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ABSTRACT. In this paper we investigate Leibniz algebras whose quotient Lie algebra is a naturally graded filiform
Lie algebrann,1. We introduce a Fock module for the algebrann,1 and provide classification of Leibniz algebras
L whose corresponding Lie algebraL/I is the algebrann,1 with condition that the idealI is a Focknn,1-module,
whereI is the ideal generated by squares of elements fromL.

We also consider Leibniz algebras with corresponding Lie algebrann,1 and such that the actionI × nn,1 → I
gives rise to a minimal faithful representation ofnn,1. The classification up to isomorphism of such Leibniz algebras
is given for the case ofn = 4.
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1. INTRODUCTION

Leibniz algebras are generalizations of Lie algebras and they have been firstly introduced by Loday in [16]
as a non-antisymmetric version of Lie algebras.

However this kind of algebras was previously introduced and studied under the notion ofD-algebras by D.
Bloh [5]. Since the 1993 when Loday’s work was published, many researchers have been attracted to Leibniz
algebras, with remarkable activity during the last decade. Namely, the investigations have been mainly focused
on low dimensional, nilpotent, solvable and other special classes of algebras (see [1, 3, 6, 8, 9, 11, 13, 18]).

Recall that the variety of Leibniz algebras is defined by the fundamental identity

[x, [y, z]] = [[x, y], z]− [[x, z], y].

In fact, each non-Lie Leibniz algebraL contains a non-trivial ideal (further denoted byI), which is the
subspace spanned by squares of elements of the algebraL . Moreover, it is readily to see that this ideal belongs
to right annihilator ofL, that is[L, I] = 0. Note also that the idealI is the minimal ideal with the property that
the quotient algebraL/I is a Lie algebra.

One of the approaches to investigation of Leibniz algebras is a description of such algebras whose quotient
algebra with respect to the idealI is a given Lie algebra. In particular in [17] the description has been obtained
for finite-dimensional complex Leibniz algebras whose quotient algebra is isomorphic to the simple Lie algebra
sl2. In [4] D. Barnes showed that any finite-dimensional complex Leibniz algebra can be decomposed into a
semidirect sum of the solvable radical and a semi-simple Lie algebra (the analogue of Levi’s theorem). Hence,
we conclude that if the quotient algebra is isomorphic to a semi-simple Lie algebra, then knowing a module
over this semi-simple Lie algebra, one can easily obtain the description of Leibniz algebras with this properties.

Therefore, it is important to study the case when the quotient Lie algebra is solvable, or moreover is nilpotent.
Since the Heisenberg and filiform Lie algebras are well-known, it is natural to consider a Leibniz algebra whose
quotient Lie algebra is the Heisenberg algebraHn or the filiform Lie algebrann,1. On the other hand, we
recall that Heisenberg and filiform Lie algebras play an important role in mathematical physics and geometry,
in particular in Quantum Mechanics (see for instance [10, 12, 14, 15]). Indeed, the Heisenberg Uncertainty
Principle implies the non-compatibility of position and momentum observables acting on fermions. In [7] some
Leibniz algebras with the quotient algebra being Heisenberg algebra are described. In particular, a classification
theorem was obtained for Leibniz algebras whose corresponding Lie algebra isHn and that theHn-moduleI
is isomorphic to its Fock module.
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sidad de Sevilla. The authors were supported by Ministerio de Economı́a y Competitividad (Spain), grant MTM2013-43687-P (European
FEDER support included).
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In order to achieve the goal of our study we organize the paperas follows. The first two sections are devoted
to introduction and preliminaries. In section 3 we introduce the Fock module for the filiform Lie algebrann,1

and give the classification of Leibniz algebras with corresponding Lie algebrann,1 under the condition that
thenn,1-moduleI is Fock module. In this section we also consider a generalization of this class of algebras by
considering the direct sum of filiform Lie algebras as the corresponding Lie algebras, and provide a classification
theorem. Finally, in Section 4 we deal with the category of Leibniz algebras withnn,1 as corresponding Lie
algebra and such that the actionI×nn,1 → I gives rise to a minimal faithful representation ofnn,1. A complete
description of this category of algebras is given when dimension is equal to 4.

2. PRELIMINARIES

In this section we give necessary definitions and preliminary results.

Definition 1. An algebra(L, [−,−]) over a fieldF is called a Leibniz algebra if for anyx, y, z ∈ L, the
so-called Leibniz identity

[

[x, y], z
]

=
[

[x, z], y
]

+
[

x, [y, z]
]

holds.

For a Leibniz algebraL consider the following lower central series:

L1 = L, Lk+1 = [Lk, L1] k ≥ 1.

Since the notions of right nilpotency and nilpotency coincide, we can define nilpotency as follows:

Definition 2. A Leibniz algebraL is called nilpotent if there existss ∈ N such thatLs = 0.

Definition 3. A Leibniz algebraL is said to be filiform ifdimLi = n− i, wheren = dimL and2 ≤ i ≤ n.

Now let us define a natural gradation for a filiform Leibniz algebra.

Definition 4. Given a filiform Leibniz algebraL, putLi = Li/Li+1, 1 ≤ i ≤ n− 1, andGr(L) = L1 ⊕L2 ⊕
· · · ⊕ Ln−1. Then[Li, Lj] ⊆ Li+j and we obtain the graded algebraGr(L). If Gr(L) andL are isomorphic,
then we say that the algebraL is naturally graded.

From [19] it is well known that there are two types of naturally graded filiform Lie algebras. In fact, the
second type will appear only in the case when the dimension ofthe algebra is even.

Theorem 1([19]). Any complex naturally graded filiform Lie algebra is isomorphic to one of the following non
isomorphic algebras:

nn,1 : {[xi, x1] = −[x1, xi] = xi+1, 2 ≤ i ≤ n− 1.

Q2n :

{

[xi, x1] = −[x1, xi] = xi+1, 2 ≤ i ≤ 2n− 2,

[xi, x2n+1−i] = −[x2n+1−i, xi] = (−1)i x2n, 2 ≤ i ≤ n.

Let L be a Leibniz algebra. The idealI generated by the squares of elements of the algebraL, that is by the
set{[x, x] : x ∈ L}, plays an important role in the theory since it determines the (possible) non-Lie character
of L. From the Leibniz identity, this ideal satisfies

[L, I] = 0.

Clearly, quotient algebraL/I is a Lie algebra, called thecorresponding Lie algebraof L. The mapI×L/I → I,
(i, x) 7→ [i, x] endowsI with a structure ofL/I-module (see [2, 17]).

Denote byQ(L) = L/I⊕ I, then the operation(−,−) defines the Leibniz algebra structure onQ(L), where

(x, y) = [x, y], (x, i) = [x, i], (i, x) = 0, (i, j) = 0, x, y ∈ L, i, j ∈ I.

Therefore, given a Lie algebraG and aG−moduleM, we can construct a Leibniz algebra(G,M) by the
above construction.

The main problem which occurs in this connections is a description of Leibniz algebrasL, such that the
corresponding Leibniz algebraQ(L) is isomorphic to an a priory given algebra(G,M).

