
A syntax for semantics in P-Lingua

Ignacio Pérez-Hurtado, David Orellana-Mart́ın,
Agust́ın Riscos-Núñez, and Mario J. Pérez-Jiménez

Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
Universidad de Sevilla, Spain
{perezh,dorellana,ariscosn,marper}@us.es

Summary. P-Lingua is a software framework for Membrane Computing, it includes a
programming language, also called P-Lingua, for writting P system definitions using a
syntax close to standard scientific notation. The first line of a P-Lingua file is an unique
identifier defining the variant or model of P system to be used, i.e, the semantics of the
P system. Software tools based on P-Lingua use this identifier to select a simulation
algorithm implementing the corresponding derivation mode. Derivation modes define
how to obtain a configuration Ct+1 from a configuration Ct. This information is usually
hard-coded in the simulation algorithm.

The P system model also defines what types or rules can be used, the P-Lingua
compiler uses the identifier to select an specific parser for the file. In this case, a set of
parsers is codified within the compiler tool. One for each unique identifier.

P-Lingua has grown during the last 12 years, including more and more P system
models. From a software engineering point of view, this approximation implies a continous
development of the framework, leading to a monolithic software which is hard to debug
and maintain.

In this paper, we propose a new software approximation for the framework, including
a new syntax for defining rule patterns and derivation modes. The P-Lingua users can
now define custom P system models instead of hard-coding them in the software. This
approximation leads to a more flexible solution which is easier to maintain and debug.
Moreover, users could define and play with new/experimental P system models.

1 Introduction

Membrane computing is an unconventional model of computation within natural
computing that was introduced in 1998 by Gh. Păun [17]. The computational
devices in membrane computing, also known as P systems, are non-deterministic
theoretical machines inspired on the biochemical processes that take place inside
the compartments of living cells.

Several kinds of P systems coexist, each of them having different syntactic in-
gredients, such as different alphabets and structures. The two most studied are

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/286563963?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

140 I. Pérez-Hurtado et al.

cell-like membrane systems, characterized by their rooted tree structure, where
membranes act as filters that let certain elements to pass through them [17], and
membrane systems structured as directed graphs, representing the communication
between cells within a tissue of a living being, called tissue-like P systems [9] or
between neurons in a brain, called spiking neural P systems [7]. The interchange
of objects between the different compartments is defined by the rules of the sys-
tem, that together with the corresponding semantics, mark the functioning of the
system.

A configuration of a P system is defined by the structure of the compartments
at a certain moment, and the elements (being usually objects, although other
kinds of elements can be considered, as strings, catalysts [17] and anti-matter [14],
among others) contained in each compartment, as well as other characteristics
from specific types of P systems, providing a snapshot of the system at an instant
t. By using the rules specified in a model, we can make its objects change, both
evolving and moving between the different compartments (membranes in the case
of cell-like P systems and cells in the case of tissue-like P systems).

On the one hand, in P systems with active membranes [19], both objects and
membranes change through the application of evolution, communication, division,
separation, creation and dissolution. In this framework, membranes can have a
polarization associated to each membrane. On the other hand, in tissue P sys-
tems [9], symport/antiport rules are devoted to make objects move from a cell to
another cell or to the environment (a special compartment where there exist an
arbitrary number of objects of an alphabet defined a priori), while division and
separation rules allow an exponential growth in linear time.

We say that a configuration Ct yields to a configuration Ct+1 if, by applying the
rules specified in the model according to its semantics, we can obtain Ct+1 from
Ct. Semantics rules the behavior of the system, determining which rules can be
applied and how they affect the system according to a global clock. A computation
of a P system is a (finite or infinite) sequence of instantaneous configurations.

We consider a family (or model) of P systems as the definition of a type of
P system, that is, its syntax and semantics. According to the specification of a
particular family of P systems, we consider a (specific) model as the definition
of an individual P system, that is, its working alphabet, initial membrane struc-
ture with initial multisets of objects and the set of rewriting rules with another
characteristics of the correspondent family. By the definition of the family, we can
interpret the structure and behavior of a specific model within that family.

