widely

used in the methods based on the use of the wheel web, but the main problem of the

instrumentation lies in the fact that it is not possible to eliminate high amplitudes of

unwanted harmonics. Zang et al. proposes in [63] a complex analysis in frequency

that allows to eliminate those components of the rotation that are independent of

the fluctuations of the load from the signals acquired by the dynamometric wheelset.

Acquiring information from instrumentation placed on the axis is always complex due

to the high levels of vibration to which it is subjected.

Based on the described problems of the instrumentation technique of points of the veil

of the wheel, Gomez et al. [[[62],[64]] has proposed a positioning of the gauges that allow

the elimination of unwanted harmonics. The methodology developed by the authors

consists in placing a set of extensometric sensors so that the signals obtained with the

deformation of the sensors are independent of their angular position with respect to

the line of application of the load. The extensometric sensors contained in the same

radial position constitute what they call measurement circles, being able to obtain

different independent signals for each measurement circle. Each extensometric sensor

belonging to the same measurement circle has another extensometric sensor positioned

diametrically opposite to the first one, that is to say with a 180◦ offset, thus constituting
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what the authors call measurement diameters. The signals of the extensometric sensors

belonging to the same measurement diameter are combined with each other by adding

or subtracting depending on whether they want to eliminate odd or even harmonics. At

least two strain bridges are instrumented for each measuring circumference, one called

a phase bridge and the other quadrature bridge. Both have the same configuration but

out of phase 90◦/k, where k indicates the pure harmonic on which the measurement

is based. This would correspond to a90◦ offset for the first harmonic and a 45◦ offset

for the second. For example, pairs of sensors are placed at 180◦ to eliminate even

harmonics of the signals that come from the deformation of the gauges and at 90◦ to

eliminate the influence of the angle on the first harmonic of deformation.

Different configurations of this methodology are described in the patent ES 2 334 529

A1 of Gimenez and Gomez [65]. Here the authors propose a methodology to obtain the

three components of the wheel-rail contact force in addition to locating the position of

the contact point. For this, the implementation of at least three measurement circles is

established. An alternative strain gauges location and electrical configuration is prosed

by Garcia et al. in the patent ES 2 436 692 B1 [66]. Both alternatives have been

already utilised in the industry.

On the other hand, Gutiérrez López and others [67], based on the study of the dynamic

behavior of ground vehicles and given the importance of contact forces between the tire

and the roadway, have developed a new method for measuring the forces and moments of

contact between the road and the tires. Although the method described by the authors

is applied to the wheels of car vehicles, their study is based on previous developments in

the railway world (US Patent 5492002 from Higgins et al. and the patent ES 2 334 529

A1 from Giménez and Gómez) and can be adapted for the determination of wheel-rail

contact forces.

The limitations presented by the geometry of the tires of the automobile vehicles pre-

vented the use of the methodology proposed by Giménez and Gómez in the patent ES

2 334 529 A1, since in the case of the automobile tires it is almost never possible to

place the extensometric sensors or strain gauges in the angular positions required by

this methodology. In this way, Gutiérrez López and others [67] propose a more flexible

methodology to obtain the forces and moments that act on the tire from signals that do

not depend on the angular position of the sensors. In this method, as in the previous
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case, the authors define circumferences of measurements and radial lines of measure-

ments where the strain gauges are placed. At least three measuring circumferences

and five radial lines are required, which is a total of 15 sensors. The aforementioned

method divides the influence functions that describe the relationship between the dif-

ferent components of stresses and the deformations into two groups: symmetric and

antisymmetric. These influence functions are subsequently decomposed as Fourier se-

ries whose coefficients (amplitudes) represent the sensitivities and remain constant for a

wheel determination with specific measurement circumferences. These sensitivities are

grouped into a matrix that forms the coefficient matrix of a system of linear equations

from which the three components of the contact forces (Fx, Fy and Fz) and the three

components of the contact moments (Mx, My and Mz) are obtained. This method has

the advantage that for the same number of sensors, more harmonics can be eliminated

than with the techniques currently used in the railway industry, thereby reducing the

ripple effects.

Another application similar to that presented by Gutiérrez López [67] for the measure-

ment of contact forces between wheels and the road can be found in Bastiaan’s work

[68]. In this case, instead of instrumentation with strain gauges, piezoelectric sensors

are used. The algorithms used for force estimation are based on the use of artificial neu-

ral networks [69]. The algorithms presented are even capable of detecting wheel slides

on the road with the idea to eventually be integrated into the vehicle’s active safety

system in the future. Dingqing et al. [70] presents a similar study for the estimation of

contact forces based on track geometry with algorithms based on neural networks. As

can be seen, artificial neural networks (ANN) are a very powerful and appropriate tool

to solve these types of problems. In [[71]-[72]] the authors present a method based on

ANN to determine the location and the energy associated with impacts that take place

in the fuselage of airplanes, inputting into their system the measurements coming from

piezoelectric sensors.

Until now it has been seen how the use of strain gauges is the most widespread practice

for measuring contact forces on the wheel. Despite being a very reliable technology,

as long as they are correctly installed and calibrated, they have the problem of being

mounted on rolling parts, they need either telemetry equipment or sophisticated brush

connectors to transmit the information to the acquisition system. Both solutions make
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the manufacturing of the dynamometric axis enormously expensive. Matsumoto et al.

presents in [[73]-[74]] a very interesting alternative to instrument a dynamometric wheel

without using strain gauges. Instead, “Eddy-current” inductive displacement sensors

capable of determining the distance to a magnetic surface through electromagnetic

effects are used. These sensors are installed on fixed parts of the vehicle such as the

grease boxes so that no more than a simple cable connection is needed to transmit

the information. From the deflection experienced by the wheel, researchers are able to

determine the lateral load applied to it. Due to the fact that the sensors are not installed

directly on the wheel-web as strain gauges are, they would measure deflections caused

not only by the load applied to the wheel but also by other mechanical effects such as

clearances between the axle and the grease box, possible turns of the bearing itself or

lack of perpendicularity between the axle and the wheel. For this reason, it is necessary

to use, as explained in [[73]-[74]], a fusion of several sensors so that from a kinematic

model of the system integrated by the axle and the grease box one can accurately extract

the applied lateral load. Obviously this approach can only determine lateral loads. For

the measurement of vertical forces, the researchers propose to use LVDT displacement

sensors to measure the deflection of the suspensions and from them, the value of the

load. The longitudinal forces as suggested by the researchers can be obtained from

the longitudinal deformation experienced by the traction rods measured through strain

gauges. A recent application of this method is found in the work done by Cheli et al. in

[75] that presents a tram model developed for the estimation of forces on elastic wheels

and whose results are experimentally validated.

As an alternative to the methods presented above, measurements of wheel-rail contact

forces made by rail instrumentation instead of the axle or wheel can also be found in

the scientific literature. This methodology has the advantage that it does not need any

sophisticated acquisition or telemetry system, since the sensors are installed in the rails

themselves. Obviously, the disadvantage lies in the fact that the measurement can only

be carried out discreetly at specific points of the track. This approach is interesting

when one wants to know, for example, the effect of the passage of the vehicle on changes

in track or contra-lane areas in urban trains [76, 77]. Song et al. presented in [78]

an innovative technique for measuring forces by implementing the rails using PVDF

sensors (Poly Vinil Dene Fluoride). These are sensors with piezoresistive technology

that, unlike the strain gauges, are not affected by the presence of magnetic fields. In
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[79] the development of an interesting sensor to also measure rail force is presented.

This sensor is installed in the soul of the rail where a hole must have been previously

made to house it. It has been taken into account that the perforations made in the soul

of the rail do not affect the safety of the lane as opposed to any alteration made in the

wheel veil that does compromises its safety.o

The wheel-rail contact forces are not only of interest to the railway industry. The

manufacturers of roller coasters also have a great interest in knowing the contact forces

that appear in their vehicles to always guarantee maximum safety to their occupants and

ensure the integrity of the attraction structure. It should be kept in mind that current

roller coasters reach very high speeds, such as the famous Kingda Ka in the United

States with a maximum speed of 206 km/h. Generally the contact forces in this type

of vehicles have been estimated from inertial models and measures of accelerometers

placed in the vehicle itself and the structure [80]. Alternatively, direct measurements of

the contact forces can be made from more sophisticated systems such as that presented

by Simonis et al. in [81] where one of the vehicle’s bearings is instrumented with strain

gauges and piezoelectric sensors.

1.2 Outline of the thesis

The objective of this thesis is to develop a mechatronic system for the direct measure-

ment of the contact forces in a 1 : 10 scale rail vehicle [82] developed by the Department

of Mechanical and Manufacturing Engineering of the University of Seville. The vehicle

runs on a 5 inches wide scale track. The scale track characteristics and the measure-

ment of its real geometry is presented in Chapter 2. A dynamometric wheelset has

been manufactured and instrumented in which two different technologies for the mea-

surement of wheel-rail contact forces presented in the industry have been integrated, of

which one would like to compare. The designed system has been carefully calibrated in

a static test bench, where it has been subjected to different load applied in a controlled

manner. During this process, the experimental validation of a finite element model of

the dynamometric axis has also been carried out obtaining a good agreement between

simulations and experiments. The design, instrumentation and calibration of the scale

dynamometric wheelset is presented in Chapters 3 and 4. Finally, its operation has been



Chapter 1. Introduction 15

tested on the track. The force measurements obtained have been compared with the

numerical results obtained from two multibody dynamic simulation models described

in Chapter 5. The vehicle tested consists of a single bogie consisting of two wheelsets

and a frame, connected by suspension elements. Vehicle’s instrumentation and exper-

imental results are presented in Chapter 6. The manuscript is closed by Chapter 7,

where all the conclusions drawn from this research are summarized.

An important part of this PhD thesis is based on the use of a scale railway vehicle.

Having a scale system represents a great advantage when it comes to carrying out ex-

periments. It should be kept in mind that not all railway engineering research institutes

have access to real vehicles and infrastructures to carry out their experimental cam-

paigns. The use of systems at scale is a relatively economical way (due to its reduced

size) and safe (by not compromising passenger safety or infrastructure) to carry out ex-

periments with rail vehicles and facilities. The results obtained from the scale systems

can then be normally extended to full scale systems.

The multibody simulation softwares used in this thesis have been developed over the

past few years by this research group. This made in home software is an alternative to

several railway simulation programs found in the market such as:

• GENESIS [83]

• NUCARS [84]

• ROBOTRAN [85]

• VAMPIRE [49]

• ADAMS-RAIL [[86], [87]]

• SIMPACK [[88], [89]]

• SAMS [90]

Having ones own simulation model is a great advantage over the mentioned commercial

packages. In these packages, the configuration options are limited to the user. By using
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ones own software, however, different models of wheel-rail contact [91, 92], integration

methods, different ways of treating the track geometry[93] and its irregularities [94],

etc. can be studied. In return, they require a great effort of programming and study

until a robust system that delivers reliable results can be achieved.



Chapter 2

Experimental Scaled Track

2.1 Scaled track design

In railways multibody modelling, the track geometry is an essential input for the model.

In order to get an accurate dynamic simulation, a correct and precise track description

is needed. The more accurate that definition is, the better agreement between the

simulated system and the real one will be reached. The track geometry has an essential

role in the wheel-rail contact scenario. Taking into account that the main purpose

of this thesis is the development of a railway multibody model for the estimation of

the wheel-rail contact forces an its experimental validation, a perfect knowledge of the

scaled track where the experimental vehicle moves is required.

The experimental campaigns accomplished in this project have been carried out in the

scaled track facilities at the University of Seville. It is a 5 inches wide and 90 meters

long open track located in the roof of the School of Engineering (see Fig. 2.1). It was

built in 2017 covered through European Union funding. The manufacturing and final

assembly of the scale track was accomplished by a private company selected by public

tender, based on a previous design made by the Department of Mechanical Engineering

of the University of Seville.

The original idea of the project was to built a track with variable geometry that allow

the manual insertion of track irregularities. For that purpose a multi-degree of freedom

17
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Figure 2.1: Sunset at the scale track

mechanism that allow track width, cant angle and relative position between rails vari-

ation has been designed (see Fig.2.2). For a better understanding of the mechanism

functionality see Fig. 2.3. As it can be observed, the central base of the mechanism

is separated in two parts that can move along a longitudinal slider. Turning the cen-

tral nut, the track width can be modified. The two rails are supported by a couple of

sub-mechanisms that can vary its relative position acting on three bolts. Finally, the

lateral bolts and nuts modified the tilt angle of the entire mechanism changing this way

the cant angle of the track. Every single part of the mechanism has been manufactured

in high quality stainless steel to perfectly resist atmospheric corrosion. The maximum

movement allowable by this design are:

• Track width: 127 +/- 8 mm.

• Rails relative height: 0 +/- 5 mm.

• Sleeper height: 0 +/- 8 mm.

• Cant angle: 0 +/- 4.5 degrees.
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Figure 2.2: Moving sleeper mechanism

These mechanisms have been assembly every 100 mm along the track, fixed to a series

of 47 iron welded tables (See Fig.2.4) distributed on rooftop of the building. All of them

are levelled by adjustable legs, getting a perfect alignment of table plane despite all the

roof irregularities. Tables are rigidly connected between them to give the maximum

robustness to the track.

The rail section has been carefully designed to emulate a real rail profile (see Fig. 2.5).

As it can be observed the rail section has two notches, that are necessary to attach

the rails to the moving sleeper mechanism. The rails have been milled in 3 meter long

sections. To connect each section to the next one a joint mechanism has been also

designed. Figure 2.6 shows the solution adopted. Parts number 1 and 3 are in charge

of connecting two contiguous rail sections (part number 2).

2.2 Ideal track geometry

In the railway industry a real track definition is given by a horizontal and a vertical

profile. In the horizontal plane, three different types of geometric forms can be found:
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Figure 2.3: Moving sleeper mechanism assembly

Figure 2.4: Supporting table

• Tangent sections.

• Constant radius curves.

• Transition or variable radius curves.

Transitions connect tangent sections with constant curvature sections or two constant

curvature sections with different curvature radius or direction. If transitions are not
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Figure 2.5: Scale rail section

used for the track definition, an instantaneous centrifugal force would appear in the

connection point between the strait and constant curvature sections that compromise

the safety and comfort of the vehicle at this point. Different transition curves can

be utilised, however, the most common in railway and road track definition are the

clothoids or Cornu spirals. Its main feature is the linear curvature variation with

respect to the arc length coordinate.

Vertical profile can be defined in a similar manner.Constant slope and transition sections

are its main elements. As mentioned above, transitions are necessary to connect both

types of sections. In Fig. 2.7, a simplified horizontal and vertical definition of an ideal

track are shown. Note that small radius of curvature sections are used to connect two

constant slope sections.

The original idea of the scaled track project was to create an ideal geometry consisting

of strait sections, transitions with variable curvature and constant radius curves. Figure

2.8 shows the proposed plan view of the track subjected to the available space on the

rooftop of the building. As can be observed, a scaled railway bridge is also part of the

railway circuit. It will allow to study the dynamic performance of the experimental
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Figure 2.7: Schematic track definition

vehicle while passing over it. The list below enumerate the various types of section that

theoretically should describe the scale track horizontal projection.

A: 20 meters long strait section (scale bridge included).

B: 3 meters long and 60 meters mean radius transition section.

C: 26 meters long and 24 meters constant radius section.

D: 3 meters long and 60 meters mean radius transition section.

E: 6 meters long strait section.
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F: 3 meters long and 24 meters mean radius transition section.

G: 12 meters long and 6 meters constant radius section.

H: 3 meters long and 24 meters mean radius transition section.

I: 12 meters long strait section.

Figure 2.8: Scale track plan view

The track vertical profile has been described in a similar way. As previously explained

two kind of sections can be found on it. The nodes ( points of connection between

two different track sections) in the vertical profile, do not coincide with the number

of nodes in the horizontal profile. A minimum radius of 20 meters is established for

vertical transitions. Therefore, the sections present in the scale track vertical definition

are:

A: 76 meters long horizontal section.

B: 4 meters long 3.75% ascending constant slope section.
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C: 2 meters long horizontal section.

D: 3 meters long 5% descending constant slope section.

E: 2 meters long horizontal section.

2.3 Track irregularities

In the previous section an ideal track description has been presented. Predictably,

getting this theoretical geometry is impossible due to possible errors in the assembly

process. These differences between the reference track geometry and the real one are

called track irregularities (see Fig. 2.9). Apart of being produced during the building

process, they can also be result from usage operations or movements on the foundation.

Track irregularities have great significance in railways operation. Depending on their

magnitude, they might be only a matter of ride comfort or even compromise ride safety.

Concerning to track comfort regulations, one can find the British Railways indexes for

comfort and smoothness of railroad vehicles [95]. Another example is the European

norm EN 12299 [96] that deals with passengers comfort in railroad vehicles. In ad-

dition, The Association of American Railroad establishes the so-called ”Track safety

standards” [97] for railroad vehicles. Large track irregularities may lead to a derail-

ment scenario. Thus, a correct identification and characterization of track irregularities

results an essential task in railways engineering.

2.3.1 Modeling of track irregularities

As mentioned in the previous section, track irregularities represent the difference be-

tween real position and orientation of rail cross sections with respect to their reference

position (see Fig. 2.10). Although this is the formal way to define track irregularities, is

not the most common way in the railways industry. An alternative definition is normally

utilized. Two different types of geometry variations should be considered: distributed

track irregularities and isolated track irregularities. Distributed track variations are

characterized by the four independent magnitudes listed below. Figures 2.11 and 2.12

show graphically their effect on a track. Such geometric track variations represent a
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Figure 2.9: Reference track vs real track

very important information for railways operators, and they must be regularly mea-

sured using special track devices. Each of them defined below. Equation 2.1 represents

their mathematical definition.

• Alignment: It is defined as the lateral displacement of the real track centre

line with respect to its designed features as depicted in Figure 2.11. Its main

effects usually appears as lateral vibrations at the vehicle. Crocked rails, incorrect

maintenance procedures or high lateral wheel-rail contact forces are the major

culprit.

• Track gauge: It represent the difference between the nominal track gauge and

the measured one in every single point of the track (See Fig.2.11). It has noticeable

effect in vehicle lateral stability. Likewise, crocked rails, incorrect maintenance

procedures or high lateral wheel-rail contact forces are once again its origin.
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Figure 2.10: Track irregularities

• Cross level: It is defined as the relative vertical distance between left and right

rails in an specific section of the track (See Fig. 2.12). It is mainly produced by

track flexibility, excessive vehicle weights and thermal loads on the track. They

have small effects on lateral vehicle dynamics.

• Vertical profile: It can be described as the difference of height between the

reference track central line and the real track centre line. As in the previous

phenomena, track flexibility, excessive vehicle weights and thermal loads on the

track among others are its major causes.

Alignment and track gauge are considered horizontal track irregularities and cross level

and vertical profile are vertical track irregularities. It is also important to note that

alignment and vertical profile are absolute magnitudes while track gauge and cross level

are relative magnitudes.

Alignment = (ylir + yrir)/2

Gauge = (ylir − yrir)

Crosslevel = (zlir − zrir)

V erticalprofile = (zlir − zrir)/2

(2.1)
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Figure 2.11: Irregularities of alignment and gauge variation

Finally, isolated track irregularities are the other form of track irregularity that can be

found on the track. This form of track irregularity do not have to be underestimated

since under certain conditions they can produce unsafe response in the vehicle. There

is seven different kinds of analytical isolated defects listed as: Bump, cusp, plateau,

jog, sinusoid, damped sinusoid and trough [41].
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Z

Figure 2.12: Irregularities of cross level and vertical profile

2.4 Experimental scaled track measurement

An ideal track geometry description and its irregularities have been presented in the

previous sections. As it explained before, the main objective of this project is the

experimental measurement of wheel-rail contact forces and its validation. For that

purpose, a multibody model of the experimental scale vehicle has been developed. In

addition to the correct definition of all the geometric, mass and inertial parameters
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of the vehicle, it is equally important to introduce as a model input a precise track

geometry definition. Thus, a highly precise track measurement has been carried out

as part of this project. There is a lot of literature ([41], [98]) and standards about

track measurement since it is a recurring task regularly done in the railways industry.

However, not all of them can be directly applied to an scale track that is ten times

smaller than a real one. For this reason, an alternative procedure has been developed

in order to accomplish such important task.

2.4.1 Track centre line measurement

In a full scale track, the centre line is measured with the aid of a so-called track recording

trolleys. Figure 2.13 shows one of this track measurement systems. As it can be seen,

the trolley has one of its side faces fixed to one rail. A reflector is located over the

trolley frame. So that the absolute rail position can be established with the aid of a

total station. A distance measurement system and tilt sensor determine the track gauge

and cant angle. A total station is an electronic instrument used in modern surveying

and building construction that uses an electronic transit theodolite in conjunction with

electronic distance meter. It is also integrated with a microprocessor, electronic data

collector and storage system. The instrument is used to measure sloping distance of

object to the instrument, horizontal angles and vertical angles.