In the present paper we restrict our attention on the case where the Lie algebraG is the naturally graded
filiform Lie algebrann,1 and theG−moduleM is the Fock module or a minimal faithful module.
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2.1. Fock module over the algebrann,1. First we recall the notion of Fock module over the Heisenberg
algebraH1, which was introduced in [7]. It is known that if we denote byx the operator associated to position
and by ∂

∂x
the one associated to momentum (acting for instance on the spaceV of differentiable functions on

a single variable), then[x, ∂
∂x

] = 1V . Thus we can identify the subalgebra generated by1, x and ∂
∂x

with

the three-dimensional Heisenberg algebraH1 whose multiplication table in the basis{1, x, ∂
∂x

} has as unique

non-zero product[x, ∂
∂x

] = 1.
For a given Heisenberg algebraH1 this representation gives rise to the so-calledFock moduleoverH1, the

linear spaceF[x] of polinomials onx (F denotes the algebraically closed field with zero characteristic) with the
action induced by

(1)
(p(x), 1) 7→ p(x)
(p(x), x) 7→ xp(x)

(p(x), ∂
∂x

) 7→ ∂
∂x

(p(x))

for anyp(x) ∈ F[x].
Now for any filiform Lie algebrann,1 the define Fock module. Algebrann,1 is characterized by the existence

of a basis{x1, x2, . . . , xn} (see Theorem 1) and we denote

(2)
δ

δx
= x1, xn−i = (n− i)!xi, 2 ≤ i ≤ n.

Then the action onnn,1 is the linear spaceF[x], defined by

(3)
(p(x), 1) 7→ p(x)

(p(x), xi) 7→ xip(x)

(p(x), δ
δx
) 7→ δ(p(x))

δx

In Section 3 we are interested in studying the class of Leibniz algebrasL satisfying that its corresponding
Lie algebra is a filiform Lie algebrann,1 and thenn,1-moduleI is isomorphic to its Fock module.

This algebra will be calledfiliform Fock typeLeibniz algebra and denoted byFR(nn,1), hence we will
consider the filiform Lie algebra together with its Fock representation.

2.2. Minimal faithful representation on the algebra nn,1. It is known that the minimal faithful representa-
tions ofnn,1 have dimensionn. More precisely, if{x1, x2, . . . , xn} is a basis ofnn,1, then as a minimal faithful

representations we take linear transformations with the matrices
n−2
∑

i=1

Ei,i+1, E1,n, E2,n, . . . , En−1,n, on the

linear spaceV = {e1, e2, . . . , en}, whereEi,j is a matrix with (i, j) -th entry equal to1 and others are zero.
In other words, these linear transformations have the form























0 a1 0 . . . 0 a2
0 0 a1 . . . 0 a3
0 0 0 . . . 0 a4
...

...
...

. . .
...

...
0 0 0 . . . a1 an−1

0 0 0 . . . 0 an
0 0 0 . . . 0 0























The faithful representation (isomorphism)ϕ : nn,1 → End(V )− is defined as follows

ϕ(x1) =

n−2
∑

i=1

Ei,i+1, ϕ(xi) = En+1−i,n 2 ≤ i ≤ n.

i.e.,
ϕ([x, y])(e) = [ϕ(x), ϕ(y)](e) = ϕ(y)

(

ϕ(x)(e)
)

− ϕ(x)
(

ϕ(y)(e)
)

,

wherex, y ∈ nn,1, ϕ(x) ∈ End(V ), e ∈ V.
Now, we construct a moduleV ×H2m+1 → V, such that

(e, x) = ϕ(x)e.
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Then we obtain
{

(ei, x1) = ei−1, 2 ≤ i ≤ n− 1,

(en, xj) = en+1−j , 2 ≤ j ≤ n,

the remaining products in the action being zero.
In Section 4 we deal with the category of Leibniz algebras with nn,1 as corresponding algebra and such that

the actionI × nn,1 → I gives rise to a minimal faithful representation ofnn,1.

3. CLASSIFICATION OF FILIFORM FOCK TYPE LEIBNIZ ALGEBRAS

3.1. Classification ofFR(nn,1). Consider a naturally graded filiform Lie algebrann,1 with its Fock module
F[x] under the action (3). SinceF[x] is infinite-dimensional we obtain a family of infinite-dimensional Leibniz
algebras.

Theorem 2. The Leibniz algebraFR(nn,1) admits a basis

{1, x, x2, . . . , xn−2,
δ

δx
, xt | t ∈ N ∪ {0}}

such that the multiplication table in this basis has the form:

[xi, δ
δx
] = ixi−1, 1 ≤ i ≤ n− 2,

[ δ
δx
, xi] = −ixi−1, 1 ≤ i ≤ n− 2,

[xt, xi] = xt+i, 1 ≤ i ≤ n− 2,

[xt, 1] = xt, [xt, δ
δx
] = txt−1,

where the omitted products are equal to zero.

Proof. Taking into account the action (3) we conclude that

{1, xi,
δ

δxi

, xt1
1 xt2

2 . . . xtk
k | ti ∈ N ∪ {0}, 1 ≤ i ≤ k}

is a basis ofFR(nn,1) and

[xt, 1] = xt, [xt,
δ

δx
] = txt−1, [xt, xi] = xt+i, 1 ≤ i ≤ n− 2.

Let us denote

[
δ

δx
, 1] = q(x), [1, 1] = r(x), [xi, 1] = pi(x), 1 ≤ i ≤ n− 2,

Taking the following change of basis:

δ

δx

′

=
δ

δx
− q(x), 1

′
= 1− r(x), xi

′
= xi − pi(x), 1 ≤ i ≤ n− 2,

we derive

[xi, 1] = 0, [
δ

δx
, 1] = 0, [1, 1] = 0, 1 ≤ i ≤ n− 2.

We denote
[ δ
δx
, δ
δx
] = a(x), [xi, xj ] = bi,j(x), 1 ≤ i, j ≤ n− 2,

[1, δ
δx
] = c(x), [xi, δ

δx
] = ixi−1 + di(x), 1 ≤ i ≤ n− 2,

[1, xi] = gi(x), [ δ
δx
, xi] = −ixi−1 + hi(x), 1 ≤ i ≤ n− 2.

Consider the Leibniz identity

[[
δ

δx
,
δ

δx
], 1] = [

δ

δx
, [

δ

δx
, 1]] + [[

δ

δx
, 1],

δ

δx
] = 0,

On the other hand,

[[
δ

δx
,
δ

δx
], 1] = [a(x), 1] = a(x),

which impliesa(x) = 0.
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Similarly, from the Leibniz identities

bi,j(x) = [bi,j(x), 1] = [[xi, xj ], 1] = [xi, [xj , 1]] + [[xi, 1], xj ] = 0,

c(x) = [c(x), 1] = [[1, δ
δxi

], 1] = [1, [ δ
δxi

, 1]] + [[1, 1], δ
δxi

] = 0,

di(x) = [ixi−1 + di(x), 1] = [[xi, δ
δx
], 1] = [xi, [ δ

δx
, 1]] + [[xi, 1], δ

δx
] = 0,

gi(x) = [gi(x), 1] = [[1, xi], 1] = [1, [xi, 1]] + [[1, 1], xi] = 0,

hi(x) = [−ixi−1 + hi(x), 1] = [[ δ
δx
, xi], 1] = [ δ

δx
, [xi, 1]] + [[ δ

δx
, 1], xi] = 0,

we obtain

c(x) = 0, bi,j = 0, 1 ≤ i, j ≤ n− 2,

di(x) = 0, gi(x) = 0, hi(x) = 0, 1 ≤ i ≤ n− 2.