Membrane computing is a very flexible framework where different types of
devices can be outlined. In fact, the intersection between Membrane Computing
and other fields, such as engineering [20], biology [23] and ecology [2], as well as
a long list of other scientific lines [5, 13, 24], has generated necessities that could
only be filled by the creation of new kinds of P systems, expanding the scope of
researchers in this area. For an exhaustive explanation of the different types of P
systems, we refer the reader to [18] and [16].

A syntax for semantics in P-Lingua 141

In this work, we have reinvented the P-Lingua framework [6, 25] to include
semantic features concerning to the models.

The paper is structured as follows: In the next section, some preliminaries
concepts about P-Lingua are introduced. In Section 3, we propose an extension
for the P-Lingua language to directly define model constraints in the own P-Lingua
files, providing a more flexible and experimental framework. The next Section is
devoted to the new GNU GPLv3 software tool to compile the input P-Lingua files.
In Section 5 some examples of the new P-Lingua extension are introduced. Finally,
some conclusions and future work are drawn.

2 Preliminaries

P-Lingua [6, 25] is a software framework that includes a definition language for P
systems (also called P-Lingua) and a GNU GPLv3 Java library (pLinguaCore) that
is able to parse P-Lingua files and simulate computations. The library contains
three main components:

• A parser for reading input files in P-Lingua format and checking syntactic and
semantic constraints related to predefined models. In order to achieve this, the
first line of a P-Lingua file should include a P system model declaration by us-
ing an unique identifier. There are several P system models that can be used,
each one with its own identifier, such as transition, membrane division,
tissue psystems, and probabilistic. The analysis of semantic ingredients,
such as rule patterns, is hard-coded for each model. Several versions of pLin-
guaCore [6, 8, 10, 21] have been launched to cover different types of models.

• For each type of model, the pLinguaCore library includes one or more built-in
simulators, each one implementing a different simulation algorithm. For in-
stance, Population Dynamic P systems [1] (probabilistic identifier in P-
Lingua) can be simulated within the library by applying three different al-
gorithms: BBB, DNDP, and DCBA [3, 11]. Remarkable software projects such as
MeCoSim (Membrane Computing Simulator) [27, 22] use the simulators inte-
grated in the library to perform P system computations and generate relevant
information as result for custom applications.

• Alternatively, the pLinguaCore library is able to transform the input P-Lingua
files to other formats such as XML or binary format in order to feed external
simulators. The generated files for the given P systems are free of syntac-
tic/semantic errors since the transformation is done after the parser analysis.
Several external simulators use this feature, for example, the PMCGPU project
(Parallel simulators for membrane computing on GPU) [12, 26] uses definitions
generated by pLinguaCore in order to provide the input of CUDA GPU simu-
lators.

The P-Lingua language is currently a standard widely used for the scientific
community since the syntax is modular, parametric and close to the common

142 I. Pérez-Hurtado et al.

scientific notation. The description of the language can be found in the refer-
ences [6, 8, 10, 21, 25]. As an example, the definition of a basic transition P
system follows:

@model<transition>

def main()

{

@mu = [[[]’3 []’4]’2]’1;

@ms(3) = a,f;

[a --> a,bp]’3;

[a --> bp,@d]’3;

[f --> f*2]’3;

[bp --> b]’2;

[b []’4 --> b [c]’4]’2;

(1) [f*2 --> f]’2;

(2) [f --> a,@d]’2;

}

In the example, a module main is defined including an initial membrane struc-
ture [[]3 []4]2]1, an initial multiset for the membrane labelled 3, and a set
of seven multiset rewriting rules. The special symbol @d is used to specify dissolu-
tion. The last two rules include priorities as integer numbers in parenthesis at the
beginning of the left-hand side of the rules. More complex examples can be found
in the P-Lingua web [25].

