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Abstract— Compressive sensing (CS) is an alternative to the 
Shannon limit when the signal to be acquired is known to be sparse 
or compressible in some domain. Since compressed samples are 
non-hierarchical packages of information, this acquisition 
technique can be employed to overcome channel losses and
restricted data rates. The quality of the compressed samples that 
a sensor can deliver is affected by the measurement matrix used to 
collect them. Measurement matrices usually employed in CS 
image sensors are recursive random-like binary matrices obtained
using pseudo-random number generators (PRNG). In this paper 
we analyse the performance of these PRNGs in order to 
understand how their non-idealities affect the quality of the
compressed samples. We present the architecture of a CMOS 
image sensor that uses class-III elementary cellular automata 
(ECA) and pixel pulse width modulation (PWM) to generate on-
chip a measurement matrix and high the quality compressed
samples.

Keywords—compressive sampling; elementary cellular 
automaton; restricted isometry property;

I. INTRODUCTION

Compressive Sampling (CS) is a data acquisition technique 
that can be used to represent the content of an image with fewer 
samples than required by Shannon-Nyquist theorem.
Reconstruction algorithms based on convex optimization exploit 
the sparsity of the original image in order to recover it from these 
compressed samples by finding a unique solution to the
underdetermined linear system [1]:

(1)

where is the set of compressed samples, 
represents the unknown values of the pixels and 

is referred to as measurement matrix. A necessary 
condition for the exact recovery of an image is the restricted 
isometry property (RIP) of the measurement matrix used to 
sample it [1]. A matrix satisfies RIP of order if there is 
constant so that, for all vectors with 

, holds:

(2)

A matrix with RIP of order can be used to sample without 
error images that can be represented with a maximum of 
significant elements in some domain. A possible interpretation 
of Eq. (2) is that, the higher is , the less sparse the sampled
image needs to be for a reconstruction algorithm to deliver an 
exact solution. The most common approach used to generate a

near optimal measurement matrix in signal processing is to 
extract its elements from a normal Gaussian distribution. There 
are two major limitations that prevent the implementation of
such matrix at sensor level. First of all, CS differs from standard 
acquisition-&-compression techniques in that the image must be 
already sensed in a compressed form in the analog domain. For 
this reason, the implementation of a particular measurement 
matrix defines the architecture of the CS CMOS image sensor 
(CS-CIS): if the coefficients of the measurement matrix were 
real numbers [2], a CS-CIS would require the implementation of 
analog multipliers in-pixel. This is not practical in terms of pixel 
sensitivity and spatial resolution. Furthermore, from Eq. (1) we 
can see that each compressed sample is a linear combination of 
the weighted readings of all pixels. The upper bound on the 
amount of bits, , required to represent them would be:

(3)

where denotes the smallest integer greater than the argument 
and and are the number of bits used to describe the pixel 
values and the measurement matrix coefficients, respectively. It 
is virtually impossible to design ADCs with such resolutions in 
standard technologies. In fact, one of the main drawbacks of 
most CS-CIS implementations [3] is the lack of dynamic range 
to properly represent the compressed samples.

The use of binary matrices and block-based compressed 
sampling (BCS) [4], which divides a pixel array into smaller 
sub-arrays that are digitized independently, is essential for the 
design of practical CS-CISs. Moreover, to reduce the amount of 
on-chip resources dedicated to the implementation of a 
measurement matrix, CS-CISs use pseudo-random number
generators (PRNG) to recursively create them one row at the 
time. In exchange for this approximation, the resulting 
reconstruction will present errors and additional samples are
required to achieve a prescribed accuracy. We propose a CS-CIS 
architecture that uses class-III elementary cellular automata
(ECA) and pixel pulse width modulation (PWM) for the 
generation of high quality compressed samples.

II. PRNG-GENERATED MEASUREMENT MATRICES

PRNG commonly used to implement measurement matrices 
into CS-CIS are Linear Feedback Shift Registers (LFSRs) [5].
A LFSR consists of a set of flip-flops connected serially. Some
of them, called taps, besides being connected to the flip-flop that 
they follow, are also aggregated by means of XOR logic gates
and connected to the input of the very first one. An appropriate 

CNNA 2018, August 28-30, 2018, Budapest, Hungary

ISBN 978-3-8007-4766-5 © VDE VERLAG GMBH  Berlin  Offenbach66



choice of taps forces the evolution of the LFSR into an aperiodic
behaviour [5]. When considered individually, the output of each 
flip-flop evolves in time with a pattern that resembles a
symmetric Bernoulli distribution: . When these 
outputs are used as column or row selectors of a pixel array it is 
possible to recursively create the pseudo-random binary 
coefficients of the measurement matrix one row after the other.