�

3.2. Classification of generalized Filiform Fock type Leibniz algebras. In this subsection we are focused in
classifying of the class of (infinite-dimensional) LeibnizalgebrasL such that their corresponding Lie algebras
are finite direct sums of filiform Lie algebrasnn1,1 ⊕nn2,1⊕ · · ·⊕nns,1 and that their actions onI are induced
by Fock representations.

Since each algebranni,1 has a standard basis{xi,1, xi,2, . . . , xi,n} we put

(4)
δ

δxi

= xi,1, xn−j
i = (ni − j)!xi,j , 2 ≤ j ≤ ni.

For the algebrann1,1 ⊕ nn2,1 ⊕ · · · ⊕ nns,1 theFock moduleon nn1,1 ⊕ nn2,1 ⊕ · · · ⊕ nns,1 is the linear
spaceF[x1, x2, . . . , xs] with the action induced by

(p(x1, x2, . . . , xs), 1i) 7→ p(x1, x2, . . . , xs), 1 ≤ i ≤ s,

(p(x1, x2, . . . , xs), x
j
i ) 7→ xj

ip(x1, x2, . . . , xs),

(p(x1, x2, . . . , xs),
δ

δxi
) 7→ δ(p(x1,x2,...,xs))

δxi
,

for anyp(x1, x2, . . . , xs) ∈ F[x1, x2, . . . , xs].
We denote

[xj
i , 1k] = aji,k(x1, x2, . . . , xs), 1 ≤ i, k ≤ s, 1 ≤ j ≤ ni − 2,

[ δ
δxi

, 1j ] = bi,j(x1, x2, . . . , xs), 1 ≤ i, j ≤ s,

[1i, 1j ] = ci,j(x1, x2, . . . , xs), 1 ≤ i, j ≤ s.

Taking the change of basis

xj
i

′

= xj
i − aki,i(x1, x2, . . . , xs), 1 ≤ i ≤ s, 1 ≤ j ≤ ni − 2,

δ
δxi

′
= δ

δxi
− bi,i(x1, x2, . . . , xs),

1i
′
= 1i − ci,i(x1, x2, . . . , xs),

we derive

[xj
i , 1i] = 0, [

δ

δxi

, 1i] = 0, [1i, 1i] = 0, 1 ≤ i ≤ s, 1 ≤ j ≤ ni − 2.

Let us introduce notations:
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[xj
i , x

t
k] = dj,ti,k(x1, x2, . . . , xs), 1 ≤ i, k ≤ s, 1 ≤ j ≤ ni − 2, 1 ≤ t ≤ nk − 2,

[ δ
δxi

, δ
δxj

] = ei,j(x1, x2, . . . , xs), 1 ≤ i, j ≤ s,

[xj
i ,

δ
δxi

] = ixj−1
i + f j

i,i(x1, x2, . . . , xs), 1 ≤ i ≤ s, 1 ≤ j ≤ ni − 2,

[xj
i ,

δ
δxk

] = f j
i,k(x1, x2, . . . , xs), 1 ≤ i, k ≤ s, 1 ≤ j ≤ ni − 2, i 6= k,

[ δ
δxi

, xj
i ] = −ixj−1

i + gji,i(x1, x2, . . . , xs), 1 ≤ i ≤ s, 1 ≤ j ≤ ni − 2,

[ δ
δxk

, xj
i ] = gjk,i(x1, x2, . . . , xs), 1 ≤ i ≤ s, 1 ≤ j ≤ ni − 2, i 6= k,

[1k, x
j
i ] = hj

k,i(x1, x2, . . . , xs), 1 ≤ i, k ≤ s, 1 ≤ j ≤ ni − 2,

[1i,
δ

δxj
] = qi,j(x1, x2, . . . , xs), 1 ≤ i, k ≤ s.

Consider the Leibniz identity

[[xj
i , 1k], 1i] = [xj

i , [1k, 1i]] + [[xj
i , 1i], 1k] = 0.

On the other hand

[[xj
i , 1k], 1i] = [aji,k(x1, x2, . . . , xs), 1i] = aji,k(x1, x2, . . . , xs)

which implies
aji,k(x1, x2, . . . , xs) = 0, 1 ≤ i, k ≤ s, 1 ≤ j ≤ ni − 2.

Similarly from the Leibniz identities

bi,j(x1, x2, . . . , xs) = [[ δ
δxi

, 1j ], 1i] = [ δ
δxi

, [1j, 1i]] + [[ δ
δxi

, 1i], 1j ] = 0,

ci,j(x1, x2, . . . , xs) = [[1i, 1j], 1i] = [1i, [1j , 1i]] + [[1i, 1i], 1j] = 0,

we obtain
bi,j(x1, x2, . . . , xs) = 0, ci,j(x1, x2, . . . , xs) = 0, 1 ≤ i, j ≤ s.

In a similar way, from the Leibniz identities

dj,ti,k(x1, x2, . . . , xs) = [[xj
i , x

t
k], 1i] = [xj

i , [x
t
k, 1i]] + [[xj

i , 1i], x
t
k] = 0,

ei,j(x1, x2, . . . , xs) = [[ δ
δxi

, δ
δxj

], 1i] = [ δ
δxi

, [ δ
δxj

, 1i]] + [[ δ
δxi

, 1i],
δ

δxj
] = 0,

f j
i,i(x1, x2, . . . , xs) = [ixj−1

i + f j
i,i(x1, x2, . . . , xs), 1i] = [[xj

i ,
δ

δxi
], 1i] = [xj

i , [
δ

δxi
, 1i]] + [[xj

i , 1i],
δ

δxi
] = 0,

f j
i,k(x1, x2, . . . , xs) = [[xj

i ,
δ

δxk
], 1i] = [xj

i , [
δ

δxk
, 1i]] + [[xj

i , 1i],
δ

δxk
] = 0,

gji,i(x1, x2, . . . , xs) = [−ixj−1
i + gji,i(x1, x2, . . . , xs), 1i] = [[ δ

δxi
, xj

i ], 1i] = [ δ
δxi

, [xj
i , 1i]] + [[ δ

δxi
, 1i], x

j
i ] = 0,

gjk,i(x1, x2, . . . , xs) = [gjk,i(x1, x2, . . . , xs), 1i] = [[ δ
δxk

, xj
i ], 1k] = [ δ

δxk
, [xj

i , 1k]] + [[ δ
δxk

, 1k], x
j
i ] = 0,

hj
k,i(x1, x2, . . . , xs) = [hj

k,i(x1, x2, . . . , xs), 1k] = [[1k, x
j
i ], 1k] = [1k, [x

j
i , 1k]] + [[1k, 1k], x

j
i ] = 0,

qi,j(x1, x2, . . . , xs) = [qi,j(x1, x2, . . . , xs), 1i] = [[1i,
δ

δxj
], 1i] = [1i, [

δ
δxj

, 1i]] + [[1i, 1i],
δ

δxj
] = 0,

we derive

dj,ti,k(x1, x2, . . . , xs) 1 ≤ i, k ≤ s, 1 ≤ j ≤ ni − 2, 1 ≤ t ≤ nk − 2,

ei,j(x1, x2, . . . , xs) = 0, 1 ≤ i, j ≤ s,

f j
i,k(x1, x2, . . . , xs) = 0, 1 ≤ i, k ≤ s, 1 ≤ j ≤ ni − 2,

gjk,i(x1, x2, . . . , xs) = 0, 1 ≤ i ≤ s, 1 ≤ j ≤ ni − 2,

hj
k,i(x1, x2, . . . , xs) = 0, 1 ≤ i, k ≤ s, 1 ≤ j ≤ ni − 2,

qi,j(x1, x2, . . . , xs) = 0, 1 ≤ i, k ≤ s.
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Therefore, we have proved

