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ALGEBRAS

SH.A. AYUPQV, L.M. CAMACHO, A.KH. KHUDOYBERDIYEYV, B.A. OMIROV

ABSTRACT. In this paper we investigate Leibniz algebras whose quotient Lie algebra is a naturally graded filiform
Lie algebran,, 1. We introduce a Fock module for the algebra 1 and provide classification of Leibniz algebras
L whose corresponding Lie algebfg I is the algebran,, 1 with condition that the ideal is a Fockn,,,1-module,
wherel is the ideal generated by squares of elements ffom

We also consider Leibniz algebras with corresponding Lie algehra and such that the actiohx n, 1 — I
gives rise to a minimal faithful representationrof 1. The classification up to isomorphism of such Leibniz algebras
is given for the case af = 4.
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1. INTRODUCTION

Leibniz algebras are generalizations of Lie algebras and they have been firstly introduced by Loday in [16]
as a non-antisymmetric version of Lie algebras.

However this kind of algebras was previously introduced and studied under the nofizalgebras by D.
Bloh [5]. Since the 1993 when Loday’s work was published, many researchers have been attracted to Leibniz
algebras, with remarkable activity during the last decade. Namely, the investigations have been mainly focused
on low dimensional, nilpotent, solvable and other special classes of algebrés (seel[1, 3, 6,[8,/19, 11, 13, 18]).

Recall that the variety of Leibniz algebras is defined by the fundamental identity

[Ia [y,Z]] = [[xvy]vz] - [[I,Z],y]

In fact, each non-Lie Leibniz algebr&a contains a non-trivial ideal (further denoted BY which is the
subspace spanned by squares of elements of the alfebivioreover, it is readily to see that this ideal belongs
to right annihilator ofZ, that is[L, I] = 0. Note also that the idedlis the minimal ideal with the property that
the quotient algebra /I is a Lie algebra.

One of the approaches to investigation of Leibniz algebras is a description of such algebras whose quotient
algebra with respect to the idehls a given Lie algebra. In particular in [17] the description has been obtained
for finite-dimensional complex Leibniz algebras whose quotient algebra is isomorphic to the simple Lie algebra
sly. In [4] D. Barnes showed that any finite-dimensional complex Leibniz algebra can be decomposed into a
semidirect sum of the solvable radical and a semi-simple Lie algebra (the analogue of Levi's theorem). Hence
we conclude that if the quotient algebra is isomorphic to a semi-simple Lie algebra, then knowing a module
over this semi-simple Lie algebra, one can easily obtain the description of Leibniz algebras with this properties.

Therefore, itis important to study the case when the quotient Lie algebra is solvable, or moreover is nilpotent.
Since the Heisenberg and filiform Lie algebras are well-known, it is natural to consider a Leibniz algebra whose
quotient Lie algebra is the Heisenberg algeBfa or the filiform Lie algebran, ;. On the other hand, we
recall that Heisenberg and filiform Lie algebras play an important role in mathematical physics and geometry,
in particular in Quantum Mechanics (see for instance [10/ 12, 14, 15]). Indeed, the Heisenberg Uncertainty
Principle implies the non-compatibility of position and momentum observables acting on fermidns. In [7] some
Leibniz algebras with the quotient algebra being Heisenberg algebra are described. In particular, a classification
theorem was obtained for Leibniz algebras whose corresponding Lie algeByadad that thel,,-modulel
is isomorphic to its Fock module.
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sidad de Sevilla. The authors were supported by Ministerio de Economia y Competitividad (Spain), grant MTM2013-43687-P (European
FEDER support included).
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In order to achieve the goal of our study we organize the papésllows. The first two sections are devoted
to introduction and preliminaries. In section 3 we introeldise Fock module for the filiform Lie algebra, ;
and give the classification of Leibniz algebras with coroegfing Lie algebraz,, ; under the condition that
then,, 1-module! is Fock module. In this section we also consider a genetalizaf this class of algebras by
considering the direct sum of filiform Lie algebras as theegponding Lie algebras, and provide a classification
theorem. Finally, in Section 4 we deal with the category abb& algebras witm,, ; as corresponding Lie
algebra and such that the actibr n,, ; — I gives rise to a minimal faithful representatiorvof . A complete
description of this category of algebras is given when disianis equal to 4.

2. PRELIMINARIES
In this section we give necessary definitions and prelinyinasults.

Definition 1. An algebra(L, [—, —]) over a fieldF is called a Leibniz algebra if for any,y,z € L, the
so-called Leibniz identity

[lz,9], 2] = [lz, 2], y] + [, [y, 2]
holds.
For a Leibniz algebrd consider the following lower central series:
L'=1L LY =[L* LY k>1.
Since the notions of right nilpotency and nilpotency cailegiwe can define nilpotency as follows:
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Definition 2. A Leibniz algebral is called nilpotent if there existse N such thatZ® = 0.
Definition 3. A Leibniz algebral is said to be filiform ifdim L? = n — 4, wheren = dim L and2 < i < n.
Now let us define a natural gradation for a filiform Leibnizetiga.

Definition 4. Given a filiform Leibniz algebrd, putL; = L!/L*1, 1 <i<n—1,andGr(L) = L1 ® Ly @
-++@® Ly_1. Then[L;, L;] C L;y; and we obtain the graded algebér(L). If Gr(L) and L are isomorphic,
then we say that the algebrais naturally graded.

From [19] it is well known that there are two types of naturajtaded filiform Lie algebras. In fact, the
second type will appear only in the case when the dimensitimeoélgebra is even.