3 An extension of P-Lingua for semantic features

As explained above, the analysis of semantic ingredients belonging to P systems
is hard-coded in the pLinguaCore library, i.e, the only way to define new types
of models is by implementing code inside the library. In this section, we propose
an extension for the P-Lingua language to directly define model constraints in the
own P-Lingua files, providing a more flexible and experimental framework. Two
types of semantic constraints can be defined with this extension: rule patterns and
derivation modes.

3.1 Rule patterns

The P-Lingua parser is able to recognize rules with the next general syntax:

p

u[v1[v1,1]
α1,1

h1,1
. . . [v1,m1

]
α1,m1

h1,m1
]α1

h1
. . . [vn[vn,1]

αn,1

hn,1
. . . [vn,mn

]
αn,mn

hn,mn
]αn

hn

A syntax for semantics in P-Lingua 143

q−→ or
q←→

w0[w1[w1,1]β1,1
g1,1 . . . [w1,r1]

β1,r1
g1,r1

]β1
g1 . . . [ws[ws,1]βs,1

gs,1 . . . [ws,rs]
βs,rs
gs,rs]βs

gs

where:

• p is a priority related to the rule given by a natural number, where a lower
number means a higher rule priority.

• q is a probability related to the rule given by a real number in [0, 1].
• αi, αi,j , 1 ≤ i ≤ n, 1 ≤ j ≤ mi and βi, βi,j , 1 ≤ i ≤ s, 1 ≤ j ≤ ri are electrical

charges.
• hi, hi,j , 1 ≤ i ≤ n, 1 ≤ j ≤ mi and gi, gi,j , 1 ≤ i ≤ s, 1 ≤ j ≤ ri are membrane

labels.
• u, vi, vi,j , 1 ≤ i ≤ n, 1 ≤ j ≤ mi and wi, wi,j , 1 ≤ i ≤ s, 1 ≤ j ≤ ri are multisets

of objects.

Next, there is a list of P-Lingua rule examples matching the general rule syntax:

• a,b [d,e*2]’h --> [f,g]’h :: q; where q is the probability of the rule.
• (p) [a]’h --> [b]’h; where p is the priority of the rule.
• [a --> b]’h;, the left-hand side and right-hand side of evolution rules can be

collapsed.
• +[a]’h --> +[b]’h -[c]’h; a division rule using electrical charges.
• [a]’h --> ; a dissolution rule.
• a[]’h --> [b]’h; a send-in rule.
• [a]’h --> b[]’h; a send-out rule.
• [a --> #]’h; the symbol # can be optionally used as empty multiset.
• [a]’1 <--> [b]’0; a symport/antiport rule in the tissue-like framework.

The syntax of the general rule is very permissive, and so different parsers for
different models have been developed in order to restrict the rules used in each one.
In order to provide the researcher a more flexible framework, not having to depend
on the implementation itself but acquiring the capacity of restricting the model
by himself, we introduce the next syntax in P-Lingua for rule pattern matching:

!rule-type-id

{

pattern1

pattern2

...

patternN

}

where rule-type-identifier is an unique name for the type of rule that is going
to be defined and pattern1, pattern2, ..., patternN are rule patterns following the
same syntax than common rules in P-Lingua where anonymous variables beginning

144 I. Pérez-Hurtado et al.

with ? can be optionally used instead of probabilities, charges and priorities. In
the patterns, the symbols beginning with a, b or c always mean single objects and
symbols beginning with u, v and w always mean multisets of objects. In Section 5,
are given several examples of rule patterns in P-Lingua for different types of cell-
like and tissue-like models.

3.2 Derivation modes

From an informal point of view, we can see a derivation mode as the way a step
of a P system is performed. As a part of semantics, it rules the exact application
of rules of the system, deciding when rules can be applied or not when they are
applicable. An extensive study of derivation modes can be found in [4]. In order
to make the work self-content, we give a minimal definition of a derivation mode.

A derivation mode ϑ is defined as a function that selects different multisets
of rules “really applicable” to a configuration Ct of a P system depending on a
specification. For this purpose, let Π be a P system with R as its set of rules, R a
multiset of compatible rules applicable to a P system at configuration Ct, and let
R be the set of all multisets applicable to a P system at configuration Ct.