Based on the design described above, a similar and equally effective equipment for an

scaled track has been developed, with the feature that, track centre line is measured

separately of track gauge and cant angle. This second part of the procedure will be

explained in later sections. For the scale track centre line measurement, a high pre-

cision total station has been used. Not any kind of total station is suitable for such

application, taking into account the small dimensions of the experimental scale track

and the desirable expected precision. The machine selected is a Leica Nova MS50 (see

Fig. 2.14) in combination with a high-precision 360o mini reflector. According to the

supplier, the absolute device precision, provided good operation conditions, is between

0.2 to 0.5 mm. There is not other more precise device in the market based on inter-

ferometry. For smaller precisions a laser based system is required. This equipment is

prohibitive in this project due to its extraordinary cost.
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Figure 2.13: Track recording trolley

For the track centre line detection, fig 2.15 shows the designed elliptical plate meter

designed. An ellipsoidal profile with 129.5 and 126 mm on its long and short semi-axis

respectively has been machined on its base. An ellipse has the property that if it is

placed in between two parallel lines and it contacts to both, the centre of the ellipse

stays in the mid point of both lines (see Fig. 2.16). That means, if this elliptical plate is

placed on the scale track and it contacts both rails, its centre will be always placed over

the track centre line. The scenario where the elliptical plate is positioned in between

two parallel lines is represented in fig. 2.16. But, what would happen if this plate is

located between two constant curvature lines like the two rails in a constant curvature

section of the track? This premise would not be valid unless the radius of curvature

was large enough to despise its curvature against the scale track gauge. Considering

that the track gauge is 127 mm and the minimum radius of curvature in the scaled

track is 24 m, it cab be accepted that the designed device will also work fine in curve

sections. Figure 2.17 shows the current ellipsoidal plate meter used for the scale track

centre line measurement. As it can be observed, the 360◦ mini-prism is screwed at its

geometric centre.

The most important element of this centre line measuring system is the total station

that has to be located at such point from where the reflector can be perfectly observed.
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Figure 2.14: Total station Leica Nova MS50

Figure 2.15: Track centre line elliptical plate meter

Given the almost 90 meter long scale track and its sinusoidal layout, the station can not

be positioned in one single point and keep an eye on the reflector at the same time. It is

also known that the precision of the measurement made by the total station is associated

with its relative position to the target point. In addition, weather conditions also have

a notorious influence in the measurement. Taking into account these external factors,

several tests have been carried out before the scale track centre line is finally measured.

The first experiment performed was a distance-accuracy test. In this trial, a calibrated
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rod with two threaded holes separated 120 +/- 0.01 mm where the mini-prism can be

screwed, has been used. This bar has been placed in different positions, each of them

further than the previous one. The distance between both holes has been measured

in all these spots. Table 2.1 summarized the results obtained. In the light of them,

a 15 meters range proves to be the most suitable gap between the total station and

the track. Taking this into consideration, the total length of the track and the objects

presents on the roof, the total station has to be placed in three different positions on the

rooftop during the track measurement. That means, the centre line has to be measured

in three sections, each of them with its own reference system that will be necessary to

synchronize on a unique reference system located at the beginning of the track, having

its X axis pointing to track centre line direction. This process will be explained in the

next section.

Table 2.1: Target distance vs distance from the station

Distance (m) Target length (mm)

5 120.4

15 120.2

25 120.5

60 98.1
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Figure 2.17: Ellipsoidal plate meter placed on the track

2.4.1.1 Track centre line calculation algorithm

Once the equipment that is needed for the centre line measurement has been presented,

in this section the algorithm used to determine the [x, y, z] coordinates of a centre line

set of points is explained. First of all, the difference between the total station modes

of operation must be established:

• Discrete mode: The station acquires the [x, y, z] coordinates of a single target

point when the operator requests it.

• Continuous mode: By serial port communication with a computer, the station

gets at a 20 Hz rate the [x, y, z] coordinates of the target points where the reflector

is located.

In this case, the continuous mode has been selected. The absolute position of the

reflector is continuously stored in the PC while the elliptical plate meter is moved

along the track. This way, points are located alternatively over the sleepers and the
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mid point between sleepers (separated 100 mm). According to Nyquist theorem, the

minimum wave length noticeable in the track centre line will be 100 mm with the

chosen space acquisition rate. Figure 2.18 shows coloured in blue the x coordinate

measured by the total station before being processed by the centre line calculation

algorithm. As it can be observed, it has an staircase shape where every flat region

represents a point of the track centre line where the elliptical plate meter has been

stopped during the measurement. During the measurement process the operator has

to locate the elliptical plate over the rails and make it contact with them. Then the

plate has to be moved in 50 mm steps. At each step the plate has to be static for

a few second while the total station is acquiring its current position. The mentioned

algorithm receives this information as input, not just the x coordinate but also the

other two coordinates along the track and stablish the indices of the measured vector

among which the measurement has been stable for a few seconds. Red star points define

the limits of this regions. Finally, the algorithm states the measured average value at

each axis, obtaining as a result, the [x, y, z] coordinates of the track centre line.
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Figure 2.18: Measured centre line coordinate x

The mentioned algorithm, represents a fast way to calculate the track centre line from

the data acquired by the total station, it also permits to detect any wrong measured
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point and remove it from the set. Figure 2.19 shows the total station placed on the

rooftop while the author moves the elliptical plate meter along the track centre line.

The total station automatically follows the reflector and stores its position.

Figure 2.19: Scaled track centre line measuring process

2.4.1.2 Data synchronization

As it has been mentioned before, the dimensions of the experimental track make it

impossible to be measured in one go. The total station has to be placed in three

different spots at the rooftop. That means, there will be three packages of track centre

line coordinates, each of them with its own reference system. The following procedure

has been developed to get the coordinates of the points referred to the same coordinate

system. The track global coordinate system can be located in any point, but for the

sake of simplicity it has been settled at the starting point of the track, having its X

axis pointing along the track centre line.

Figure 2.20 helps to understand the synchronization process. Reference systems coloured

in magenta, red and dark green are named: F1 ≡ < O1;X1, Y1, Z1 >, F2 ≡ <

O2;X2, Y2, Z2 > and F3 ≡ < O3;X3, Y3, Z3 > respectively. They represent the three
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Figure 2.20: Scaled track centre line measuring process

positions at the rooftop where the total station has been located during the measuring

process. Lines coloured in orange, blue and purple represent the three track sections

independently measured. Points contained in the orange, blue and purple lines are

expressed in reference systems F1, F2 and F3 respectively. To make section synchro-

nization possible, two sets of points (coloured in black-green and black-red in Fig. 2.20)

called synchronization points have been defined. These synchronization points are real

points located in four calibrated bars distributed on the track and rigidly joined to the

track supporting tables (see Fig. 2.21) where the elliptical meter plate can be precisely

located.

2.4.1.3 Synchronization procedure

Synchronization requires to find the position vector and orientation matrices of frames

F1, F2 and F3. The synchronization process consists in obtaining the coordinates of

blue and purple track sections (see Fig. 2.20) in the F1 reference system. Thus, it is

necessary to translate and rotate in a proper way this two sets of points . The first
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Figure 2.21: Synchronization points on calibrated bars

step will be obtaining the absolute position vector
−→
R12 of the reference system F2 (the

second spot where the station was located during the measuring process) expressed in

reference system F1. For that purpose, synchronization points set Pi has to be measured

first from reference system F1 and then from F2. They are the linkage between track

sections orange and blue. Equation 2.2 states the vector relationship mentioned above.

Equation 2.3 is the matrix form of eq. 2.2 where A1,2 is the rotation matrix from

reference system F2 to F1.

−→
RPi =

−→
R 12 +−→r 2

Pi
(2.2)

RPi = R12 +A1,2 · r2Pi
(2.3)

A1,2 = A1,2
ψ ·A

1,2
φ ·A

1,2
θ (2.4)
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A1,2
ψ =


cos(ψ1,2) −sin(ψ1,2) 0

sin(ψ1,2) cos(ψ1,2) 0

0 0 1



A1,2
ψ =


cos(ψ1,2) −sin(ψ1,2) 0

sin(ψ1,2) cos(ψ1,2) 0

0 0 1



A1,2
ψ =


cos(ψ1,2) −sin(ψ1,2) 0

sin(ψ1,2) cos(ψ1,2) 0

0 0 1



(2.5)

Matrix expression 2.3 represents a three scalar equations with six unknown variables,

where R12 = [x2, y2, z2] are the coordinates of F2 reference system origin and φ1,22 , θ1,22

and ψ1,2
2 are its Euler orientation angles. Thus, a priori, measuring just two synchro-

nization points from F1 and the same two points from F2 would be enough to find the

position and orientation of reference system F2 with respect to F1. However, a total

of twelve synchronization points have been measured from each position of the station.

The resulting set of equations is over determined and they can be solved using least

squares method.

Once vector R12 and matrix A1,2 have been determined, track blue section coordinates

can be easily transformed from reference system F2 to reference system F1 by means

of eq. 2.6, where RS2
i

represents coordinate vector of an arbitrary point of blue track

centre line expressed in reference system F1 and r2
S2
i

is that same coordinate vector

expressed in reference system F2.

RS2
i

= R12 +A2,1r2S2
i

(2.6)

This procedure can be equally applied to transform purple track centre line section

coordinates from reference system F3 to reference system F1. In this case, it is necessary

to do an intermediate transformation from reference system F3 to F2 and finally from

F2 to F1 as explained above. Synchronization points Qi set has to be used to determine
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F3 coordinates and orientation angles expressed in F2. Equation 2.7 summarizes this

procedure, where RS3
i

are purple track centre line coordinates expressed in reference

system F1, r
2
O3 are the coordinates of reference system F3 expressed in F2, A

1,3 is the

orientation matrix from F3 to F1 and r3
S3
i

are the purple track centre line coordinates

expressed in F3.

RS3
i

= R12 +A2,1 · r2O3 +A3,1 · r3S3
i

(2.7)

As conclusion of this section, Figures 2.22 and 2.23 show the final track centre line

obtained after the synchronization process. As it can be seen, there is a notorious

difference between the expected and finally obtained track centre line. For this reason,

a later optimization process have to be accomplished for the measuring of track centre

line to obtain the ideal geometry that fits better with the measured one. The geometry

optimization process will be treated in a later section of this chapter.
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Figure 2.22: Measured track centre line vs designed track centre line
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Figure 2.23: Measured track height vs designed track height

2.4.2 Measurement of track gauge and cant angle

Once the scale track centre line has been properly measured, track gauges and cant

angles should be measured to conclude track measurement. This final step prove to

be simpler since it is not necessary to use the total station nor transform any coordi-

nates. To measured track gauge and cant angle a novel device has been designed and

manufactured (see fig 2.24). Measurer main two elements are a high-precision Linear

Variable Differential Transformer (LVDT) and a high-precision inclinometer. On the

one hand, Schereiber SM34 LVDT has a 10mm total stroke and 0.05 mm accuracy. On

the other hand, TSC-22-10 dual-axis tilt sensor, has a measuring range of ±10◦ and

±0.01◦ resolution.

Figure 2.25 shows the final assembly of the meter device. Its performance is simple.

Distance and tilt sensors are rigidly joined to the central bar which lies over the to rails.

The angle part located under the bar, keep the bar perpendicular to one of the rails

and the slider, pushed by LVDT inner spring, keeps in touch with the opposite rail.

Thus, when the ruler is moved along the track by an operator, track gauge and cant
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Slider

LVDT

Angle

Inclinometer

Figure 2.24: Track gauge and cant angle meter

angle are simultaneously measured. Figure 2.26 shows the track gauge and cant angle

measuring procedure. As it was done with track centre line, gauge and tilt have been

measured every 50 mm along the track. It is important to note that the LVDT, unlike

the tilt sensor, makes a relative measurement of track gauge. In fact, what LVDT is

registering are gauge variations between measured spots on the track. Hence, a Vernier

calliper must be used to measure a first track gauge and obtain the followings gauges

from LVDT gauge variation measurement.

Figures 2.27 and 2.28 show measured track gauges and cant angles on the track. As it

can be observed in Fig. 2.27 is about 128 mm and differs from the expected 127 mm

designed track gauge. Inaccuracies made during the scale track assembly process are

responsible for this phenomena. Figure 2.28 shows the tilt angle along the track. As it

can be seen, tilt angle is not close to 0 between s = 21 m and s = 50 m that correspond

with first curve section, and between s = 60 m and s = 75 m corresponding to the

second curve section. In this two sections cant angle mean values are 0.5◦ and 2.2◦

respectively. They are the cant angle values that compensates the centrifugal force in

the vehicle while moving at 1.5 m/s along the curve. Expression 2.8 states the exact

cant angle that eliminates the centrifugal effect on the vehicle, where V is the forward

velocity, g is the constant of gravity and R is the curve radius.



Chapter 2. Experimental Scaled Track 41

Figure 2.25: Track gauge and cant angle meter final assembly

α = asin(
V 2

gR2
) (2.8)

2.5 Track geometry optimization

As explained in previous section, the final scale track geometry differs substantially

from the design specifications listed in Section 2.2 and depicted in fig 2.22 and 2.23.

Therefore, the ideal track geometry, that is the combination of straight sections, tran-

sitions and curves, that best fits with the measured scale track geometry has to be

determined. To this end, an optimization algorithm has been developed. The algo-

rithm, takes an initial estimation of the track geometry as input and optimizes its

parameters until obtaining a good agreement with the measured geometry. On the

hand, in the horizontal plane, these parameters are: the starting coordinate s of each

section, radius of curvatures and cant heights. On the other hand, in the vertical plane

optimized parameters are: the starting coordinate s, transition radius of curvature and

initial slopes.
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Figure 2.26: Track gauge and cant angle measuring procedure

Table 2.2 shows an example of horizontal track centre line definition parameters. First

column is the coordinate s where each track section starts. There are three possible

types of sections designated by numbers 1, 2 and 3 for tangent, transition and constant

curvature sections respectively. In this example a 35 m long horizontal track is defined.

It has a 10 m long tangent section followed by a 5 m long transition which curvature

varies from 0 m−1 to 0.1 m−1. After that, there is a 10 m long constant 0.1 m−1

curvature section and 0.001 m cant height, followed by a 10 m long transition section

that goes progressively from the previously defined curvature to 0 m−1. A final 10 m

long tangent track is defined.

Vertical profile track definition is expressed in similar manner. Table 2.3 shows the

vertical profile definition parameters of the same example track mentioned above. First

column is newly the starting coordinate of each section (as explained in section 2.2

there are two kind of sections in the track vertical profile definition), second column is

the radius of curvature of the transition that connect two constant slope section and

the last column is the initial slope of the section.
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Figure 2.27: Measured track gauges

Table 2.2: Horizontal track definition input parameters example

s (m) Section (-) Curvature (1/m) Cant (m)

0 1 0.0 0.0

10 2 0.0 0.0

15 3 0.1 0.001

25 2 0.1 0.0

35 1 0.0 0.0

45 1 0.0 0.0

The geometry optimization algorithm is based on the so-called track preprocessor. It

is a software, that frequently accompanies any railways simulation programme and

generates all track information needed for the multibody simulation. It operates in a

preliminary phase before the dynamic simulation, and its results can be utilized by the

simulation software any time during the integration process and later post processing

phase. By using a track preprocessor, simulations become more efficient. The prepro-

cessor calculates in a phase previous to the simulation lots of parameters such as track
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Figure 2.28: Measured track cant angles

Table 2.3: Vertical track definition input parameters example

s (m) Curvature (m) Slope (rad)

0 0.0 0.0

10 10.0 0.005

20 -10.0 0.0

30 -10.0 -0.005

40 10.0 0.0

45 0.0 0.0

centre line coordinates, track frame orientation matrices and track centre line tangent

and normal vectors among others.

The track pre-processor used in this project was developed by the research group and it

is entirely programmed in Matlab. It takes as input a text file with an specific structure

as explained with tables 2.2 and 2.3 and all necessary parameters for track geometry

description.
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The track geometry optimization algorithm, calculates at each step the mean squared

quadratic error of ideal and measured track geometry and modifies the parameters men-

tioned before to minimize that error. Actually, for the sake of simplicity and computer

efficiency, the optimization is accomplished in two phases. First, the horizontal profile

is optimized and after it, the vertical profile. Expression 2.9 estates the mentioned

squared quadratic error where Rideal
i and Rmeasured

i represent the (x, y, z) coordinates

of the ideal and measured track centre line respectively. The number of points n uti-

lized depends on the chosen track centre line discretization. Figures 2.29 and 2.30 show

the optimized track centre line and heights resulting from the optimization algorithm.

Tables 2.4, 2.5, 2.6 and 2.7 show initial and final values of the optimized parameters.

As it can be seen, the optimized solution for the vertical profile (see Table 2.7) has more

sections than the vertical profile initially estimated (see Table 2.6). That is because the

track centre line optimization algorithm can find in this solution a better agreement

with the measure done on the track. Figure 2.31 shows the different tangent, transition

and curve sections that compound the optimized scale track geometry.

MSE =
1

n

n∑
i=1

(Rideal
i −Rmeasured

i )T (Rideal
i −Rmeasured

i ) (2.9)

2.6 Calculation of track irregularities

After the scale track centre line has been measured and its ideal geometry has been

found, the track irregularities calculation can be accomplished. As explained in Section

2.3 the difference between the measured and ideal geometry constitutes the so-called

track irregularities. In this section, irregularities of alignment, gauge, cross level and

vertical profile will be determined. Based on them, rails current position with respect

to their ideal position will be calculated. System of equations 2.1 shows the relationship

between these mentioned irregularities and the irregularity vector components ylir, zlir,

yrir and zrir (see Fig 2.10).

Gauge and cross level irregularities can be easily obtained from the measurements made

with the LVDT and the inclinometer (See Subsection 2.4.2). Gauge is defined as the
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Figure 2.29: Measured, optimized and initial estimation track centre lines
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Figure 2.30: Measured, optimized and initial estimation track centre line heights



Chapter 2. Experimental Scaled Track 47

Position x (m)

0 10 20 30 40 50 60

P
o
s
iti

o
n
 y

 (
m

)

-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

Figure 2.31: Track sections

Table 2.4: Horizontal optimization parameters initial estimation

s (m) Curvature (1/m) Cant (mm)

0 0.0 0.0

21 0.0 0.0

24 -0.0385 1.3

50 -0.0385 0.0

53 0.0 0.0

59 0.167 0.0

62 0.167 5.18

74 0.0 0.0

77 0.0 0.0

89 0.0 0.0
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difference between real track gauge and its nominal value. In order to obtain a more

reasonable value of gauge irregularity, the 127.9 mm mean track gauge value measured

by the LVDT is going to be considered as nominal scale track gauge. Figure 2.32 shows

the obtained track gauge irregularity. For the cross level calculation, observing fig 2.33,

it can be seen that superelevation value named as h, is given by equation 2.10.

h = sin(αInc) · dLV DT (2.10)

Where αInc is the measured tilt angle and dLV DT is the measured track gauge.
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Figure 2.32: Gauge track irregularity
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Figure 2.33: Track cant angle
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Figure 2.34: Cross level track irregularity

Alignment and vertical profile irregularities can not be obtained in such a direct way.

The process needed to obtain these last two irregularities starts by determining the

minimum distance between every track centre line measured point and the optimized

track centre line. For that purpose, the track pre-processor is once again an useful tool.

Let’s see fig 2.35. Point Pi represent a measured real point on the track. Point Qi could

be any point belonging to the optimized track centre line. The minimum distance be-

tween both points will be the modulus of vector
−→
d . Its components can be determined

by expression 2.11, where
−→
RQi is the absolute position on one point of the optimized

track centre line and
−→
RPi is the absolute position of the measured point. Let define

−→
t Qi as the tangent vector to the scale track ideal centre line at point Qi. If vector

−→
d

is such minimum distance, it has to be perpendicular to
−→
t Qi . Thus, equation 2.12 has

to be fulfilled. The process concludes projecting vector
−→
d on the track reference frame

according to eq. 2.13. Second and third components of vector rirr are the irregularities

of alignment and vertical profile respectively (see fig 2.36 and 2.37). Once the four

track irregularities have been determined, system of equations (2.1) can now be solved

to obtain the irregularity vector components ylir, zlir, yrir and zrir (see fig 2.38 - 2.39).

This components of track irregularities will constitute the input irregularity vector for
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the multibody scale railway model developed in this project.