Theorem 1(]19]). Any complex naturally graded filiform Lie algebra is isomioigpto one of the following non
isomorphic algebras:

npa: {lxsz] = -z, @) =2y, 2<i<n-—1.
) [zi, z1] = —[z1, T3] = Tiga, 2<1<2n — 2,
2n * . .
(@i, Tony1—i] = —[Tant1-i, i) = (=1)' T2p, 2< i< .

Let L be a Leibniz algebra. The ideAlgenerated by the squares of elements of the algebitzat is by the
set{[x,z] : x € L}, plays an important role in the theory since it determines(fossible) non-Lie character
of L. From the Leibniz identity, this ideal satisfies

[L,1] = 0.

Clearly, quotient algebr&/I is a Lie algebra, called treorresponding Lie algebraf L. Themapl x L/I — I,
(1,T) — [i, ] endowsl with a structure ofL /I-module (se€ [2, 17]).
Denote byQ(L) = L/I &I, then the operatiof+-, —) defines the Leibniz algebra structure@(L), where

(Z,7) = z,y], (=,i)=][z,4, (,%)=0, (i,5)=0, x,y€ L, i,j€l.
Therefore, given a Lie algebi@ and aG—moduleM, we can construct a Leibniz algebf&, M) by the
above construction.
The main problem which occurs in this connections is a dpsori of Leibniz algebrad,, such that the
corresponding Leibniz algebf@(L) is isomorphic to an a priory given algehr@, M ).
In the present paper we restrict our attention on the caseenthe Lie algebrar is the naturally graded
filiform Lie algebran,, ; and theG—module)M is the Fock module or a minimal faithful module.
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2.1. Fock module over the algebran,, ;. First we recall the notion of Fock module over the Heisenberg
algebrat;, which was introduced in [7]. It is known that if we denotedyhe operator associated to position

and bya% the one associated to momentum (acting for instance on #eespof differentiable functions on
a single variable), theft, %] = Ty. Thus we can identify the subalgebra generated 3 and % with
the three-dimensional Heisenberg algeBrawhose multiplication table in the bas{s, 7, a%} has as unique
non-zero produdt, %] =1

For a given Heisenberg algehfg, this representation gives rise to the so-cakedk moduleover Hy, the

linear spacé|[z] of polinomials onz (F denotes the algebraically closed field with zero charastteyiwith the
action induced by

(p(x),1) = p(x)
(1) (p(z),Z) = ap(z)
p(x), &) — )

for anyp(z) € Flz].
Now for any filiform Lie algebra,, ; the define Fock module. Algebra, ; is characterized by the existence

of a basis{x1, z2, ..., x,} (see Theoreml 1) and we denote
] — _ .
(2) %::171, 2t =(n—dlz;, 2<i<n.
Then the action om,, ; is the linear spacB|x], defined by
(p(@),D) = px)
3) (p(z),2") +— a'p(x)

(p(x), &) s @)

In Section 3 we are interested in studying the class of Leibigebrad. satisfying that its corresponding
Lie algebra is a filiform Lie algebra,, ; and then,, ;-modulel is isomorphic to its Fock module.

This algebra will be callediliform Fock typelLeibniz algebra and denoted WyR(n,_ 1), hence we will
consider the filiform Lie algebra together with its Fock regentation.

2.2. Minimal faithful representation on the algebra n,, ;. It is known that the minimal faithful representa-

tions ofn,, ; have dimension. More precisely, iz, z2, .. ., 2, } is a basis of, 1, then as a minimal faithful
n—2
representations we take linear transformations with theices > F, 11, E1n, F2p, ..., En_1.0, On the
=1
linear spacd” = {ey,eq,...,e,}, WhereE; ; is a matrix with ¢, 7) -th entry equal td and others are zero.
In other words, these linear transformations have the form
0O aa 0 ... O as
0O 0 a ... O as
o 0 0o ... 0 ay
0O 0 0 ... a1 ap_1
0O 0 0 ... 0 an
0o 0 0 ... 0 0

The faithful representation (isomorphism} n,, 1 — End(V)~ is defined as follows

n—2
o(z1) = Z Eiiv1, @) =FEnt1—in 2<i<n.
i—1

ie.,

e[z, y])(e) = [p(x), p(y)l(e) = v(y) (px)(e) — () (e(y)(e)),
wherez,y € ny,. 1, p(z) € End(V),e € V.
Now, we construct a modulé x Hs,, 11 — V, such that

(e,2) = pla)e.
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Then we obtain
(€, 1) = €i—1, 2<i1<n—1,
(en,®j) = ent1-j, 2<j<m,
the remaining products in the action being zero.

In Section 4 we deal with the category of Leibniz algebrasiwit ; as corresponding algebra and such that
the action/ x n,, ;1 — I gives rise to a minimal faithful representationof ;.

3. CLASSIFICATION OF FILIFORM FOCK TYPELEIBNIZ ALGEBRAS

3.1. Classification of FR(ny,1). Consider a naturally graded filiform Lie algeb#g ; with its Fock module
F[x] under the actiori {3). Sindgx] is infinite-dimensional we obtain a family of infinite-dimgonal Leibniz
algebras.

Theorem 2. The Leibniz algebrd R (n,, 1) admits a basis

6 t
=, a' [te NU{0}}

such that the multiplication table in this basis has the form

{1,7,a2%,...,2" 2,

[, 2] =iz 1, 1<i<n-2
[, 20 = —izi 1, 1<i<n-2,
[z, 2] = xt 1, 1<i<n-2,
[zt,1] = 2, [2t, 2] = tat~1,

) 5z

where the omitted products are equal to zero.