In this extension of P-Lingua we provide two main derivation modes:

• Maximally parallel derivation mode (max): It is the default mode for P
systems. In this mode, we only take multisets from R that are not extensible,
that is:

R′ = {R | R ∈ R∧ 6 ∃R′ ∈ R : R $ R′}.

The multiset of rules finally applied to Ct is selected non-deterministically from
R′.

• Bounded-by-rule parallel derivation mode (boundB1,...,Br
): Let {a, b, . . . }

be the set of different types of rules present in a P system. Bi can be of the
following forms:

– Bi = j, j ∈ {a, b, . . . };
– Bi = βn(B1i , . . . , Bri), being n ∈ N, and for each Bj = βmj

(B1j , . . . , Brj),
j ∈ {1i, . . . ri}, mj ≤ n;

– As a restriction, a label for a type of rule cannot appear more than once in
the whole definition of the derivation mode.

We say that n is the bound of Bi = βn. We say that a type of rule (j) is in the
context of Bi if:

– There exists Bi = βn(j) (we call Bi its immediate context); and
– There exists Bi = βn(B1i , . . . , Bri) such that Bj is a context of the type of

rule (j).

This mode is defined recursively, and we can understand the applicability of
the rules in a defined bounded-by-rule parallel derivation mode in the following
sense:

A syntax for semantics in P-Lingua 145

– In a context βn(B1, . . . , Br), the number of rules that can be applied in
parallel in a P system in a configuration Ct is n; and

– In a bounded-by-rule parallel derivation mode boundB1,...,Br , if Bi = j(j ∈
{a, b, . . . }), being 1 ≤ i ≤ r, then rules of type j can be applied in a maximal
way.

With this mode, we can define the classical mode used in P systems with active
membranes, that is, evolution rules (a) can be applied in a maximal parallel
mode, while the other types of rules (send-in communication rules (b), send-out
communication rules (c), dissolution rules (d), division rules for elementary (e)
and non-elementary (f) membranes) can be applied at most once per membrane
at each computation step. It would be defined as bounda,β1(b,c,d,e,f). If Rj is
the set of rules from R of the type j, we formally define the bounded-by-rule
maximally parallel mode by

R′ = { R | R ∈ R
∧ | {r | r ∈ R, r ∈ Rj} |≤ n for all j in the context of Bi = βn
∧ 6 ∃R′ ∈ R : R $ R′}

Thus, a model type can be defined in P-Lingua by aggregating the allowed rule
patterns and its corresponding derivation modes, the syntax is as follows:

@model(id) = rule-type-id1,..., rule-type-idN;

where id is an unique identifier for the model and rule-type-id1 ,...,
rule-type-idN are unique identifiers for the corresponding allowed rule patterns.
By default all rules behave in maximally parallel derivation mode, but rules can
be grouped in sets to behave in bounded parallel derivation mode as follows:

@model(id) = @bound{rule-type-id,..., rule-type-idN};

where bound is a natural number defining the maximum number of rules in the
group that can be applied to a given configuration. In Section 5, several examples
of model definitions in P-Lingua are given.

4 Command-line tools

A set of two GNU GPLv3 command-line tools called plingua and psim have
been implemented in C++ language with Flex [28] and Bison [29]. The source
code including examples and instructions can be downloaded from

https://github.com/RGNC/plingua.
The tool provides three main functionalities:

146 I. Pérez-Hurtado et al.

• Parsing P-Lingua files while printing the syntactic and semantic errors to
the standard error output. In this sense, the tool acts as a conventional com-
piler, showing the name of the file, as well as the number of the line and column
for each error with a short description. The analysis of semantic errors is done
by using the rule patterns and derivation modes defined in the own P-Lingua
files. Several files can be compiled together like conventional programs, fur-
thermore standard makefiles can be also used. The developer can decide to
write the rule patterns and derivation modes in a set of files and reuse them
in several projects. More explanations can be found in the website.