−→
d =

−→
RQi −

−→
RPi (2.11)

−→
d · −→t Qi = 0 (2.12)

rirr = (At)Td (2.13)

P(x ,y ,z )i Pi Pi Pi

RPi

RQi

d

Q(x ,y ,z )i Qi Qi Qi

tQi

s

Y

X

Z

Figure 2.35: Alignment and vertical profile calculation procedure
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Figure 2.36: Alignment track irregularity
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Figure 2.37: Vertical profile track irregularity
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Figure 2.38: Component ylir and yrir of track irregularity
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Chapter 2. Experimental Scaled Track 53

Table 2.5: Optimized horizontal parameters

s (m) Curvature (1/m) Cant (mm)

0 0.0 0.0

21.235 0.0 0.0

22.593 -0.0419 1.3

47.732 -0.0419 0.0

54.990 0.0 0.0

59.473 0.169 0.0

62.239 0.169 5.18

73.228 0.0 0.0

75.397 0.0 0.0

89.957 0.0 0.0

Table 2.6: Vertical optimization parameters initial estimation

s (m) Transition radius (m) Slope (rad)

0 0.0 0.0

77.0 200.0 0.00375

81.0 -200.0 0.0

84.0 -200.0 -0.005

87.0 200.0 0.0

89.0 0.0 0.0
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Table 2.7: Optimized vertical parameters

s (m) Transition radius (m) Slope (rad)

0 0.0 0.0

20.9 10.0 0.00035

36.1 0.0 0.0

77.0 10.4 0.032

81.7 -10.0 0.0

83.7 -10.5 -0.047

86.9 10.0 0.0

87.5 0.0 0.0



Chapter 3

Scaled Dynamometric Wheelset:

Strain Gauges Method

3.1 Dynamometric wheelsets

In railways industry, the measured values of wheel-rail contact forces during vehicles

operation is considered as information of incalculable value for any railway vehicle

manufacturer or operating company. It is well known that wheel-rail contact forces are

highly related to vehicle safety, ride comfort and track maintenance periods. Through-

out modern railway history several approaches for measuring the wheel-rail contact

force experimental have been carried out. Some of them are focus on the indirect con-

tact force measurement as in [99], where inertial sensors located at the bearing boxes

in conjunction with other sensors installed on the vehicle, are utilised to estimated

the wheel-rail contact force from the dynamic response of the vehicle. These methods

obviously need a precise dynamic model that reproduces the vehicle response in inter-

action with the track. On the other hand, methods based on the direct measurement

of wheel-rail contact forces can also be found in the literature. They are based on the

use of the so-called dynamometric wheelsets, non conventional wheelsets equipped with

numerous sensors that make possible the direct measurement of the wheel-rail contact

forces as explained for instance in [73] and [100].

55
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Dynamometric wheelsets are a rare equipment for an ordinary railway vehicle. They

are expensive, difficult to manufacture and complex to put into operation. They also

require a sophisticated calibration process where an unequivocal relation between input

forces and sensor outputs has to be established.

As mentioned in previous chapters, the main purpose of this PhD thesis is the experi-

mental measurement of wheel-rail contact forces in an scaled railway vehicle designed

and built by the Department of Mechanical and Manufacturing Engineering of the Uni-

versity of Seville. The scaling strategy followed on the scaled vehicle design process

can be found in [82]. The reduced dimensions of the actual vehicle make the contact

force measuring process even more difficult than in a full scaled vehicle. Although the

current dynamic behaviour of the scaled vehicle is not representative of a full-scale one

due to the great reduction in size, the contact measurement techniques shown in this

PhD thesis can be extended to real vehicles meanwhile an equivalent calibration proce-

dure to the one explained next was followed. To the author best knowledge, there are

non existing precedents of this peculiar task in the scientific literature. In this third

chapter, the design, manufacturing and calibration process of an scaled dynamomet-

ric wheelset instrumented with strain gauges is going to be covered. The algorithm

needed to measure the wheel/rail contact forces from the sensors measurement is also

discussed.

3.2 Design of the scaled dynamometric wheelset

In this section and on the following ones, the procedure of design, manufacturing and

instrumentation is going to be explained. Figure 3.1 shows the original design of one of

the two bogies that form the scaled vehicle [82]. To obtain the desired dynamometric

wheelset, one of these axes has to be removed from the vehicle, it has to be equipped

with sensors to measure the forces applied on the wheels, and subjected to a high

precision calibration process.

As it can be observed, the reduced dimensions of the wheel (just 37.75 mm of nominal

radius1) and its solid body make really difficult to execute any action on it. Firstly,

1Nominal radius: is the wheel rolling radius when the wheelset is centred on the track
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Figure 3.1: Original Scaled Bogie Design

because there is not enough space to install any sensor on the wheel web or the bearing

box, and secondly, because even being able to install such sensors, the solid construction

of the wheel makes the potential magnitudes to be measured (like wheel web deforma-

tions or lateral deflections) derisory. For this reason a redesign of the scaled wheelsets

and their bearing boxes has been accomplished. The goal was to obtain a new geome-

try with larger and more slender wheels, making easy the installation of contact force

measurement sensors.

Figure 3.2 shows the original and new design of the scaled wheel. The size difference

can be observed. The new design has been machined in marine stainless steel in order

to avoid corrosion and minimizing wear. Apart of the change in the nominal radius

(now 63.5 mm), the second big difference between both designs is the wheel cross

section. As it can be seen in Fig. 3.3, the new scaled wheel cross section has a thinner

wheel web with just 2 mm of thickness. Wheel conicity has also been increased from

λw = 1/30 to 1/10, keeping the flange angle of attack of 75o. The new total tread

length is 12 mm wide, that allows bigger lateral displacement of the axle on the rails

before flange contact occurs.

The evolution of the scaled wheel design has been the result of a finite elements analysis

with ANSYS Multi Physics where different wheel geometries and thickness have been

simulated. The goal was to obtain such a geometry where the radial strains and lateral

deflections on the wheel-web were large enough to be measured by industrial sensors.

Thanks to this new design presented above, there is more available space to install

sensors on the wheel and also bigger deformations and lateral deflections on the wheel
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Figure 3.2: Original (left) and new(right) scaled Wheel

when forces are applied on it. The final assembly of the redesigned bogie is shown in

Fig. 3.6.

Figure 3.3: Original (up) and New (down) Scaled Wheel Section

Figure 3.4 shows the 3D models developed in ANSYS. Two separate FEM have been

modelled: one single wheel and a complete wheelset. The complete wheelset model was

originally used to evaluate the wheels radial strains distribution and lateral deflections

in both wheels when different loads applied on them. As it is known, the large number

of elements that form the model make it less efficient. For this reason a simplified single

wheel model was created later. The FEMs are the perfect scenario to estimate the radial

strains and lateral deflections that will appear on the wheels when running on the real
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track. The FEM are used to select the most suitable sensors and its positions on the

wheelset for the measurement of the wheel/rail contact forces. The type of element

selected to build the model is SOLID185, defined by eight nodes with three degree of

freedom at each node. This type of element proves to be suitable for 3D modelling of

solid structures, apart of been computationally efficient. A convergence analysis has

been carried out to determine the most efficient size of element. A 600 µm element size

has been finally established resulting in a 1.98 million element model.

(a) (b)

Figure 3.4: ANSYS Finite Elements Model

Figure 3.5 shows the deformed cross-sections of the scaled wheel using four different

size of element. The wheel has been subjected to a 100 N normal load and a 150 N

lateral. As it can be observed, the lateral deflections tend to be stable for element

size of 0.6 mm, showing a variation smaller than 2.5% with respect to a finest 0.4 mm

model. Table 3.1 shows a quantitative comparative between the four mentioned cases of

analysis. Simulations have been carried out in an Intel Core i7-4930K CPU @ 3.40 GHz,

3701 MHz and 6 cores. After several trials the 0.6 mm element size results to be the

most efficient without loss of precision.
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Figure 3.5: FEM Element Size Analysis

Table 3.1: FEM Convergence and Efficiency Analysis

Size (mm) Elements (Million) Max. Displ (µm) Comp. Time (s)

1.0 0.42 128.3 45

0.8 0.87 163.9 62

0.6 1.98 180.0 366

0.4 6.20 184.0 1560

3.2.1 Instrumentation of the scaled dynamometric wheelset with strain

gauges

The instrumentation of a full scale dynamometric wheelset normally represent a great

challenge for engineers. Different strategies for the instrumentation of a dynamometric

wheelset can be found in the literature. The most common are two: the use of strain

gauges to measure radial strains on the wheel-web [100] and the use of non-contact

sensors to measure the lateral deflection experienced by the wheels [73]. In this PhD

thesis both technologies are going to be used for the instrumentation of the scaled
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Figure 3.6: New scaled bogie design

dynamometric wheelset. The goal is two compare the force results obtained with both

technologies and to determine the most suitable for such application. In this chapter

the strain gauges approach is discussed, leaving the non-contact sensors approach for

Chapter 4.

Dynamometric wheelsets based on strain gauge technology are the most commonly

found in the literature. Despite being a straightforward method to measure wheel-rail

contact forces, they have some disadvantages. First, strain gauges are delicate sen-

sors that require a careful use and precise installation. Second, their life is limited

and they have to be replaced regularly to guaranty the correct operation of the dy-

namometric wheelset. However, the data transmission represents the main challenge.

Strain gauges should be installed in the axle or the wheel-web itself, taking into account

that the wheelset is rolling, wire communication between sensors and data acquisition

equipments is not a valid solution. Expensive and sophisticated technologies such as

telemetry systems or high quality brush connectors must be used. For this reason, a

dynamometric wheelset instrumented with strain gauges is an expensive and complex

system for the measurement of wheel-rail contact forces.
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3.2.2 Strain gauges installation

Due to the reduced available space for sensors and equipment in the scaled wheelset, a

single wheel has been instrumented. A set of twelve strain gauges have been installed

in the wheel, six on each side of the wheel-web (See Fig. 3.7). Each strain gauge has

a twin unit at the opposite side, located at the same angular position, resulting on a

total of six active strain bridges in the dynamometric wheelset.

Figure 3.7: Mounting of Strain Gauges

The bridges have been connected in a half-bridge configuration. This configuration has

two active strain gauges and two passive variable resistors that balance the full bridge

(see Fig. 3.8). Depending on how this four elements are interconnected in the Wheat-

stone half-bridge, the response of the system varies. There are two possibilities: if the

two active strain gauges are located in opposite arms of the bridges, their measured

strains are added, while if the active strain gauges are located in adjacent arms, their

measurements are subtracted [59]. In addition, the half-bridge configuration also mini-

mize the effect of temperature on the measurement. With both active strain gauges at

the same temperature and mounted on the same material, any changes in the temper-

ature affect the sensors in the same way. Figure 3.9 shows the strain field of the wheel

considering that all nodes of the wheel hub are fixed. In this scenario a constant force

has been applied at the wheel tread. As it can be observed, one side of the wheel is

compressed while the other remains tensioned.
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The strain measured by the internal and external strain gauge in one of the strain

bridges are given by:

εext = εext
Q + εext

N

εint = εint
Q + εint

N
(3.1)

where εext
Q and εext

N are the radial strain produced by the lateral load Q and normal

load N on the external face of the wheel respectively. Considering that the external

load applied in the wheel is centred in the wheel tread (See Fig. 3.10), the measured

strains due to the normal component of the applied force in both sides of the wheel

εext
N and εint

N are identical. Thus, if the strain bridges are connected in differential

configuration, it yields,

εtot = εext − εint = εext
Q − εintQ (3.2)

where εtot represents the total strain measured in one of the strain bridges. As one can

see, this configuration only allows the lateral load measurement. Thus this methodology

is not valid for the applied normal load measurement. Another procedure explained

later is used for the normal load measurement.

Active
   SG

Active
   SG

Potentiometer

Potentiometer

+Vcc

-Vcc

+Uo -Uo

Figure 3.8: Half-bridge Configuration
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Figure 3.9: Radial strain state of the wheel

Q

Compressed
       Side

N

Tensioned
       Side

Figure 3.10: Loads applied to the wheel

As it can be observed in Fig. 3.7, the strain gauges have been installed in the vicinity of

the wheel shaft because strains are bigger in that area. Figure 3.11 shows the numerical

results obtained from the FEM when a 100 N lateral load is applied on the wheel.

As mentioned before in this section, the use of strain gauges requires the use of wireless

communication between the sensors and the data acquisition system or brushed con-

nectors. Both solutions can be found in the market being equally expensive. The use of

a brushed connector was initially considered in this thesis, however the reduced dimen-

sions of the axle and the numbers of signals to transmit made that solution unfeasible.

It should be noted that this kind of connectors usually have a considerable level of noise
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Figure 3.11: Simulated radial strain in different measuring radius

due to the sliding connections. In a full scale system where large loads are applied on

the wheels, that noise could be neglected but not in such scaled system. Figure 3.12

shows on the left the three wireless transmitters installed on the instrumented wheelset.

Each device has two measuring channels. They power the strain bridges, amplify and

transmit the signal to the receiver. An external 9 V power supply is required to power

the transmitters. Figure 3.12 shows on the right the receiver that conditions and am-

plify the signals sent by the wireless transmitters. These signals are then acquired by

the DAQ system.

Figure 3.13 shows the final assembly of the dynamometric wheelset with the strain

gauges and the telemetry system installed on it. Left wheel shown in the figure is

the instrumented with the strain sensors. The assembly process of all the instruments

in the dynamometric wheelset has been carefully accomplished to keep the wheelset

balanced. An unbalance wheelset would introduce abnormal radial accelerations in the

scaled vehicle.
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(a) (b)

Figure 3.12: Datatel transmitters and receiver

Variable
resistors

Telemetry
    and
 batteries

Figure 3.13: Final assembly of the scaled dynamometric wheelset

3.2.3 Lateral force estimation based on wheel-web radial strains

The methods proposed by Gómez in [100] and Gutiérrez-Lopez in [101] are based on

some harmonic elimination techniques that have been successfully proved for measuring

wheel-rail contact forces, tyre-road contact forces and applied moments respectively.
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These methods allow the estimation of a different number of magnitudes depending on

the number of strain gauges installed on the dynamometric wheels. However, for the

purpose of this thesis, due to the reduced dimensions of the scaled wheelset, a maximum

of twelve strain gauges can be used.

Measuring
    point

  Measuring
circunference

Measuring
radial line

j=1

j=2

j=3
j=4

j=5

j=6

i=1

α

β2

γ2

Line of application
      of forces

  Applied Force 

F = Fx + Fy + Fz

Figure 3.14: Measuring points, radial lines and measuring circumference

The method proposed hereafter is an application of the above mentioned methods to

a scaled wheelset. In the algorithm formulation, a linear elastic model of the wheel,

six strain bridges connected in half-bridge configuration (each of them with an active

strain gauge installed on each side of the wheel), and a combination of lateral, vertical

and longitudinal loads applied on the wheel-tread have been considered. Figure 3.14

shows a diagram of the instrumented wheel, where each measuring point represents one

of the strain bridges present on the wheel-web.

The radial strain on measuring point j is given by:
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εj(γj , t) = BX
j (γj)FX(t) +AYj (γj)FY (t) +AZj (γj)FZ(t) (3.3)

γj = α+ βj (3.4)

where FX , FY and FZ are the three components of the applied force on the wheel, and

BX
j (γj), A

Y
j (γj) and AZj (γj) are influence functions of the rotated angle γj that show

the strain due to unitary forces FX , FY and FZ on the measured strain εj . Variable γj

is the angle between the measuring radial line j and the line of application of forces, α

is the angle between the reference radial line j = 1 and the line of application of forces,

and βj is the angle between the measuring radial line j and the reference radial line.

As explained in [101], the influence functions are periodic, thus, Eq. (3.3) can be

rewritten as a Fourier series expansion. It is important to note that AYj (γj) and AZj (γj)

are symmetric influence functions and only cosine terms appear on them, while BX
j (γj)

are antisymmetric influence functions that only contain sine terms. This can be written

in the following way:

εj(γj , t) = FX(t)

∞∑
k=0

BX
k sin(kγj)+FY (t)

∞∑
k=0

AYk cos(kγj)+FZ(t)

∞∑
k=0

AZk cos(kγj) (3.5)

Considering only the first n harmonics and rewriting Eq. (3.5) in matrix forms yields:
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εj(γj , t) =
[
1 cos(γj) cos(2γj) · · · cos(nγj)

]

AY0 AZ0

AY1 AZ1
...

...

AYn AZn


[
FY (t)

FZ(t)

]
+

[
0 sin(γj) sin(2γj) · · · sin(nγj)

]

BX

0

BX
1
...

BX
n


[
FX(t)

]
(3.6)

This can be rewritten in compact form as:

εj(γj , t) = hSj(γj)
TASfS(t) + hAj(γj)

TBAfA(t) (3.7)

where vectors hSj and hAj that depend on the angular position γj and AS and BA are

constant matrices depending on the wheel geometry. Equation (3.7) can be particular-

ized for the case of study of this work, where six active strain bridges are installed on

the instrumented wheel. The following expression is obtained:

ε(γj , t) = HS(γj)ASfS(t) + HA(γj)BAfA(t) (3.8)

where:

ε(γj , t) =
[
ε1 ε2 · · · ε6

]T
(3.9)

HS =


hTS1

hTS2
...

hTS6

 =


1 cos(γ1) cos(2γ1) · · · cos(nγ1)

1 cos(γ2) cos(2γ2) · · · cos(nγ2)
...

...
...

. . .
...

1 cos(γn) cos(2γn) · · · cos(nγ6)

 (3.10)
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HA =


hTA1

hTA2
...

hTA6

 =


0 sin(γ1) sin(2γ1) · · · sin(nγ1)

0 sin(γ2) sin(2γ2) · · · sin(nγ2)
...

...
...

. . .
...

0 sin(γn) sin(2γn) · · · sin(nγ6)

 (3.11)

The values contained in Eq. (3.9) are the strains measured by each of the six strain

bridges of the dynamometric wheelset. These signals are periodic with the angle rotated

by wheel. They must be combined in such a way that four new signals are obtained:

• ESi: Signal that contains information of the first harmonic of the strain curves

and depends linearly on the forces that produce symmetric strains (FY and FZ).

• EAi: Signal that contains information of the first harmonic of the strain curves

and depends linearly on the force that produce antisymmetric strains (FX).

• E′Si: Signal that contains information of the second harmonic of the strain curves

and depends linearly on the forces that produce symmetric strains (FY and FZ).

• E′Ai: Signal that contains information of the second harmonic of the strain curves

and depends linearly on the force that produce antisymmetric strains (FX).

Signals that depend on the first harmonic can be written as

ES = xTSε = xTSHS(γj)ASfS(t) + xTSHA(γj)BAfA(t) (3.12)

EA = xTAε = xTAHS(γj)ASfS(t) + xTAHA(γj)BAfA(t) (3.13)

where xS and xA are two unknown vectors of coefficients.

To guarantee the conditions enumerated above, vectors xS and xA must fulfil the fol-

lowing expressions:
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xTSHS =
[
0 1 0 0 0 · · · 0

]
xTSHA =

[
0 0 0 0 0 · · · 0

]
xTAHS =

[
0 0 0 0 0 · · · 0

]
xTAHA =

[
0 1 0 0 0 · · · 0

]
(3.14)

If Eqs. (3.14) are fulfilled, it yields:

ES =
[
AY1 AZ1

] [
FY (t) FZ(t)

]T
(3.15)

EA = BX
1 FX(t) (3.16)

To calculate the unknown values of xS and xA, Eqs. (3.14) can be rewritten in the

following way:

[
HT
S

HT
A

]
xS =

[
0 1 0 · · · 0 0 0 0 · · · 0

]T
(3.17)

[
HT
S

HT
A

]
xA =

[
0 0 0 · · · 0 0 1 0 · · · 0

]T
(3.18)

Equations (3.17) and (3.18) constitute two overdetermined system of equations. Con-

sidering there is not an unique solution for xS and xA, an optimization problem must

be solved in this point. To that end, Eqs. (3.17) and (3.18) are partitioned as follows:

[
1 1 · · · 1

cos(γ1) cos(γ2) · · · cos(γ6)

]
xS1

xS2
...

xS6

 =

[
0

1

]
⇒ RSXS = d (3.19)
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

cos(2γ1) cos(2γ2) · · · cos(2γ6)

cos(3γ1) cos(3γ2) · · · cos(3γ6)
...

...
. . .

...

cos(nγ1) cos(nγ2) · · · cos(nγ6)

sin(γ1) sin(γ2) · · · sin(γ6)

sin(2γ1) sin(2γ2) · · · sin(2γ6)
...

...
. . .

...

sin(nγ1) sin(nγ2) · · · sin(nγ6)




xS1

xS2
...

xS6

 =



0
...

0

0
...

0


⇒MSXS = 0 (3.20)

[
1 1 · · · 1

sin(γ1) sin(γ2) · · · sin(γ6)

]
xA1

xA2
...

xA6

 =

[
0

1

]
⇒ RAXA = d (3.21)



cos(γ1) cos(γ2) · · · cos(γ6)

cos(2γ1) cos(2γ2) · · · cos(2γ6)
...

...
. . .

...

cos(nγ1) cos(nγ2) · · · cos(nγ6)

sin(2γ1) sin(2γ2) · · · sin(2γ6)

sin(3γ1) sin(3γ2) · · · sin(3γ6)
...

...
. . .

...

sin(nγ1) sin(nγ2) · · · sin(nγ6)




xA1

xA2
...

xA6

 =



0
...

0

0
...