Proof. Taking into account the actiohl(3) we conclude that
T = S t1 _to tr .
{l,xi,g, oy ok |t e NU{0}, 1 <i <k}
is a basis of"'R(n,, 1) and

Let us denote

e T=a@), L=r@), FI=p@), 1si<n-2

Taking the following change of basis:

/

5 0 - — —
=~ == —q@), T=T-r(@), o =2 -pa), 1<i<n-2,
we derive B
[EvT]:Ov [%7_]_07 [Tv_]io 1<i<n-2
We denote o o
[ o] = alz), [27,29] = b (), l<ij=<n-2
L& =c), [ & =i T+d(z), 1<i<n-2,

1,21 = gi(x), [2,27] = —iz 1+ hy(z), 1<i<n-—2
Consider the Leibniz identity
0 0.~ )
5 5 = o W G 1 5
On the other hand,

which impliesa(x) = 0.



LEIBNIZ ALGEBRAS ASSOCIATED WITH REPRESENTATIONS OF FILIBRM LIE ALGEBRAS 5

Similarly, from the Leibniz identities

bij(x) = [bij(x).T) = [%27,1] = @, + (23,29 = 0

@) = [e(x).T] = LT = LT + [LO.2] = o

di(x) = [ T+di(x)T] = [ L]T) = BLIET) + [RLIE] = o

gi(z) = [gi(),T] = [L2].0 = LELI) + [LIe] = o

hi(w) = [~ T+h(2),0] = [[£.200 = [, LI + [Z.T.27] = o,
we obtain

c(x) =0, by; =0, 1<i,j<n—-2,
di(z) =0, gi(z)=0, hi(z)=0, 1<i<n-—2.

O

3.2. Classification of generalized Filiform Fock type Leibniz aebras. In this subsection we are focused in
classifying of the class of (infinite-dimensional) Leibrilgebras. such that their corresponding Lie algebras
are finite direct sums of filiform Lie algebras, 1 ®nn, 1 ® - - - ®ny,, 1 and that their actions ochare induced
by Fock representations.

Since each algebra,, ; has a standard basfs; 1,z 2, . .., %} We put
4 3 _ n—j __ N < i<
( ) 6:17 - xi,lu xi = (nl _j)xl,ju 2 S ) S n;.
1

For the algebra,,, 1 ® np,1 ® -+ © ny,,1 theFock modul®nn,,, 1 ® np,1 ® - - @ ny,.1 is the linear
spaceFf|z, 2, . . ., 5] with the action induced by

(p(xlaa?Qv"'v'rs)vl_’i) = p(IlaIQa"'v'rs)v 1SZ§87
(p(:Elux?a"'axS)axz) = xgp(xlux27"'7xs)7
(p(xl,IQ,---7«rs)7 621) = %Ma
foranyp(z1,za,...,zs) € Flag, xo, ..., x5
We denote
[I_gal_k]:ag7k(xlvx27"'7xs)7 1§i;k§85 1§]§TL1—2,
[521’71_]']:bi,j('rlyx%---,xs), 1<4,5<s,
1, 1] = cij(@1, @2, ..., x5), 1<i,j<s.
Taking the change of basis
— —_—
xf:xf—aﬁi(:cl,:cg,...,:rs), 1<i<s,1<5<n;—2,
_y _
5‘; = 5‘; —bi_’i(Il,IQ,...,ZCS),
1_1'/:1_1'_01',1'(17131727"'7:65)7
we derive
— 5
[z],1;] =0, [5—,m:0, M1;,,1;] =0, 1<i<s 1<j<n;—2
T

Let us introduce notations:
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[Igaxmzdz:;@(xhx?a ;Is); 1Si;k§5; 1§j§n1_27 IStSTLk—2,
[5214% :ez,](wlax% wrs)u 1<i7j<87
o], 2] =izl + fli(a1, a2, 02),  1<i<s,  1<j<n -2,
[Eu%]: Zk(xhx?u ,J]S), 1§i7k§87 1<]§7’L1 27 l#k,
[5517‘1’.—{] = _zxz_l + gzﬁi($17x27 71:8)7 1 S 1 S S, 1< .7 < n; 27
[%7_3]:.9%1'(1;171;27 7x5)7 1§l§8, 1§]§7’L1 27 l#k,
[E,F]:hfm(xl,xg, ,Ts), 1<ik<s, 1<j<n;—2,
[1_7;7%]:qi,j(:blu‘r?u"'axs)a 1§27k§8
Consider the Leibniz identity
[[xzv 17@]71_1] - [‘Tiv [_kvl_l]] + [[xzvl_l]vﬂ] =0
On the other hand
[['Igvﬂ]v_l] = [a’z k(xlv'er ,IS),l_Z] = a’i,k(xthv ,5175)
which implies }
aj p(v1,29,. . 25) =0, 1<i,k<s 1<j<n;—2
Similarly from the Leibniz identities
bi,j(xlvx% .- .,ZES) = [[517%]71_1’] = [5(;»7 [Evl—z]] + [[5(;71_1]7E] =0,
Ci,j(xlv'r27 s 7:65) - [[Tzvn]vm = [1_17 [E;l_z]] + [[Tlvmam =Y,
we obtain
bij(x1,22,...,25) =0, ¢ j(z1,22,...,2,) =0, 1<4,j<s.
In a similar way, from the Leibniz identities
(w12, wa) =[], o), T = o], (2, T + (2], Til, 2] = o,
ei,j(xlax% s 7:65) = [[521 ’ %]7m = [521 ’ [%7m] + [[5ii7ma %] = Oa
fij;i('rlv-r% e aIS) = [inil + fz i(I1;I27 7565)7_1] = [[Iiv 521]71_1'] = [.Ii, [6(;17_1]] + [[Iiv_l]a 5(;
fqik(II;IQa e 7$S) = [['rgv %]7_1] = [Iia [%51_1]] + [[xza_l]v %] = Oa