LFSRs though are not the only example of PRNG that might 
fit in a CS-CIS design. A valid alternative are ECA [6]: one-
dimensional temporally discrete dynamic systems made of 
identical interconnected cells. The future output (NS) of a cell
(Fig. 1) of an ECA depends only on its current output (S) and
that of its two immediate neighbours (L and R). There are 256 
possible logic configurations to combine these three inputs.
Each configuration is known as rule. We will focus on rules that 
belong to class-III, known for their aperiodic behaviour [7], in 
particular rule 30 (Table I shows rule 30 truth table).

Table I. Truth table of Rule 30
L S R NS
1 1 1 0
1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 1
0 1 0 1
0 0 1 1
0 0 0 0

Fig. 1. Implementation of a Rule 30 cell of a cellular automaton

Even if, due to their low impact on area consumption, LFSRs
and ECA are both good candidates for the generation of on-chip 
measurement matrices, ultimately, they still follow deterministic 
patterns. It is necessary to analyse the matrices that these
patterns produce to understand how well they approximate 
random matrices. To avoid recurring to RIP, a practical 
approach is to bind it with mutual coherence. From Eq. (2), a
matrix that respects RIP with a small preserves Euclidean 
distances of the represented elements:

(4)

which means that, among other properties, must also be 
nearly orthonormal at least when operating on sparse vectors [8].
Mutual coherence of a matrix is the fined as:

(5)

where is the -th normalized column of matrix and is 
the conjugate transpose of the -th normalized column of the 
same matrix. Since mutual coherence represents the maximum 
absolute value of the cross-correlations among normalized 

columns of , by definition, a matrix compliant with RIP, must
have null mutual coherence.

Given Eq. (4) and (5) it is possible to analyse the patterns 
generated by LFSRs and ECA in terms of mutual coherence: the 
lower the better. As previously mentioned, circuit designers 
choose LFSR because the sequence of their outputs is akin 
to . But, looking at Table I, this holds true for rule-
30 ECA as well. For this reason, we can define the number of 
non-zero elements in a column of as . When we multiply 
two columns of to obtain their cross-correlation, the 
probability that their product be different from 0 is equal to the 
joint probability of the single elements. For this reason, the 
expected outcome of is:

(6)

where is the operator that extract the diagonal vector 
from the vector multiplication and is the -norm
as described in [9]. All elements of a normalized binary vector 
are equal to the inverse of the vector Euclidean norm 
( ). As such, the expected value of the mutual 
coherence of a random binary measurement matrix derived from
a symmetric Bernoulli distribution is:

(7)

Eq. (7) gives way to two conclusions. Firstly, since the expected 
mutual coherence of random binary matrices differs from 0, the 
RIP has low order and errors during reconstruction are to be 
expected. Moreover, the limit found on the expected holds
only because there is no repeating pattern in the rows of
otherwise would increase.

To compare the dynamical behaviours of LFSRs and rule-30
ECA in search of repeating patterns we can use Power Spectral 
Density (PSD) analysis. This technique has already been applied 
to these systems [10]. Following their notation, the DFT of 
PRNGs can be expressed as:

(8)

where is the DFT value of the -th element of the PRNG 
at frequency , is the number of discrete time steps of the 
PRNG as well as the number of rows in and is the state 
of the -th element of the PRNG at time as well as the -th 
element of the -th column of . PSD expresses the distribution 
of the energy of a waveform among its different frequency 
components. Any peak in a graphic of over would 
represent a strong repeating pattern among the rows of . Given 
all , PSD can be computed as:

(9)

where is the number of elements of the PRNG as well as the 
number of columns in . The PSD profile of a suitable and 
efficient PRNG for CS should resemble white noise since its 
energy should equally spread throughout the entire spectrum
(i.e. no repeating pattern). We devised a MATLAB experiment 
in which we evolved a 64-cells rule-30 ECA (red) and a 64-flip-
flops LFSR (blue). Fig. 2 shows their PSD profiles.
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Fig. 2. Power spectral density of rule-30 ECA and LFSR.

These graphics have been produced for time 
steps starting from an initial random binary seed with .
Since the PSD of Rule-30 ECA is more flat it appears that they 
are a better choice over LFSRs to extract quasi-independent 
coefficients aimed to resemble to a Bernoulli distribution.