• Generating JSON/XML/Binary files. The tool is able to translate the
definitions contained in P-Lingua files to standard formats such as JSON, XML
and Binary (compressed bit-level file format) for compatibility with third-party
simulators. The conversion is done after parsing the input files, thus the output
files are free of syntactic/semantic errors and the third-party applications do
not have to check them. Several P-Lingua files can be combined together in
one output file, including also the selected derivation modes.

• Simulation of P system computations.

Detailed information about how to use these tools, including examples, can be
found in the website of the project https://github.com/RGNC/plingua.

5 Examples

Next, there are some examples of rule patterns and definiton of derivation modes
for several common P system models. Please, see the website of the project for
more information.

5.1 Transition P systems

!transition_evolution /* Limited to rules with 3 inner membranes */
{

[a -> v]’h;
[a -> v, @d]’h;

(?) [a -> v]’h;
(?) [a -> v, @d]’h;

[a []’h1 --> v [w]’h1]’h;
[a []’h1 --> v [w]’h1]’h;

(?) [a []’h1 --> v [w]’h1]’h;
(?) [a []’h1 --> v [w]’h1]’h;

[a []’h1 []’h2 --> v [w1]’h1 [w2]’h2]’h;
[a []’h1 []’h2 --> v [w1]’h1 [w2]’h2]’h;

(?) [a []’h1 []’h2 --> v [w1]’h1 [w2]’h2]’h;
(?) [a []’h1 []’h2 --> v [w1]’h1 [w2]’h2]’h;

[a []’h1 []’h2 []’h3 --> v [w1]’h1 [w2]’h2 [w3]’h3]’h;
[a []’h1 []’h2 []’h3 --> v [w1]’h1 [w2]’h2 [w3]’h3]’h;

(?) [a []’h1 []’h2 []’h3 --> v [w1]’h1 [w2]’h2 [w3]’h3]’h;
(?) [a []’h1 []’h2 []’h3 --> v [w1]’h1 [w2]’h2 [w3]’h3]’h;

}

@model(transition) = transition_evolution;

A syntax for semantics in P-Lingua 147

5.2 Active membranes with division rules

!dam_evolution
{

?[a -> v]’h;
?[a ->]’h;

}

!dam_send_in
{

a ?[]’h -> ?[b]’h;
}

!dam_send_out
{

?[a]’h -> b ?[]’h;
}

!dam_dissolution
{

?[a]’h -> b;
?[a]’h -> ;

}

!dam_division
{

?[a]’h -> ?[]’h ?[]’h;
?[a]’h -> ?[b]’h ?[]’h;
?[a]’h -> ?[]’h ?[b]’h;
?[a]’h -> ?[b]’h ?[c]’h;

}

@model(membrane_division) =
dam_evolution, @1{dam_send_in, dam_send_out, dam_dissolution, dam_division};

5.3 Tissue-like P systems with communication and cell division

!tissue_communication
{

[u]’h1 <--> [v]’h2;
}

!tissue_division
{

[a]’h -> []’h []’h;
[a]’h -> [b]’h []’h;
[a]’h -> []’h [b]’h;
[a]’h -> [b]’h [c]’h;

}

@model(tissue_division) =
tissue_communication, @1{tissue_division};

5.4 Population Dynamics P Systems

!pdp_evolution
{

u1 ?[v1]’h -> u2 ?[v2]’h :: ?;
}

!pdp_environment_communication
{

[[a]’e1 []’e2]’h -> [[]’e1 [b]’e2]’h :: ?;

148 I. Pérez-Hurtado et al.

}

@model(probabilistic) =
pdp_evolution, pdp_environment_communication;

6 Conclusions and future work

This paper reinvents P-Lingua moving forward to a more flexible tool which is
easier to maintain and debug. The goal is twofold: On the one hand, it pretends
to be a good assistant for researchers while verifying their designs, even working
with experimental models. On the other hand, more general simulators can be
developed, covering a large set of P system variants by reading and simulating the
custom derivation modes.