0


⇒MAXA = 0 (3.22)

Thus, equations MSXS = 0 and MAXA = 0 must be solved while constraint equations,

RSXS = d

RAXA = d
(3.23)

are fulfilled. The values of vectors xS and xA can be obtained by solving the following

system of equations that correspond with the method of Lagrange multipliers:
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[
MT

SMS RT
S

RS 0

][
xS

λ

]
=

[
0

d

]
(3.24)

[
MT

AMA RT
A

RA 0

][
xA

λ

]
=

[
0

d

]
(3.25)

The minimum error is obtained when:

xS =
1

3


cos(γ1)

cos(γ2)
...

cos(γ6)

 (3.26)

xA =
1

3


sin(γ1)

sin(γ2)
...

sin(γ6)

 (3.27)

Considering the measuring points disposition depicted in Fig. 3.14, the angular position

γj can be written as:

γj = α+ (j − 1)
π

3
(3.28)

Finally, substituting Eq. (3.26), (3.27) and (3.28) in equations (3.12) and (3.13), it

yields:

ES = XT
Sε =

1

3

6∑
j=1

(εjcos(γj)) (3.29)

EA = XT
Aε =

1

3

6∑
j=1

(εjsin(γj)) (3.30)
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For the signals that contains information of the second harmonic of the strain signal E′S

and E′A, an identical procedure must be accomplished, with the exception of matrices

RS , MS , RA and MA take now the following form:

RS =

[
1 1 · · · 1

cos(2γ1) cos(2γ2) · · · cos(2γ6)

]
(3.31)

MS =



cos(γ1) cos(γ2) · · · cos(γ6)

cos(3γ1) cos(3γ2) · · · cos(3γ6)
...

...
. . .

...

cos(nγ1) cos(nγ2) · · · cos(nγ6)

sin(γ1) sin(γ2) · · · sin(γ6)

sin(2γ1) sin(2γ2) · · · sin(2γ6)
...

...
. . .

...

sin(nγ1) sin(nγ2) · · · sin(nγ6)


(3.32)

RA =

[
1 1 · · · 1

sin(2γ1) sin(2γ2) · · · sin(2γ6)

]
(3.33)

MA =



cos(γ1) cos(γ2) · · · cos(γ6)

cos(2γ1) cos(2γ2) · · · cos(2γ6)
...

...
. . .

...

cos(nγ1) cos(nγ2) · · · cos(nγ6)

sin(γ1) sin(γ2) · · · sin(γ6)

sin(3γ1) sin(3γ2) · · · sin(3γ6)
...

...
. . .

...

sin(nγ1) sin(nγ2) · · · sin(nγ6)


(3.34)

By applying again the Lagrange multipliers method the following optimised vectors are

obtained:
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xS =
1

3


cos(2γ1)

cos(2γ2)
...

cos(2γ6)

 (3.35)

xA =
1

3


sin(2γ1)

sin(2γ2)
...

sin(2γ6)

 (3.36)

Taking the results of vectors xS and xA of (3.35) and (3.36), it results:

E′S = XT
Sε =

1

3

6∑
j=1

(εjcos(2γj)) (3.37)

E′A = XT
Aε =

1

3

6∑
j=1

(εjsin(2γj)) (3.38)

By substituting Eq. (3.3) in Eqs. (3.29), (3.30), (3.37) and (3.38), and considering just

the influence of the amplitudes of the first and second harmonics, ES , EA, E′S and E′A

can be rewritten as:

ES ≈ AY1 FY (t) +AA1 FZ(t) (3.39)

EA ≈ BX
1 FX(t) (3.40)

E′S ≈ AY2 FY (t) +AA2 FZ(t) (3.41)

E′A ≈ BX
2 FX(t) (3.42)
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By rewriting Eqs. (3.40) to (3.42) in matrix form, the values of FY (t), FZ(t) and FX(t)

can be easily obtained from:

[
AY1 AZ1

AY2 AZ2

][
FY (t)

FZ(t)

]
=

[
ES

EA

]
(3.43)

[
BX

1

BX
2

] [
FX(t)

]
=

[
E′S

E′A

]
(3.44)

Equations (3.43) and (3.44) have been obtained only considering the influence of the

amplitudes proportional to the first and second harmonics of the influence functions.

More details of the complete method presented can be found in [101].

As a summary of the process described above, in order to calculate the lateral force

applied on the wheel from the radial strain measured by the strain gauges the following

steps must be completed:

1. Coefficients AY1 , AZ1 , AY2 and AZ2 must be obtained from the FEM (only in the

first iteration).

2. The angle rotated by the wheel is obtained.

3. Terms ES , EA, E′S and E′A are obtained from Eqs. (3.29 - 3.30) and Eqs. (3.37 -

3.38).

4. Expressions (3.43) and (3.44) are evaluated and the forces are obtained.

3.2.4 Numerical validation of the radial strains method

The method presented here, has been validated using strain data from the FEM as

follows: Figure 3.15 shows the synthesized radial strains measured by each of the six

strain bridges when a combination of variable lateral and vertical loads are applied

on the wheel. Note that each strain bridge experiences the applied load as a force

that rotates around the wheel axle. That means, the magnitude measured by one

strain bridge is maximized when the strain bridge is in the same measuring radius than
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the point of application of the force (its nearest position). By solving the system of

equations (3.43) the results depicted in Figs. 3.16 and 3.17 are obtained. As it can be

observed, the applied lateral force has been satisfactorily estimated by the proposed

method. However, a normal load does not have the same result as one can observe

in Fig. 3.17. Functions shown in Fig. 3.18 explain the unsatisfactory vertical and

longitudinal load measurements. As it can be observed, the magnitude of the radial

strain measured along the measuring circumference where the strain gauges are installed

is more than a thousand times bigger when a lateral load is applied in comparison to

a normal load acting on the wheel. The reason is that the differential configuration

of the strain bridges make them highly sensitive to the bending of the wheel, but any

vertical load applied on the wheel is almost undetectable. Taking this into account, the

coefficient matrix of system of equation (3.43) is bad conditioned because coefficients

AY1 and AY2 are much larger than AZ1 and AZ2 . That explains why just the lateral

load is correctly estimated by the algorithm. This fact does not compromise the final

results of this study since the applied normal load on the instrumented wheelset has

been satisfactorily measured by another procedure explained later.
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Figure 3.15: Synthesized strains when lateral and vertical loads are applied on the
wheel
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Figure 3.16: Simulated vs estimated applied lateral load
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Figure 3.17: Simulated vs estimated applied vertical load
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Figure 3.18: (a) Deformed shape when a unitary lateral load is applied on the wheel,
(b) Deformed shape when a unitary vertical load is applied on the wheel, (c) Deformed

shape when a unitary longitudinal load is applied on the wheel

3.3 Calibration of the scaled dynamometric wheelset

Before its commissioning, the dynamometric wheelset must be submitted to a cali-

bration process. The goal is to analyse the response of the measuring instruments

installed in the wheelset when different forces act on the wheels. In the railways indus-

try there are two types of calibration facilities: static test benches [13] and dynamic test

benches [14]. Figure 3.19 shows an example of dynamic calibration bench, also known

as rolling rigs. Some of these machines can test a full scale dynamometric wheelset up

to 300 km/h while controlling vertical and lateral loads and the relative wheelset-rail

yaw angle. The rails are two rings machined with a conventional UIC profile. With a

sophisticated test rig controller, it is possible to reproduce straight and curve running

conditions, including acceleration and braking.

Although a dynamic test bench is most straightforward facility to calibrate a dynamo-

metric wheelset, their complexity and high price make them even prohibitive for some

railways manufacturers. Static test benches, where the wheelset remains motionless
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Figure 3.19: Luccini Rolling Rig

during the tests, are an alternative. In this PhD thesis the instrumented wheelset has

been tested on a static scaled test bench.

3.3.1 Static calibration test bench

An scaled static calibration test bench has been fully designed and manufactured by

the author. Figure 3.20 shows the preliminary design of the mentioned test bench. The

goal was to develop a machine where the wheelset could be attached while applying

controlled lateral and vertical forces on one the wheels.

Numerous tests have been carried out with the calibration bench in order to validate

the FEM developed in ANSYS and to tune the involved sensors. In addition to the

dynamometric wheelset instruments, the test bench has two load cells in charge of

applying the lateral and vertical loads on the wheel (see Fig. 3.22). Figure 3.21 shows

all the equipment required during the calibration tests.
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Figure 3.20: Scaled Static Test Bench

Figure 3.21: Calibration Test Bench Instrumentation

3.3.1.1 Strain gauges calibration in the test bench

The first step consist on electronically balance the strain gauges, getting a 0 V output

at each of the six strain bridges when the wheel is unloaded. Then, the receiver (Fig.

3.12 (b)) gains must be adjusted to guarantee that every strain bridge provides the

same output when an input load is applied on the wheel. Finally, in order to validate
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Figure 3.22: Test Bench Load Cells

the FEM of the wheel, the micro-strain / volts ratio has been established by means of

an external strain gauge calibrator that automatically provides that ratio.

Figure 3.23 shows the FEM experimental validation. In this scenario a variable lateral

load is applied on the central point of the wheel tread. Solid lines are the experimental

data obtained from the calibration test bench while dashed lines are numerical results

from the FEM. Different colours lines represent the strains measured by the six strain

bridges. Solid and dashed yellow lines are the strains measured by the strain bridge

closest to the point of application of the force. As it can be seen, there is a good

accordance between both sets of data. These result validate the FEM developed in

ANSYS. Hereafter the numerical results obtained from the FEM can be used for the

algorithm that calculates the lateral contact force.
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Figure 3.23: FEM Experimental Validation

Once the finite elements model developed in ANSYS has been validated, it can be used

to easily check some of the assumptions made during the design stage. For instance,

as explained in subsection 3.2.2, the strain gauges half-bridge configuration should

make them blind to the normal load effect. That assumption makes sense when the

vertical load is applied in the neutral axis of the wheel cross-section but not when it is

displaced. Figure 3.24 shows the simulated strain obtained in one of the strain bridges

during one wheel turn, being the normal load applied on the central point of the wheel

tread (neutral axis). Different colour lines represent the strain measured when different

lateral loads are applied on the wheel. Coloured lines of the same colour represent the

strain measured in the strain bridge when five different values of normal load (from 0 N

to 700 N) are applied on the wheel, maintaining the same lateral load. The maximum

strain difference between the 0 N and 700 N vertical load scenarios is 5 µε. Taking

into account a normal resolution of any strain gauge conditioner is around 1 µε, vertical

load effect can be neglected when the load applied is centred on the wheel tread.

A similar experiment has been carried out with the real scaled vehicle. The bogie

has been positioned centred on the scaled track while the wheel normal load has been
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Figure 3.24: Effect of the Normal Load Applied on the Wheel

gradually augmented by adding extra weight on the bogie. Figure 3.25 shows on the

left the bogie loaded with a calibrated 50 N weight and Fig. 3.25 shows on the right the

vehicle loaded with 200 N . The measurements drawn from the strain gauges are shown

in Fig. 3.26. Vertical red lines occur during the periods when the normal load applied

on the wheels is changed by adding or removing a calibrated weight. The test starts

and finishes with no extra weight on the vehicle. As it can be observed, there is not

a significative change on the measured strain, the maximum strain difference detected

during the experiment is less than 5 µε. Based on these results and the previous FEM

analysis, it can be concluded that the normal load applied on the instrumented wheel

does not affect the measurements of the strain gauges.
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(a) (b)

Figure 3.25: Normal load effect on the measured radial strains. Track experiment

0 20 40 60 80 100 120

-30

-22.5

-15

-7.5

0

7.5

15

22.5

30

37.5

45

SB1

SB2

SB3

SB4

SB5

SB6

50N 100N 150N 200N 150N 100N

50N

Time (s)

R
ad

ia
l 

st
ra

in
 (
μ
ε)

Figure 3.26: Normal load effect on the measured radial strains, experimental vali-
dation

To conclude the scaled dynamometric wheelset calibration, the influence of the point

of application of the force on the wheel thread has also been analysed for the strain

gauges. Several simulations have been carried out applying a combination of different
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vertical, lateral and longitudinal loads. Those loads have been applied on three points

of the wheel tread named as P1, P2 and P3 in Fig. 3.27. The goal of this analysis is

to determine how the strain gauges and lateral lasers measurements change when the

point of application of the force moves along the wheel tread.

P1 P2 P3

N
eu
tral

axis

Figure 3.27: Points of application of the force in the wheel tread

Figure 3.28 shows the obtained results. For the sake of simplicity only strain bridge

number 6 (see Fig. 3.14) is shown, but the conclusions can be extended to the other

five. Orange, dark blue and yellow solid lines represent the radial strain measured by

the strain bridge when a combination of a constant 60 N vertical load and a variable

lateral loads are applied at point P1, P2 and P3, respectively. The line of application

of the force coincides with radial line j = 6 (see Fig. 3.14). The maximum uncertainty

of the sensor is approximately ±2.5 N. That correspond to a 4% error in the lateral

load measurement using this technology. Again, longitudinal loads applied on the wheel

tread do not affect the measured lateral force.
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Figure 3.28: Influence of the contact point on the radial strain measurements





Chapter 4

Scaled Dynamometric Wheelset:

Distance Lasers Approach

4.1 Dynamometric wheelset instrumented with non-contact

distance sensors

In the previous chapter, the instrumentation of the scaled dynamometric wheelset with

strain gauges has been presented. As it has been discussed, the strain gauges are a

reliable method to measure the lateral contact force applied on the wheel. However the

applied normal load a can not be obtained in such a straight forward way. To that end,

a higher number of sensors and a more sophisticated installation procedure must be

accomplished. In this PhD thesis due to the reduced dimensions of the instrumented

wheelset and the limited number of input channels of the telemetry system, the vertical

force measurement through out the radial strains has been refused. Nonetheless, there

are also other instrumentation options used in the railways industry for the wheel/rail

contact forces measurements.

The alternative to the strain gauges are the non-contact distance sensors based on

laser or inductive technology. Unlike the strain gauges, these sensors do not need to

be placed in rolling parts, but they are mounted in fixed parts such as the bearing

89
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boxes. Their mission consists of measuring the deflection experimented by the wheel-

web due to the forces acting on the wheel tread while the vehicle is running on the

track. This technology has some advantages against strain gauges: On the one hand

non wireless connections are needed since the sensors are not spinning with the wheel.

On the other hand, lasers are a more enduring technology with less maintenance and

easy to calibrate than strain gauges. Of course, they also have some drawbacks. For

instance, due to the presence of mechanical parts such as the bearings between the

sensors and the wheel-web, these sensors are also going to capture useless information.

Housing clearance, lateral play and roll angle of the bearings are variables inherit to

the measurement that must be considered in the force calculation algorithm in order

to obtain a precise estimation.

In the scientific literature two main approaches can be found for the wheel-web lateral

deflection measurement: inductive magnetic distance sensors or distance lasers. The

first family was immediately dismissed because their minimum resolution is not small

enough for the measurement of the tiny lateral deflection on the scaled system. Thus,

distance laser technology has been finally chosen to measure the forces applied on the

scaled wheelset. Vertical and lateral forces are going to be measured separately by two

sets of distance lasers.

The first set consist of two sensors MICRO-EPSILON optoNCDT-1302 mounted in

both sides of the bogie frame front part, pointing towards the bearing boxes. Their

measuring range can be established from 20 to 200 mm with a minimum resolution

of 2 µm. Figure 4.1 shows the mentioned sensors. They register the instantaneous

deflection of the primary suspension of the dynamometric wheelset. Known the stiffness

of the springs, the vertical force applied on the wheels can be easily obtained.

The measurement of the applied lateral force on the instrumented wheel requires a more

sophisticated procedure than the normal force measurement. To that end, a second set

consisting on three high precision distance lasers MEL-M7L/0.5-10B has been installed

on the front left bearing box. The selected devices have a 500 µm measuring range with

a resolution up to 0.2µm and a maximum sampling rate of 54 kHz. For the sake of a

better understanding, Fig. 4.2 shows an sketch of the lasers assembly in the vehicle.

Lasers number one to three are rigidly attached to the front left bearing box. Several

sliding mechanisms allow the precise positioning of the lasers in the radial and lateral
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(a) (b)

Figure 4.1: Vertical lasers mounting on the bogie frame

directions. The applied lateral force Q on the wheel tread is obtained as a combination

of the measurement of the three lasers. Laser number two is pointing towards the axle

central point. This sensor registers the relative lateral displacement of the wheelset

with respect to the bearing box. Lasers one and three are pointing towards the wheel-

web and they measure the lateral deflection experienced due to the applied lateral force

Q. Figure 4.3 shows the final assembly of the instrumented wheelset, the high precision

lateral lasers are numbered in red from one to three.

4.2 Lateral force estimation based on wheel-web deflec-

tions

The second method proposed for the lateral contact force estimation is based on the

measurement of the wheel-web deflection with three high-precision lasers installed in

the bearing box of the instrumented wheel, as explained above. Figure 4.2 on the left

shows the positioning of the distance lasers. Parameters r1 and r2 are radial positions

of the outer lasers while rQ defines the radius of the point of application of the force.

Figure 4.2 on right, shows coloured in red the deformed shape v(r) of the wheel when a

lateral load Q is applied. The deflection experienced by the wheel is denoted as v(rQ).

The model boundary condition establishes that the wheel hub is clamped to the surface

in contact with the axle. As a result, deformed shape v(r) is obtained.
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Figure 4.3: Final assembly of the dynamometric wheelset

Figure 4.4 shows the kinematic assumptions on which the method is based. The pale

blue line represents the wheel reference diametrical plane of the instrumented wheel

when no loads are applied on it. Assume that a lateral load Q is applied on the

wheel contact patch. If the bearing has a certain play, the wheel reference diametrical

plane sections moves laterally a distance y. If the bearing also allows some rotation β

around O′, the wheel reference diametrical plane turns into the inclined green solid line.
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Finally, due to the effect of the applied lateral load, the wheel acquires a deformed shape

depicted with the solid magenta line. In the scenario presented so far, it is considered

that the wheel-web surface, to which lasers 1 and 2 are pointing, is perfectly smooth,

so that the deformed shaped will be independent of the wheelset rotation θ around its

axis. However, it has been proven that the scaled wheel web surface presents noticeable

irregularities generated during the machining process and also the perpendicularity

between the instrumented wheel and the axle is not perfect. This fact will be explained

in detail in the next section.
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Figure 4.4: Laser based method kinematic assumptions

The lateral displacement of the wheel reference diametrical plane can be expressed as

follows:
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u(r, t) = y(t) + rβ(t) + v(r)p(t) + rug(r, θ(t)) =

=
[
1 r v(r)

]
y

β

p

+ rug(r, θ(t)) =

= Φ(r)q + rug(r, θ(t))

(4.1)

where:

• r and v(r) are the measuring radial distance (see Fig. 4.2) and the normalized

deformed shaped experienced in that radial distance, respectively. The deformed

shaped function v(r) is drawn from the FEM and depicted in Fig. 4.5.

• y and β are the wheelset/axle-body relative lateral displacement and relative roll

angle due to bearing play, and p is the displacement due to deformation at the

point of application of the force.

• rug(r, θ(t)) is the roughness function of the wheel. It depends on the rotated angle

θ, and it describes the wheel-web superficial roughness at a certain measuring

radius r.

Evaluating Eq.(4.1) for the three lasers installed on the dynamometric wheelset, the

following equations are obtained:

u1 = Φ(r1)q + rug(r1, θ)

u2 = Φ(r2)q + rug(r2, θ)

u3 = Φ(r3)q + rug(r3, θ)

(4.2)

those equations can be used to find the bearing free-play y, bearing roll angle β and

experienced deflection p. Once p(t) is obtained, the lateral force Q(t) is calculated as:

Q(t) = KFEM · p(t) (4.3)
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where KFEM is the wheel lateral stiffness drawn from the FEM.
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Figure 4.5: Deformed wheel web shaped when a unitary lateral load is applied

4.3 Primary suspension lasers calibration

As explained before, the normal load applied on the instrumented wheel is calculated

through the deflections experienced by the primary suspension elements, which are

measured by two distance lasers installed at both sides of the bogie frame. Due to the

fact that the points of application of the forces on the wheel profiles are not aligned

with the points of application of the suspension forces, the latter cannot be directly

considered as applied vertical forces on the wheels. To that end, the applied vertical

forces on the instrumented wheel can be easily calculated establishing balance of forces

and torques at one contact point of the wheelset, knowing its geometry. In the scaled

vehicle used in this research, the mentioned misalignment is not substantial, so the

suspension force is approximately equal to the normal force on the wheel. It is assumed

that the variation of the direction of application of the force due to the wheel conicity
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is negligible to the normal force calculation. This is reasonable taking into account that

the lateral displacement of the wheelset is not measured experimentally.

The wheelsets in the instrumented vehicle are connected to the bogie frame by four

pairs of helical springs assembled in parallel (see Fig. 3.6). These springs have been

previously tested on a general-purpose test machine obtaining an individual average

stiffness of 17.21 N/mm. If the method proposed to measured the vertical load ap-

plied is valid, the same spring stiffness calculated with the test machine should be

measured with the vertical lasers installed on the vehicle. Figures 4.6 and 4.7 show the

experimental results obtained from the vertical lasers when the vehicle is loaded with

known weights as depicted in Fig. 3.25. Pale blue lines on the graphs are the primary

suspension displacements measured by the lasers during the test while dark blue lines

represent the real spring stiffness measured in the test machine. As it can be observed,

there is a good agreement between both methods, so that, it can be conclude that

normal loads applied on the vehicle can be estimated by the measurement of primary

suspension deflection.
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Figure 4.6: Right Side Vertical Laser Calibration
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Figure 4.7: Left Side Vertical Laser Calibration

4.4 Calibration of the lateral precision lasers

The lateral high precision lasers have been also tested in the calibration test bench

in order to obtain a univocal relation between the instantaneous forces applied on the

wheel and the deflections measured by these sensors. Figure 4.8 shows the comparison

between the FEM simulation and the experimental measurements. As it can be ob-

served, there is a good accordance between both sets of data. That means the FEM

has been successfully developed and the numerical results drawn from it can be used

in the lateral force estimation algorithm presented before in this chapter. Figure 4.8

shows the measurements of the lasers number one and three (see Fig 4.2) named as

upper and lower respectively, after subtracting the measurement of laser number 2.