III. CS-PWM SENSOR ARCHITECTURE

As shown in Eq. (3), compressed samples require a large
number of bits to be described and, as such, standard AD 
conversion cannot digitize them with enough precision. One 
way to overcome this problem is to modulate the pixels outputs 
in order to combine them in a different domain. One of the most 
common CMOS pixel modulation techniques is Pulse Width 
Modulation (PWM). It encodes light intensity into time. It uses
an integrating photodiode that discharges its cathode at a rate 
determined by the photocurrent and an in-pixel comparator that 
triggers an event when the cathode voltage drops below a given 
reference. The comparators used in our pixels are digital 
inverters with offset cancellation, the lower (higher) the light 
intensity on the diode is, the longer (shorter) it takes for the 
inverter to switch [11]. This event enables the content of a global 
counter, located outside the array, to be stored into an in-pixel
memory. In standard imaging, when high precisions (i.e. many
bits) are required, the area occupied by the memory and that used
for routing become too large for practical purposes. Since 
compressive samples do not require acquiring each pixel value 
separately, in CS there is no need for in-pixel memories: it is 
possible to directly send the events triggered by the pixels 
outside the array.

The floor plan of the CS-CIS that we designed is presented 
in Fig. 3. Its central core is a squared PWM pixel array
surrounded by a rule-30 ECA whose cells deliver their outputs 
to a whole column or row of the array. The outputs of the cells 
are used as inputs for in-pixel XOR gates that create the
coefficients of the measurement matrix. Since an XOR gate
gives a true output only if the number of true inputs is odd, the 
coefficients that they generate present a ratio of ones and zeros 
similar to the outcome of a Bernoulli distribution. The pixels of
the same column are connected to a common bus that is used to 
deliver their events, in the form of pulses, to a 20-bit sum-&-
accumulate element (S&A). At the top of each column there is 
an event control unit that controls the duration of these pulses. 
Each pulse encodes a pixel value in the period of time that has 
passed between the photodiode reset and the pulse arrival to

Fig. 3. Conceptual floorplan of the sensor chip

the S&A. A method to translate these pulses into digital codes is 
to use them to activate the sampling of the global 8-bit counter.
Each time a event arrives, the counter is sampled and its value is
added to the contributions of other pixels already stored within 
the S&A. At the end of the integration period the S&A are 
connected sequentially. After some delay due to propagation, 
the rightmost S&A will show, at its output, the sum of all of the 
S&A connected before it without the need of a dedicated 
memory frame-buffer or extra operations.

Another consequence of Eq. (3) is that there is an amount of 
compressed samples beyond which the uncompressed image is 
smaller than its compressed counterpart. In our case, as pixel 
values are encoded by 8 bits and compressed samples by 20 bits, 
the compression ratio, i. e. the number of samples delivered 
divided by the total number of pixels in the image, needs to be 
below 0.4. In addition, compressed samples are generated 
sequentially. If we considered a frame rate of 30 fps, it is 
necessary to operate the imager at a frequency of kHz 
maximum. This leaves a minimum time of 20 s to collect a 
single compressed sample.

The 8-bit counter clock needs to tick 256 times in this 20 s. 
The relationship between photo-generated current, , and time 
that passes between the photodiode reset and the pulse arrival to 
the sum-&-accumulate element, , is hyperbolic. This can be
derived by modelling the voltage drop at the cathode of the 
photo-diode, , as the discharge of a capacitor:

(10)

This approximation is accurate for small values of . From 
Eq. (10) we conclude that PWM cannot work with a counter that 
counts at a fixed frequency. The frequency of the counter must 
change linearly in time, with an expression like
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(11)

being a positive constant. Joining Eq. (10) and (11) we obtain 
an expression to derive the frequency of the 8-bit counter clock
given an estimate of the photodiode capacitance fF, of

V and of pA:

(12)

Resulting in a range of frequencies of 200MHz 10MHz.

IV. CHIP PROTOTYPE

A prototype chip has been designed in a CMOS 0.18μm
technology (Fig. 4). The die size including pads is 

. It has 84 pads, of which one third is dedicated to 
power supply and ground connections. Table II contains a 
summary of the features of the prototype that we fabricated.

Table II. Summary of chip features

Technology CMOS 0.18 m 1P6M

Pixel size

Fill factor 9.2%

Photodiode type n-well/p-substrate

Power supply 3.3V-1.8V

Predicted power consumption <100mW

Frame rate 30fps

Max. compressed sample rate 50kHz

Clock Freq. 200MHz-10MHz

Fig. 4. Conceptual floorplan of the sensor chip

V. CONCLUSIONS

We designed a CS-CIS prototype based on class-III ECA for 
the generation of on-chip measurement matrix and PWM to 
generate 20-bit compressed samples. This design improves the
trade-off between feasibility and accuracy of reconstruction 
common to this type of sensors. BCS imagers usually employ
blocks of pixels and standard ADC. The small size of 
these blocks increases the asymmetry of the sensor worsening
reconstruction beyond the limit imposed by the low order RIP 
typically found in pseudo-random binary measurement 
matrices. Experimental characterization of the prototype will 
allow verifying the advantages of this implementation with 
respect to other CS applications.
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