Theorem 3. The above Leibniz algebra denoted byFR(nn1,1 ⊕ nn2,1 ⊕ · · · ⊕ nns,1) admits a basis

{1i, x
j
i ,

δ

δxi

, xt1
1 xt2

2 . . . xtk
k | ti ∈ N ∪ {0}, 1 ≤ i ≤ s, 1 ≤ j ≤ ni}

in such that the multiplication table in this basis has the form:

[xi,
δ

δxi
] = 1, [ δ

δxi
, xi] = −1, 1 ≤ i ≤ k,

[xt1
1 xt2

2 . . . xtk
k , 1] = xt1

1 xt2
2 . . . xtk

k ,

[xt1
1 xt2

2 . . . xtk
k , xj

i ] = xt1
1 . . . x

ti−1

i−1 x
ti+j
i x

ti+1

i+1 . . . xtk
k ,

[xt1
1 xt2

2 . . . xtk
k , δ

δxi
] = tix

t1
1 . . . x

ti−1

i−1 x
ti−1
i x

ti+1

i+1 . . . xtk
k .

where the omitted products are equal to zero.

4. LEIBNIZ ALGEBRAS ASSOCIATED WITH MINIMAL FAITHFUL REPRESENTATION OF nn,1

In this section we are going to study the Leibniz algebrasL such thatL/I ∼= nn,1 and thenn,1-moduleI is
the minimal faithful representation. In this case we have thatdimL = 2n and{x1, x2, . . . , xn, e1, e2, . . . , en}
is a basis ofL. We also have

(5)

{

[ei, x1] = ei−1, 2 ≤ i ≤ n− 1,

[en, xj ] = en+1−j , 2 ≤ j ≤ n.

Further we should define the multiplications[xi, xj ] for 1 ≤ i, j ≤ n. We put

(6) [xi, xj ] =



























xi+1 +
n
∑

k=1

αk
i,1ek, j = 1, 2 ≤ i ≤ n− 1,

−xj+1 +
n
∑

k=1

αk
1,jek, i = 1, 2 ≤ j ≤ n− 1,

n
∑

k=1

αk
i,jek, otherwise.

In the following Lemma we define the multiplications in the case ofi = 1 or j = 1 andj = n.

Lemma 1. There exists a basis{x1, x2, . . . , xn, e1, e2, . . . , en} of L such that

(7)



















[x1, x1] = α1en−1 + α2en, [x1, xj ] = −xj+1, 2 ≤ j ≤ n− 1,

[x2, x1] = x3 + α3en, [xi, x1] = xi+1 − α2en+2−i, 3 ≤ i ≤ n− 1,

[x1, xn] = α4e1 + α2e2, [xn, x1] = −α4e1 − 2α2e2,

[x2, xn] = α5e1 + α3e2, [xi, xn] = 0, 3 ≤ i ≤ n.

Proof. In the multiplication (6) taking the transformation of basis

x′
1 = x1 −

n−2
∑

k=1

αk
1,1ek+1 − (αn−1

2,1 + αn−1
1,2 )en, x′

2 = x2 −
n−2
∑

k=1

(αk
2,1 + αk

1,2)ek+1,

x′
j = xj −

n
∑

k=1

αk
1,j−1ek + (αn−1

2,1 + αn−1
1,2 )en+2−j, 3 ≤ j ≤ n,

we obtain[x1, x1] = αn−1
1,1 en−1 + αn

1,1en, [x2, x1] = x3 + αn
2,1en, [x1, xj ] = −xj+1, 2 ≤ j ≤ n− 1.

Using the Leibniz identity we derive

[x3, x1] = −[[x1, x2], x1] = −[x1, [x2, x1]]− [[x1, x1], x2] =

= [−x1, x3 + αn−1
2,1 en−1 + αn

2,1en]− [αn−1
1,1 en−1 + αn

1,1en, x2] = x4 − αn
1,1en−1.

From the Leibniz identity,[[x1, xi], x1] = [x1, [xi, x1]] + [[x1, x1], xi] recurrently we obtain










[xi, x1] = xi+1 − αn
1,1en+2−i, 3 ≤ i ≤ n− 1,

[xn, x1] = −αn
1,1e2 −

n
∑

k=1

αk
1,nek.
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On the other hand, from

0 = [x1, [xn, x1]] = [[x1, xn], x1]− [[x1, x1], xn] =

n−1
∑

k=2

αk
1,nek−1 − αn

1,1e1,

we get

α2
1,n = αn

1,1, αk
1,n = 0, 3 ≤ k ≤ n− 1.

Now, we consider the Leibniz identity

0 = [x1, [xn, xj ]] = [[x1, xn], xj ]− [[x1, xj ], xn] =

= [α1
1,ne1 + αn

1,1e2 + αn
1,nen, xj ] + [xj+1, xn] = αn

1,nen+1−j + [xj+1, xn].

Hence, we have

[xj+1, xn] = −αn
1,nen+1−j , 2 ≤ j ≤ n− 1.

On the other hand, from the equalities

0 = [x2, [x1, xn]] = [[x2, x1], xn]− [[x2, xn], x1] =

= [x3 + αn
2,1en, xn]− [

n−1
∑

k=1

αk
2,nek, x1] = −αn

1,nen−1 + αn
2,1e1 −

n−2
∑

k=1

αk+1
2,n ek,

we obtain

αn
2,1 = α2

2,n, αn
1,n = 0, αk

2,n = 0, 3 ≤ k ≤ n− 1.

�

Put
Q0,1 = 1, Q0,k = 1

2 , k ≥ 2, Q1,k = k+1
2 ,

Qm,k =
k(k + 1) . . . (k +m− 2)(k + 2m− 1)

2(m!)
, m ≥ 2.

It is not difficult to check that

(8) Qm,k = Qm,k−1 +Qm−1,k.

Now we will define the products[xi, xj ] for i+ j ≤ n+ 1.