Several lines are open for future work. From the point of view of the language,
the semantic ingredients that can be written in P-Lingua should be studied in order
to cover more types of models. For instance, defining bounds for the multiplicities
of objects in different compartments, such as the environment in tissue-like P sys-
tems, where the multiplicity of objects can be infinite. On the other hand, custom
directives could be included in P-Lingua files and translated to C preprocessor di-
rectives for the simulator. For example, if the design is confluent, a directive could
be written to optimize the simulation time, since it is not necessary to simulate
the non-determinism by using random numbers.

From the point of view of the simulation tools, we are interested about the
integration with CUDA, OpenMP, FPGA and POSIX threads, optimizing the use
of parallel architectures.

Acknowledgements

The authors acknowledge the support of the research project TIN2017-89842-P,
co-financed by Ministerio de Economı́a, Industria y Competitividad (MINECO) of
Spain, through the Agencia Estatal de Investigación (AEI), and by Fondo Europeo
de Desarrollo Regional (FEDER) of the European Union.

References

1. M. Colomer, A. Margalida, and M.J. Pérez-Jiménez. Population Dynamics P System
(PDP) Models: A Standardized Protocol for Describing and Applying Novel Bio-
Inspired Computing Tools, Plos One, 2013 8 (14), 1–13.

2. M. Cardona, M.A. Colomer, M.J. Prez-Jimnez, D. Sanuy, A. Margalida. Modeling
ecosystems using P systems: The bearded vulture, a case study. Membrane Comput-
ing, 9th International Workshop, WMC 2008, Edinburgh, UK, July 28-31, 2008, Re-
vised Selected and Invited Papers. Lecture Notes in Computer Science, 5391 (2009),
137-156.

A syntax for semantics in P-Lingua 149

3. M. Colomer, I. Pérez-Hurtado, M.J. Pérez Jiménez, and A. Riscos-Núñez. Comparing
simulation algorithms for multienvironment probabilistic Psystem over a standard
virtual ecosystem, Natural Computing, 11 (2012), 369–379.

4. R. Freund, S. Verlan. A Formal Framework for Static (Tissue) P Systems. Lecture
Notes in Computer Science, 4860 (2007), 271–284.

5. P. Frisco, M. Gheorghe, M. J. Prez-Jimnez. Applications of Membrane Computing
in Systems and Synthetic Biology. Emergence, Complexity and Computation (Series
ISSN 2194-7287), Volume 7. Springer International Publishing, eBook ISBN 978-
3-319-03191-0, Hardcover ISBN 978-3-319-03190-3, 2014, XVII + 266 pages (doi:
10.1007/978-3-319-03191-0).

6. M. Garćıa-Quismondo, R. Gutiérrez-Escudero, I. Pérez-Hurtado, M.J. Pérez-
Jiménez, and A. Riscos-Núñez. An overview of P-Lingua 2.0, Lecture Notes in Com-
puter Science, 5957 (2010), 264–288.

7. M. Ionescu, Gh. Păun, T. Yokomori. Spiking Neural P systems. Fundamenta Infor-
maticae, 71, 2-3 (2006), 279-308.

8. L.F. Maćıas, I. Pérez-Hurtado, M. Garćıa-Quismondo, L. Valencia, M.J. Prez-Jimnez,
A. Riscos-Nez. A P-Lingua based simulator for Spiking Neural P systems. Lecture
Notes in Computer Science, 7184 (2012), 257–281.

9. C. Mart́ın-Vide, Gh. Păun, J. Pazos, A. Rodŕıghez-Patón. Tissue P systems. Theo-
retical Computer Science, 296, 2 (2003), 295-326.

10. M.A. Mart́ınez-del-Amor, I. Pérez-Hurtado, M.J. Pérez-Jiménez, A. Riscos-Núñez.
A P-Lingua based simulator for Tissue P systems. Journal of Logic and Algebraic
Programming, 79, 6 (2010), 374–382.

11. M.A. Mart́ınez-del-Amor, I. Pérez-Hurtado, M. Garćıa-Quismondo, et al. DCBA:
Simulating population dynamics P systems with proportional objects distribution,
Lecture Notes in Computer Science, 7762 (2013), 257–276.