J

giﬁi($17x27 s
J

gkﬂ-(xl,xg, ..
J

hkﬂ-(l‘l,xg, N

gi,j(21, 2, ..

we derive

) = [mio] T gl a2, T = ([l T = 65 [ T+ (165 T
ws) = (g1, w2, o), T = (s l). T) = [ b Tl + ([ Tl o] =
vx5) = [P (w1, ), Te) = ([T, 2]], To) = [T, [, Tel) + [[Te, Th], 2] = 0,
) = [aas (o w2, 2, T = [T 5] T = [ [ Tl + ([T T 571 = 0,
i@z, 2) 1<ik<s, 1<j<nm—-2 1<t<m -2,
€i7j(I1,I2,...,$S):O, 1§Z,j§57

fij,k(xl,xz,...,xs):(), 1<4,k<s, 1<j<n;—2,
gii(xl’xQV"aIS):Ov 1< <5, 1<j3<n; -2,
hiﬂ-(xhxz,...,xs):(), 1<i,k<s, 1<j<n;—2,
Gij(x1,22,...,2) =0, 1<ik<s
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Therefore, we have proved

Theorem 3. The above Leibniz algebra denoted By (1, 1 ® np, .1 @ - - - © 1y, 1) admits a basis

3
{li,Tg,g, x’ilx’;z:c};" |t; e NU{0}, 1 <i<s,1<j<mn}

K2

in such that the multiplication table in this basis has therfo

T 2l=1  [Zm=-1 1<i<k

[ ek ale T = altal? 2l

[z 2k .. :vfj,ff] =zl .xﬁff xfi“ fff . xi’“,
[aak? ..z, %] =ttt xzfllx?_lzczf:f gk

where the omitted products are equal to zero.

4. LEIBNIZ ALGEBRAS ASSOCIATED WITH MINIMAL FAITHFUL REPRESENTATION OF Nn,1

In this section we are going to study the Leibniz algelvasich thatl /I = n,, ; and then,, ;-module! is
the minimal faithful representation. In this case we haw dimlL = 2n and{x1, z2,..., 2y, €1,€2,... €5}
is a basis of’.. We also have
e, r1| =e;_1, 2<i1<n—1,

(5) [ 1 1] 1—1

len, ;] = ent1—5, 2<j<n.

Further we should define the multiplicatiopns, z;] for 1 <4, j < n. We put

n
I'L+1+Za§71€ka jzlvzglgn_la
=1

n
(6) [xlv'rj]: _'IJ+1+ Z O/f,jekv 7’:17 2§]§TL—1,
k=1
n
> af e, otherwise.
k=1

In the following Lemma we define the multiplications in theseafi = 1 or j = 1 andj = n.

Lemma 1. There exists a basigt1, o, ..., 2n, €1, €9, ..., e,} Of L such that
[T1,21] = a1ep—1 + azen, [21,2j] = —2j41, 2<j<n—1,
@ [x2, 21] = x5 + azen, [z, 21] = Tj41 — aepio—y, 3<i<n-—1,
[x1,2,] = aser + azea, [Tn, z1] = —ager — 2azeq,
[z2, 2] = aser + azes, [, 2] =0, 3<i<n.

Proof. In the multiplication[(6) taking the transformation of basi

n—2 n—2
’ k n—1 n—1 /I k k
ry =21 — Y afjerr1 — (ap +afy e, Ty =29 — Y (a5 4 f 5)ers1,
k=1 k=1

n
I o k n—1 n—1 . .
Tl = — kzl af j_iek+(ay7 +afy )enta—j, 3<j<n,

we obtain[zy, z1] = offjlenq +afien, [v2, 1] =23+t en, [r1,7] = w541, 2<j<n-1
Using the Leibniz identity we derive

[23,21] = —[[z1,22],21] = —[1, [22, 71]] = [[21, 21], 22] =

= [-x1,23+ a?;len_l + 0472171671] — [o/f;len_l +af 1en, To] = 14 — afen—1.
From the Leibniz identity|[x1, x;], 1] = [x1, [zi, 21]] + [[z1, 21], ;] recurrently we obtain
[T, 21] = Tiy1 — O 1eny2—i, 3<i<n-1,

n
[x’IH xl] = _a?,leQ - kzl a]f,nek'
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On the other hand, from

n—1
0 = [xlu [xn7xl]] = [[xluxn]uxl] - [[$1,$1],$n] = Z Oéllc_’nek—l - ailel7
k=2
we get
ozin:o/l’_’l, ozlf_’n:O, 3<k<n-1.