Thus, measurement of laser number two is implicit on the graph. As mentioned before

the central laser captures the axial play between the axel and the bearing box, thus

magenta and green lines on the graph are the result of subtracting laser number two

measurement to the measurement of lasers one and three respectively.
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Figure 4.8: Lateral deflection vs applied lateral load, experimental validation

The influence of the point of application of the force on the experienced wheel-web

deflection has also been analysed as done before with the strain gauges. Figure 4.9

shows the variation of the lateral deflection experienced by the wheel web when a

combination of a 60 N vertical load and a variable lateral load Q are applied on points

P1, P2 and P3 of the wheel tread (see Fig. 3.27). The value of the vertical load has been

set to 60 N. It is known from the multibody dynamics simulation of the vehicle that

the vertical load on the wheel fluctuates around that value (a quarter of the vehicle

total mass). Dark blue, orange and yellow solid lines in Fig. 4.9 are the deflection

measurements of the upper lateral laser when the load are applied on point P1, P2 and

P3, respectively. Purple, green and pale blue lines are the bottom laser measurements

at the same three points. It is observed an uncertainty of ±2.5 N approximately in the

lateral force, in both sensors measurements when the applied load moves from point P1

to P3. This is due to, when the vertical load is applied further from the neutral axis

of the wheel web, a bending moment appears that produce a small lateral deflection

even when no lateral loads are applied on the wheel. That uncertainty due to the

variation of the contact point on the wheel tread corresponds to a 4% in the lateral

force based on the lateral lasers measurements. This experiment has been also carried
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out applying a longitudinal load at point P1, P2 and P3 within any variation on the

measurements. Thus it can be said that the longitudinal loads do not affect the lateral

force measurement.
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Figure 4.9: Influence of the contact point on the lateral lasers measurements

The angular position of the wheel θ (see Fig. 4.10) should not be considered a priori

during the contact forces measuring process since the lasers are installed on fixed parts

of the vehicle as explained before in this chapter. In an scenario where no forces are

applied on the wheel, the precision lasers should measure an almost constant value

corresponding to the sensor offset and noise, even when the wheel is spinning. This

assumption would be true provided that wheel and shaft were perfectly perpendicular

to each other and the wheel web surface was totally smooth without any irregularity.

However, experiments have shown that the previous assumption is wrong. The three

lases register a variable measurement when the wheel spins unloaded.

Figures 4.11 to 4.13 shows the deflection measured by the precision lasers when the

wheel rotates unloaded. Coloured lines on the graphs represent the sensor measure-

ment along one wheel turn. As it can be observed, there is a repetitive pattern in

the measurements of the three lasers when no loads are applied on the wheel. That

means the wheel web surface is not perfectly flat and the wheel and the shaft are not
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Figure 4.10: Lateral deflection vs applied lateral load, experimental validation

totally perpendicular to each other. For a correct measurement of the real deflection

experimented by the wheel when a lateral load is applied on its tread, it is necessary

to identify these patterns. Figures 4.14 to 4.16 shows the functions identified versus

the absolute angular position of the wheel respect to the bearing box. These functions

have been obtained in an experiment where the wheel has rotated unloaded one hun-

dred times registering a deflection data per rotated degree on the wheel. Blue lines on

Figs. 4.14 to 4.16 are the average of the data collected at each angular position. In

view of the noisy shape of the graphs the pattern function have been filtered in order

to obtain an smoother shape (orange lines on the graphs). This last set of functions

are the roughness functions introduced as inputs in the system of equations (4.2).
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Figure 4.11: Upper Laser Raw Measurement
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Figure 4.12: Central Laser Raw Measurement
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Figure 4.13: Botton Laser Raw Measurement
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Figure 4.14: Upper Laser Irregularity Pattern
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Figure 4.15: Central Laser Irregularity Pattern
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Figure 4.16: Botton Laser Irregularity Pattern
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Once the roughness functions have been identified, it is necessary to probe that remov-

ing this component from the lasers measurements the assumption that ”with no loads

applied on the wheel the lasers must register an almost constant value” is now fulfilled.

To that end a last experiment has been carried out in the calibration test bench. In that

trial the instrumented wheelset was spinning free while the three laser sensors recorded

the deflection and no loads were applied. Figures 4.17 to 4.19 show the experimental

results obtained during a test. Blue lines represent the raw measurements of the lasers

and lines coloured in orange are the results once the roughness functions were sub-

tracted from the raw data. As it can be observed, the irregularity correction reduces

the static measurement of the lases from dozens of microns to just a few microns. More

precise data could not be obtained since there are some uncertainties very difficult to

analyse such the vibrations induced by the wheelset rotation to the laser sensors. The

vibration induced by the track when the instrumented vehicle is running on it also have

a negative impact on the laser sensors measurements.
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Figure 4.17: Upper Laser Raw and Corrected Measurement



Chapter 4. Scaled Dynamometric Wheelset: Distance Lasers Approach 105

Angle of rotation (º) ×10 4

0 0.5 1 1.5 2 2.5

D
efl

ec
ti

on
 (
μ

m
)

-10

-5

0

5

10

15

20

25

30

35

40

45
Raw

Corrected

Figure 4.18: Central Laser Irregularity Pattern
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Figure 4.19: Botton Laser Raw and Corrected Measurement





Chapter 5

Numerical Modelling

5.1 Introduction

Computational modelling represents an inexpensive and effective way to validate the

dynamics of railroad vehicles. Nowadays, one can find acceptance norms for railways

vehicle based on numerical simulation [102]. The European norm EN-14363 or the

British norms GM/RT2141 and TT0088 are some of them. Other countries such as

USA, Australia, Japan, China and Korea also allow the use of simulation for vehicle

approval. The success of this process lies in the development of a precise and efficient

computational model of the multibody system. From an economical point of view the

numerical modelling represent the optimal solution to analyse and validate the perfor-

mance of a railway vehicle. Any railways manufacturer wants to have a fast and precise

simulation software that allow their engineers to analyse the dynamic performance of

new designs reducing as much as possible expensive field tests.

The Department of Mechanical Engineering at the University of Seville have been work-

ing over a decade in the development of high efficient and precise dynamics computa-

tional models of different types of railway vehicles. In this chapter two different compu-

tational formulations of a railway vehicle are going to be presented. The scaled vehicle

used in this PhD thesis has been modelled using both computational approaches and

their numerical results will be compared with the experimental measurement obtained

107
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with the actual vehicle. The first approach presented is a a multibody model of a rail-

way vehicle with weakly coupled vertical and lateral dynamics is presented. The second

one is a non-linear full 3D coupled dynamic model.

5.2 Multibody model with weakly coupled vertical and

lateral dynamics

In this section a simplified model based on the assumption of weakly coupled lateral

and vertical dynamics is presented. The development of this model has not been part

of this PhD thesis. A more detailed description of the model can be found in [103].

Longitudinal dynamics is solved separately although its effects are implicit in the lateral

and vertical dynamics formulations. The wheel/rail contact problem is solved using the

so called knife-edge-contact approach and the concept of equivalent conicity. The track

geometry is introduced as an input of the model, also dealing with track irregularities.

One of the key points of the presented model is its simplicity, make it real time capable.

Its simple formulation is possible thanks to the lateral and vertical dynamics decoupling

and multiple linearisation in the equations of motion.

5.2.1 Coordinates and frames in the multibody model

As it is well known, in railways multibody modelling is convenient to formulate the

equations of motion of the vehicle with respect to an intermediate frame (neither inertial

nor body fixed) that is the so called Track Frame (TF). In the movement of the TF, it

is assumed to keep its X axis tangent to the track centre line. It is important to note

that for the TF definition no track irregularities are considered.

In the reduced model formulation a main TF has been defined. It is called Vehicle

Track Frame (VTF),
〈
Xvt Y vt Zvt

〉
, that moves together with the vehicle at the same

forward speed along the track. Figure 5.1 shows coloured in purple the mentioned VTF

together with other reference frames common in the railroad modelling. The VTF

must be positioned with respect to the Global Frame (GF), 〈X Y Z〉, depicted in red

in the figure, being its position and orientation a function of the arc-length coordinate
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svt. Every body that constitute the entire vehicle have its own TF, named Body Track

Frame (BTiF),
〈
Xbti Y bti Zbti

〉
. This frame, coloured in orange in the figure is assumed

to follow the gross motion of body i along the track, and it is positioned at s = svt+si.

Taking into account that the longitudinal dynamics of the vehicle is not considered in

this reduced model, the longitudinal relative position between the bodies si will always

remain constant. Finally, each body i has a Body Frame (BiF),
〈
Xi Y i Zi

〉
, attached

to the centre of mass of the body (depicted in dark green in Fig. 5.1).
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Frame

Figure 5.1: Frames of reference used in the railroad modelling

Among the different bodies that constitute a railroad vehicle, wheelsets must be treated

in a different way. First because it kinematics differs in a way from the other bodies,

and second due to the wheel/rail contact phenomenon takes place on it. So then, the

following reference frames depicted in Fig. 5.2 must be defined to describe the wheelset

kinematics:

• Wheelset-Track Frame (WTiF),
〈
Xwti Y wti Zwti

〉
, coloured in grey in the figure.

• Wheelset Frame (WiF),
〈
Xwi Y wi Zwi

〉
, coloured in green in the figure.
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• Wheelset-Intermediate Frame (WIiF),
〈
XwIi Y wIi ZwIi

〉
, coloured in dark blue in

the figure. This reference frame has the peculiarity of keeping its XwIi parallel to

the horizontal plane. That means no pitch rotation is allowed. This is interesting

because the orientation of the WIiF with respect to the WTiF can be defined

using small angles and also because the definition of the contact points in the

WIiF experiments small variations along time.

• Left Wheel Profile Frame and Right Wheel Profile Frame (LPiF and RPiF),〈
X lpi Y lpi Z lpi

〉
and

〈
Xrpi Y rpi Zrpi

〉
. They are located approximately at the

centre of both wheels and they are obtained after a rotation α (the equivalent

conicity) of the WIiF around X axis.

b

wi

wi

wti

wti

wti

lc

wi

wi

wi

wIi

wIi

wIi

Figure 5.2: Wheelset-track frame, wheelset frame and wheelset intermidiate frame

Finally, rails must also be precisely defined. Figure 5.3 shows and sketch of the the

rails and the two necessary reference frames. They are named as Left Rail-Head Frame

(LRF) and Right Rail-Head Frame (RRF),
〈
X lr Y lr Z lr

〉
and 〈Xrr Y rr Zrr〉. These

frames have an orientation with respect to the TF defined for each value of the arc-

length coordinate st.
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Figure 5.3: Rail-head frames

5.2.2 Kinematics notation of the multibody model

In this section the kinematics of the different elements that constitute the simulation

model is presented. For a correct kinematics description of the problem is important

to describe unequivocally and precisely every single element of the system. Hereafter

the following notation is going to be used for the kinematics description of the reduced

model:

1. ~R is a position vector whose origin is located at the GF.

2. ~r is a position vector whose origin is located at the VTF.

3. ~b is a position vector whose origin is located at the BTiF or the WTiF in case of

wheelsets.

4. ~u is a position vector whose origin is located at the BiF (WiF or WIiF in case of

a wheelset).

5. Bold symbols without diacritic like v, are 3 x 1 column matrices whose elements

are the component of vector ~v in the GF.

6. Bold symbols with ”bar” diacritic like v̄, are 3 x 1 column matrices whose elements

are the component of the vector ~v in the VTF.
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7. Bold symbols with ”arc” diacritic like
_
v , are 3 x 1 column matrices whose ele-

ments are the component of the vector ~v in the BTiF (WTiF in case of a wheelset

or TF in case of rails cross-sections).

8. Bold symbols with ”hat” diacritic like v̂, are 3 x 1 column matrices whose elements

are the component of the vector ~v in the BiF (WIiF in case of a wheelset body).

9. Bold symbols with ”inverted arc” diacritic like v̆, are 3 x 1 column matrices whose

elements are the component of the vector ~v in the WiF.

10. Bold symbols with ”tilde” diacritic like ṽ, are 3 x 1 column matrices whose

elements are the component of the vector ~v in the wheel profile frame (LPiF or

RPiF).

Concerning to the matrices notation, a symbol like A2 represents a rotation matrix that

projects the components of a vector given in frame B2F to the global frame. In case of

using two superscripts like Awt3,wI3, it means the matrix that projects the components

of a vector given in the WI3F to WT3F.

5.2.3 Kinematics of the track

The position of an arbitrary point of the track centreline is written as:

Rt(s) =
[
Rtx(s) Rty(s) Rtz(s)

]T
(5.1)

where s is an arbitrary arc-length.

The track ideal CL is described by the horizontal and the vertical profile both defined

by a set of different length and geometry sections. In the horizontal profile description

three different kind of sections can be found: straights, transitions and curves. The

vertical profile is described just by two types of sections: straight and transitions. The

different sections in the horizontal and vertical profile are connected by vertices. It is

important to note that the horizontal and vertical vertices do not have to necessary

coincide. The track centre line is fully described by the following geometric parameters:
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• Horizontal curvature ρh

• Vertical curvature ρv

• Twist curvature ρtw

• Spatial-derivative of horizontal curvature ρh
′

• Vertical slope αv

Table 5.1 shows the values of the above mentioned parameters for the horizontal profile

description, where Rh stands for curve radius, flin(s) is a linear function of the arc-

length coordinate that is zero at he straight end and one at the curved end. ϕP is the

cant angle at the curved section and Lht is the length of the transition section. Table

5.2 shows an equivalent description for the vertical profile, where αv1 and αv2 are the

slopes of the straight section before and after the transition, and Lvt is the length of

the transition section.

Table 5.1: Horizontal profile description

Section ρh ρtw ρh
′

Straight 0 0 0

Circular 1/Rh 0 0

Transition flin(s)(1/Rh) flin(s)ϕP 1/(LhtRh)

Table 5.2: Vertical profile description

Section αv ρv

Straight Constant 0

Transition αv1 + flin(s)(αv2 − αv1) (αv2 − αv1)/Lvt

Every point of the track centreline described by Eq. 5.1 has an associate TF whose

orientation with respect to the GF are given by the Euler angles of yaw ψt (heading

angle), roll φt (cant angle) and pitch θt (vertical slope), corresponding to a rotation

sequence Z-X-Y (see Fig. 5.4). It is important to note that the pitch and roll angles

normally takes small values, that means the orientation matrix of the TF with respect
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to the GF can be linearised as:

At(s) ∼=


cos(ψt) − sin(ψt) ϕt sin(ψt) + θt cos(ψt)

sin(ψt) cos(ψt) θt sin(ψt)− ϕt cos(ψt)

−θt ϕt 1

 (5.2)
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Figure 5.4: Track frame at centreline

The velocity and acceleration of an arbitrary body that moves along the track CL

following the same orientation that the TF are written as:

_
Ṙt=

[
V 0 0

]T
,

_
R̈t=

[
V̇ ρhV

2 −ρvV 2
]2

(5.3)

In a similar manner, the angular velocity and angular acceleration are given by:

_
ωt=

[
ρtwV ρvV ρhV

]T
,

_
αt=

[
ρtwV̇ ρvV̇ ρhV̇ + ρh

′V 2
]T

(5.4)

5.2.4 Kinematics of the rail head centrelines

For the definition of the rail head centreline in the reduced model an arbitrary track

with irregularities is going to be considered. As explained in Chapter 2, track irregu-

larities are deviations of the rail cross-sections from the design positions (see Fig. 5.3).
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Irregularity vectors of left and right rails are defined as:

r̄lir(s) =
[
0 rliry (s) rlirz (s)

]T
, r̄rir(s) =

[
0 rriry (s) rrirz (s)

]T
(5.5)

The components of vectors above, allow the definition of the four track irregularities

present on an arbitrary track named as: track gauge ξg, lateral alignment ξa, cross-level

ξcl and vertical profile ξvp. Their expressions are:

ξg = (rliry − rriry ), ξa = (rliry + rriry )/2

ξcl = (rlirz − rrirz ), ξvp = (rlirz + rrirz )/2
(5.6)

5.2.5 Kinematics of arbitrary vehicle bodies

An arbitrary body of the vehicle can be described by the following set of generalized

coordinates:

qi =
[
yi zi ϕi θi ψi

]T
(5.7)

The position and orientation of an arbitrary BiF with respect to its BTiF is described

as:

_
b
i

=
[
0 yi zi

]T
, Abti,i =


1 −ψi θi

ψi 1 −ϕi

−θi ϕi 1

 (5.8)

where
_
b
i

is the position vector and Abti,i is the rotation matrix assuming small angle

approximation.

Figure 5.5 shows the kinematic representation of an arbitrary vehicle body that moves

on an irregular track. The position of an arbitrary point P of body i in the GF can be

written as:

Ri
P (svt,qi) = Rvt + Avtr̄iP (5.9)

where, Rvt and Avt are the position and orientation matrix of the VTF, and r̄iP is the

position of point P expressed in the VTF. This latter term can be expanded as:

r̄iP (svt,qi) = r̄bti(svt) + Avt,bti(svt)

[
_
b
i

+Abti,iûiP

]
(5.10)
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being ûiP the local position of point P expressed in the BiF.
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Figure 5.5: Kinematic description of an arbitrary vehicle body

5.2.6 Kinematics of a wheelset

As mentioned before in this chapter, wheelsets have a fundamental role in the railroad

vehicle performance. For that reason their kinematics must be described precisely. In

general, the kinematics of an arbitrary wheelset can be described with five generalized

coordinates:

qwi =
[
ywi zwi ϕwi θwi ψwi

]T
(5.11)

However, only two of them are really needed. That is because θwi is assumed to vary

such that θ̇ = ˙svt/r0, where ˙svt is the forward velocity of the vehicle and r0 is the wheel

rolling radius when the wheelset is centred on the track. Furthermore, values of zwi

and ϕwi are constrained due to the wheel-rail contact. Thus, an arbitrary wheelset

kinematics can be described by:

qwi =
[
ywi ψwi

]T
(5.12)
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5.2.7 Wheel-rail contact kinematics constraints

In the wheel-rail contact scenario there are normally two surfaces in involved, the

wheel and the rail head profiles. Although this approach has been used in railways

simulations for decades and it represents one of the most precise ways to describe the

wheel-rail contact problem it has some drawbacks from the computational efficiency

point of view. Firstly because it requires to solve the wheel-rail contact constraint

each time step during the dynamic simulation and secondly because when the flange

contact occurs the contact point position in the wheel and the rail suddenly changes.

Integrators find difficulties when dealing with these situations, reducing their efficiency

as a result. However, when the wheelset is running centred on the track the values of

the coordinates that describe the position of the contact point vary smoothly, that is

not a problem for the integrator.

Several approaches can be used to minimize these effects and make the simulation as

efficient as possible. As it is well known, one common approach is the use of contact

lookup tables, or the use of elastic methods to deal with the flange contact scenario.

In the reduced model presented in this chapter an alternative solution to the wheel-rail

contact problem has been used. In this new contact approach the rail cross-sections

are considered dimensionless, having been reduced to a single point. Furthermore the

wheel profiles are assumed to be bi-conical.

The approximation of the wheel-rail contact point are located in the
〈
Y wIi, ZwIi

〉
plane is used. Figure 5.6 shows and sketch of the planar wheel-rail contact scenario.

The wheel-rail contact is assumed as a point-to-curve constraint, where the curve is

the wheel’s tread profile (assumed in this case as an straight line) and the rail head

cross-section is assumed to be the single point. On the one hand, the position of the

left and right contact points on the WTiF are given by the following expression:

_
b
wi

lc =
_
b
wi

+Awti,wIiûwilc ,
_
b
wi

rc=
_
b
wi

+Awti,wIiûwirc (5.13)

where
_
b
wi

and Awti,wIi are the position vector and rotation matrix of the WIiF with

respect to the WTiF, expressed as:
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Figure 5.6: Geometry of wheelset-track knife-edge contact constraints

_
b
wi

lc =
[
0 ywi zwi

]T
, Awti,wIi =


1 −ψwi 0

ψwi 1 −ϕwi

0 ϕwi 1

 (5.14)

In Eq. 5.13 ûwilc and ûwirc are the position of the left and right contact point in the WIiF,

whose expressions are:

ûwilc =
[
0 Lw + sl −r0 + αsl

]T
, ûwirc =

[
0 −Lw + sr −r0 +−αsl

]T
(5.15)

where α is the wheel profile conicity, r0 is the nominal radius and sl and sr are the

wheel-profile coordinates.