Lemma 2. We have

(9)















































































[x2, x2] =
n−2
∑

k=1

βkek,

[xi+1, xi] =
n−1
∑

k=1

γi,kek, 2 ≤ i ≤ ⌊n

2
⌋,

[xi, xi+j ] =
⌊ j+1

2
⌋

∑

s=0

(−1)sQs,j+2−2s

n−2−j+2s
∑

k=1

γi+s−1,j+1−2s+kek, 0 ≤ j ≤ n− 5, 3 ≤ i ≤ ⌊n+1−j

2
⌋,

[x2, xj ] = −(j − 2)α3en+2−j +
n−j
∑

k=1

βj−2+kek+

+
⌊
j+1

2
⌋

∑

s=2

(−1)s+1Qs−1,j+2−2s

n−2−j+2s
∑

k=1

γs,j+1−2s+kek, 3 ≤ j ≤ n− 1,

where⌊a⌋ is the integer part ofa.

Proof. Taking into account the notation (6), from the Leibniz identity

0 = [xi, [xj , xk]] = [[xi, xj ], xk]− [[xi, xk], xj ] =

[

n
∑

t=1
αt
i,jet, xk

]

+

[

n
∑

t=1
αt
i,ket, xi

]

=

= αn
i,jen+2−k − αn

i,ken+2−j, 2 ≤ i, j, k(j 6= k) ≤ n,

we get

αn
i,j = 0, 2 ≤ i, j ≤ n.
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From the Leibniz identities for the triples of elements[x1, [xi, xj ]], [xi, [x1, xj ]], we derive the following
relations

(10)



















[xi+1, xj ] = [xj+1, xi], 2 ≤ i, j ≤ n− 1,

[x2, xj+1] + [x3, xj ] = −α3en+1−j + [[x2, xj ], x1], 2 ≤ j ≤ n− 1,

[xi, xj+1] + [xi+1, xj ] = [[xi, xj ], x1], 3 ≤ i ≤ n− 1, 2 ≤ j ≤ n− 1,

[xn, xj+1] = [[xn, xj ], x1] 2 ≤ j ≤ n− 1.

From the first equality in (10) it is easy to see that it is sufficient to define the multiplications[xi, xj ] for
j ≥ i− 1. Put,

[x2, x2] =

n−1
∑

k=1

βkek, [xi+1, xi] =

n−1
∑

k=1

γi,kek, 2 ≤ i ≤ ⌊
n

2
⌋.

Applying, if necessary, the change of basisx′
2 = x2 − βn−1en we can suppose thatβn−1 = 0 and we will

express other product by means of the structure constantsβi andγi,j .
First we will proof the third equation from (9) by induction on j. From the relations (10) we get[xi, xi] =

[xi+1, xi−1] and[xi, xi] + [xi+1, xi−1] = [[xi, xi−1], x1] which imply the assertion of Lemma forj = 0, i.e.,

[xi, xi] =
1

2
[[xi, xi−1], x1] =

1

2

n−2
∑

k=1

γi−1,k+1ek, 3 ≤ i ≤ ⌊
n+ 1

2
⌋.

Then from the relations (1) we obtain[xi, xi+1] + [xi+1, xi] = [[xi, xi], x1]. Using the assertion of Lemma
for j = 0, we get

[xi, xi+1] =
1

2
[[[xi, xi−1], x1], x1]− [xi+1, xi] =

1

2

n−3
∑

k=1

γi−1,k+2ek −
n−1
∑

k=1

γi,kek, 3 ≤ i ≤ ⌊
n

2
⌋.

Hence the assertion of the Lemma is true forj = 1.
Let us suppose that the assertion of the Lemma is true for indices less or equal toj and we will prove it for

j + 1.
From the relations (10) we obtain[xi, xi+j+1] + [xi+1, xi+j ] = [[xi, xi+j ], x1]. Using the assumption of the

induction we get

[xi, xi+j+1] = [[xi, xi+j ], x1]− [xi+1, xi+j ] =

=
⌊ j+1

2
⌋

∑

s=0
(−1)sQs,j+2−2s

n−3−j+2s
∑

k=1

γi+s−1,j+2−2s+kek −
⌊ j

2
⌋

∑

s=0
(−1)sQs,j+1−2s

n−1−j+2s
∑

k=1

γi+s,j−2s+kek =

= Q0,j+2

n−3−j
∑

k=1

γi−1,j+2+kek +
⌊ j+1

2
⌋

∑

s=1
(−1)sQs,j+2−2s

n−3−j+2s
∑

k=1

γi+s−1,j+2−2s+kek−

−
⌊ j

2
⌋+1
∑

s=1
(−1)s−1Qs−1,j+3−2s

n−3−j+2s
∑

k=1

γi+s−1,j+2−2s+kek.

If j is odd then⌊ j+1
2 ⌋ = ⌊ j

2⌋+ 1 = ⌊ j+2
2 ⌋ and using the equality (8) we get

[xi, xi+j+1] = Q0,j+2

n−3−j
∑

k=1

γi−1,j+2+kek +
⌊ j+1

2
⌋

∑

s=1
(−1)sQs,j+3−2s

n−3−j+2s
∑

k=1

γi+s−1,j+2−2s+kek =

=
⌊ j+2

2
⌋

∑

s=0
(−1)sQs,j+3−2s

n−3−j+2s
∑

k=1

γi+s−1,j+2−2s+kek.

If j is even then⌊ j+1
2 ⌋ = ⌊ j

2⌋ and we get

[xi, xi+j+1] = Q0,j+2

n−3−j
∑

k=1

γi−1,j+2+kek +
⌊ j

2
⌋

∑

s=1
(−1)s(Qs,j+3−2s)

n−3−j+2s
∑

k=1

γi+s−1,j+2−2s+kek+

+ (−1)⌊
j+2

2
⌋
n−1
∑

k=1

γi+⌊ j

2
⌋,kek =

⌊ j+2

2
⌋

∑

s=0
(−1)sQs,j+3−2s

n−3−j+2s
∑

k=1

γi+s−1,j+2−2s+kek.
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The products[x2, xj ] are also obtained by induction onj, using the equality (10) and the multiplication
[x3, xj−1]. �

In the following lemma we define the products[xi, xj ] for i+ j ≥ n+ 2.

Lemma 3. We have

(11)



































































































































[xi, xn+2−i] = (−1)iα5e1 + (−1)i(n− 5)α3e2 + (−1)i+1βn−2e1+

+
i−2
∑

s=2

(−1)s+i
s
∑

t=1

Qs−t,n+1−2s

2s−2
∑

k=1

γs,n+1−2s+kek+

+
⌊n

2
⌋

∑

s=i−1

(−1)s+i
i−2
∑

t=1

Qs−t,n+1−2s

2s−2
∑

k=1

γs,n+1−2s+kek,

[xi, xn+3−i] = (−1)i+1(i− 3)(n− 5)α3e1+

+
i−3
∑

s=2

(−1)s+i+1
s
∑

t=1

(i− 2− t)Qs−t,n+1−2s

2s−3
∑

k=1

γs,n+2−2s+kek+

+
⌊n

2
⌋

∑

s=i−2

(−1)s+i+1
i−3
∑

t=1

(i− 2− t)Qs−t,n+1−2s

2s−3
∑

k=1

γs,n+2−2s+kek,

[xi, xn+p−i] =
i−p
∑

s=⌊
p
2
⌋+1

(−1)s+i+p
s
∑

t=1

(

i− 2− t

p− 2

)

Qs−t,n+1−2s

2s−p
∑

k=1

γs,n+p−1−2s+kek+

+
⌊n

2
⌋

∑

s=max{i−p+1;⌊ p
2
⌋+1}

(−1)s+i+p
i−p
∑

t=1

(

i− 2− t

p− 2

)

Qs−t,n+1−2s

2s−p
∑

k=1

γs,n+p−1−2s+kek,

where4 ≤ p ≤ n− 1, p+ 1 ≤ i ≤ ⌊n+p+1
2 ⌋.