Now, we consider the Leibniz identity
0 = [{El,[In,Ij]] = [['rlvxn]vxj]_[[Ilaxj]axn] =
= ol ,er+af e +af en, x5 + [T, 0] = o enyij + [Tj41, Tal-
Hence, we have
[Tj+1,Tn] = —af peny1-5, 2<j<n-1L

On the other hand, from the equalities

O = [$2,[$1,$n]] = [[‘T27$1]7$n] - [[./L'Q,./L'n],xl] =
n—1 n—2 1
= [z3+af en,Tn] — [kz of ek, 1] = —af €1+ 0 61 — kz azjl ek,
=1 =1
we obtain
ozg_’l = ozg_’n, o/fm =0, o/;_,n =0, 3<k<n-1.
Put
Qo,l =1, Qo,k = %7 k> 2, Ql,k = %7
k(k+1)...(k —N(k+2m -1
O BERD . (tm ot
’ 2(m!)
It is not difficult to check that
(8) Qm,k = Qm,k—l + Qm—l,k'
Now we will define the products:;, ;] fori + j < n + 1.
Lemma 2. We have
n—2
[z2,22] = > PBrer,
k=
n—1
[xi+1750i] = Z Yi,k€k, 2<i< \_%L
k=1
9) L] n—2—j+2s _
[:ci,xiﬂ‘] = (_1)SQS,]‘+2723 Z Yi+s—1,j4+1—2s+kCk, 0< J <n-5 3<i< Ln+1—]
s=0 k=1
n—j
[v2,2;] = —(j —2)asenta—j + 3 Bj-2tkert
k=1
1432 n—2—j+2s
+ (1) Qs—1 1225 Y. Vsjti—zeiker, 3<j<n—1,
s=2 k=1
where|a| is the integer part of.
Proof. Taking into account the notatioi](6), from the Leibniz idgnt
n n
0 = G loyanll = [owaslon] = [odas) = | 35 ol v + | £ af v =
t=1 t=1
= O‘ZjenJrQ*k - O‘ZkenJrQ*jv 2 < Z.ajv k(] 7£ k) < n,

we get
al, =0, 2<i,j<n.
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From the Leibniz identities for the triples of elemefits, [x;, z;]], [z, [z1, x;]], we derive the following
relations

[Tit1, x] = [®j41, 2], 2<i,j<n—1,

(10) [z2, Tj41] + (23, 7] = —azent1—j + [[z2, 7], 21], 2<j<n-—1,
[z, xj41] + [Tit1, 5] = [[=5, 25], 21], 3<i<n—-1,2<j<n-1,
[Zn, 2j+1] = [[Tn, 4], 21] 2<j<n-1

From the first equality in[(10) it is easy to see that it is sigfi¢ to define the multiplicationg:; , z;] for
j>i—1.Put,

e
[22, z2] Zﬁkek, v, m) = viker, 2<i< LZJ
k=1

Applying, if necessary, the change of basis= x5 — 3,,_1e, we can suppose that,_; = 0 and we will
express other product by means of the structure constaatsd-y; ;.

First we will proof the third equation froni{9) by inductiomg. From the relationd{10) we gét;, z;] =
[Tir1, xio1] @Nd[x;, ;] + [Xig1, Xic1] = [[@i, i 1] 1] which imply the assertion of Lemma fgr= 0, i.e.,

-2

Vit k+1€k, 3 <1< |

k=1

Then from the relations (1) we obtain;, x; 1] + [xiy1, ;] = [[%:, z:], x1]. Using the assertion of Lemma
for j = 0, we get

n+1
2 -

l\D|P—‘

[, 23] = %[[xi,xi_l],m] =

1 1 n
[Ti, Tip1] = 5[[[501',171;1],171],1171] — [@igt1, %] = B ;%71,“261@ - Z%,kek, 3<i < LQJ
Hence the assertion of the Lemma is true fet 1.
Let us suppose that the assertion of the Lemma is true focésdess or equal thand we will prove it for
Jj+1
From the relations(10) we obtajn;, x4 j11] + [zi+1, Ti+;] = [[#i, Tit;], z1]. Using the assumption of the
induction we get

[Tis Titj1] = [T, Titj], T1] = [Tig1, Tigj] =

(432 n—3—j+2s 4] n—1—j+2s
= > (=1)°Qsj42-25 Do Vits—tg+2-2s+kk — 2 (=1)°Qsjt1-25s Do Vitsj-2s+kCk =
s=0 k=1 s=0 k=1
n-3-j L] n—3—j+2s
=Qoj+2 2, Vi—ijte+kek T » (—1)°Qsjyo—2s D Vits—1,j+2—2s+kCk—
k=1 s=1 k=1
[£]+1 n—3—j+2s
— > (-1 Qs j43-25 DL Vids—1,j+2-25+kCk-
s=1 k=1
If jis odd then| £+ | = |£] + 1 = [ ££2] and using the equality(8) we get
n—3—j [45E] n—3—j+2s
[xi,$i+j+1] = Qo,j+2 Z Yi—1,j+2+k€k + Z (—1)5Q5,j+3725 Z Yits—1,j4+2—25s+kCk =
k=1 s=1 k=1
(452 ] n—3—j+2s
= > (=1)%Qsjt3-2s Do Vits—1j+2-2s+kCk-
s=0 k=1

If j is even theriZf* | = [4] and we get

n—3—j 1] n—3—j+2s
(@i, Tigjr1] = Qog+2 2 Yi—tjse+kek + 2 (—1)%(Qsjt3-25) D Vits—1,j42—2s+kEkT
k=1 s=1 k=1
a2 n—1 L#J n—3—j+2s
+ (-pt=d 2 Vigg ek = 2 (“1)°Qsjtz—2¢ XL Vigs-1jt2-25+kCh-
k=1 s=0 k=1
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The productgz,, z;] are also obtained by induction gn using the equality[{10) and the multiplication
[1'3,1']'_1]. D

In the following lemma we define the produgis, z;] fori + j > n + 2.