On the other hand the positions of the left and right rails expressed in the TF are:

_
b
lr

=
[
0 Lr + rliry rlirz

]T
,

_
b
rir

=
[
0 −Lr + rriry rrirz

]T
(5.16)

where rliry , rlirz , rriry and rrirz are the components of the irregularity vector rirr(s), whose

elements are drawn from Eqs. 5.6. The parameters Lw and Lr used in the equations
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above, are the wheelset half-wide and rails half-wide respectively. In the reduced model

formulation both parameters take the same value.

Assuming now that the position vector of the contact point on the wheel coincides with

the position vector of the rail the following vectorial expressions are obtained:

−→
b wilc −

−→
b lr = 0

−→
b wirc −

−→
b rr = 0

(5.17)

Rewritten Eqs. 5.17 in matrix form one obtains:

_
b
wi

Awti,wIiûwilc −
_
b
lr

= 0

_
b
wi

Awti,wIiûwirc−
_
b
rr

= 0

(5.18)

Equations 5.18 represent a set of six constraints equations functions of the wheelset

coordinates qwi, the track irregularities uirr and the two contact parameters on the

wheel (sl and sr). Assuming that the contact take place at plane
〈
Y wti, Zwti

〉
the yaw

angle ψwi must be equal to zero. In fact, the first term in vectorial equations 5.17 are:

ψwi(Lw + sl) = 0, ψwi(−Lw + sl) (5.19)

which are only fulfilled when ψwi = 0.

Considering only the second and third term of Eqs. 5.18, one gets:

ywi + (1− αϕwi)sl + r0ϕ
wi − rliry = 0

zwi∗ + (ϕwi + α)sl + Lwϕwi − rlirz = 0

ywi + (1 + αϕwi)sr + r0ϕ
wi − rriry = 0

zwi∗ + (ϕwi − α)sr − Lwϕwi − rrirz = 0

(5.20)

where, zwi∗ = zwi − r0 is a small-valued variable created to guarantee the correct

coefficient matrix conditioning. The solution of the system of equations must provides

the values of pwi =
[
zwi∗ ϕwi sl sr

]T
. The constraints equations in 5.20 (hereafter

named Ckec(pwi)) is non-linear so it requires an iterative procedure to solve them.
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Considering that the values of all coordinates ca be assumed to be small, an analytical

approximation can be obtained. This solution consists on considering the exact solution

to the exact equations the first iteration of the Newton-Raphson algorithm given a

relatively accurate initial estimation. That provides a solution to Eqs. 5.20 such as:

pwi = pwi0 − (Cp
kec)−1Ckec(pwi0 ) (5.21)

where,

pwi0 =
[
ulrz +urrz +α(ulry −urry )

2 0 ulry − ywi urry − ywi
]T

(5.22)

and,

Cp
kec =


0 r0 − αsl 1− αϕwi 0

1 Lw + sl ϕwi + α 0

0 r0 + αsr 0 1 + αϕwi

1 −Lw + sr 0 ϕwi − α

 (5.23)

Once the reduced set of coordinates pwi is obtained, its first and second time derivatives

can be obtained as follows:

Ċkec
p =


0 −αṡl −αϕ̇wi 0

0 ṡl ϕ̇wi 0

0 αṡr 0 αϕ̇wi

0 ṡr 0 ϕ̇wi

 , Ckec
t =


ẏwi − u̇lry
−u̇lzr

ẏwi − u̇rry
−u̇rrz

 , Ċkec
t =


ÿwi − ülry
−ülzr

ÿwi − ürry
−ürrz


(5.24)

5.2.8 Generalized coordinates of the equations of motion

One of the main reasons of the computational high efficiency of the reduced model is

the independent calculation of the vertical and lateral dynamics of the vehicle. Thus,

the entire set of generalized coordinates can be written as:

q =
[
qnw

T

V qTL

]T
(5.25)
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where, qnwV are the generalized coordinates associated with the vertical dynamics of

non-wheelset bodies and qL are the generalized coordinates associated with the lateral

dynamics of the vehicle.

Assuming that the vehicle consists of p non-wheelset bodies and q wheelsets, vertical

and lateral coordinates can be splited as:

qnwV =
[
qnw1

T

V . . . qnwp
T

V

]T
qL =

[
qnw

T

L qw
T

L

]T
=
[
qnw1

T

L . . . qnwp
T

L qw1
T

L . . . qwq
T

L

]T (5.26)

where,

qnwiV =
[
znwi ϕnwi θnwi

]T
, qnwiL =

[
ynwi ψnwi

]T
, i = 1, . . . , p

qwiV =
[
zwi ϕwi

]T
, qwiL =

[
ywi ψwi

]T
, i = 1, . . . , q

(5.27)

The set of coordinates qwiV is not considered in the set of generalized coordinates of q

in Eq. 5.25 because they are functions of the lateral coordinates qwiL due to the contact

constraints. This leads to a set of n = 5p+ 2q generalized coordinates to describe the

vehicle dynamics.

It is important to note that even if the longitudinal coordinate svt that describes the

longitudinal dynamics of the vehicle has not been included in q, the variation of svt

is introduced as input in the model through out the forward velocity profile. The re-

duced model also accounts for the influence of the longitudinal motion in the transverse

dynamics of the vehicle using generalized forces that depend on dsvt/dt and d2svt/dt2.

5.2.9 Equations of motion of vertical dynamics

The equations of motion of the vertical dynamics are:

Mnw
V q̈nwV +Cs,nw

V q̇nwV +Ks,nw
V qnwV = QForIn

V −Cs,w
V q̇wV −Ks,w

V qwV +Qgrav
V +Qs

V 0 (5.28)



Chapter 5. Numerical modelling 122

where Mnw
V is the mass matrix, assembled as:

Mnw
V =


Mnw1

V

. . .

Mnwp
V

 , Mnwi
V =


mnwi 0 0

0 Inwiϕ Inwiϕ

0 Inwiϕ Inwiθ

 , i = 1, . . . , p (5.29)

Terms Cs,nw
V , Ks,nw

V , Cs,w
V and Ks,w

V in Eq. 5.28 are the suspension damping and stiff-

ness matrices associated with the vertical dynamics of the non-wheelsets and wheelsets

bodies respectively. These matrices are computed symbolically though out the deforma-

tion energy Udef and Rayleigh dissipation function FRay associated with the suspension

elements:

FRay(q
nw
V ,qwV , q̇

nw
V , q̇wV ) =

∑
i

1

2
ci l̇

2
i,V

Udef (qnwV ,qwV ) =
∑
i

1

2
ki∆l

2
i,V

i = 1, . . . , ns

(5.30)

Finally, terms QForIn
V is the vector of generalized forces due to the forward motion in

the vertical direction, Qgrav
V is the generalized gravity force vector and Qs

V 0 contains

the constant terms that appear in the generalized suspension forces:

QForIn
V =


QForIn
V,1

...

QForIn
V,p

 , QForIn
V,1i =


miρ(ṡvt)2

−Iiϕρtws̈vt − Iiϕθρv s̈vt

−Iiθρv s̈vt − Iiϕθρtws̈vt

 , i = 1, . . . , p (5.31)

where ρv and ρtw are the vertical and twist curvatures.

Qgrav
V =


Qgrav
V,1
...

Qgrav
V,p

 , Qgrav
V,i =


−mig

0

0

 , i = 1, . . . , p (5.32)
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5.2.10 Equations of motion of lateral dynamics

The equation of motion for the lateral dynamics of the railway vehicle are:

MLq̈L + (Cs
L + Cc

L)q̇L + (Ks
L + Kc

L)qL = QForIn
L + Qs

L0 + Qc
L0 + Qgrav

L (5.33)

where ML is the mass matrix built as:

ML =


M1

L

. . .

Mn
L

 , Mi
L =

[
mi 0

0 Iiψ

]
, i = 1, . . . , p+ q (5.34)

being Iiψ the yaw moment of inertia of body i.

Terms Cs
L, Ks

L, Cc
L and Kc

L in Eq. 5.33 are the constant damping and stiffness matrices

associated with the suspensions and contact forces acting on the wheelset in the lateral

direction respectively. These matrices are computed symbolically in a similar manner

than the equivalent matrices for the vertical dynamics. Furthermore QForIn
L is the

vector of generalized inertia forces due to the forward motion, vectors Qs
L0 and Qc

L0

contains terms that appear in the generalized suspension forces and in the generalized

contact forces when the lateral coordinates and velocities are zero. Qgrav is the vector

of generalized gravitational forces in the lateral direction.

The generalized force vector QForIn
L is given by:

QForIn
L =


QForIn
L,1

...

QForIn
L,p+q

 , QForIn
L,i =

[
−miρhṡ

vt2

−Iiψ[ρhs̈vt + ρ
′
hṡ
vt2 ]

]
, i = 1, . . . , p+ q (5.35)

where ρh is the horizontal curvature.

The generalized gravitational force vector is given by:

Qgrav
L =


Qgrav
L,1
...

Qgrav
L,p

 , Qgrav
L,i =

[
−migϕt

0

]
, i = 1, . . . , p (5.36)
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where ϕt is the cant angle.

5.2.11 Wheel rail contact forces

Wheel/rail contact forces play a fundamental role in the railroad vehicle performance.

For that reason they must be correctly included in the formulation of the model. Figure

5.7 shows an sketch of the wheelset free body diagram with all possible forces acting on

it. As it can be observed, the wheels have been modelled with two bi-conical surfaces.

The first one corresponds to the wheel tread, with nominal conicity α, and the second

corresponds to the flange with a larger conicity β. In the figure,
−→
F n
l and

−→
F n
r are the left

and right tread normal contact forces,
−→
F creep
l and

−→
F creep
r are the left and right tread

tangential contact forces,
−→
F n
lf and

−→
F n
rf are the flange normal contact forces.

−→
F susp
l and

−→
F susp
r are the forces transmitted to the wheelset by the primary suspension through

the bearing boxes. The figure also includes the gravitational force and the inertia forces

and rotary inertia torques.

Figure 5.7: Forces and torque on a wheelset
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The generalized inertia forces associated with the forward motion is computed as fol-

lows:

F Iny = F TranIny + FForIny = −mwiÿwi −mwiρh(ṡvt)2

F Inz = F TranInz + FForInz = −mwiz̈wi +mwiρh(ṡvt)2

M In
x = MTranIn

x +MForIn
x = −Iwiϕ ϕ̈wi − Iwiϕ ρtw(ṡvt)2 + Iwiθ ρh

( ˙svt)2

r0

(5.37)

where TranIn stands for ”inertia due to the transverse motion with respect to the

track” and ForIn stands for ”inertia forces due to the forward motion along the track”.

The generalized contact forces acting on the wheelset in the lateral direction are:

Qc
L = Qcreep

L + Qflange
L + Qnormal

L (5.38)

where the tread tangential, flange normal and tread normal contact forces are consid-

ered. Qc
L is computed symbolically in a preprocessing stage and linearised using Taylor

series approximation as follows:

Qc
L ≈ Qc

L0 −Cc
Lq̇L −Kc

LqL (5.39)

where Qc
L0 is the value of Qc

L in the reference configuration and

Cc
L = −

∂Qc
L

∂q̇TL
, Kc

L = −
∂Qc

L

∂qTL
(5.40)

The calculation of the tread tangential contact forces follows the Kalker’s creep linear

theory [104] that stands:
F creepx

F creepy

M creep
z

 = −


f11 0 0

0 f22 f23

0 −f23 f33



ξx

ξy

ξz

 (5.41)

where F creepx , F creepy and M creep
z are the components of the force and torque due to the

contact tangential stresses in a frame associated with the contact area. ξx, ξy and ξz

are the creepages defined as: ξx = [ṽwic ]x/V , ξy = [ṽwic ]y/V and ξz = [ω̃wi]z/V , being

ṽwic is the rigid body velocity of the contact point, ω̃wi is the angular velocity of the
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wheelset and V the wheelset centre of mass forward velocity. The vectors of tangential

contact forces and torques are:

F̃ creep =


F creepx

F creepy

0

 , M̃ creep =


0

0

M creep
z

 (5.42)

It is important to note that F̃ creep, M̃ creep, ṽwic and ω̃wi must be expressed in the local

contact frame of each wheel (LCiF or RCiF).

After calculating the position of the left and right contact points their velocities can be

evaluated in the WTiF as follows:

_̇
R

wi

lc =
_̇
R

wti

+ (
_
ω
wti
∧
_
b
wi

) +
_̇
b

wi

+ Awti,wIi(ω̂wi ∧ ûwilc )

_̇
R

wi

rc =
_̇
R

wti

+ (
_
ω
wti
∧
_
b
wi

) +
_̇
b

wi

+ Awti,wIi(ω̂wi ∧ ûwirc )

(5.43)

where,

_̇
R

wti

=


ṡv

0

0

 , _̇b wi

=


0

ẏwi

żwi

 , (5.44)

and

ω̂wi = (Awti,wIi)T
_
ω
wti

+ω̂wti,wi, ω̂wti,wi =


ϕ̇wi

ṡvt/r0

ψ̇wi

 (5.45)

As mentioned before the velocities of the contact points must be expressed in the local

contact frame of each wheel (LCiF and RCiF), that leads to:

vlc = (Awti,lpi)T
_̇
R

wi

lc , vrc = (Awti,lpi)T
_̇
R

wi

rc

ωlc = (Awti,lpi)T (
_
ω
wti

+Awti,wIiω̂wti,wi),

ωrc = (Awti,rpi)T (
_
ω
wti

+Awti,wIiω̂wti,wi)

(5.46)
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where Awti,lpi and Awti,rpi are the orientation matrices of the LPiF and RPiF with

respect to the WTiF computed as:

Awti,lpi = Awti,wIiAwIi,lpi, Awti,rpi = Awti,wIiAwIi,rpi,

AwIi,lpi =


1 0 0

0 1 −α
0 α 1

 , AwIi,rpi =


1 0 0

0 1 α

0 −α 1

 , (5.47)

Finally, the tangential contact forces and torques with respect to the origin of the WIiF

projected to the WTiF are:

_
F
creep

l = Awti,lpiF̃creep
l ,

_
F
creep

r = Awti,rpiF̃creep
r ,

_
M

creep

l = Awti,wIi[ûwilc ∧ (AwIi,lpiF̃creep
l )] + Awti,lpiM̃creep

l ,

_
M

creep

r = Awti,wIi[ûwirc ∧ (AwIi,rpiF̃creep
r )] + Awti,rpiM̃creep

r

(5.48)

The non-linear generalized creep force vector is obtained as:

Qcreep
L =

[
0 . . . 0 (Qcreep

L1 )T . . . (Qcreep
Lq )T

]T
Qcreep
Li =

[
(F̂ creepl )y + (F̂ creepr )y (M̂ creep

l )z + (M̂ creep
r )z

]T
, i = 1, . . . , q

(5.49)

To conclude with the wheel/rail contact forces calculation, the flange contact forces

must be established. They have been computed using an elastic approach, where the

contact forces are functions of the indentation and velocity of indentation:

fnlf = kf (δlf )nf + cf δ̇lf |δlf | ,

fnrf = kf (δrf )nf + cf δ̇rf |δrf |
(5.50)

where δlf and δrf are approximations of the left or right indentations, kf , cf and nf

are a stiffness, damping and exponent constants. The indentations are calculated as:

δlf =

{
−sl − h if sl < −h

0 if sl ≥ −h

}
(5.51)
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δrf =

{
sr − h if sr > h

0 if sl ≤ h

}
(5.52)

where h is the clearance between the flange and the rail when the wheelset is centred

on the track.

The normal flange contact forces projected into the WTiF are given by:

_
F
n

lf= fnlf


0

− sin(β + ϕwimax + ϕirr)

cos(β + ϕwimax + ϕirr)

 , _
F
n

rf= fnrf


0

sin(β + ϕwimax + ϕirr)

cos(β + ϕwimax + ϕirr)

 (5.53)

where ϕwimax is the roll angle of the wheelset when left flange contact takes place in an

irregularity-free track.

The flange tangential contact forces are modelled as Coulomb friction forces in the

longitudinal direction as:

_
F tlf= µff

n
lf


1

0

0

 , _
F trf= µff

n
rf


1

0

0

 (5.54)

where µf is the wheel/rail friction coefficient.

The torques of the flange contact forces with respect to the origin of the WIiF projected

into the WTiF are:

_
F lf= Awti,wIiûwilf ∧ (

_
Fnlf +

_
F tlf ),

_
F rf= Awti,wIiûwirf ∧ (

_
Fnrf +

_
F trf )

(5.55)

The generalized flange force vector is obtained as:

Qflange
L =

[
0 . . . 0 (Qflange

L1 )T . . . (Qflange
Lq )T

]T
Qflange
Li =

[
(
_
Fn

lf )y + (
_
Fn

rf )y + (
_
Ft

lf )y + (
_
Ft

lf )y (
_
Fn

lf )z + (
_
Fn

rf )z

]T
,

i = 1, . . . , q

(5.56)
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The tread contact forces can be written in the WTiF as:

_
Fn

l= fnl


0

− sin (ϕwi + α)

cos (ϕwi + α)

 ≈


0

−ϕwi − α
1

 ,
_
Fn

r= fnr


0

− sin (ϕwi − α)

cos (ϕwi − α)

 ≈


0

−ϕwi + α

1


(5.57)

where fnl and fnr are the norms of the left and right normal contact forces. In order to

calculate the treads’ normal contact forces (the reaction forces associated with the KEC

constraints) a balance of forces in the vertical direction and torques in the longitudinal

direction must be established:

fnl + fnr +
∑

(
_
Fwi)z = 0

fnl (Lw + sl)− fnr (Lw − sr) +
∑

(
_
Fwi)x = 0

(5.58)

where

∑
(
_
F
wi

)z = F lnz + (
_
F
susp

l +
_
F
susp

r +
_
F
creep

l +
_
F
creep

r +
_
F
n

lf +
_
F
n

rf )z∑
(
_
M

wi

)x = M ln
x + (

_
F
susp

l +
_
F
susp

r +
_
F
creep

l +
_
F
creep

r +
_
F
n

l +
_
F
n

r )x

(5.59)

Then, solving the following system of equations the tread normal contact forces are

obtained [
1 1

Lw + sl −Lw + sr

][
fnl

fnr

]
=

−∑(
_
F
wi

)z

−
∑

(
_
M

wi

)x

 (5.60)

The generalized tread normal force vector is obtained as:

Qnormal
L =

[
0 . . . 0 (Qnormal

L1 )T . . . (Qnormal
Lq )T

]T
,

Qnormal
Li =

[
(
_
Fn

l)y + (
_
Fn

r)y (
_
Fn

l)z + (
_
Fn

r)z

]T
,

i = 1, . . . , q

(5.61)
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where,
_
Fn

l= Awti,wIiûwilc ∧
_
Fn

l,
_
Fn

r= Awti,wIiûwirc∧
_
Fn

r, (5.62)

5.3 Full 3D railroad multibody model

In this section a non-linear tridimensional multibody formulation for the dynamic anal-

ysis of railway vehicles is presented. The development of this model has not been part

of this PhD thesis. A more detailed description of the model formulation can be found

in [105]. Unlike the reduced model presented in the previous section, vertical, lateral

and longitudinal dynamics are taken into account. This formulation can be used to

model an arbitrary vehicle, compromising a set of rigid bodies connected by suspension

elements among themselves, running on a rigid track with arbitrary geometry. The for-

mulation is designed to be computationally efficient and physically meaningful, being

adequate to perform typical analysis required in the railway industry such as: running

stability, ride comfort, steady curving, safety analysis...

5.3.1 Coordinates and frames

An adequate coordinate selection plays a fundamental role in the multibody model

computational efficiency and ease of implementation. In railroad multibody modelling

three main types of coordinates can be found: absolute reference coordinates, relative

vehicle-track frame coordinates and relative body-track frame coordinates.

The reduced model presented in the previous section is based on vehicle-track frame

coordinates description. This approach has the advantage that, due to the fact that

there is an unique VTF, the total number of coordinates involved is smaller than using

relative body-track frame coordinates formulation. In this formulation formulation of

the entire vehicle depends on a single coordinate svt. In addition, the use of a single VTF

also eases the definition of the suspension forces. However wheel/rail contact forces are

more difficult to compute because wheel-to-track relative position coordinates are not

among the generalized coordinates. In the relative body-track frame formulation, each

body i has it own longitudinal formulation.
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Figure 5.8 shows an sketch of the kinematics of the bodies of a railway vehicle using

relative body-track frame coordinates. As it can be observed, there is a Body Track

Frame (BTiF) that follows each body i along the track centre line. Each body i has its

own Body Frame (BiF) whose relative position with respect to the BTiF is given by:

_
ri=

[
0 ry rz

]T
(5.63)

Thus, the set of coordinates that describes each body i of the vehicle is:

qi =
[
si riy riz (Φi)T

]T
=
[
si riy riz ϕi θi ψi

]T
(5.64)

where si is the arc-length coordinate, riy and riz are the relative BiF to BTiF position

and Φi is the BiF to BTiF frame orientation. Therefore, the set of coordinates for all

vehicle bodies is:

q =
[
q2 . . . qnb

]T
(5.65)

where nb stands for number of bodies.
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Figure 5.8: Kinematics of the bodies of a railway vehicle with relative body-track
frame coordinates
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In the multibody formulation presented in this section, the railroad vehicle is modelled

as a set of nch open-chain mechanism interconnected by suspension elements. Figure 5.9

shows two chain mechanisms (coloured in green and blue respectively) interconnected

by a suspension element. The green chain consists of three bodies while the blue chain

includes four bodies. On each chain a base body must be selected that not necessary

must be the nearest to the track. The kinematics of an arbitrary chain is described

by the position an orientation of the base body together with a set of orientation

coordinates θi that describes the relative orientation between the bodies belonging to

the same chain. Therefore, each chain is described by:

qi =
[
qit Φi

]T
, i = 1, . . . , nch (5.66)

where,

qit =
[
si riy riz ϕi θi ψi

]T
(5.67)

The use of these relative orientation coordinates Φi represent a drawback on a scenario

with long vehicles and sharp curves. The magnitude of the relative orientation angles

can be large enough that kinematic linearisation due to small-angles assumption was

not recommendable.