Proof. First we will find the products[xi, xn+2−i].
According to Lemma 1 we have[x2, xn] = α5e1 + α3e2 and using Lemma 2 from relations (10) we obtain

[x3, xn−1] = −α3e2 − [x2, xn] + [[x2, xn−1], x1] = −α5e1 − (n− 5)α3e2+

+
⌊n

2
⌋

∑

s=2
(−1)s+1Qs−1,n+1−2s

2s−2
∑

k=1

γs,n+1−2s+kek.

Similarly, from the equality[xi−1, xn+3−i] + [xi, xn+2−i] = [[xi−1, xn+2−i], x1], for 3 ≤ i ≤ k + 1, by
induction we obtain

[xi, xn+2−i] = (−1)iα5e1 + (−1)i(n− 5)α3 + (−1)i+1βn−2e1+

+
i−3
∑

s=2
(−1)s+i

s
∑

t=1
Qs−t,n+1−2s

2s−2
∑

k=1

γs,n+1−2s+kek +
⌊n

2
⌋

∑

s=i−2

(−1)s+i
i−3
∑

t=1
Qs−t,n+1−2s

2s−2
∑

k=1

γs,n+1−2s+kek+

+
⌊n+4−2i

2
⌋

∑

s=0
(−1)sQs,n+5−2i−2s

2s+2i−6
∑

k=1

γi+s−2,n+5−2i−2s+kek.

Takings′ = s+ i− 2 in the last sum, we obtain

⌊n+4−2i
2

⌋
∑

s=0
(−1)sQs,n+5−2i−2s

2s+2i−6
∑

k=1

γi+s−2,n+5−2i−2s+kek =

=
⌊n

2
⌋

∑

s=i−2

(−1)s+iQs−i+2,n+1−2s

2s−2
∑

k=1

γs,n+1−2s+kek.

Placing this equality to above one we obtain the first equality of the lemma.
Now we will deduce the products[xi, xn+3−i].
Using[x3, xn] = 0 from the relation[x3, xn] + [x4, xn−1] = [[x3, xn−1], x1] we get

[x4, xn−1] = −(n− 5)α3e1 +

⌊n
2
⌋

∑

s=2

(−1)s+1Qs−1,n+1−2s

2s−3
∑

k=1

γs,n+2−2s+kek
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Using the products[xi, xn+2−i] from the equality[xi−1, xn+4−i] + [xi, xn+3−i] = [[xi−1, xn+3−i], x1], for
4 ≤ i ≤ k + 2, by induction oni similarly to the previous case we obtain

[xi, xn+3−i] = (−1)i+1(i− 3)(n− 5)α3e1 +
i−3
∑

s=2
(−1)s+i+1

s
∑

t=1
(i − 2− t)Qs−t,n+1−2s

2s−3
∑

k=1

γs,n+2−2s+kek+

+
⌊n

2
⌋

∑

s=i−2

(−1)s+i+1
i−3
∑

t=1
(i− 2− t)Qs−t,n+1−2s

2s−3
∑

k=1

γs,n+2−2s+kek.

The last equality from (11) follows by the induction onp andi (first byp, then byi.) �

Now we define some restrictions to the structure constantsβi andγi,j .
From the equality (10) we obtain

[x⌊n
2
⌋+l, x⌊n

2
⌋+l] =

1

2
[[x⌊n

2
⌋+l, x⌊n

2
⌋+l−1], x1], 1 ≤ l ≤ ⌊

n

2
⌋.

Let n be even.Then in the case ofl = 1 we get

[x⌊n
2
⌋+1, x⌊n

2
⌋+1] =

1

2
[[x⌊n

2
⌋+1, x⌊n

2
⌋], x1] =

1

2

n−2
∑

k=1

γ⌊n
2
⌋,k+1ek

On the other hand, from Lemma 3 we obtain

[x⌊n
2
⌋+1, x⌊n

2
⌋+1] = (−1)⌊

n
2
⌋+1α5e1 + (−1)⌊

n
2
⌋+1(n− 5)α3e2 + (−1)⌊

n
2
⌋βn−2e1+

+
⌊n

2
⌋−1
∑

s=2
(−1)s+⌊n

2
⌋+1

s
∑

t=1
Qs−t,n+1−2s

2s−2
∑

k=1

γs,n+1−2s+kek −
⌊n

2
⌋−1
∑

t=1
Q⌊n

2
⌋−t,1

n−2
∑

k=1

γ⌊n
2
⌋,k+1ek.

Comparing the coefficients at the basis elements we obtain the following restrictions:

(12)







































α5 − βn−2 +
⌊n

2
⌋

∑

s=2
(−1)sγs,n+2−2s

( s
∑

t=1
Qs−t,n+1−2s

)

− (−1)⌊
n
2
⌋ 1
2γ⌊n

2
⌋,2 = 0,

(n− 5)α3 +
⌊n

2
⌋

∑

s=2
(−1)sγs,n+3−2s

( s
∑

t=1
Qs−t,n+1−2s

)

− (−1)⌊
n
2
⌋ 1
2γ⌊n

2
⌋,3 = 0,

⌊n
2
⌋

∑

s=⌊ k+3

2
⌋

(−1)sγs,n+1−2s+k

( s
∑

t=1
Qs−t,n+1−2s

)

− (−1)⌊
n
2
⌋ 1
2γ⌊n

2
⌋,k+1 = 0, 3 ≤ k ≤ n− 2.

If l ≥ 2, then we have

[x⌊n
2
⌋+l, x⌊n

2
⌋+l] =

1
2 [[x⌊n

2
⌋+l, x⌊n

2
⌋+l−1], x1] =

= 1
2

⌊n
2
⌋−l+1
∑

s=l+1

(−1)s+⌊n
2
⌋+l−1

s
∑

t=1

( ⌊n
2 ⌋+ l − 2− t

2l− 3

)

Qs−t,n+1−2s

2s−2l
∑

k=1

γs,n+2l−1−2s+kek+

+ 1
2

⌊n
2
⌋

∑

s=max{⌊n
2
⌋−l+2;l+1}

(−1)s+⌊n
2
⌋+l−1

⌊n
2
⌋−l+1
∑

t=1

( ⌊n
2 ⌋+ l − 2− t

2l− 3

)

Qs−t,n+1−2s

2s−2l
∑

k=1

γs,n+2l−1−2s+kek.

On the other hand, in the equality (11) forp = 2l andi = ⌊n
2 ⌋+ l we deduce

[x⌊n
2
⌋+l, x⌊n

2
⌋+l] =

⌊n
2
⌋−l
∑

s=l+1

(−1)s+⌊n
2
⌋+l

s
∑

t=1

(

⌊n
2 ⌋+ l − 2− t

2l− 2

)

Qs−t,n+1−2s

2s−2l
∑

k=1

γs,n+2l−1−2s+kek+

+
⌊n

2
⌋

∑

s=max{⌊n
2
⌋−l+1;l+1}

(−1)s+⌊n
2
⌋+l

⌊n
2
⌋−l
∑

t=1

( ⌊n
2 ⌋+ l − 2− t

2l− 2

)

Qs−t,n+1−2s

2s−2l
∑

k=1

γs,n+2l−1−2s+kek.