Lemma 3. We have
(@i, Zng2—i] = (1) aser + (—=1)'(n — 5)ases + (=1)T' B, _2e1+

25s—2

.S
+> (—1)8“ D Qetnt1-2s D Vsntil-2stkCh+t
t=1

k=1

2 252
+ (=) ST Qs—tint1—25 3 Vsinti—2s+kEk,
; =1 k=1

(@4, Tngs—i] = (1) —3)(n — 5)azer+

) . s 25s—3
(11) + (D) TS (= 2 = ) Qs—tnt1-25 D Vsnt2—2sikCht
i=1 k=1

25s—3

-3
+ 3 (DTS (=2 = ) Qs—tnt1-25 Y. Vsnt2—2s5+kChs
; i=1 k=1

i—2—t 2P
2 )stt,n+172s Z 75,n+p7172s+k6k+
p— k=1

2s—p

iy L i—2—1
+ Z (_1)s+z+p Z ( —_9 )stt,n+1f28 Z Ys,n+p—1—2s+k€k,
s:max{ifpﬁ»l;L%JJﬁl} t=1 p k=1

. 1
whered <p<n-—1,p+1<i< |22t

Proof. First we will find the product$e;, 42—
According to Lemmall we haves, z,,]| = ase; + ases and using Lemmil2 from relatioris {10) we obtain

[23,7n-1] = —azez — [22,m5] + [[T2, n—1],21] = —azer — (n — 5)azea+
L] 25—2
+ Z (_1)S+1Qs—l,n+l—2s Z Vs,n+1—2s+kEk-
5=2 k=1
Similarly, from the equalit){:vi_l,:cn+3_i] + [$i,$n+2_i] = [[$i_1,$n+2_i], ,Tl], for3 <i<k+1, by

induction we obtain
(@i, Tnio_i] = (—=1)tase; + (=1)%(n — 5)az + (—=1)"*1 3, _se1+

i—3 s 25—2 L3] i—3 25—2

+ Z (_1)S+Z Z Qs—t,n+1—2s Z Vs,n+1—2s+kC€k + (_1)S+l Z Qs—t,n+1—2s Z ’75,n+1—25+kek+
s=2 t=1 k=1 s=1—2 t=1 k=1
(252 254+2i—6

+ > (—1)°Qeni5-2i-25 D,  Yits—2,n+5—2i—25+kChk-
s=0 —

Takings’ = s + ¢ — 2 in the last sum, we obtain

[ 22 ] 25+2i—6
(_1)SQs,n+572i72s E Yi4+s—2,n+5—2i—2s+kCk =
s=0 k=1
LZ] ) 25—2
= Z 2(_1)S+ZQs—i+2,n+l—25 kzl Vs,n+1—2s+kC€k-
S=1— =

Placing this equality to above one we obtain the first equafithe lemma.
Now we will deduce the products;, x,,1+3—;]-

Using[zs, z,,| = 0 from the relationzs, z,,| + (4, n—1] = [[z3, r—1], 1] We get
L5) 253
24,20 1] = —(n = 5)azer + 3 (1) Qe 1mi1-25 Y Vemta-2stkCh

s=2 k=1
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Using the productfe;, ©,,4+2—;] from the equalityz;_1, z,+4—i] + [Ti, Trnt3—i] = [[Ti=1, Tnt3—i], 1], fOr
4 <4 <k + 2, by induction oni similarly to the previous case we obtain
. i—3 . s 25s—3
(5 Tngs—i] = (1)1 (i = 3)(n — Bager + 3 (=1)*F*! Z (1 =2 = t)Qs—tn+1-2s D Vs,nt2-2s+k€kT
s=2 = k=1
3] 25—3
+ E ( )S+Z+1 Z('L -2 t)Qs t.n+1—2s E Ys,n+2—25+kCk-
s=i—2 t=1 =1
The last equality fron{{11) follows by the induction prand; (first by p, then byi.) O

Now we define some restrictions to the structure constarasidy; ;.
From the equality[{10) we obtain

1 n
[eig 10 2ig 0 = Sllegg v 2 gl 1<I< 5]

Let n be even.Then in the case df= 1 we get
1
g1 213 ] = 5oy 002182 Z”Ym K+1CK
On the other hand, from Lemrh& 3 we obtain
22 1122 ] = (D ager + (1) (0 = 5)ages + (1) 15 B _ser +

[2]-1 25—2 l3]-1

+ 2_22 ( )S-H' I ZQS t,n+1—2s Z Vs,n+1—2s+k€k — Z QL |—t,1 Z V2] k+1Ck-

Comparing the coefficients at the basis elements we obtaifotlowing restrictions:

a5 — ﬂn72 + 522( 1)575,n+2725( ; Q t,n+172s) - (_1)L%J %"YL%JQ - O;
z ] s .
(12) (n - 5)043 + 72( 1)8757n+3725( Z: Qs t,n+172s) - (_1)L7J 17[ 51,3 = =0,
3] - s
> (—1)5%,n+1—25+k( > Qs—t,n+1—2s) —(-1)tzll N2 k+1 =0, 3<k<n-2
SZLk;SJ t=1

If { > 2, then we have

(1202 2] = slleps s 2 ual o] =

[ §]=1+1

1 sH2 -1 o (L) +l-2-1 22!
=3 Z (_1) 2 Z ( 2 2] — 3 )Qs—t,n+l—2s Z '75,n+2l—1—2s+kek+
s=I+1 t=1 k=1
\_%J n L%J_H‘l n + 1 —92—¢ 2s—21
+% Z ( 1)S+L§J+l_l Z ( L2J 2] -3 )Qs—t,n+1—2s Z Vs,n+20—1—2s+k€k-
s=max{ | § | —1+2;l+1} t=1 k=1