The set of coordinates used for the whole vehicle is given by:

q =
[
q1 . . . qnch

]T
(5.68)

5.3.2 Kinematics of the track

The description of the track kinematics in the non-linear 3D model is equivalent to the

one used in the reduced model. The main difference lies in the fact that in the 3D model

the wheel-rail contact geometry is not simplified as in the reduced model. Remember

that the reduced model considers the rail cross-section dimensionless. Irregularities are

also modelled in the same way as in the reduced model formulation. Equations 5.5 and

5.6 can be extended to the coupled dynamics model formulation.
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Figure 5.9: Railroad vehicle as a set of open-chain mechanisms

The orientation of the rail head frames (LRF and RRF) with respect to the track frame

are given by:

At,lr =


1 0 0

0 cos(β + δ) − sin(β + δ)

0 sin(β + δ) cos(β + δ)

 ,

At,lr =


1 0 0

0 cos(−β + δ) − sin(−β + δ)

0 sin(−β + δ) cos(−β + δ)


(5.69)

where β is the orientation angle of the rail profiles (see Fig. 5.3) and δ = (rlirz − rrirz )

is the linearised angle due to irregularity.
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The position vectors of the left and right contact points on the rails named as Q and

P respectively are:

−→
R lr
Q =
−→
R t +−→r lr +−→r lir +−→u lrQ

−→
R rr
P =

−→
R t +−→r rr +−→r rir +−→u rrP

(5.70)

Those vectors can be expressed in the GF as:

Rlr
Q = Rt + At(

_
rlr +

_
rlir +At,lrûlrQ),

Rrr
P = Rt + At(

_
rrr +

_
rrir +At,rrûrrQ )

(5.71)

where,

ûlrQ =
[
0 slr2 hr(slr2 )

]T
, ûrrP =

[
0 srr2 hr(srr2 )

]T
(5.72)

being hr the function that describes the rail head (see Fig. 5.10) and slr2 and srr2 are

the rail surface coordinates. Those equations have not sense in the reduced formulation

due to the rail cross-section geometry is simplified.
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Figure 5.10: Wheel profile and rail profile geometry

5.3.3 Kinematics of the vehicle

As mentioned before, in the coupled dynamics model formulation the vehicle is defined

by chain of bodies. To formulate the kinematics equations of the model it is necessary
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to define the positions, velocities and accelerations of interest points of the vehicle as

functions of coordinates q. All the formulation described below can be developed using

general purpose symbolic programs.

The position of an arbitrary point P that belongs to body j of chain i is given by the

following vectorial expression:

−→
R j
P =
−→
R cti +−→r i +−→w i,j +−→u jP (5.73)

where
−→
R cti is the global position of the chain i track frame, −→r i is the relative position

of the base body of chain i with respect to its chain track frame, −→w i,j is the relative

position vector of body j with respect to its base body i and −→u jP is the local position

vector of point P in body j. Eq. 5.73 can be projected in the GF as:

Rj
P = Rcti + Acti(ri + Acti,i(ŵi,j + Ai,j _u

j

P )) (5.74)

The position Rcti and orientation matrix Acti are functions of the arc-length coordinate

scti, while ri and Acti,i depends on the coordinates qit (Eq. 5.67). Vector ŵi,j and

orientation matrix Ai,j are functions of the joint relative coordinates θi.

The velocity and acceleration of point P are given by:

−̇→
R
j

P =
−̇→
R
cti

+−→r ′i +−→ω cti ×−→r i +−→w ′i,j +−→ω i ×−→w i,j +−→ω j ×−→u jP (5.75)

−̈→
R
j

P =
−̈→
R
cti

+−→r ′′i +−→α cti ×−→r +−→ω cti × (−→ω cti ×−→r i) + 2ωcti ×−→r ′i+

+−→w ′′i,j +−→α i ×−→w i,j +−→ω i × (−→ω i ×−→w i,j) + 2ωi ×−→w i,j +−→α j ×−→u jP+

−→ω j × (−→ω j ×−→u jP )

(5.76)

where ”prima” next to a vector means the time-derivative of the vector as observed

from the moving frame, −→ω cti, −→ω i and −→ω j are the angular velocity of the chain-track

frame, the chain’s base body i and the body j of the chain respectively. Terms −→α cti,
−→α i and −→α j are the corresponding angular accelerations.

The kinematics description of a wheelset body in the full 3D model is equivalent to

the description done in the reduced model. Six generalized coordinates are required to
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describe the kinematics of wheelset i:

qwit =
[
swi r̄wiy r̄wiz ϕ̄wi θ̄wi ψ̄wi

]T
(5.77)

Figure 5.2 shows the reference frames required for the kinematic description. The

orientation of the wheelset body frame with respect to the wheelset track frame i is

given by the following matrix that has been linearised assuming small angles:

Awti,wi = Awti,wIiAwIi,wi ≈


1 −ψ̄wi 0

ψ̄wi 1 −ϕ̄wi

0 ϕ̄wi 1



cθ̄wi 0 sθ̄wi

0 1 0

−sθ̄wi 0 cθ̄wi

 (5.78)

For the calculation of the relative angular velocity of body i with respect to its chain

track frame, the following convection is accepted:

ωcti,i = Acti,iω̂cti,i =


1 ψ̄i −θ̄i

−ψ̄i 1 ϕ̄i

θ̄i −ϕ̄i 1




˙̄ϕi

˙̄θi

˙̄ψi

 (5.79)

Using this expression, the absolute velocity of the base body of chain i is given by:

ω̂i = ω̂cti + ω̂cti,i = (Acti,i)T ω̄cti + ω̂cti,i, (5.80)

The translational velocity of the centre of mass of body j defined as ¯̇Rj
G and the angular

velocity
_
ω
j

can be written as follows:

¯̇Rj
G = Hjq̇ci,

_
ω
j
= Gjq̇ci

(5.81)

where, Hj and Gj are the velocity transformation matrices which are functions of the

coordinates qci and the track geometry. Those matrices can be computed symbolically
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as follows:

Hi =
∂ ¯̇Rj

G

∂q̇ci
,

Gj =
∂
_
ω
j

∂q̇ci

(5.82)

The translational and angular acceleration can be written as:

¯̈Rj
G = Hjq̈ci + Ḣjq̇ci = Hjq̈ci + hj ,

_
α
j
= Gjq̈ci + Ġjq̇ci = Gjq̈ci + gj

(5.83)

5.3.4 Contact constraints

In the formulation of the wheel-rail contact constraints, it is established that the point

of contact on the wheel coincides with the point of contact on the rail. The non-linear

full 3D model uses a similar formulation for the wheel-rail contact constraints to the

one used in the reduced model presented in the previous section. The main different

lies in the fact that the 3D model uses the Knife Edge Contact (KEC) constraint

formulation with equivalent wheel profiles. A detailed description of this formulation is

presented in [106]. In this formulation the real wheel profiles are substitute with the so-

called equivalent wheel profiles. The wheelset with the equivalent profiles has the same

relative kinematics than the wheelset with real profiles. In that case, the transition

of the contact point between the wheel thread and the flange is totally smooth. In

this formulation the the rail cross-section is considered dimensionless, which reduces

the number of coordinates required to formulate the computational model. The use

of the KEC with equivalent wheel-profiles facilitates the integrator’s work, because it

does not have to deal with abrupt changes in position of the contact point on the wheel

between consecutive integration steps, as it may happen when flange contact appear in

the real profile. All this improves the computational efficiency of the model. Figure 5.11

shows and example of a real wheel profile and its equivalent profile using the mentioned

formulation.
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Figure 5.11: Real and equivalent wheel profiles

5.3.5 Equations of motion

As explained before in this section, the railroad vehicle in the full 3D model is modelled

as a set of chains of bodies interconnected by suspension elements. After the description

of the vehicle’s kinematics the next step in the multibody analysis consist on solving

the equations of motion. Those equations are the results of assembly the equation of

motion of each individual chain with the addition of the generalized forces due to the

suspension elements that connect these chains.

The Newton-Euler equations for an arbitrary solid j of chain i can be written as:[
mi 0

0 Îj

][
ājG

α̂j

]
=

[
F̄j

M̂j

]
+

[
0

−ω̂j ∧ Ījω̂j

]
, j = 1, 2, . . . nbi, (5.84)

where mi is the mass matrix of body j, Îj is the inertia matrix expressed in the

body frame, F̄j and M̂j are the applied forces and torques on the body, respectively.

Assuming that chain i consist of nbi bodies, the Newton-Euler equations assembly of
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the entire chain of bodies yields:

m1

Ī1

. . .

mnbi

Înbi





ā1
G

α̂1

...

ānbiG

α̂nbi


=



F̄1

M̂1

...

F̄nbi

M̂nbi


+



0

−ω̂1 ∧ Î1ω̄1

...

0

−ω̂nbi ∧ Înbiω̂nbi


(5.85)

This is a system of 6× nbi equations that can be written in compact form as:

M̂iâi = Q̂i
app + Q̂i

v (5.86)

âi =



ā1
G

α̂1

...

ānbiG

α̂nbi


=



H1

G1

...

Hnbi

Gnbi


q̈i +



h1

g1

...

hnbi

gnbi


= Liq̈i + li (5.87)

Introducing Eq. (5.87) into Eq. (5.86) and pre-multiplying by (Li)T it yields:

(Li)TM̂iLiq̈i = (Li)T Q̂i
app + (Li)T (Q̂i

v − M̂i(Li)T li) (5.88)

Newly, writing Eq. (5.88) in compact form it is obtained:

Miq̈i = Qi
app + Qi

v (5.89)

The vector of generalized forces Qi
app does not include reaction forces in those chains

that not include wheels since qi is assumed to be free of constraints. In the case of

wheelset bodies, wheel/rail contact constraints must be accounted for.
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Once the equations of motion for a single chain of bodies have been defined, the equa-

tions of motions for the entire vehicle are:
M1

. . .

Mnch




q̈1

...

q̈nch

 =


Q1
app
...

Qnch
app

+


Q1
v

...

Qnch
v

+ Qsusp + Qwr
reacc (5.90)

where, Qsusp is the vector of generalized suspension forces and Qwr
reacc is the vector of

generalized forces due to wheel-rail contact constraints Cwr(q) = 0. Reaction forces

are accounted for using the Lagrange multiplier method. To that end, the equations of

motion are augmented with the wheel-rail contact constraints, as follows:[
M (Cwr

q )T

Cwr
q 0

][
q̈

λwr

]
=

[
Qapp + Qv + Qsusp

−Ċwr
q q̇

]
(5.91)

where Cwr
q is the jacobian of the wheel/rail contact constraints and λwr are the La-

grange multipliers associated with the wheel-rail contact constraints.

Reaction forces due to the wheel-rail contact are not calculated in the 3D model as it is

done in the reduced model. The resultant forces acting on both wheels depend on the

tangential and normal force on the wheel thread and the flange. The 3D model uses

an hybrid method for the calculation of the wheel-rail contact forces. This method is

the result of a combination between the constraint and the elastic method. Constraints

are applied on the thread region while the elastic method is used when flange contact

appears. In that moment, a force proportional to the indentation and the velocity of

indentation between the wheel and the rail is introduced in the model. It is assumed

that the tangential forces are a function of pseudo-slip speeds (creepages) following the

Polach model [38]. The Polach method is valid not just in the micro sliding region as

Kalker’s creep forces formulation, but it is also valid in the transition and gross sliding

regions.
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5.4 Scaled vehicle modelling

The multibody model of the scaled vehicle used in this PhD thesis consist of three

rigid bodies, name as bodies 1 to 3. Bodies 1 and 2 are the rear and front wheelset

respectively, while body 3 represents the bogie frame. Both wheelset are connected to

the bogie frame through the primary suspension. It consists on 8 helical springs, dis-

tributed in pairs connecting each bearing box with the bogie frame. All bodies’ masses

have been measured experimentally, while inertia tensors have been drawn from a CAD

software. The suspension stiffness have been characterized in a test machine, obtaining

the actual stiffness of one of the helical spring. Figure 5.12 shows the geometry of

the modelled vehicle. Four traction rods connect the wheelsets with the bogie frame.

The model formulation allows the introduction as input a synthesized or experimental

velocity profile. This velocity is imposed to the rear wheelset, body 1, that powers the

vehicle. Tables 5.3 to 5.6 summarized initial positions, masses, inertia parameters of

each rigid body of the vehicle and the main characteristics and positions of the suspen-

sion elements. The ideal track input parameters are described in Tables 2.5 and 2.7.

3

21

Figure 5.12: Multibody model main elements
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Table 5.3: Body frames initial position and orientation

Body Rx (m) Ry (m) Rx (m) ϕ (rad) θ (rad) ψ (rad)

1 0.000 0.000 0.000 0.000 0.000 0.000

2 0.185 0.000 0.000 0.000 0.000 0.000

3 0.093 0.000 0.098 0.000 0.000 0.000

Table 5.4: Mass and inertia properties of bodies

Body m (kg) Ixx (kg·m2) Iyy (kg·m2) Izz (kg·m2)

1 2.210 0.0191 0.0040 0.0188

2 4.315 0.0590 0.0085 0.0588

3 17.475 0.0190 0.0530 0.0510

Table 5.5: Primary suspension elements

No. i j l0 (m) k (N/m) c (N·s/m) ûi (m) ûj (m)

1 1 3 0.050 7500 2.52 [ 0.045 -0.097 0.035] [-0.048 -0.097 -0.014]

2 1 3 0.050 7500 2.52 [-0.045 -0.097 0.035] [-0.014 -0.097 -0.014]

3 1 3 0.050 7500 2.52 [ 0.045 0.097 0.035] [-0.048 0.097 -0.014]

4 1 3 0.050 7500 2.52 [-0.045 0.097 0.035] [-0.138 0.097 -0.014]

5 2 3 0.050 7500 2.52 [ 0.045 -0.097 0.035] [ 0.138 -0.097 -0.014]

6 2 3 0.050 7500 2.52 [-0.045 -0.097 0.035] [ 0.048 -0.097 -0.014]

7 2 3 0.050 7500 2.52 [ 0.045 0.097 0.035] [ 0.138 0.097 -0.014]

8 2 3 0.050 7500 2.52 [-0.045 0.097 0.035] [ 0.048 0.097 -0.014]

Table 5.6: Traction rods

No. i j l0 (m) k (N/m) ûi (m) ûj (m)

1 1 3 0.077 5 · 105 [ 0.000 -0.127 0.050] [-0.179 -0.127 -0.039]

2 1 3 0.077 5 · 105 [ 0.000 0.127 -0.039] [-0.179 0.127 -0.039]

3 2 3 0.077 5 · 105 [ 0.000 -0.127 0.050] [ 0.179 -0.127 -0.039]

4 2 3 0.077 5 · 105 [ 0.000 0.127 0.050] [ 0.179 0.127 -0.039]



Chapter 6

Comparison Between Measured

and Simulated Wheel-Rail

Contact Forces

6.1 Simulation to experiment comparison

After the manufacturing, instrumentation and calibration, the scaled dynamometric

wheelset has been tested in a real scenario in order to validate its functionality as a

wheel/rail contact force measurement system. To that end, the instrumented wheelset

has been installed in a scaled railway vehicle designed by the Department of Mechanical

and Manufacturing Engineering of the University of Seville and tested in the 5 inches

gauge scaled track presented in Chapter 2. Several experiments have been carried

out and the obtained accelerations, angular velocities and contact forces have been

compared with the numerical results drawn from the two computational multibody

models of the scaled vehicle presented in Chapter 5. The final goal of this section is to

compare the vertical and lateral force measurements obtained with the two measuring

procedures presented in this PhD thesis, the strain gauges and distance lasers. The

experiments are also compared with the simulated results.

143
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6.1.1 Vehicle instrumentation for the experiments

The vehicle used during the experiments is a single bogie consisting of two wheelsets

and a bogie frame connected by a suspension elements. The rear wheelset is driven

by a chain transmission powered by a 30 W Phidget DC motor. The front axle is the

dynamometric wheelset. There are also two traction rods (see Fig. 6.3) connecting the

rear axle with the bogie frame. These rods allow a smoother power transmission to the

traction wheelset reducing notoriously longitudinal vibrations in the vehicle.

Figures 6.1 to 6.3 shows three different views of the instrumented bogie on the scaled

track. As it can be noticed, the vehicle has numerous sensors and other electronic

devices installed on it. In addition to the sensors of the dynamometric wheelset (see

Chapters 3 and 4) the vehicle has two high precision Inertial Measurement Units (IMUs)

one installed on the left bearing box of the instrumented wheelset (see Fig. 6.3) and

the other centred on the bogie frame. These sensors register accelerations and angular

velocities on the three axes. The vehicle have been also equipped with high precision

encoders that register the instantaneous angular position and velocity of both axes. A

set of magnets (see Fig. 6.4) have been installed along the scaled track. These magnets

act like beacons which are detected by two inductive magnetic sensors installed under

the bearing boxes of the rear wheelset (see Figs. 6.2 and 6.3). The beacons together with

both precision encoder are used as inputs of the vehicle’s odometer that precisely located

the vehicle on the track. The vehicle is controlled by a Real Time (RT) computer NI-

cRIO-9035 of National Instruments installed on the bogie frame (see Fig. 6.2). The RT

computer also acquires the sensors’ data. The control and data acquisition system has

been fully programmed on LabVIEW 2017. Figure 6.5 shows the user control interface.

Three lead acid batteries power the vehicle electric system. Table 6.1 summarizes the

electronic instruments equipped on the vehicle.
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Table 6.1: Instruments equipped on the vehicle

Instrument Function

NI-cRIO-9035 Vehicle control

MEL-M7L/0.5-10B Precision Lasers Lateral force measurement

µε optoNCDT-1302 Precision Lasers Vertical force measurement

LORD MicroStrain 3DM-GX4-25 IMU Inertial measurements

Phidget quadrature encoder 40 CPR Rear axle encoder

Kubler quadrature encoder 360 PPR Front axle encoder

Inductive magnetic sensors Beacon detection

Power source (24V) Electrical supply

TP-Link WiFi Router Computer wireless communication

Lead acid batteries Electrical supply

Dynamometric
wheelset

Battery

Figure 6.1: Instrumented scaled bogie on the track. Front view
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Real time
computer

Inductive
   sensor

Figure 6.2: Instrumented scaled bogie on the track. Left side view

IMU

Traction
    rod

Laser 
control

unit

Inductive
sensor

Figure 6.3: Instrumented scaled bogie on the track. Right side view
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Magnet

Figure 6.4: Track beacons

Figure 6.5: LabVIEW user control interface
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6.1.2 Experiments on the track

In this section, the measurement obtained from several experiment on the track are

going to be presented. A total of six experiments have been carried out. They can be

divided into two groups of three experiments each. The first group are the experiments

where the vehicle moves forward on the track, and, the second group are the experiments

where the vehicles moves backwards. It is important to note that the instrumented

wheelset is always the leading axle. That means, the vehicle is turned around in the

backwards rides. This is important because, as presented in Chapter 2, the experimental

scale track is an open circuit consisting of a straight section, one curve to the right with

24 m radius, a straight section, one curve to the left with 6 m radius and a final straight

section. They are connected by transition sections of variable curvature. Thus, when

the vehicles moves forward or backwards the instrumented wheel (the front wheelset

left wheel) interacts in a different manner with the track as will be shown later.

The forward rides have been named as experiments 1, 2 and 3, where the vehicles moves

with average velocities of 1.7 m/s, 2 m/s and 2.5 m/s respectively. The backward rides

are experiments named 4, 5 and 6, where the vehicle moves with average velocities of

1.5 m/s, 2 m/s and 2.5 m/s. Taking into account that temperature affects the track

geometry, both the track measurements (see Section 2) and the experimental campaign

were carried out in similar temperature conditions.