Comparing the coefficients at the basis elements we get
(13)






















⌊n
2
⌋

∑

s=⌊k+1

2
⌋+l

(−1)sγs,n+2l−1−2s+k

min{s,⌊n
2
⌋−l}

∑

t=1

[

( ⌊n

2
⌋ + l − 2− t

2l − 2

)

+ 1

2

( ⌊n

2
⌋+ l − 2− t

2l − 3

)

]

Qs−t,n+1−2s+

⌊n
2
⌋

∑

s=max{⌊n
2
⌋−l+1;⌊k+1

2
⌋+l}

1

2
(−1)sγs,n+2l−1−2s+kQs−⌊n

2
⌋+l−1,n+1−2s = 0,
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where2 ≤ l ≤ ⌊n
2 ⌋ − 1, 1 ≤ k ≤ n− 2l.

Let n be odd. Then in the case ofl = 2 we get[x⌊n
2
⌋+2, x⌊n

2
⌋+2] =

1
2 [[x⌊n

2
⌋+2, x⌊n

2
⌋+1], x1] and using the

first equality of (11) we obtain

[x⌊n
2
⌋+2, x⌊n

2
⌋+2] =

1

2
(−1)⌊

n
2
⌋(n− 5)α3e1 +

1

2

⌊n
2
⌋

∑

s=2

(−1)s+⌊n
2
⌋

s
∑

t=1

Qs−t,n+1−2s

2s−3
∑

k=1

γs,n+2−2s+kek.

On the other hand, from the second equality of (11) fori = ⌊n
2 ⌋+ 2 we get

[x⌊n
2
⌋+2, x⌊n

2
⌋+2] = (−1)⌊

n
2
⌋+1(⌊n

2 ⌋ − 1)(n− 5)α3e1+

+
⌊n

2
⌋−1
∑

s=2
(−1)s+⌊n

2
⌋+1

s
∑

t=1
(⌊n

2 ⌋ − t)Qs−t,n+1−2s

2s−3
∑

k=1

γs,n+2−2s+kek−

−
⌊n

2
⌋−1
∑

t=1

(⌊n
2 ⌋ − t)Q⌊n

2
⌋−t,2

n−4
∑

k=1

γ⌊n
2
⌋,k+3ek.

Comparing the coefficients at the basis elements we derive
(14)



















(⌊n
2 ⌋ −

1
2 )(n− 5)α3 +

⌊n
2
⌋

∑

s=2
(−1)sγs,n+3−2s

s
∑

t=1
(⌊n

2 ⌋ − t+ 1
2 )Qs−t,n+1−2s = 0,

⌊n
2
⌋

∑

s=⌊ k+4

2
⌋

(−1)sγs,n+2−2s+k

s
∑

t=1
(⌊n

2 ⌋ − t+ 1
2 )Qs−t,n+1−2s = 0, 2 ≤ k ≤ n− 4.

If l ≥ 3, then we have

[x⌊n
2
⌋+l, x⌊n

2
⌋+l] =

1
2 [[x⌊n

2
⌋+l, x⌊n

2
⌋+l−1], x1] =

= 1
2

⌊n
2
⌋−l+2
∑

s=l

(−1)s+⌊n
2
⌋+l

s
∑

t=1

( ⌊n
2 ⌋+ l − 2− t

2l − 4

)

Qs−t,n+1−2s

2s−2l+1
∑

k=1

γs,n+2l−2−2s+kek+

+ 1
2

⌊n
2
⌋

∑

s=max{⌊n
2
⌋−l+3;l}

(−1)s+⌊n
2
⌋+l

⌊n
2
⌋−l+2
∑

t=1

( ⌊n
2 ⌋+ l − 2− t

2l− 4

)

Qs−t,n+1−2s

2s−2l+1
∑

k=1

γs,n+2l−2−2s+kek.

On the other hand, in the equality (11) forp = 2l− 1 andi = ⌊n
2 ⌋+ l we have

[x⌊n
2
⌋+l, x⌊n

2
⌋+l] =

⌊n
2
⌋−l+1
∑

s=l

(−1)s+⌊n
2
⌋+l−1

s
∑

t=1

( ⌊n
2 ⌋+ l − 2− t

2l− 3

)

Qs−t,n+1−2s

2s−2l+1
∑

k=1

γs,n+2l−2−2s+kek+

+
⌊n

2
⌋

∑

s=max{⌊n
2
⌋−l+2;l}

(−1)s+⌊n
2
⌋+l−1

⌊n
2
⌋−l+1
∑

t=1

(

⌊n
2 ⌋+ l − 2− t

2l− 3

)

Qs−t,n+1−2s

2s−2l+1
∑

k=1

γs,n+2l−2−2s+kek.

Comparing the coefficients at the basis elements we get

(15)






















⌊n
2
⌋

∑

s=⌊ k
2
⌋+l

(−1)sγs,n+2l−2−2s+k

min{s,⌊n
2
⌋−l+1}

∑

t=1

[

( ⌊n

2
⌋+ l − 2− t

2l − 3

)

+ 1

2

( ⌊n

2
⌋ + l − 2− t

2l − 4

)

]

Qs−t,n+1−2s+

⌊n
2
⌋

∑

s=max{⌊n
2
⌋−l+2;⌊k

2
⌋+l}

1

2
(−1)sγs,n+2l−2−2s+kQs−⌊n

2
⌋+l−2,n+1−2s = 0,

where3 ≤ l ≤ ⌊n
2 ⌋, 1 ≤ k ≤ n− 2l.

Therefore, we obtain following main Theorem of this section.

Theorem 4. LetL be a Leibniz algebra such thatL/I ∼= nn,1 andI is theL/I-module with the minimal faithful
representation. ThenL admits a basis{x1, x2, . . . , xn, e1, e2, . . . , en} such that the multiplications table for
this basis has the form(5), (7), (9), (11) with the restrictions(12), (13), (14), (15).
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Now we are in position to give a classification of such algebras up to isomorphism for the casen = 4.
In this case we get the following family of algebras denoted by µ(α1, α2, α3, α4, β1, β2, γ1, γ2) :































































































[e2, x1] = e1, [x3, x1] = x4 − α2e3,

[e3, x1] = e2, [x4, x1] = −α4e1 − 2α2e2,

[e4, x2] = e3, [x2, x2] = β1e1 + β2e2,

[e4, x3] = e2, [x3, x2] = γ1e1 + γ2e2 − 2α3e3,

[e4, x4] = e1, [x4, x3] = −α3e1,

[x1, x2] = −x3, [x3, x3] =
1
2γ2e1 − α3e2,

[x1, x3] = −x4, [x4, x2] =
1
2γ2e1 − α3e2

[x1, x1] = α1e3 + α2e4, [x2, x3] = (β2 − γ1)e1 − γ2e2 + α3e3,

[x2, x1] = x3 + α3e4, [x2, x4] = − 3
2γ2e1 − α3e2,

[x1, x4] = α4e1 + α2e2.