On the other hand, in the equalify {11) foe= 2/ andi = | % | + [ we deduce
l

%J7 n 1 \_EJ +l _2_t 2521
(124022 0) = > (—1)FLElT Z ( oo )stt,nJrlst D Vsmt2-1-2s+k€k+
s=l+1 k=1
L%J n Ln n +l_2_t 25—21
+ Z (_1)S+L§J+l Z ( |_2J 2l ) )stt,nJrlst Z '-Ys,n+2l7172s+kek-
s:max{[%jflJrl;lJrl} t=1 k=1
Comparing the coefficients at the basis elements we get
(13)
h BRI R n 42—t
Z (—1)875,n+2l7172s+k |:( L2J 9 — 9 ) + %( LQJ 2 —3 ):| stt,n+172s+
s= B 41 t=1
L5 L
E(_1)575,7L+2l*1*25+kQS*[%J+l71,n+172s =0,

s=max{[ 2 |—1+1;| B |40}
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where2 <1< [5]| -1, 1<k<n-2L

Let n be odd. Then in the case df= 2 we get[z| x| 0, |2 42| = %[[xL%HQ, x| = |11],21] and using the
first equality of [11) we obtain
1 L s
[IL%J_,_Q, I\_%J"'?] = 5(—1)L§J (TL — 5)0&381 + 5 Z(_l)erL?J Z stt,nJrlst
s=2 t=1

25—3
§ '-Ys,n+2725+kek-
k=1

On the other hand, from the second equalityof (11)fer | % | + 2 we get

(1122 )42] = (DEIT((S] = 1)(n = 5)azer+
l3]-1 . s 25—3
+ (1)L ST (| 2] — )Qs—tinr1-25 D Vsn+2—254kCh—
s=2 t=1 k=1
1311

n—4
- t; (3] Q2 —t2 ;—21 V2| k+3Ck-

Comparing the coefficients at the basis elements we derive
(14)

72(_1)8757n+3725 E(L%J —t+ %)stt,nJrles = O,

t=1
3)

(_1)8’757n+2—2s+k E 1: (L%J -t + %)Qs—t,n-l—l—&s = 07
t=
If { > 3, then we have

[ngHlaﬂCLng] = %[[ﬂgﬁlaﬂgﬁl—l]afcl] =

[3]-142 . s nly]_9_¢ 25—21+1
=3 > (=1stlelvy ( 15] ol 4 )Qs_t,n+1—25 Y Vsmt2l-2-2s+kChT
s=l t=1 k=1
L5] LS I O R B S 2s—21+1
+% Z (_1)S+L7J+l Z ( L2J 9l — 4 )Qs—t,n+1—2s Z Vs,n+20—2—25+kC€k-
s=max{|§ | —1+3;l} t=1 k=1

On the other hand, in the equalify {11) foe= 2/ — 1 andi = [ ] + | we have

[$]=1+1

Flajti-1 s (L5l Hl=2-1 2t
[ILngv ngHl] = > (=) > ( 2 21 3 )stt,n+172s > Vsnt2l-2-2s+kCk+
s=l t=1 k=1
Lz . LBl ny 9y 25—21+1
+ Z (_1)S+L§J+l71 Z ( LQJ 2] — 3 )stt,nJrlst Z Vs,n+201—2—25+kCk-
s=max{| %] —14+2;l} t=1 k=1
Comparing the coefficients at the basis elements we get
(15)
L3] min{s,| 5 |-I+1} 2] +1—2—¢ [Z]4+1—-2—t
—1)® 2 1( L2
%:Hl( 1)*Ys,nt21-2-25+k t; [( 93 ) + 2( o — 4 )} Qs—t,nt1-2s+
s=lg
L5

1 ,
2 (=1 Ys,nt21-2-264kQs— | 2 | +1-2,nt1-25 = 0,
s=max{| % |—1+2[ & |+1}

where3 <1< [§], 1 <k <n-—2L
Therefore, we obtain following main Theorem of this section

Theorem 4. Let L be a Leibniz algebra such that/ I = n,, ; and[ is theL /I-module with the minimal faithful
representation. Thed admits a basigx1,z2,. .., Zn, €1, €2,

..., ey} such that the multiplications table for
this basis has the forif®), (@), (), (I1) with the restrictiong12), (13), (I4), (@5).



LEIBNIZ ALGEBRAS ASSOCIATED WITH REPRESENTATIONS OF FILIBRM LIE ALGEBRAS 13

Now we are in position to give a classification of such algsluato isomorphism for the case= 4.
In this case we get the following family of algebras denotedibv,, as, as, ag, 81, B2, 71,72) -

[e2, z1] = e1, [z3,71] = 24 — azes,

[e3, 1] = e, [T4,71] = —auer — 2aze2,

[ea, 2] = e3, [x2, 2] = Bie1 + Pae,

lea, 23] = e, [73,22] = 7101 + Y202 — 20363,

[ea, z4] = ex, (24, 73] = —agzer,

[x1,22] = —x3, [x3, 73] = %7261 — (3€2,

[Il,I?,] = — 4, [I4,I2] = %’7261 — (3€2

[71,21] = are3 + azes,  [w2, 23] = (B2 — 11)er — 22 + ases,
[z2,71] = 23 + azeq, [T2,74] = —%7261 — Qasez,

(1, 74]

= qge] + ages.