6.1.3 Forward movement experiments

The results obtained from the experiments are linear accelerations, angular velocities

and contact forces measurement mainly, besides the odometer position and forward

velocity calculation. Due to the fact that the measured accelerations and angular

velocities have similar patterns in all the experiments, the results of a single experiment

are shown in this subsection and compared with the simulation results drawn from

the computational model. The wheel-rail contact force experimental measurements

obtained with both approaches, main goal of this PhD thesis, will be presented on each

experiment.
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The experimental accelerations and angular velocities shown in Figs. 6.7 to 6.18 cor-

respond to experiment number 3. This is the experiment where the vehicle reaches

the fastest velocity and therefore the largest acceleration and angular velocities are

obtained. Figure 6.6 shows the longitudinal velocity profile of the vehicle during the

experiment versus the longitudinal coordinate s of the track centre line (TCL). The

fluctuations of the velocity between 5 m and 25 m are due to the PI control action.

s (m)

v 
(m

/s
)

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50 60 70 80

Figure 6.6: Forward velocity profile in Experiment 3

Figures 6.7 to 6.9 show the accelerations in the longitudinal, lateral and vertical di-

rections of the instrumented wheelset, respectively, measured by the IMU, compared

with the numerical data drawn from the computational models. Figure 6.7 shows a

comparison between the experimental and simulated longitudinal accelerations of the

instrumented wheelset. It is observed how the 3D model does not reproduces correctly

the experiment like the reduced model does. Larger fluctuation are observed in the 3D

model results. This is due to the absence of traction rods in the 3D model construction.

Those results show how the traction rods can highly reduce the longitudinal oscillations

of the wheelset. In Fig. 6.8, it can be observed the variation of the lateral acceleration

experienced by the wheelset while negotiating both curves. The large radius curve is

located between s = 21 m and s = 50 m, and the sharp radius curve located between
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s = 53 m and s = 62 m. Figures 6.10 to 6.12 shows the angular velocities experi-

enced by the wheelset. Similar conclusion can be reached in Figs. 6.8 and 6.12. It is

important to note that, the pitch angular velocity is not correctly reproduced by any

of the simulation models as it can be seen in Fig. 6.11, where the experimental data

shows larger fluctuations. This is due to the fact that, the bearing boxes have not been

modelled as independent rigid bodies. That means, their real kinematics can not be

reproduced by any of both multibody models. As it can be observed in Fig. 5.12, two

helical springs connect each bearing box with the bogie frame. Thus, the bearing box,

where the IMU is installed, can experience in a real scenario a small pitch movement

that is not considered in the simulation models.
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Figure 6.7: Longitudinal acceleration ax of the instrumented wheelset
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Figure 6.8: Lateral acceleration ay of the instrumented wheelset
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Figure 6.9: Vertical acceleration az of the instrumented wheelset
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Figure 6.10: Angular velocity ωx of the instrumented wheelset
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Figure 6.11: Angular velocity ωy of the instrumented wheelset
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Figure 6.12: Angular velocity ωz of the instrumented wheelset

Similar results are obtained from the IMU installed on the bogie frame (see Figs. 6.13

to Figs. 6.18). The inertial magnitudes measured by both IMUs are very similar due

to the stiffness of the suspension elements.
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Figure 6.13: Longitudinal acceleration ax of the bogie frame
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Figure 6.14: Longitudinal acceleration ay of the bogie frame
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Figure 6.15: Vertical acceleration az of the bogie frame
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Figure 6.16: Angular velocity ωx of the bogie frame
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Figure 6.17: Angular velocity ωy of the bogie frame
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Figure 6.18: Angular velocity ωz of the bogie frame

To conclude this epigraph, the force measurements obtained in the three experiments
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where the vehicle moves in the forward direction are shown below. The two lateral

force measurement techniques, strain gauges and precision distance lasers developed

in this PhD thesis, are compared among them, and at the same time with the two

computational models results. Applied vertical force measurements on the instrumented

wheel are also shown and compared with the computational results.

As it can be observed in Fig. 6.20, corresponding to experiment 1, the normal force

applied on the wheel measured by the vertical lasers approximately reproduces the

computational results. The differences between both model estimations is due to the

model assumptions.

Figure 6.21 shows the comparison between the lateral force measured by the lateral

distance lasers and the strain gauges compared with the simulation results. In order to

have a clearer view of them, Fig. 6.22 shows the same graph lines on independent charts.

The differences between both computational models are again observed. Experimental

measurements (see Fig. 6.22 (c) and (d)) also show different tendencies. The strain

gauges approach, Fig. 6.22 (d), shows a reasonable agreement with the reduced model

and the expected results. It is observed how the lateral force increases when the vehicle

negotiates both curves. In the large radius curve both the reduced model and the

strain gauges show the same instantaneous impacts. Those impacts are due to track

irregularities. The precision lasers do not detect so clearly the increase in the lateral

force in the first curve. When the vehicle negotiates the sharp radius curve a continuous

flange contact appears. That is correctly reproduced by the reduced model, the strain

gauges and the laser sensors. A video recording of the wheel-rail contact made during

the experiment shows how this continuous flange contact actually appears. Figure Fig.

6.19 shows a video frame of the instrumented wheelset when the vehicles passes the

small radius curve.

Moving on experiment two, the same conclusions are obtained from the normal force

measurements Fig. 6.23. However, in the lateral force measurement a slight difference

is observed. In this experiment, the distance lasers are able to detect when the vehicle

negotiates the large radius curve. It is true that, the instantaneous flange impacts of

the wheel against the rail are not noticed by the lasers as the strain gauges are able to

do. The mean value of the lateral force approximately coincides for both set of sensors.
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In the experiment number three, the last one in forward direction, the vertical force is

again satisfactory measured and it approximately coincides with the numerical results.

The lateral force is also measured satisfactory with the strain gauges, whose measure-

ments are similar to both computational models. Nonetheless, the distance lasers fail

again. The measurement of the lateral force in the large radius curve does not agree

with the other graph lines. Finally, the force experienced by the wheel in the small

radius curve is satisfactory measured by both approaches, as it was observed in the

previous experiments.

In the light of the obtained results in the forward movement experiments, it can be

said that the normal force applied on the instrumented wheel can be measured through

the deflection of the primary suspension and a simple balance of forces and torques on

the wheelset. The lateral force has been satisfactory measured by the strain gauges

in the three experiments described above. In addition, the measurements have a good

level of accordance with the computational results. However, the distance lasers do not

show the same robustness than the strain gauges. Although they are able to correctly

measure the lateral force when the vehicle passes the small radius curve, they fail

measuring the lateral force in the large radius curve in two of the three experiments.

The possible reasons that lead to this situation are discussed later in this chapter.

Figure 6.19: Continuous flange contact in the sharp radius curve
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6.1.3.1 Experiment 1 contact force measurements
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Figure 6.20: Normal force experiment 1, methods comparison
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Figure 6.21: Lateral force experiment 1, methods comparison
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Figure 6.22: Lateral force experiment 1, methods comparison

6.1.3.2 Experiment 2 contact force measurements
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Figure 6.23: Normal force experiment 2, methods comparison
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Figure 6.24: Lateral force experiment 2, methods comparison
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Figure 6.25: Lateral force experiment 2, methods comparison
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6.1.3.3 Experiment 3 contact force measurements
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Figure 6.26: Normal force experiment 3, methods comparison
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Figure 6.27: Lateral force experiment 3, methods comparison
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Figure 6.28: Lateral force experiment 3, methods comparison

6.1.4 Backward movement experiments

Equivalent experiments have been carried out with the vehicle running in the backward

direction of the track. In these experiments the instrumented wheel (left wheel of the

leading wheelset) interacts in a different manner with the track with respect to the

forward movement experiments presented before. Figures 6.30 to 6.41 show the linear

accelerations and angular velocities measured by the IMUs installed on the vehicle.

Those results correspond to experiment number 6 where the vehicle reaches an average

forward velocity of 2.5 m/s. It is important to note that, in those experiments the

vehicle starts its movement at coordinate s = 87 m and it stops at s = 0 m. The results

obtained are similar to the analysed in the forward movement experiments. There is

again a good agreement between the measured magnitudes and the numerical results

drawn from the reduced computational model.
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Figure 6.29: Forward velocity profile in experiment 6
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Figure 6.30: Longitudinal acceleration ax of the instrumented wheelset
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Figure 6.31: Lateral acceleration ay of the instrumented wheelset
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Figure 6.32: Vertical acceleration az of the instrumented wheelset
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Figure 6.33: Angular velocity ωx of the instrumented wheelset
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Figure 6.34: Angular velocity ωy of the instrumented wheelset
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Figure 6.35: Angular velocity ωz of the instrumented wheelset
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Figure 6.36: Longitudinal acceleration ax of the bogie frame
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Figure 6.37: Lateral acceleration ay of the bogie frame
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Figure 6.38: Vertical acceleration az of the bogie frame
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Figure 6.39: Angular velocity ωx of the bogie frame
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Figure 6.40: Angular velocity ωy of the bogie frame
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Figure 6.41: Angular velocity ωz of the bogie frame

The contact force measurement results obtained with the instrumented wheelset are

shown below. The normal force measured in experiments 4 to 6 (Figs. 6.42 to 6.48)

has been satisfactory estimated through the proposed method. It must be pointed out

that, in the normal force experimental measurements it can be observed force peaks

larger than in the simulated signal. To the author’s opinion, this is due to vibrations

experienced by the laser sensors and the measuring surfaces where they are pointing

towards. Those vibrations introduce these incorrect measurements in the signal. One

of the conclusion drawn from this research is that, laser sensors have shown a fantastic

performance under laboratory conditions, but they are not as robust as expected in a

real scenario.

Analysing the measured lateral force, one can observed at a glance that, the average

lateral force in the sharp radius curve is almost twice the force measured at the same

section when the vehicles moves forward. The reason is that, when the vehicle is

running in backward direction and it negotiates the small radius curve, the continuous

flange contact appears in the instrumented wheel. It is also observed how the maximum

average lateral force in the three experiments that appears in the small radius curve

increases with the forward speed. This differs from the same results obtained in the
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forward movement experiments. In those experiments the maximum average force in

the small radius curve decreases with the forward velocity of the vehicle. Table 6.2

summarized the these results for the complete set of experiments. That different trend

between forward and backward experiments is due to the wheel that experiences flange

contact: the instrumented wheel in the inverse direction and the non-instrumented

wheel in the normal direction of the travel. The steady curving behaviour of railroad

vehicles is a complete non-linear phenomenon that depends on several factors, sucha

as curve radius, forward velocity, geometry ot the vehicle, wheel conicity, etc. Under

these conditions the decrease of one component of the force when the forward velocity

increases is perfectly possible.

Concerning the measurements obtained with the strain gauges and precision lasers in

the complete vehicle ride, one can observe how the strain gauges approach fits better

with the computational results drawn from the reduced model than the precision lasers

measurements. In fact, it can be observed in the three experiments (Figs. 6.43 to 6.50)

how the precision lasers measure a higher lateral force in the small radius curve than

the strain gauges or the computational model.

Table 6.2: Second curve average lateral force

Direction Velocity Simulation Lasers Strain gauges

1.5 m/s 24.16 N 21.84 N 21.66 N

Normal 2.0 m/s 23.92 N 20.56 N 20.16 N

2.5 m/s 22.06 N 19.10 N 18.60 N

1.5 m/s 32.29 N 33.44 N 33.56 N

Inverse 2.0 m/s 34.03 N 36.81 N 37.02 N

2.5 m/s 35.73 N 37.23 N 38.20 N

If one compares the performance of both set of sensors installed on the dynamomet-

ric wheelset, the strain gauges and the precision lasers, it can be said that the lateral

force measurement based on strain gauges performs better. In fact, in the six exper-

iments carried out with the strain gauges, the obtained measurements have a good

agreement with the computational results. The same conclusion does not apply to the

measurement with precision lasers, where different tendencies appear in the forward
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and backward experiments. Nonetheless, the six experiments with the lasers have in

common that the sensors satisfactory measure the lateral force when the vehicle negoti-

ates the sharp radius curve. In addition, taking a look on the lateral force measurement

of the precision lasers in the backward experiments, one can observed how the three

line graphs (see Fig. 6.44 (b), Fig. 6.50 (b) and Fig. 6.50 (b)) show the same tendency.

However, this does not happens in the forward experiments where the precision lasers

measurements do not agree further from the small radius curve (see Fig. 6.22 (c), Fig.

6.25 (c) and Fig. 6.28 (c)). This could be explained by an incorrect model assump-

tions when developing the lateral force calculation algorithm based on the precision

lasers. That has lead to a non-fully efficient measuring procedure based on the lateral

deflection experiences by the wheel.

It seems that, when the vehicle moves backwards and it negotiates the small radius curve

first, the high value of the force experienced by the wheel due to the flange impact with

the outer rail makes the wheel get stuck into an unusual position, such that the stiffness

of the assembly wheel and bearing box changes. To the author’s opinion, the mechanical

system consisting on the bearing box itself, the bearing, the snap rings and the axle has

certain elasticity that it is lost when the wheel get stuck after a strong impact against

the rail. Of course this is just speculations, and the truth is that, It has not been possible

to identify this phenomena during the calibration process. It is true that, experiment

2 has an extraordinary accordance between the distance lasers and the strain gauges

and computational model. Of course it is not enough to consider the proposed method

as robust. In experiment 2 the wheel experiences conditions very similar to the test

conditions reproduced in the static calibration process accomplished, drawing a correct

lateral force estimation. In lights of the obtained results, and considering that one of

the experiment 2 has been quite satisfactory, the author considers that the lateral force

measurement method based on the lateral deflection is not entirely effective. It requires

a further analysis and probably some changes in the model assumptions. Due to the

research deadline this study has not been accomplished.
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6.1.4.1 Experiment 4 contact force measurements
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Figure 6.42: Normal force experiment 4, methods comparison
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Figure 6.43: Lateral force experiment 4, methods comparison
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Figure 6.44: Lateral force experiment 4, methods comparison
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6.1.4.2 Experiment 5 contact force measurements
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Figure 6.45: Normal force experiment 5, methods comparison
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Figure 6.46: Lateral force experiment 5, methods comparison
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Figure 6.47: Lateral force experiment 5, methods comparison
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6.1.4.3 Experiment 6 contact force measurements
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Figure 6.48: Normal force experiment 6, methods comparison
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Figure 6.49: Lateral force experiment 6, methods comparison
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Figure 6.50: Lateral force experiment 6, methods comparison



Chapter 7

Closure

7.1 Closure

7.1.1 Summary

The main purpose of this PhD thesis has been the development of a scaled dynamo-

metric wheelset for the measurement of wheel/rail contact forces on a scaled railway

vehicle. The dynamometric wheelset has been instrumented with two different tech-

nologies for the measurement of applied forces: strain gauges and precision distance

lasers. The system has been tested on a experimental scaled track built at the rooftop

of the School of Engineering at the University of Seville.

The thesis has begun in Chapter 1 with an state of the art review of the main technolo-

gies uses in the railways industry for the measurement of the wheel/rail contact forces.

Showing off the latest research on this subject present in the literature.

In Chapter 2, the experimental scaled track has been measured with an innovative

technique in order to precisely determine its geometry. An optimization software for

the ideal track centre line identification has also been developed. Track irregularities

are obtained as output of the optimization software.

The dynamometric wheelset design, instrumentation and calibration have been pre-

sented in detail in Chapters 3 and 4. The calibration process has been accomplished on

179
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a scaled static test bench developed by the author. In that bench, controlled vertical

and lateral loads are applied on the instrumented wheelset and the experimental results

are compared with simulation drawn from a FEM of the instrumented wheel created

in ANSYS. Two algorithms for the calculation of the applied lateral force on the in-

strumented wheel have been proposed. The first one estimates the applied lateral force

by the measurement of the radial strain on the wheel-core. The second one determines

the applied lateral force through the deflection experienced by the wheel-web. Vertical

forces are obtained measuring the deflection of the primary suspension and establishing

a balance of forces on the wheelset.

Two railroad computational multibody models have been presented in Chapter 5. The

first one assumed a weakly couple vertical and lateral dynamics while the latter is a full

non-linear 3D model. The force measurements obtained in a experimental campaign

on the scaled track have been compared with the numerical results drawn from the two

computational models.

7.1.2 Conclusions

In view of the obtained results, it can be said that the strain gauges are a better choice

for the lateral contact force measurement since their results prove to be more precise

compared to the numerical simulation than the precision distance lasers. The strain

gauges measure satisfactory the lateral force applied on the wheel in all the experiments

carried out with the dynamometric wheelset. Vertical forces on the wheel have been

also correctly measured through the precision vertical lasers obtaining meaningful force

results.

However, from a practical point of view, strain gauge use is more sophisticated than

using distance lasers. On the one hand, strain gauges require a careful installation to

guarantee their correct functioning. An imprecise installation of the sensors on the

wheel-core or inappropriate soldering of wires will result in an incorrect force measure-

ment. On the other hand, if strain gauges are installed on both sides of the wheel core,

it is also necessary to drill into the wheel to wire the sensors. This can jeopardize the

security of the wheel if it is not done correctly. In addition, the strain gauges need very

expensive telemetry systems to transfer the information from the rotating wheelset to
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the data acquisition system. Brush connectors are another valid alternative to teleme-

try but they normally introduce considerable noise on the signals. Additionally, they

are expensive to manufacture. It is also important to note that, signal processing in the

strain gauge method is more sophisticated compared to the precision laser approach.

Due to the fact that strain gauges rotate with the wheel, harmonics will appear on the

acquired signals and the force calculation algorithm must be able to remove a large

part of those harmonics in order to obtain a precise force measurement.

On the other hand, distance lasers are installed on non-rotating parts of the vehicle,

so they do not need wireless communication. That greatly reduces instrumentation

costs even though a single precision laser sensor is more expensive than a complete

set of strain gauges. Laser setup is also easier as they only need to be fixed to the

bearing box and pointed towards the wheel-web. The only requisite is to position them

at a certain offset distance from the measurement surface. That can be easily done,

for instance, with a simple slider mechanism. In some cases, as the one studied in

this paper, the wheel surface might have a surface irregularity pattern, but it can be

easily registered during system calibration and later removed from the signal. A clear

drawback of distance lasers against strain gauges is the fact that to guarantee a correct

performance of the system lasers’ lenses, they must be always free of dust. A simple

solution could be a pressurized air jet coming from the vehicle pressurized air system

directed towards the sensor lens actuating at regular intervals.

The wheel-rail contact force measurement methods presented in this thesis have been

applied to a scaled vehicle. Nonetheless, they can be extended to a full-scaled system,

always provided that an equivalent preliminary FEM study of the wheelset geometry,

instrumentation and calibration process is done. Taking into account that the scaled

vehicle used for testing does not exactly reproduce the dynamics of a real bogie, the

conclusions drawn from this thesis related to vehicle dynamics response and force mag-

nitudes and frequency analysis must not be directly applied to a full-scaled vehicle.

However, all the results obtained about instrument setup, uncertainties and precisions

can be fully extended to a larger system. Furthermore, considering that the radial

strains, wheel web lateral bending and primary suspension deflections in a real vehicle

will be larger, these methods will work even better. The author’s opinion after carry-

ing out this research, is such that, non-contact distance measurement sensors applied



Chapter 7. Closure 182

to vertical and lateral wheel-rail contact forces measurement are an interesting choice

against traditional dynamometric wheelsets instrumented with strain gauges. Particu-

larly considering the ease of installation and use of non-contact distance measurement

sensors.

Finally, the utilization of scale systems represents an easy, inexpensive and safe way

to validate different railway computational models, wheel-rail contact force estimation

methods or new running safety criteria for instance. The modelling techniques, results

and conclusions drawn from a scaled system might then be extended with caution to

full scale vehicles. As a future line of research, the presented work can be applied to a

full scale system in order to compare both instrumentation technologies when applied

loads on the wheels are much larger. In that scenario, researchers hope to find an

equivalent performance of both technologies although it is yet to be proven.

7.1.3 Publications

As part of this PhD thesis the candidate contribute in the following journal and con-

ference papers.

7.1.3.1 Journal papers

• Pedro Urda, Sergio Muñoz, Javier F. Aceituno and José L. Escalona. Wheel-rail

contact force measurement using strain gauges and distance lasers on a scaled

railway vehicle. Mechanical Systems and Signal Processing. Under Review.

• Sergio Muñoz, Javier F. Aceituno, Pedro Urda and José L. Escalona. Multi-

body model of railroad vehicles with weakly coupled vertical and lateral dynamics.

Mechanical System and Signal Processing. 115:570-592, 2019.

• Jose L. Escalona, Javier F. Aceituno, P. Urda, and O. Balling. Railroad multibody

simulation with the knife-edge-equivalent wheel-rail constraint equations. Multi-

body Systems Dynamics. 2019
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7.1.3.2 Conference papers

• Pedro Urda, Sergio Muñoz, Javier F. Aceituno and José L. Escalona. A novel

procedure to measure wheel-rail contact forces in an instrumented scale railway

vehicle The Fourth International Conference on Railway Technology RAILWAYS

2018. Sitges, Barcelona.

• Pedro Urda, Sergio Muñoz, Javier F. Aceituno and José L. Escalona. Estimación

de fuerzas de contacto rueda carril en veh́ıculo instrumentado a escala. XXII

Congreso Nacional de Ingenieŕıa Mecánica 2018. Madrid, Madrid.

• Pedro Urda, Sergio Muñoz, Javier F. Aceituno and José L. Escalona. Wheel-

rail contact force measurement on a scaled railway vehicle: comparison between

numerical and experimental data. ECCOMAS Multibody Dynamics Conference

2019. Duisburg, Germany.
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[65] E. Gomez, J.G. Giménez, and A. Alonso. Es 2 334 529 a1.
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