Theorem 5. LetL be an8-dimensional Leibniz algebra such thatL/I ∼= n4,1 andI is theL/I-module with
the minimal faithful representation. ThenL is isomorphic to the one of the following pairwise non isomorphic
algebras:

µ(α1, α2, 1, 1, β1, β2, 0, 1) µ(α1, 1, 1, 0, β1, β2, 0, 1) µ(1, 0, 1, 0, β1, β2, 0, 1) µ(α1, 1, 1, 1, β1, β2, 0, 0)
µ(1, 0, 1, 1, β1, β2, 0, 0) µ(0, 0, 1, 1, 1, β2, 0, 0) µ(0, 0, 1, 1, 0, 1, 0, 0) µ(0, 0, 1, 1, 0, 0, 0, 0)
µ(1, 1, 1, 0, β1, β2, 0, 0) µ(0, 1, 1, 0, 1, β2, 0, 0) µ(0, 1, 1, 0, 0, 1, 0, 0) µ(0, 1, 1, 0, 0, 0, 0, 0)
µ(1, 0, 1, 0, 1, β2, 0, 0) µ(1, 0, 1, 0, 0, 1, 0, 0) µ(0, 0, 1, 0, 1, β2, 0, 0) µ(0, 0, 1, 0, 0, 1, 0, 0)
µ(0, 0, 1, 0, 0, 0, 0, 0) µ(α1, 1, 0, 1, 0, β2, γ1, 1) µ(α1, 0, 0, 1, 0, 1, γ1, 1) µ(α1, 0, 0, 1, 0, 0, 1, 1)
µ(α1, 0, 0, 1, 0, 0, 0, 1) µ(α1, 1, 0, 0, 0, 1, γ1, 1) µ(α1, 1, 0, 0, 0, 0, 1, 1) µ(α1, 1, 0, 0, 0, 0, 0, 1)
µ(1, 0, 0, 0, 0, 1, γ1, 1) µ(1, 0, 0, 0, 0, 0, 1, 1) µ(1, 0, 0, 0, 0, 0, 0, 1) µ(0, 0, 0, 0, 0, 1, γ1, 1)
µ(0, 0, 0, 0, 0, 0, 1, 1) µ(0, 0, 0, 0, 0, 0, 0, 1) µ(1, 1, 0, 1, β1, β2, γ1, 0) µ(0, 1, 0, 1, 1, β2, γ1, 0)
µ(0, 1, 0, 1, 0, 1, γ1, 0) µ(0, 1, 0, 1, 0, 0, 1, 0) µ(0, 1, 0, 1, 0, 0, 0, 0) µ(1, 0, 0, 1, 1, β2, γ1, 0)
µ(1, 0, 0, 1, 0, 1, γ1, 0) µ(1, 0, 0, 1, 0, 0, 1, 0) µ(1, 0, 0, 1, 0, 0, 0, 0) µ(0, 0, 0, 1, 1, 1, γ1, 0)
µ(0, 0, 0, 1, 1, 0, 1, 0) µ(0, 0, 0, 1, 1, 0, 0, 0) µ(0, 0, 0, 1, 0, 1, 1, 0) µ(0, 0, 0, 1, 0, 1, 0, 0)
µ(0, 0, 0, 1, 0, 0, 1, 0) µ(0, 0, 0, 1, 0, 0, 0, 0) µ(1, 1, 0, 0, 1, β2, γ1, 0) µ(1, 1, 0, 0, 0, 1, γ1, 0)
µ(1, 1, 0, 0, 0, 0, 1, 0) µ(1, 1, 0, 0, 0, 0, 0, 0) µ(1, 0, 0, 0, 1, 1, γ1, 0) µ(1, 0, 0, 0, 1, 0, 1, 0)
µ(1, 0, 0, 0, 1, 0, 0, 0) µ(1, 0, 0, 0, 0, 1, 1, 0) µ(1, 0, 0, 0, 0, 1, 0, 0) µ(1, 0, 0, 0, 0, 0, 1, 0)
µ(1, 0, 0, 0, 0, 0, 0, 0) µ(0, 1, 0, 0, 1, 1, γ1, 0) µ(0, 1, 0, 0, 1, 0, 1, 0) µ(0, 1, 0, 0, 1, 0, 0, 0)
µ(0, 1, 0, 0, 0, 1, γ1, 0) µ(0, 1, 0, 0, 0, 0, 1, 0) µ(0, 1, 0, 0, 0, 0, 0, 0) µ(0, 0, 0, 0, 1, 1, γ1, 0)
µ(0, 0, 0, 0, 0, 1, γ1, 0) µ(0, 0, 0, 0, 1, 0, 1, 0) µ(0, 0, 0, 0, 1, 0, 0, 0) µ(0, 0, 0, 0, 0, 0, 1, 0)
µ(0, 0, 0, 0, 0, 0, 0, 0)

with α1, α2, β1, β2, γ1 ∈ C.

Proof. Let L be an 8-dimensional Leibniz algebra given byµ(α1, α2, α3, α4, β1, β2, γ1, γ2). We make the fol-
lowing change of basis:

x′
1 =

4
∑

k=1

Pkxk +

4
∑

k=1

Qkek,

x′
2 =

4
∑

k=1

Mkxk +

4
∑

k=1

Nkek,

e′4 =
4

∑

k=1

Rkxk +
4

∑

k=1

Tkek,

while the other elements of the new basis (i.e.e′1, e
′
2, e

′
3, x

′
3 andx′

4) are obtained as products of the above
elements.

The table of multiplication in this new basis implies the following restrictions on the coefficients:
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P2 = M1 = Rk = 0, 1 ≤ k ≤ 4,

T3 = −
T4P3

P1
, T2 = −

T4P4

P1
, N4 = α3M3,

Q4 =
α2P1M3

M2
,

Q3 = −
−α3P

2
3M2 − α1P

2
1M3 + α2P1P3M3

P1M2
,

Q2 = −
−2α2T1P

2
1M2 + γ2T4P

2
3M2 − 2α3T4P3P4M2 + 2α2T4P1P4M3 − 2α1T4P

2
1M4

2T4P1M2
,

N3 = −
α3P4M

2
2 − α3P3M2M3 + α2P1M

2
3 − α2P1M2M4

P1M2
,

N2 = −
−α3T1P1M

2
2 + β2T4P3M

2
2 − γ2T4P4M

2
2 + γ2T4P3M2M3 − α3T4P3M2M4 + α2T4P1M3M4

T4P1M2
,

T4P1M2 6= 0.

Calculating new parameters we obtain:

α′
1 =

α1P
2
1

T4M2
, α′

2 =
α2P

2
1

T4
,

α′
3 =

α3P1M2

T4
, α′

4 =
α4P1

T4
,

β′
1 =

2β1M
2
2 + γ2M

2
3 − 2γ2M2M4

2T4P 2
1M2

,

γ′
1 =

γ1M
2
2 − α3M

2
3 + 2α3M2M4

T4P1M2
,

β′
2 =

β2M2

T4P1
, γ′

2 =
γ2M2

T4
.

Considering all the possible cases we obtain the families ofalgebras listed in the theorem. �
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