Theorem 5. Let L be an8-dimensional Leibniz algebra such thAfI = n, ; andI is the L/I-module with
the minimal faithful representation. Thenis isomorphic to the one of the following pairwise non isopiic
algebras:

M(alaOCQa 17 11617ﬁ2701 1)

plo,

17 01 Bla 527 01 1)

1(1,0,1,0, 81, B2,0,1)

/L(Oél, 17 11 17ﬁ11527010)

w(1,0,1,1, 31, B2,0,0)

L
1(0,0,1,

1,1, 52,0,0)

1(0,0,1,1,0,1,0,0)

M(anv 13 1705070’0

©(1,1,1,0, 81, B2,0,0)

1(0,1,1,0,1, 32,0,0)

1£(0,1,1,0,0,1,0,0)

1(1,0,1,0,1, 52,0,0)

1(1,0,1,0,0,1,0,0)

1(0,0, 1,0,

13 523 07 O)

)
#(0,1,1,0,0,0,0,0)
12(0,0,1,0,0,1,0,0)

1(0,0,1,0,0,0,0,0)

,U(Oéh 1107 1107ﬁ21717 1)

/L(Oél,o, 01 17 01 17’71’ 1)

11(01,0,0,1,0,0,1,1)

,LL(Oéh 0,0,1,0,0,0, 1)

(a1, 1,0,0,0,1,71,1)

,LL(Oé17 1507070707 17 1)

(
(a1, 1,0,0,0,0,0,1)

1(1,0,0,0,0,1, 1, 1)

1(1,0,0,0,0,0,1,1)

1(1,0,0,0,0,0,0,1)

(0,0,0,0,0,1,71,1)

£(0,0,0,0,0,0,1,1)

1(0,0,0,0,0,0,0,1)

,u(17 1307 175175277170)

1
‘u(o, 1,07 1, 17527717 )
1(

1(0,1,0,1,0,1,1,0) 1(0,1,0,1,0,0,1,0) (0,1,0,1,0,0,0,0) 1,0,0,1,1, B2,71,0)
1(1,0,0,1,0,1,71,0) 1(1,0,0,1,0,0,1,0) 1(1,0,0,1,0,0,0,0) | p(0,0,0,1,1,1,1,0)

1(0,0,0,1,1,0,1,0) 1(0,0,0,1,1,0,0,0) (0,0,0,1,0,1,1,0) 1(0,0,0,1,0,1,0,0)

1(0,0,0,1,0,0,1,0) 11(0,0,0,1,0,0,0,0) | (1,1,0,0,1,532,71,0) | wu(1,1,0,0,0,1,71,0)
1(1,1,0,0,0,0,1,0) 1(1,1,0,0,0,0,0,0) | n(1,0,0,0,1,1,71,0) | a(1,0,0,0,1,0,1,0)
1(1,0,0,0,1,0,0,0) 1(1,0,0,0,0,1,1,0) (1,0,0,0,0,1,0,0) 1(1,0,0,0,0,0,1,0)
1(1,0,0,0,0,0,0,0) 1(0,1,0,0,1,1,1,0) (0,1,0,0,1,0,1,0) 1(0,1,0,0,1,0,0,0)
1(0,1,0,0,0,1,71,0) 1(0,1,0,0,0,0, 1,0) 1(0,1,0,0,0,0,0,0) | (0,0,0,0,1,1,1,0)
1(0,0,0,0,0,1,71,0) 1(0,0,0,0,1,0,1,0) 1(0,0,0,0,1,0,0,0) 1(0,0,0,0,0,0, 1,0)

1(0,0,0,0,0,0,0,0)

with a4, ae, 51, B2, 71 € C.

Proof. Let L be an 8-dimensional Leibniz algebra givenbyy;, as, as, a4, 51, 82,71, 72). We make the fol-
lowing change of basis:

4 4
x’l = E kak + g leka
k=1 k=1
4 4
x/Q = E Myxy + g Nkeka
k=1 k=1
4 4
eﬁl = E Ryxi, + E Trer,
k=1 k=1

while the other elements of the new basis (id, e}, e5, 2% andz/) are obtained as products of the above
elements.
The table of multiplication in this new basis implies theldaling restrictions on the coefficients:
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Po=M =R,=0 1<k<4,

T3 = —T}Lfga Ty = —Tj:,?, Ny = azMs,
ag Py M3
Q1= L
. —043P32M2 — a1P12M3 + ao Py P3 M3
Q3 =— P, ;
- —20(2T1P12M2 + 72T4P32M2 - 20(3T4P3P4M2 + 20(2T4P1P4M3 - 2a1T4P12M4
@o=- 2Ty P Mo ’
a3P4M22 — azPsMsMs + OZQP1M32 — oo Py MMy
N3 =— ;
Py Mo
Nyp— —asTy Py M3 + BoTyPs M3 — 9Ty Py M3 + o Ty PsMaMs — asTy Py Mo My + o Ty Py M3 My
TyP1 M, ’
T4P1M2 75 0.
Calculating new parameters we obtain:
0/1:‘3‘1]3127 0/220‘2_1312,
TyM; Ty
ol — a3 P Mo o — oy Py
3 T4 ’ 4 T4 )
, 2B1 M3 + o ME — 270 My M,y
b= 2T, P2 M, ’
; ’71M22 — a3M§ + 2a3M2M4
n= Ty P Mo ’
,  BaM> ;2 Mo
BQ_T4P1’ Y2 = T,
Considering all the possible cases we obtain the familiedgefbras listed in the theorem. O
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