12. M.A. Mart́ınez-del-Amor, M. Garćıa-Quismondo, L.F. Maćıas-Ramos, L. Valencia-
Cabrera, A. Riscos-Núñez, M.J. Pérez-Jiménez. Simulating P systems on GPU de-
vices: a survey. Fundamenta Informaticae, 136, 3 (2015), 269–284.

13. L. Pan, Gh. Paun, M. J. Prez-Jimnez, T. Song. Bio-inspired Computing: Theo-
ries and Applications. Communications in Computer and Information Science (Se-
ries ISSN 1865-0929), Volume 472, Springer-Verlag Berlin Heidelberg, Print ISBN
978-3-662-45048-2, Online ISBN 978-3-662-45049-9, 2014, XX + 672 pages (doi:
10.1007/978-3-662-45049-9).

14. L. Pan, Gh. Păun. Spiking Neural P Systems with Anti-Matter. International Journal
of Computers Communications & Control, 4, 3 (2009), 273–282.

15. L. Pan, T.-O. Ishdorj. P Systems with Active Membranes and Separation Rules. Pro-
ceedings of the Second Brainstorming Week on Membrane Computing, 2-7 February,
2004, Sevilla, Spain, pp. 325–341.

16. Gh. Păun, G. Rozenberg, A. Salomaa (eds.). The Oxford Handbook of Membrane
Computing, Oxford University Press, Oxford, 2010.

17. Gh. Păun. Computing with membranes. Journal of Computer and System Sciences,
61, 1 (2000), 108–143, and Turku Center for CS-TUCS Report No. 208, 1998.

18. Gh. Păun. Membrane Computing. An introduction. Springer-Verlag, Berlin, 2002.
19. Gh. Păun. P systems with active membranes: attacking NP–complete problems,

Journal of Automata, Languages and Combinatorics, 6 (2001), 75–90.
20. H. Peng, J. Wang, J. Ming, P. Shi, M.J. Prez-Jimnez, W. Yu, Ch. Tao. Fault di-

agnosis of power systems using intuitionistic fuzzy spiking neural P systems. IEEE
Transactions on Smart Grid, in press (2017) (doi: 10.1109/TSG.2017.2670602).

150 I. Pérez-Hurtado et al.

21. I. Pérez-Hurtado, L. Valencia-Cabrera, J.M. Chacón, A. Riscos-Núñez, M.J. Pérez-
Jiménez. A P-Lingua based Simulator for Tissue P Systems with Cell Separation.
Romanian Journal of Information Science and Technology, 17 , 1 (2014), 89–102.

22. I. Pérez-Hurtado, L. Valencia-Cabrera, M.J. Pérez-Jiménez, M. Colomer, and A.
Riscos-Núñez. MeCoSim: A general purpose software tool for simulating biological
phenomena by means of P Systems, IEEE Fifth International Conference on Bio-
inpired Computing: Theories and Applications (BIC-TA 2010), 637–643.

23. F.J. Romero-Campero, M.J. Prez-Jimnez. A model of the Quorum Sensing Sys-
tem in Vibrio Fischeri using P systems. Artificial Life, 14, 1 (2008), 95-109 (doi:
10.1162/artl.2008.14.1.95).

24. G. Zhang, M. J. Prez-Jimnez, M. Gheorghe. Real-life applications with Membrane
Computing. Emergence, Complexity and Computation (Series ISSN 2194-7287), Vol-
ume 25. Springer International Publishing, Online ISBN 978-3-319-55989-6, Print
ISBN 978-3-319-55987-2, 2017, X + 367 pages (doi: 10.1007/978-3-319-55989-6).

25. The P-Lingua web page: http://www.p-lingua.org.
26. The PMCGPU web page: https://sourceforge.net/projects/pmcgpu/
27. The MeCoSim web page: http://www.p-lingua.org/mecosim/.
28. The Flex web page: https://github.com/westes/flexl
29. The Bison web page: https://www.gnu.org/software/bison/

